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Abstract. We describe a toolbox for the analysis of Systems-on-a-chip written
in SystemC at the transaction level. The tool is able to extract information from
SystemC code, and to build a set of parallel automata that capture the semantics
of a SystemC design, including the transaction-level specific constructs. As far as
we know, this provides the first executable formal semantics of SystemC. Being
implemented as a traditional compiler front-end, it is able to deal with general
SystemC designs. The intermediate representation is now connected to existing
formal verification tools via appropriate encodings. The toolbox is open and other
tools will be used in the future.

1. Introduction

1.1. Using SystemC to Model Systems-on-a-Chip

Performance and quality requirements for embedded systems are in-
creasing quickly. The physical capacity of chips can usually grow fast
enough to satisfy those needs, but one of the design flow’s bottlenecks
is the design productivity (this is often referred to as the “design
gap”). New techniques such as component reusability and use of em-
bedded software have to be settled continuously to be able to fill in
this gap. These new methodologies raised the need for new modeling
and simulation languages, since low-level hardware description lan-
guages such as VHDL or Verilog would not be simulated fast enough
to allow embedded software development or preliminary architectural
exploration.

SystemC (Aynsley et al., 2003) has been designed to meet these
requirements. A SystemC program has modules, signals, and other
building blocks for the model. It is made of several processes that
run “in parallel”. The architecture of a SoC, the code describing the
activity of its software parts, and the description of its hardware
parts, can be given in SystemC. Other classes can be added to allow
higher level communication like bus or network protocols, to raise the
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level of abstraction to the Transaction Level Modeling (Müler et al.,
2003; Ghenassia, 2005).

A number of other approaches have been proposed for the descrip-
tion of heterogeneous hardware/software systems with an emphasis on
formal analysis. See, for instance, Metropolis (Balarin et al., 2002).
In this type of approach, the (formal) definition of the description
language is part of the game. On the contrary, SystemC has not been
defined with formal analysis in mind. It is primarily a simulation and
coordination language, aiming at accepting all kinds of hardware or
software descriptions in a single simulation.

SystemC is deliberately based on open standards like C and C++,
for two reasons: first, it guarantees a fast learning-curve for the engi-
neers of the domain; second, it guarantees that the models of systems
developed in SystemC can be exploited even if the tool that was used
to build them is no longer available. SystemC is normalized by the
Open SystemC Consortium Initiative, involving the major actors of
the domain. An IEEE standardization is ongoing. SystemC is currently
used by major silicon companies like Intel, STMicroelectronics, Philips,
Texas Instruments, ...

1.2. Need for new Verification Tools

Verification methods are well established for RTL. Bugs in hardware
are known to be extremely costly, and various techniques are applied
to find them as efficiently and as soon as possible. The introduction of
a new abstraction level implies the creation of a complete development
environment, including programming languages, editors, debugging and
visualization tools, and verification tools.

The question of verification tools is a key point for the wide adoption
of TLM models in the industry, and is being addressed by a joint project
between Verimag and the SPG team of STMicroelectronics. The main
problems are: 1. What does it mean to validate properties at the TLM
level? Validation can be either simulation or formal verification. 2. Since
automatic synthesis from TLM to RTL does not exist (and will not
exist soon), how can we compare a TLM reference design and a RTL
design that is supposed to implement it, and is partly written by hand?
3. How can we express and validate non-functional properties (timing,
consumption, . . . ) of SoCs at the TLM level? In this document, we
report on the work done for addressing the first item: how to give a
formal semantics to SystemC and the additional TLM constructs, and
then express and verify properties of a TLM design written in SystemC.
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1.3. Example of a SystemC Program

Figure 1 gives an example of a SystemC program. For clarity, we only
show the body of the processes, and the methods called to process trans-
actions in the slave modules. The system contains two master modules
and two slave modules. They are connected through a tac seq channel
(a TLM sequentializer channel developed in STMicroelectronics). The
program contains assertions for the properties we want to verify. The
main function is given in Figure 2.

}
          == false);

int x = 4321;
int address = 0;
tlm_status s;
while(true) {
   s = port.write(address, &x);
   ASSERT(!s.is_no_response());
   ASSERT(!s.is_error());
}

status_master

int x;
int address = 8;
tlm_status s;
while(true) {

out_bool.write(false);
   s = port.write(addr, &x);
}

tac_seq

if(data == 4322) {
   set_access_error();

status_slave

signal_master

   ASSERT(in_bool.read()

signal_slave

signal
boolean

TLM portsPrimitive ports

master port slave portinput portouput port

Figure 1. An Example Transactional Model

The target port of the module status_slave (resp. signal_slave)
is mapped at the address 0 (resp. 8): it will receive the transactions
initiated by status_master (resp. signal_master). The call to the
method write on an initiator port searches for a slave module mapped
at the corresponding address, and calls the WriteAccess method on
it. If no module is mapped at the address written on, then nothing
happens, and the status returned verifies status.is_no_response().
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1 int sc_main(int argc, char ** argv) {

2 tac_status_master * stm =

3 new tac_status_master("status_master");

4 tac_signal_master * sim =

5 new tac_signal_master("signal_master");

6 tac_status_slave * stsl =

7 new tac_status_slave("status_slave");

8 tac_signal_slave * sisl =

9 new tac_signal_slave("signal_slave");

10 tac_channel * channel =

11 new tac_channel("CHANNEL");

12 stm->master_port(channel->slave_port);

13 sim->master_port(channel->slave_port);

14 stsl->slave_port(channel->master_port);

15 sisl->slave_port(channel->master_port);

16 sc_signal<bool> sig;

17 sim->out_bool(sig);

18 sisl->in_bool(sig);

19 sc_start();

20 }

Figure 2. Elaboration of a SystemC Program.

If a module is mapped at this address, the status returned verifies
status.is_ok() unless the method set_access_error() has been
called during the WriteAccess call.

The execution of a SystemC program is as follows: The SystemC
kernel executes the sc main function. At the beginning of the execu-
tion is the elaboration phase. Components are instantiated in the usual
way for C++ objects. Elaboration ends with a call to the function
sc_start() that hands the control back to the SystemC kernel (line 19
of Figure 2). The last part of the execution is the simulation of the
program’s behavior where the SystemC kernel executes the processes
one by one, with a non-preemptive scheduling policy.

1.4. Summary of the paper

The main contributions of this work are 1) a method to extract
syntax and information from a SystemC program, and it’s implementa-
tion, Pinapa; 2) an executable, formal semantics for SystemC models,
including additional TLM constructs; 3) a working connection to veri-
fication tools. Together, this tool chain called LusSy already allows us
to prove properties (generic, or expressed directly in C++) on small
platforms. Some work is still to be done to be able to scale up, for
example using a component-based approach, but we already provide
the building blocks.
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The paper is organized as follows: section 2 presents the architec-
ture of LusSy. Sections 3 and 4 will detail the two main components:
Pinapa and Bise. Section 5 presents briefly the application of the
method to an example. Section 6 is the conclusion.

2. Overview of LusSy

2.1. Candidate Tools for the Verification of SoCs

SystemC designs being circuit designs, we could think of using one
of the verification tools (model-checkers, SAT-solvers, etc.) developed
for hardware verification, for instance SMV (McMillan, 1993). How-
ever, these tools are tailored for the RTL, exhibiting a clear notion of
clock that is absent in TLM models. Moreover, these tools cannot take
general SystemC as input.

As far as we know, all the work on verification techniques and
tools for SystemC designs is limited to the subset of SystemC that
allows to write RTL designs. It cannot be used for real TLM designs
(See (Drechsler and Große, 2003) for instance).

