Publications of Matthieu Moy in 2006

List publication All in one, By year.

[1] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. LusSy: an open tool for the analysis of systems-on-a-chip at the transaction level. Design Automation for Embedded Systems, 2006. special issue on SystemC-based systems. [ bib | .pdf ]
We describe a toolbox for the analysis of Systems-on-a-chip written in SystemC at the transaction level. The tool is able to extract information from SystemC code, and to build a set of parallel automata that capture the semantics of a SystemC design, including the transaction-level specific constructs. As far as we know, this provides the first executable formal semantics of SystemC. Being implemented as a traditional compiler front-end, it is able to deal with general SystemC designs. The intermediate representation is now connected to existing formal verification tools via appropriate encodings. The toolbox is open and other tools will be used in the future.

[2] Matthieu Moy, V. H. Gupta, and K. Gopinath. Framogr: a FRAMework for the MOdeling and simulation of GRoup protocols. Published as Free Software (LGPL License), 2006. http://download.gna.org/framogr/. [ bib ]
[3] Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz, and Matthieu Moy. Automatic generation of schedulings for improving the test coverage of systems-on-a-chip. FMCAD, pages 171--178, 2006. Acceptance rate: 21/90 = 23%. [ bib | DOI | .pdf ]
SystemC is becoming a de-facto standard for the early simulation of Systems-on-a-chip (SoCs). It is a parallel language with a scheduler. Testing a SoC written in SystemC implies that we execute it, for some well chosen data. We are bound to use a particular deterministic implementation of the scheduler, whose specification is non-deterministic. Consequently, we may fail to discover bugs that would have appeared using another valid implementation of the scheduler. Current methods for testings SoCs concentrate on the generation of the inputs, and do not address this problem at all. We assume that the selection of relevant data is already done, and we generate several schedulings allowed by the scheduler specification. We use dynamic partial-order reduction techniques to avoid the generation of two schedulings that have the same effect on the system’s behavior. Exploring alternative schedulings during testing is a way of guaranteeing that the SoC description, and in particular the embedded software, is scheduler-independent, hence more robust. The technique extends to the exploration of other non-fully specified aspects of SoC descriptions, like timing.


This file was generated by bibtex2html 1.98.