Now, since SystemC is mainly a C++ library, one could think that
we need general-purpose software model-checking tools. This is not
the case: verifying SystemC designs is, on the one hand simpler, be-
cause we do not have to deal with general dynamic data structures
and general algorithms; on the other hand harder, because we have
to take parallelism into account, and to know about the scheduler
specification. General software model-checking techniques concentrate
on dynamic data structures and general algorithms. They provide so-
phisticated tools like invariant extraction, loop unrolling, etc., but are
not directly usable to exploit the particularities of the SystemC con-
structs provided as a C++ library. Moreover, they usually do not take
parallelism into account. For instance, CBMC (Clarke and Kroening,
2003; Clarke et al., 2004) can apply bounded model-checking techniques
on pure C models, but does not deal with parallelism, or with infinite
loops. SLAM (Ball and Rajamani, 2000) uses clever abstractions and
refinement techniques, but also focuses on sequential programs.

VeriSoft (Godefroid, 1997) can handle parallel processes written in
any language. They are executed as black boxes, communicating via
calls to operating system primitives. These calls are intercepted to build
a model of their parallel behavior. We cannot exploit such a black-
box approach, because we need to extract the transaction-level specific
constructs of SystemC, and aim at treating addresses in a specific way
(see below).
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The closest related work is to be found in Java model-checking,
which also takes a scheduler specification into account. The first ver-
sion of the Java Path Finder model-checker (Havelund, 1999) used
an approach similar to ours, translating Java into the intermediate
representation Promela, and using the model checker SPIN to prove
the properties. Version 2 (Havelund et al., 2000) checks the byte-code
directly, using a dedicated JVM with backtracking capabilities, and lots
of other model-checking techniques. However, the techniques dedicated
to Java are not directly applicable, neither to SystemC and its sched-
uler, nor to the modeling of synchronous and asynchronous mechanisms
usually present in SoC models.

2.2. Our Verification Approach

We advocate an approach able to exploit all the particularities of a
real TLM design written in general SystemC. We describe a method
implemented in a new dedicated tool called LusSy: based on compiler
front-end techniques, it is able to extract architecture and behavioral
information automatically from a TLM design written in SystemC with
very few abstractions, by exploiting carefully the constructs provided by
the library. It builds its own intermediate representation called hpiom
(for Heterogeneous Parallel Input/Output Machines) made of commu-
nicating parallel machines, able to represent both deterministic and
non-deterministic components, synchronous and asynchronous commu-
nication protocols, Boolean and numerical data. This is very much
in the spirit of the action language (Bultan, 2000). For the moment
LusSy connects this intermediate representation to model checkers, ab-
stract interpreters, and a SAT engine. These tools provide conservative
automatic verification results for safety properties, and may perform
their own abstractions on the hpiom representation, when needed. The
current state of the LusSy implementation is being applied to case-
studies provided by STMicroelectronics; the implementation is already
mature enough to accept a large subset of SystemC.

2.3. Expressing Properties

Generic properties do not require the use of a specification language.
In LusSy we can:
− Check that a global dead-lock never occurs. We consider that a

global dead-lock occurs when the SystemC scheduler enters the
“time elapse” phase while no process is waiting for time.

− Check that a process never terminates. This should always be the
case except for test benches.
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− Check that a synchronous signal is never written on twice during
the same δ-cycle (a δ-cycle is a step of execution of the system
running all the eligible processes, in zero time). This is a dangerous
situation since the final value on the signal will depend on the order
of execution, which is most probably dependent on the scheduling
policy.

We can also express user-defined properties. We may check that some
portions of code are mutually exclusive by specifying the beginnings
and ends of the critical sections. The most general safety properties
are expressed by assertions in the source code: ASSERT(condition).
Technically, the ASSERT macro is defined by:
#define ASSERT(X) if(!(X)) {is_this_reachable();}
so the problem of assertion verification is reduced to the problem of
code reachability.

2.4. The LusSy Tool Chain

The tool chain is presented if figure 3. Starting from a SystemC
program’s source code, the front-end, Pinapa, extracts an abstract rep-
resentation comprising both the architecture and the syntax-related in-
formation. Bise uses the output of Pinapa to generate the intermediate
representation hpiom (expressing the semantics of SystemC). Birth
performs some hpiom to hpiom transformations. The translation from
hpiom to any synchronous language is then rather straightforward.

LusSy is the composition of Pinapa, Bise, Birth and the various
back-ends.

The following gives a short presentation of each element of the tool
chain. The main components will be detailed in the next sections. A
complete description of all the components can be found in (Moy, 2005).

2.4.1. Pinapa: Pinapa Is Not A PArser
Pinapa (Moy et al., 2005b) is a SystemC front-end based on GCC
and on the SystemC library. Its role is similar to the one of a compiler
front-end for a traditional programming language, but the way it works
is very different since we are not dealing with a real programming
language, but with a library built on top of C++.

2.4.2. Bise: Back-end Independent Semantic Extractor
Bise (Moy et al., 2005a) takes the output of Pinapa as input. It defines
the data structure hpiom (for Heterogeneous Parallel Input/Output
Machines), an intermediate formalism of communicating, synchronous
automata. It generates a system of hpiom automata whose seman-
tics is a conservative abstraction of the input program, with as few
abstractions as possible.
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Automaton in
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lesar

Execution

SMV generator

Figure 3. The LusSy Tool Chain

2.4.3. Birth: Back-end Independent Reductions and Transformations
of hpiom

Birth implements some hpiom to hpiom transformations: they are
optimizations (traditional optimization techniques like live variable
analysis), abstractions, or simplifications (expression of high-level
hpiom constructs using lower-level constructs to ease the task of the
back-ends).

2.4.4. Lustre and smv back-ends
We currently have a Lustre (Bergerand et al., 1985) and an
smv (McMillan, 1993) back-end which allow us to use smv,
Lesar (Halbwachs et al., 1992), Nbac (Jeannet, 2003) and
Prover Plug-inTM for SCADETM (PROVER Technology, 2005) to
carry the actual proof.

2.4.5. Visualization back-end
The visualization back-end was mainly written for debugging purposes.
From the hpiom automata, it generates one dot file for each automaton,
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and one to represent the connection between automata in the system.
The tool dotty from the graphviz package provides an interactive
visualization tool.

3. Pinapa: Extracting Architecture and Behavior
Information From SystemC Models

3.1. Introduction

The first step of the analysis it to extract the information from the
SystemC program. This section will present our tool, Pinapa, that
is able to extract the syntax and architecture information from the
program. We will see how the case of SystemC is different from tra-
ditional programming languages, and present our approach and its
implementation.

A tool like Pinapa is compulsory for anybody who wants to extract
information from realistic SoCs designs: it is able to extract all the
information from a piece of SystemC code, with very few limitations.
It is open source and available to public.

3.1.1. Static and dynamic information in SystemC
SystemC, like several programming languages or runtime environments,
is used for describing: 1) the architecture of a system and then 2) the
activity of the elements in this system. The architecture, although it
is built by the execution of some piece of code (the so called “elabo-
ration” phase), is not really dynamic, and will not change during the
simulation of the program activity. It is described in a general-purpose
programming language because of the expressivity of such languages,
compared to the dedicated pseudo-languages of “configuration files”.

The originality is that SystemC, although often referred to as a
language, is not actually a language, but a library for C++. Execution
of a SystemC program is “trivial”, since it can be compiled with any
supported C++ compiler. But simulation is not the only thing one
may want to do with a language. We are particularly interested in the
connection to formal verification tools, but also in visualization tools,
automatic generation of documentation, program linting, . . .

3.1.2. Pinapa: requirements
This section presents Pinapa (For Pinapa Is Not A PArser), a Sys-
temC front-end. Our requirements when we started writting Pinapa
were the following (They also apply for a general use):

1. As few a priori limitations as possible. We cannot make any
assumption about a well-defined subset of SystemC used in the
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programs we want to analyze, and we don’t want the tool to require
any manual annotation.

2. The tool must give precise information on all parts of the program:
architecture, software parts, hardware parts. Abstractions may be
done in the back-end if necessary, but the front-end must not lose
information.

3. Pinapa should maximize code reuse, because using an ordi-
nary C++ front-end when possible avoids creating C++ dialects,
and using the reference implementation of SystemC also helps
complying with the SystemC specifications.

4. The programs we want to manipulate use some high level Transac-
tion Level Modeling constructs, that are not yet standardized by
the SystemC consortium. The tool must be able to manage those
constructs.

3.1.3. Contributions
Pinapa satisfies all the abovementioned requirements. The contribu-
tions are the following: 1) a general principle for building front-ends of
“simulation” languages in which part of the system architecture that
has to be extracted statically is actually built by the execution of some
piece of code; 2) an open source implementation of this principle for
full SystemC. It has been tested on the TLM model of the Example
AMBA SYstem (EASY) (ARM Limited, 1999) from ARM written in
SystemC by STMicroelectronics, whose complexity is representative of
the designs written in SystemC; 3) working connections to analysis
tools.

When fed with a SystemC program, Pinapa executes the elab-
oration phase of the program, parses it with GCC, and outputs a
data structure useable through GCC and SystemC API, plus some
additional Pinapa-specific functions.

3.2. Existing SystemC Tools

Several other tools manipulate SystemC programs. Some present them-
selves as SystemC front-ends, but none of them meet our requirements.

SystemPerl (Snyder, 2005) is a perl library containing, among other
tools, a netlist extractor for SystemC (a netlist is a description of the
connections between modules). It uses a simple grammar-based parser
and will therefore not be able to deal with complex code in the con-
structors of the program, and does not extract any information from
the body of the processes. This does not satisfy requirement 2 above.

SynopsysTM developed a SystemC front-end that has successfully
been included in products like CoCentric SystemC Compiler and Co-
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Centric System Studio (Synopsys Inc., 2005)(synopsys, 2003). It parses
the constructors and the main function, as well as the body of the
modules with the EDG (Edison Design Group, 2005) C++ front-end,
and infers the structure of the program from the syntax tree of the
constructors. SystemCXML (Matthaikutty et al., 2005) seems to use
the same approach, using doxygen’s (van Heesch, 2005) C++ front-end,
but the implementation details are not published as of now. Using this
technique, to be able to parse any SystemC program (requirement 1),
one must be able to compute the state of any program at the end of
the execution of the constructors knowing their bodies. In other words,
the tool must contain a re-implementation of a C++ interpreter (which
does not satisfy requirement 3).

The University of Bremen developed a SystemC front-end called
ParSyC (Fey et al., 2004). The approach is similar to the one of
SynopsysTM, except that the grammar is written from scratch (includ-
ing both SystemC and C++ constructs) instead of reusing an existing
C++ front-end. It has important limitations regarding the complexity
of the elaboration phase. For example, for loops have to be unrolled,
which is not possible if the bounds are not constant. sc2v (Villar, 2005)
is also a SystemC synthesizer, built with the same approach. KaSCPar
recently came into the picture, with a grammar-based parser (using
JavaCC), and an XML output. To be complete, this approach needs to
include all the C++ syntax (to parse the program) and semantics (to
interpret the constructors).

Some lint tools such as AccurateC (Actis Design, LLC, 2005) also
manipulate SystemC code. AccurateC can check rules both in the code
(this is an extension of a C++ lint tool) and in the netlist. However, it
does not need the link between the behavior and the netlist (unfortu-
nately, the internal structure of AccurateC has not been published at
time of writing).

Some simulation tools provide an alternative to the reference simu-
lator, with additional features like VHDL or Verilog cosimulation. For
simulation, these tools do not need information about the body of the
processes in uncompiled form, so, their requirements are different from
ours. One particular case is NC-SystemC (Cadence Design Systems,
2003) from Cadence: it also provides source-level debugging, using the
EDG C++ front-end. The approach is therefore similar to ours, since
the tool has to deal with both syntax and architecture information.
However, this tool is focused on debugging, and the front-end is anyway
not available to the public.
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3.3. Pinapa principles, limitations and uses

3.3.1. Principles of Pinapa
The methodology for writing or generating front-ends for various kinds
of languages has been studied extensively (see for example (Aho et al.,
1986)). Such general techniques are used indirectly in our tool since we
are using a general C++ front-end, but are not sufficient to get all the
necessary information from a SystemC program. Typically, they cannot
extract the information about the SoC architecture, which is built by
executing the first phase of the SystemC program.

At first, it may appear meaningless to write a front-end for a library,
but the case of SystemC is particular. To understand what we mean
by “SystemC front-end”, we need to examine the notions of static and
dynamic aspects of a SystemC program.

Observe Figure 4. On the left are the kinds of information present
in a SystemC program. From the point of view of a C++ front-end,
lexicography and syntax are static and used to build the AST (Abstract
Syntax Tree), while the architecture and the behavior are visible during
the execution. From Pinapa’s point of view, the static information
extends to include the architecture. The architecture will be present
in the memory at the end of the elaboration phase. The dynamic part
is reduced to the simulation phase. The static part is made of: the
AST obtained by reusing a standard C++ front-end on the SystemC
program; the architecture-related information (that we call elab) that
stays in memory at the end of the elaboration phase;

Syntax

Architecture

Behavior d
y
n
a
m

ic
st

a
ti
c

st
a
ti
c

dynamic

information
TraditionalType of

Pinapa

lexicography

C++ front-end

simulation

elaboration

AST

ELAB

AST

Figure 4. Static and Dynamic information in a SystemC program

Figure 5 describes the dataflow of Pinapa. The AST is obtained by
parsing the program with a traditional C++ front-end (right hand side
of the figure), and elab is obtained by compiling and executing the
elaboration phase (left hand side of the figure).
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C++ front-end
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Figure 5. Data-flow of Pinapa

Note that the source code is parsed by a C++ front-end twice: first,
to compile the elaboration phase (step (1) in Figure 5), and then to get
the AST, which, in our case, contains some address offset information,
dependent on the binary interface (ABI) (step (2)). The address offsets
obtained in both cases must be consistent, so the C++ front-ends of (1)
and (2) must be ABI-compatible (in particular, they can be the same
compiler). We currently use GCC (GNU Compiler Collection) version
3.4.1 for both. This means that the program will not be parseable by
Pinapa if it does not compile with this precise version of GCC.

Unlike other existing approaches, Pinapa has no limitation regard-
ing the complexity of the code of the constructors used to build the
architecture, because it does not interpret them; it compiles and ex-
ecutes them. For example, a program reading a configuration file or
the command line arguments to determine the number of modules
to instantiate can be parsed correctly by Pinapa. In the example of
Figure 2, for instance, the initial values of some data-members depend
on command-line arguments, but they will be extracted correctly by
Pinapa.

Moreover Pinapa (like the front-end of SynopsysTM) uses a real
C++ front-end and will therefore correctly parse any code that would
have been parsed successfully by the C++ front-end. The limitations
regarding the C++ language itself are therefore minor (limited to “de-
tails” such as the export keyword not managed by GCC). The use
of macros in the source code is not a problem: the macros will be
expanded by the C++ preprocessor. Whether the code uses the macro
or its expanded version doesn’t have any influence on Pinapa. Any tool
using a dedicated grammar for SystemC would have to include all the
grammar and typing rules of the C++ standard in the tool to have a
correct parser.
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The main task of Pinapa is to establish links between the AST
and elab (last step in Figure 5). The idea behind these links is il-
lustrated by the following: the SystemC processes perform actions of
the form port.write (...), and these instructions are present in the
AST. The elaboration phase creates instances of modules and connects
ports, building an architecture that is present in elab. The relationship
between an instruction port.write (...) in the AST, and the actual
data structure describing this port in elab, has to be established
by Pinapa. In practice, Pinapa installs pointers in both directions
between the AST and elab.

3.3.2. Limitations
While Pinapa has no limitations (except the ones of GCC) regarding
the AST (we use a C++ front-end) or elab (we let a C++ compiled
code execute the constructors), it does have limitations due to the way
we establish the links between the AST and elab.

It is not always possible to establish these links. If a process uses a
pointer to a SystemC port or an array of ports, then, the actual object
pointed to by this pointer cannot be known statically. In some cases,
advanced static analysis techniques like abstract interpretation would
allow to get more information statically, but the subset of SystemC
managed by the tool would be very hard to define. In practice, those
constructs are usually not considered as good programming practice
and did not appear in the programs used as input for Pinapa up to
now.

Pinapa simply does not manage references and pointers to SystemC
objects (The pointers to ports will appear in the output of Pinapa,
both in AST and in elab, but the objects in the AST will not be linked
to the corresponding ones in elab). For arrays of SystemC objects, if
the index is a constant, then, the actual object is known statically, and
Pinapa decorates the AST referring to the port with a pointer to this
object. Otherwise Pinapa decorates the AST with the index in the
array (which is itself an AST) and a pointer to the first element of the
array. In any case, we could reduce the case of arbitrary array indexes
to the case of constant index by transforming the code to eliminate
non-constant indexes, while preserving the semantics of the program.
This can be done with loops unrolling (which converts the loop index
into a constant), or transformations like turning ports[i] into
i==0 ? ports[0] : (i==1 ? ports[1] : (abort(),ports[1]))
Pinapa being open-source, such transformation can easily be added if
needed.

The use of templates can sometimes be problematic: for a program
using templates, The AST contains the expanded templates, and elab
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contains instances of templates class. The template parameter is not
necessarily know at the time the back-end is written, so the code of
the back-end has to manipulate pointers to objects whose type is not
known. The same remark applies to Pinapa itself. In practice, the
management of templates made the task harder, but never impossible
for Pinapa and our back-end LusSy (We had to move relevant data or
methods from template classes to non-templates base class in SystemC
and the TLM library).

3.3.3. Other possible approaches
3.3.3.1. Using a C++ Interpreter An interesting option would be to
modify an existing C++ interpreter like UnderC (Donovan, 2002). A
C++ interpreter contains a C++ front-end, and the environment to
execute the elaboration phase. Ideally, the C++ interpreter should be
100% compliant with the C++ standard, and do the interpretation at
the AST level (not on an intermediate byte-code representation, which
is unfortunately the case of UnderC) to ease the link between the AST
and the runtime information. We are not aware of any such interpreter.

3.3.3.2. Avoiding the need for a SystemC front-end The problem
solved by our approach is the expressivity of the language used to
describe the program’s architecture. Another approach would be to
eliminate the problem instead of solving it, by using a less expressive
language.

In particular, the SPIRIT (SPIRIT Consortium, 2003) XML Schema
can be used to describe the architecture of the program. There are
ongoing works to extend it to support TLM constructs. Extracting the
structure of the program would then consist in parsing an XML file, and
extracting the body of the processes would still have to be done with a
C++ front-end. Simulation of the program would also be possible, by
generating C++ from XML and compiling it as usual. This approach
is not applicable today since we need to deal with existing SystemC
programs.

3.3.4. Pinapa: Current and Future Uses
We currently use Pinapa as a front-end for our formal verification tool
LusSy (Moy et al., 2005a). Starting from the abstract representation
of the program provided by Pinapa, we generate an intermediate rep-
resentation (a set of communicating automata) which is itself dumped
in a text format used as input for a traditional model-checker.

STMicroelectronics is currently developing a vizualization tool for
SystemC using Pinapa: reading a SystemC program, it generates an-
other representation useable by a visualization tool (using the SPIRIT
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format). This is a very simple use of Pinapa since it only use the elab
part of the information extracted, but it is being extended to provide
more advanced visualization including static information about process
communication and synchronization. Our medium-term plans include
the development of a lint tool for SystemC and our TLM methodology.
The tool has to be able to identify both the architectural and the
language constructs, which is exactly the scope of Pinapa.

Pinapa is also successfully being used by a research project for com-
positional verification of transactional models of Systems-on-a-Chip,
led by the POP ART team of INRIA Rhône-Alpes (France).

3.4. Implementation of Pinapa

Pinapa can be divided into three main tasks: 1) get the elab informa-
tion by executing the elaboration phase; 2) get the AST of the process
bodies using GCC; 3) make the link between the results of phases 1
and 2. Phases 1 and 2 are just software reuse. For phase 1, fortunately,
SystemC keeps a list of most objects in a global variable, it is easy to
examine them.

In Figure 1, each graphical element corresponds to an object in
elab, which contains :

process handlers. The process handler gives the following infor-
mation: name of the function, name of the class containing it, type
of process (SC_THREAD or SC_METHOD), and pointer to the executable
code of the function. It also contains the list of events the process may
be waiting for by default after suspending itself. This list is called the
static sensitivity list.

SystemC Objects. Each SystemC object (ports, modules, ...)
contains the necessary information about the binding.

The AST represents the bodies of the processes. For example, the
if statement line 9 in Figure 2 would be represented as in Figure 6.
Pinapa will make the link between the AST of the port port and its
instances in elab.

Concretely, Pinapa first launches the elaboration of the program.
We use a slightly modified version of SystemC, in which we redefined
in particular the function sc_start() called by the program at the
end of elaboration. Instead of launching the simulation, our version of
SystemC launches a C++ front-end. A few other minor modifications
have been necessary. Usually, they were as simple as adding a friend
keyword or a data member to a class. For example, SystemC did not
keep the name of the class for each module, but the modified SystemC
does.
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COMPONENT REF

FIELD DECL
m val

IF STMT

CALL EXPR

write

THEN CLAUSEIF COND

...

...

...

INDIRECT REF

this

Figure 6. Abstract Syntax Tree for an if statement

In phase 2, GCC parses the functions one by one. We actually ignore
many of them, since we are only interested in the body of processes.
We get an abstract representation of the source code of the processes
in the form of an Abstract Syntax Tree (AST).

Then, the actual job of Pinapa begins: we have to make the link
between this AST and elab. Sections 3.4.1, 3.4.2 and 3.4.3 below
detail some interesting problems raised by this phase. Section 3.4.4
summarizes the architecture of the tool.

3.4.1. Links from ELAB to AST
The first step is to make the link from elab to the AST. There is not
much to do: for each process handler, look for the AST of a method
with no argument whose class name and function name match the ones
in the process handler, and add a pointer to this AST in it.

In the example above, there are two process handlers for
module1::code1 (one for each instance of module1), and each of them
points to the AST of function module1::code1 declared at line 8.

3.4.2. Links from AST to ELAB
The link from the AST to elab is a bit more complex. Each instruction
in the AST corresponding to a function or object of the SystemC li-
brary must be considered as a SystemC primitive and requires a special
treatment.

3.4.2.1. SystemC Functions SystemC function calls (in the process
bodies) are recognized by their name and list of arguments. We add a
decoration to the tree saying that this function is a SystemC function
(and which one it is).

For wait statements, we also add a representation of the list of
sensitivity (information saying when the process will wake up) for this
statement, either based on the arguments of the wait, or on the static
sensitivity list (built during elaboration) for a wait with no argument.
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3.4.2.2. SystemC objects SystemC objects require much more work.
In the AST, we get an abstract representation of the classes, but in
elab, we have instances of these classes. These instances are built once
and for all during elaboration. Unless the program uses pointers to
SystemC objects, a variable containing such object will therefore always
contain the same object.

Since a module may be instantiated more than once, the same
element in the AST may refer to several objects in elab. However,
for a given process, an element in the AST only corresponds to
one object in SystemC. The link is therefore actually a hash table:
(AST,process handler) −→ SystemC object.

We describe two methods to get a pointer to an object in elab from
its AST and process handler, and how we applied them in the case of
GCC. Depending on the information present in the AST, either one,
the other, or both can be applicable using another C++ front-end,
depending on the information provided by this front-end.

An example: SystemC Communication Ports In the case of GCC, Sys-
temC communication ports correspond to a situation where the name
of the object does not appear in the AST. This is due to the way GCC
represents a member function call in the AST: for example, when the
user writes port.write(x); in a process body, if port is a member of
the current class, this is equivalent to this->port.write(x); Which is
itself converted to write(this->port, x); by GCC’s front-end. Now,
here is the bad joke: this code is converted to write(*(this + off-
set of port), x); where offset of port is a literal numerical constant.
At this point, we are still in GCC’s front-end, but we have lost an
important information: the name of the port.

So, we only have the offset of the port being examined, and we want
to get its instance in elab. Since the compiler used for the C++ front-
end and the one used to compile the program are ABI-compatible,
the solution is the following: for each instance of the process, we can
get a pointer to the instance of the class containing the process (this
information was already in the original SystemC’s process handlers). If
we add the offset we got from the AST to the value of this pointer, we
get a pointer to the instance of the port.

Other objects The same approach is used for other SystemC objects
like sc_event.
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3.4.3. C++ Classes Data Members
It is often the case that a data member of a class is initialized during
elaboration, and we would like Pinapa to be able to extract this in-
formation from the program. Pinapa provides an option to read the
value of these data members at the end of elaboration.

The problem is that in this case, the address offset does not appear
in the AST in the output of the front-end of GCC. The approach
of section 3.4.2.2 is therefore not applicable. We could compute the
offset from the AST (GCC does this anyway, later in the compilation
flow), but we chose a different approach, that does not require this
computation.

Since we have here both the name of the data member and the
name of the class it is a member of, we can write a piece of C++ code
that would read the value of this data member. The C++ language
is not flexible enough to execute dynamically this piece of code, but
never mind: we can write it in a file, compile it (run g++ as an external
program), load it dynamically (dlopen, dlsym, ...), and execute it. It
will be executed in the environment elab. An example of generated
code follows:

#include "preprocessed_sc_source.cpp"

namespace pinapa {
struct get_value {

static bool
function_to_get_value_0(sc_module * arg) {

return (static_cast<module1 *>(arg))->m_val;
}
[...]

};
[...]
} // namespace pinapa

In the current implementation, the return value is converted into
an AST representing the value of the constant, which is attached as a
decoration to the AST of the program.

There is a limitation here because the return value of the generated
function has the same type as the data-member that we are examining,
which can be any type. To be able to call this function from Pinapa,
we have to know the return type statically. Concretely, this means we
need to write a piece of code in Pinapa for each data-type we want
to manage. In a future version, it would be interesting to implement
the conversion from a concrete value to an AST in the generated code
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itself. This way, the return value of the function would always be an
AST, and this would remove the above limitation. In other words, code
generation can be generic on the type of the variable, whereas function
calling can not.

3.4.4. Function Call Graph
The resulting function call graph in Pinapa is somewhat complex
(Figure 7), but will be made clearer by the end of this section.
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42

Function moved away from the original SystemC

(start simulation)

mainsc real main

Back-end

Data access

Function call

New function

Callback (Using C++ functor)

Parses the source code of

Bypassed function call

SystemC kernel

SystemC Model

GCC

sc main

toplev main

sc start

main

PINAPA

backend

pinapa::parser start

pinapa::main

pinapa::main in parser

pinapa::analyze function body

pinapa::simcontext::decorate process

pinapa gcc analyze function hook

Figure 7. Architecture of Pinapa

In the original version of SystemC, the main function is in the Sys-
temC library itself (it actually does not do much more than displaying a
copyright message and calling the sc_main function). We have removed
it from the library, considering that the main function should be written
by the user (i.e., the programmer of the back-end). This is the item (1)
of Figure 7.

The call to the sc_main function (and therefore the call
to the Pinapa’s main function) must not return, because the
elaboration phase may have allocated objects on the stack.
We use therefore a callback mechanism (using a C++ func-
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tor), so the main function of the back-end should look like:

int main(int argc, char ** argv) {
// The backend is in my_callback::operator()
pinapa::st_backend *callback = new my_callback();
// ...
pinapa::main(..., callback);

}

From the pinapa::main function (2), we call the function that was
originally the main function in the SystemC kernel (3), which in turn
calls the pinapa::main_in_parser function (4), which dynamically
loads and executes the user’s code (5) to elaborate the program. The
call to sc_start (6) that originally started the simulation is bypassed
and calls pinapa::parser_start (7).

The elaboration has now been executed. We call the main function
of the GCC compiler (8). We have modified GCC to call the function
pinapa_gcc_analyze_function_hook (9) in Pinapa for each function
it parses (passing the AST of this function as an argument). For
each function parsed, pinapa::simcontext_decorate_process (10)
searches for the corresponding process handler in elab and
pinapa::analyze_function_body (11) runs over the AST to link
SystemC primitives to their corresponding object.

3.4.5. Validation
We developed Pinapa incrementally, following our needs for the formal
verification back-end LusSy. Each feature added to Pinapa was vali-
dated by at least one example, stimulating both the front-end and the
back-end. The correctness of the translation can be ensured by the ex-
amination of the model-checker’s diagnosis compared to the simulation
behavior, and by the visualization tools connected to LusSy.

3.5. Summary for Pinapa

We presented Pinapa, a front-end for SystemC. Unlike traditional
compiler front-ends, it executes a part of the program before parsing it,
and the main work presented in this section is the way to make the link
between the source code representation and the runtime information.

This technique allowed us to write a SystemC front-end with very
few limitations, with a minimal effort. It reuses megabytes of source
code from GCC and SystemC, but counts itself less than 4,000 lines
of code. The performances are reasonable: most of the time is spent in
GCC, so parsing a program with Pinapa takes almost the same time
as compiling it with GCC. It already manages the TLM TAC and TLM
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BASIC extensions of SystemC, and other could be added in the future
depending on our needs.

The parser is already operational and used in two formal verification
back-ends. It is available under the terms of the GNU Lesser Gen-
eral Public License at http://greensocs.sourceforge.net/pinapa/.
More details about the implementation can also be found in the online
documentation.

4. Bise: Semantics of SystemC and TLM Constructs in
Terms of Automata

4.1. Introduction

We have presented the first step of the extraction, and our implemen-
tation of it, Pinapa. This section will illustrate the transformation of a
SystemC program, parsed by Pinapa, into the intermediate representa-
tion hpiom, which is a simple formalism of communicating synchronous
automata. This transformation is implemented in the component Bise
of the tool LusSy.

Translating SystemC into hpiom is a way of giving a formal se-
mantics to SystemC. The faithfulness of the translation relies on the
executability of hpiom. The hpiom obtained may be tested against
the official SystemC execution engine (we currently use the Lustre
back-end to execute hpiom—It allows either user-friendly debugging
or efficient compilation). LusSy is an open tool, allowing other tools
(SAT solvers, model-checkers, ...) to be experimented on hpiom ob-
tained from SystemC. Finally, studying verification methods and tools
for TLM designs written in SystemC gives hints on how TLM models
should be written to allow easier use of verification tools. This helps
in defining libraries at the appropriate level of abstraction, and general
guidelines for designers.

The contributions of Bise are: 1) an executable formal semantics for
TLM models written in full SystemC, with an operational translation
tool; 2) a way of expressing safety properties directly in SystemC;

Syntactically speaking, LusSy accepts a very large subset of Sys-
temC, being based on a full C++ front-end; the only limitation is that
the use of templates is restricted to a fixed set of parameter types,
for which expansion can be performed. The other restrictions are of
semantic nature: the SystemC code is accepted by LusSy, but the se-
mantics is made abstract because the target formalism is less expressive
than the source language. This occurs for all pieces of code that deal
with dynamic data structures. We introduce a specific translation for
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addresses, to help identifying the influence of these data on the control.
Finally, we deliberately introduce non-determinism in the translation,
to reflect the non-determinism of the SystemC specification (choice of
the scheduler, uninitialized variables, etc.).

4.2. hpiom: Heterogeneous Parallel Input/Output
Machines

A basic automaton A is a reactive machine made of a set of control
points, a set of labeled transitions between control points, and a set of
variables V . A state of such an automaton is made of a control point and
a valuation of the variables. Automata communicate through messages.
Transition labels are made of:
— a guard, which is a Boolean expression made of elementary tests on
the variables of V (eg: [x < 3]) and tests on the presence and values
of a message (eg: ?message).
— a list of messages emitted, denoted by !message,
— a set of parallel assignments denoted by v := e where v ∈ V and e
is an expression on V .

The messages that appear in the conditions of the transitions (resp.
the list of emitted messages) are called inputs (resp. outputs). Such an
automaton reacts to a sequence of inputs by emitting a sequence of
outputs, and modifying its internal state. If there is a transition from
cp1 to cp2 labeled by g1/e1a1 (a guard, a set of emitted messages, a set
of assignments) in the automaton, then from a state (cp1, v1), provided
the condition g1 is satisfied by the valuation v1, the automaton can
reach a state (cp2, v2) where v2 is obtained from v1 by executing a1,
emitting the messages in e1.

All the basic automata are reactive: from any state, with any input
configuration, the transition of the automata is defined. However, in
the graphical syntax, we usually omit self-loops.

The automata are composed in parallel using the synchronous prod-
uct: a step of the global system involves exactly one step in each of the
parallel automata, and is obtained by performing the conjunction of the
guards, the union of the emitted messages, and the union of the assign-
ment sets (they cannot intersect since hpiom automata do not share
variables). It expresses the semantics of the synchronous broadcast of
signals in all synchronous languages, on which the reader can find more
details in (Maraninchi and Rémond, 2001). The synchronous broadcast
used here is known to raise so-called “causality” problems (Berry, 2000).
hpiom forbids instantaneous dialog and is therefore free of this kind of
problems.
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As usual in this kind of formalism, non-determinism is modeled
by additional inputs called oracles. For instance, a non-deterministic
situation that would imply two transitions (cp, g/e1a1, cp1) and
(cp, g/e2a2, cp2) is in fact written as (cp, g∧?i/e1a1, cp1) and (cp, g ∧
¬?i/e2a2, cp2) where i is an additional input message. This mechanism
is used whenever a SystemC design exhibits non-determinism: the ini-
tial values of uninitialized signals, the choice of a process to run by the
scheduler, etc.

4.3. Semantics of SystemC into hpiom

4.3.1. Principles
The translation into hpiom does not perform more abstractions than
those implied by the expressivity of hpiom compared to that of
SystemC (see section 4.3.2). Since most interesting properties are un-
decidable on hpiom, further abstractions will have to be made, but we
let them to specific verification tools connected to hpiom.

On the other hand, we could translate SystemC processes taking the
scheduler and the synchronization primitives into account, but not the
TLM constructs, which would then be treated as ordinary C++ code.
This would lead us to lose interesting information about the structure
and behavior of the design. We have chosen to take TLM constructs
into account during the translation, which means giving a direct hpiom
semantics to TLM constructs.

Of course, since SystemC has no formal semantics, a formal proof
of the equivalence between a SystemC source file and the correspond-
ing hpiom representation built by LusSy is impossible. hpiom being
executable means executions can be compared, but it is also of great
importance to give a semantics to SystemC into hpiom in a simple,
well structured and clearly decomposed manner, which we describe
here. This leaves room for optimizations.

The main idea is the following: 1) each process in SystemC will
be associated with one automaton in hpiom; 2) the complete hpiom
description of a SystemC design will be made of all these “process”
automata, plus specific automata for SystemC and TLM constructs.

The automata representing the body of the processes are extracted
from the information obtained with the C++ front-end. Each process
gives an automaton representing its control structure. For the Sys-
temC library structures, the method is different: we never parse the
SystemC library source code itself. We describe hpiom patterns, based
on the SystemC library specifications: there is an automaton pattern
for the scheduler, one for each signal, etc. To generate instances of these
patterns, we need to extract additional information from the SystemC
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design: for the scheduler we need the number of processes in the system,
for channels we need the number of connected modules, etc.

4.3.2. Expressivity of hpiom and abstractions
hpiom may be used to encode any statically bounded-memory program.
In SystemC, static bounds are guaranteed if: 1) the program does not
perform dynamic memory allocation; 2) there are no calls to recursive
functions.

The semantics of SystemC into hpiom abstracts memory allocation
primitives and recursive function calls into new input messages with
unknown value. We also do that for not yet implemented constructs
of SystemC, to get a working connection to verification tools before
full SystemC has been taken into account by the front-end. These
abstractions are clearly conservative for safety properties: the set of
behaviours a SystemC code may exhibit when considering two complex
expressions, is a superset of the set of behaviours it can exhibit when
considering the detail of these expressions.

Another abstraction (which is optional) is related to the way ad-
dresses are dealt with. In SystemC, addresses are simply int values. If
nothing special is done in the translation, addresses become ordinary
variables in hpiom, and any property related to addresses has to be
transmitted to a verification tool able to deal with ints. However, in
the SystemC source code, it is possible to distinguish adresses from
other ints. For addresses, we propose an encoding based upon the
existence of address maps. Indeed, in SystemC, the significant values of
the address variables are given by the address maps used to describe the
connection between components. Such a map is a partition of N into a
finite number of ranges R1, ..., Rn. With each Ri, we associate a Boolean
variable bi. An address variable x is then encoded by a valuation of the
vector b1...bn. A constant value k ∈ Ri is encoded into bi = 1, bj 6=i = 0.
As soon as we manipulate addresses, we may lose information, resulting
in encodings where ∃i 6= j.bi = bj = 1, meaning the value of x is in
range Ri or in range Rj . This is conservative for safety properties.
It simplifies the proofs a lot, and has proved to be sufficient on the
examples we tried (the computation time for the proof fell down from
several hours to less than a second on the example platform).

The last abstraction (which is also optional) is related to asynchrony.
SystemC is intended to model and simulate asynchronous components.
Although it provides a construct wait (t) where t is an amount of
time, guidelines specify that this quantitative time t should not be used
to enforce synchronization (i.e., the designer should not assume that
two processes that perform the same wait (t) will synchronize when
t has elapsed). The “time-elapse” phase of the scheduler algorithm
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awakes the processes in the order specified by the wait parameters.
In our translation, they are woken-up non-deterministically (encoding
non-determinism with oracles). This means that the hpiom model has
more behaviours than what the SystemC interpreter may exhibit. This
conservative abstraction enforces the guideline: if a safety property can
be proved on the hpiom model, then it is true that the wait statements
have not been used to enforce synchronization.

4.3.3. Semantics of process code into hpiom
Compiling imperative code into automata is a well known problem and
there is no semantic difficulty here. However, the abstract syntax tree
for a C++ contains a lot of particular cases, and a lot of them have to be
taken into account if we want to apply our tool to real-world SystemC
designs. Hence this part of the translation represents a significant part
of the work. The while loop is given in figure 8 as an example.

Abstractions: the translation of C++ code has to perform some
abstractions due to the absence of dynamic structures in hpiom. For
instance, we cannot translate C++ code performing memory alloca-
tions. Non-recursive function calls can be inlined (at the syntax tree
level), but other have to be abstracted away.

[x < 3]

[x >= 3]

x := x + 1

while (x < 3) {
x := x + 1;

}

Figure 8. Control flow for a while loop

4.3.4. Semantics of the synchronization primitives and the scheduler
Expressing the semantics of the scheduler by some synchronizations
between the hpiom automata may be done in several ways. The global
communication scheme is shown in figure 9 and will be detailed be-
low. The semantics of the SystemC scheduling policy is modeled by
one automaton for the scheduler, plus two per process. The fist one
represents its control structure (as explained above), and the other one
represents its state in the scheduler (figure 10 gives the automaton
for an SC_THREAD. The automaton for an SC_METHOD is similar): the
process may be either running, ready to run (eligible), or sleeping
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(blocked in a wait statement for a SC THREAD, or execution over for
an SC METHOD.). The synchronization between the two is such that
the first automaton (representing the control structure) may change
state only if the second one is in state “running”.

wait

wait

control structure

of the process

state of

the process

scheduler

update

elect

wait

event
wake up

wait state of

the process

of the process

control structure
elect

notify

Figure 9. Global view of the communication between the automata in hpiom

Sleeping 1

Eligible Running

?wait 2

?elect

?wait 1

[c1] !wakeup

[c2] !wakeup

Sleeping 2

Synchronizations:
elect: received from the scheduler when the process is chosen,
wakeup: sent to the control structure,
wait 2: received from the control structure when a wait statement is
reached,
c1 and c2 correspond to the conditions the process is waiting for in
the corresponding “sleeping” state.

Figure 10. State of a SystemC process (SC THREAD)

The scheduler itself is represented by an additional automaton (fig-
ure 11). It starts in a state “selecting process”. At that moment, all the
processes are eligible. The SystemC official definition lets the choice
between the eligible processes unspecified. In our model, the scheduler
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chooses one process non-deterministically: when we prove a property of
a SystemC design including this non-deterministic scheduler, we prove
it for any possible implementation. The election corresponds to the
transitions emitting elect_n on figure 11. Then the scheduler runs the
elected process: in the automaton representing the state of the process,
this means taking the transition from “eligible” to “run”. When the
process has finished its execution (go to “sleep” state), the scheduler
selects another one, and so on until there is no more process eligible.
Then, the scheduler goes to the update phase.

! update update delta

[ ¬
W
n

(eligiblen) ]

selecting process

?waitn

process running

!electn

[
W
n

(eligiblen) ]

time elapse

Synchronizations:
elect n: sent to the corresponding process state automaton and
control structure
wait n: received from the corresponding process state automaton
update: sent to all processes that may have an action to execute
during the update phase

Figure 11. Pattern of the SystemC scheduler.

The low-level synchronization primitive in SystemC is called an
sc_event. C++ objects of type sc_event, like other SystemC objects,
are instantiated only during the elaboration phase. During the simula-
tion, the operations available for an sc_event are:
— notify(): the event is triggered immediately,
— notify(SC ZERO TIME): the event will be triggered at the end of the
δ-cycle,
— notify(time): the event is scheduled to be triggered at some date
in the future.

We also build one hpiom automaton for each sc_event, according
to the pattern of figure 12. It has one initial state plus one state for each
kind of delayed notification. The immediate notification is modeled by
a single transition. In any case, the transition going back to the initial
state is the transition triggering the event. It emits a message that will
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move processes waiting for that event from the “sleeping” state to the
“eligible” state.

?time_elapse

idle

delta

timed

!trigger
?notify_inst

?update
!trigger

!trigger

?notify_zero

?notify_time

Synchronizations:
notify ... messages are received
from the control structure when a
notify statement is encountered,
trigger goes to the process state
automaton, and will make the con-
dition to the “eligible” state true,
update and time elapse both
come from the scheduler.

Figure 12. Pattern for an sc event

4.3.5. Direct semantics of TLM constructs
As mentioned previously, although TLM constructs are library com-
ponents whose code could be translated using the above translation
schemes, we advocate a translation in which these constructs are given
a direct semantics in hpiom. This allows to exploit the information
they give on the structure of the design. In this section, we sketch the
hpiom encoding of the TAC Channel.

A TAC channel is a bus that may be connected to several master
modules able to initiate transactions through it, and to several slave
modules receiving these transactions. Technically, in the SystemC TAC
code, initiating a transaction on a TAC, with some address, results
in a function being called in the slave corresponding to the address.
The TAC may be idle if no transaction is initiated; it may also deal
with several transactions “at the same time”. In this case, a tac seq
will treat them in arrival order, a tac arbiter will use an arbitration
policy. The principles of the encoding into hpiom are the following:

4.3.5.1. Wait for the channel to be available First, for each master
port, we create a “waiting” automaton synchronized with the master
and with the TAC: it simulates the master process waiting for the
TAC to be available (Figure 13). If the TAC is not available when
a transaction is initiated by a master, the master should let other
processes run. It will become eligible again when the TAC selects its
transaction.

4.3.5.2. Select transaction and resolve the address The TAC itself is
modeled by the complex automaton of Figure 14. It loops in the initial
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execinit

waiting

access=
addr=
data=

? return status

! wait ...

? elect

! launch arbitration

? channel is free
! port rdy

t rec

Synchronizations:
channel is free is received from the channel when it is available.
wait and elect are communication with the scheduler to wait until
channel is free is present.
return status is received when the transaction processing is over.
Figure 13. Wait for channel availability

wait_loop

wait_loop

wait_loop

fifo

channel_is_free

pop_req

ch_start

start

init

[ no answer ]

ready
! pop_req

! channel_is_free
? ch_start

! channel_is_free

? port_rdy
! start_slave

? answer
acked

! really_start
exec

desync

? return_status
! wait(time)

! return_status

? elect

TAC slave

Figure 14. Pattern for a tac seq

state until it receives a transaction. When transactions are ready to be
executed, values identifying them are entered in a FIFO (we encode
finite FIFOs into hpiom). The automaton of the channel processes
them one by one and goes to state “ready”. A message is sent to all
the automata modeling slaves, and those whose address map matches
answer. If the channel gets no answer, then it returns immediately, with
a status is_no_response. In the example above (figure 1), the first
process elected will send the first transaction which will be processed
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immediately, and the next one will be queued until the transaction is
processed.

4.3.5.3. Execute the corresponding method in the slave module When
the transaction has been selected and the slave identified, the body
of the corresponding method in the slave module is executed and the
status is returned (state “exec” on figure 14). (The scheme is a bit
simplified here, since the channel actually has to communicate with
several instances of slave modules.)

4.3.5.4. Simulate a wait to allow other processes to execute If a slave
module answered, then the automaton of Figure 14 simulates a wait
statement on a time duration (state “desync”). This is included in the
protocol to allow other processes to execute (which is necessary because
the scheduler is not preemptive). In the example, this means that the
second transaction will be processed before the control flow of the first
one comes back to the master module.

5. Applying LusSy to the example

Let us come back to the example from section 1.3. Pinapa extracts
all the information correctly, Bise generates the hpiom model, and
we can generate Lustre or smv code. In the smv back-end, we made
a complete abstraction of integer values, since smv’s management of
integers uses an n-bit exact encoding, which is too costly to be ap-
plicable on non-trivial systems. Lesar would anyway abstract them
internally. Nbac uses abstract interpretation combined with clever
dynamic partitioning, and is able to prove data-dependent properties
(noticeably slower than pure Boolean proofs, however). We tried those
three tools on the example platform and tried to prove the assertions
in the program:

In the module signal_master, we write a value on the channel at
the address 8 after writing the value false on a signal. The module
signal_slave, mapped at this address, will receive the transaction,
and check that the value of the signal is false. This may seem trivially
true, but it is not: the semantics of sc_signal says that the value is
actually taken into account only at the next δ-cycle. As there is no
wait statement between the write and the read statements, the value
read is the previous value. During the first iteration of the loop, the
value read is the initial value of the signal. In practice, with the current
implementation of the SystemC library, the value is initialized to false,
but it is clear from the SystemC specifications that the initial value is
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unspecified. So the bug does not appear during simulation, but Nbac
can not prove the property. The diagnosis provided when the proof
fails gives the condition on the initial value of the signal (true), that
causes the bug. If we explicitly initialize the signal to false, then, the
property becomes provable, and if we explicitly initialize it to true,
then, the property is false and the assertion is actually violated during
execution. Now, we have identified the bug, we can fix it, for example
by adding a wait statement:
while (true) {

out_bool.write(false);

wait(SC_ZERO_TIME); // let the signal update its value

status = master_port.write(address, x);

}

Then, the assertion is verified, and Nbac is able to prove the correctness
of the assertions. Now, look at the module status_master. It just
writes on the channel, and tests the status returned. If we write, at a
mapped address, a value not equal to 4322, then the property is true,
and provable by Nbac (but not by Lesar and smv, since the property
is data-dependent). If we change either the address written to, or the
address map to make it write on an unmapped address, then, the first
assertion becomes false. If we write the data 4322, then the slave sets
the error flag, the second assertion becomes false, and the proof fails.
If we remove this data-dependent assertion, then smv and Lesar can
also successfully prove the other one.

On this example, we have the complete verification flow. The prover
has been able to prove true properties with no manual intervention in
less than one second.

6. Conclusion

6.1. Summary

We have presented our approach and tools for the analysis of SystemC
transactional models. These models appear very early in the design
flow, and one of their use is to be a reference model for further de-
velopments. Their reliability is therefore very important. This paper
is particularly interested in their validation with formal techniques,
connecting SystemC to existing verification tools.

Starting from the source code of a TLM design written in SystemC,
we parse it using GCC’s C++ front-end and the SystemC library itself,
then transform it into a set of automata, and finally dump it in the
Lustre and smv languages. The implementation is operational and the
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faithfulness of the translation has been validated on basic examples, by
comparing the executions of the generated Lustre with the executions
of the “official” SystemC implementation.

We experimented the connection to several model-checkers that do
not perform the same amount of abstractions. The main idea of the
approach is to extract as much information as possible from the Sys-
temC design, and let the verification tools perform the abstractions
they need: this is compulsory if we want the tool to remain open, and
novel verification engines to be connected to it. The LusSy chain of
tools works very well on small programs. We are currently working
on the optimization of the translation chain, mainly in order to min-
imize the number of variables involved in the hpiom model. This is
a key point, since we mainly use symbolic tools. This should allow
to use LusSy on larger programs. But we are convinced that formal
verification for a SoC taken as a whole is impossible, because of the
complexity of such mixed hardware/software objects. Our general goal
is to use LusSy as a basic tool in a verification methodology based on
the intrinsic component structure of SoCs. We comment on this point
in the following subsection.

This work has also helped getting a better understanding of the
dangerous constructs of SystemC. We identified several cases of data-
race conditions. For example, writing twice on the same signal during
the same δ-cycle, most cases of immediate event notification, and
unfortunately the current implementation of the TAC channels lead
to scheduler-dependent behaviors. Global variables or arbitrary inter-
module function calls are both dangerous and irrelevant to hardware
modeling. These remarks led to the first SystemC guidelines. For in-
stance the latter leads to a guideline that requires the use of explicit
SystemC or TLM constructs to model communication, and forbids the
use of shared memory mechanisms.

6.2. Perspectives

The general objective of this project, in co-operation between STMi-
croelectronics and Verimag, is to provide a complete development
and verification environment for Transaction Level Models written in
SystemC.

Since LusSy provides a formal semantics of SystemC, it can be
the basis of a toolbox for the development of systems-on-a-chip at the
transactional level, providing tools for all the questions related to TLM
design: verification and test at the TLM level, comparison of TLM
and RTL levels, analysis of non-functional properties. For instance, the
formal semantics can be used as a support for the automatic gener-
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ation of test sequences, intended to be run on both the TLM design
and a corresponding RTL design. This reference semantics is also the
necessary starting point for comparing executions at different levels of
abstraction. Those tools can either use the output of Pinapa or the
hpiom produced by Bise.

The main perspectives of the work described in this paper are: 1)
a formalization of the various levels of abstraction that appear in the
design flow of SoCs, concerning time; 2) improving testing methods by
using the elements of the LusSy tool-chain; 3) using software-oriented
verification tools in LusSy; 4) verification methods that exploit the
component structure of systems-on-a-chip.

We comment on these points below.

Timed and Untimed Layers in the Design Flow
Some work is still to be done to get a better understanding of the timed
and untimed layers inside the TLM level of abstraction, and improve the
methodologies to manage timing in TLM platforms accordingly. Jérôme
Cornet started working on the subject in 2004, and already developed
abstract models, similar to timed automata, to represent the possible
executions of a timed system. The final goal is to have a methodology,
supported by development and possibly validation tools to add the
“timing” layer to a pure functional model, avoiding modifications of
the original functional model, and ensuring that no bugs are added
during the process.

Improving the Testing Methods
The current validation techniques used in production are simple execu-
tions, with a relatively basic oracle. These run-time methods could be
greatly improved. The works carried out by Claude Helmstetter aim at
improving the coverage of the test-benches while avoiding redundant
test as much as possible. It is based on an instrumented simulation de-
tecting suspicious executions at run-time. The algorithms are currently
designed, and are partially implemented, but require an instrumenta-
tion of the platform to analyze. This manual instrumentation could
be made automatic with a tool able to parse the platform and insert
the necessary pieces of code in the right places. Pinapa can be a very
helpful basis for such automatic instrumentation tool. The run-time
algorithms could also be improved by working in combination with a
static code analyzer to reduce false positive when several processes ac-
cess a shared resource. The other components of LusSy can be helpful
for this purpose.
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Using software-oriented verification tools
Since hpiom preserves some of the potentially complex algorithms
of SystemC code, powerful software verification techniques could be
used (invariant extraction, predicate abstraction, etc.). We consider
extending hpiom to manage dynamic data-structures, in order to con-
nect LusSy to some software verification tools able to exploit this
information.

Towards Component-based Verification Methods
We are currently applying the LusSy toolchain to the TLM model
(provided by STMicroelectronics) of the EASY (ARM Limited, 1999)
platform. The EASY platform is a small-size system-on-a-chip. In
LusSy, all the steps of the translation are performed correctly. Up
to now, the generated smv and Lustre codes are too large to be
provable as a whole, which makes EASY an interesting case-study for
component-based verification methods.

Exploiting the intrinsic component-structure of systems-on-a-chip
described at the TLM level can be done mainly in two ways: either we
perform agressive automatic abstractions on the models of the compo-
nents, before we try to prove something on the system as a whole; or
we ask the designers to provide the appropriate abstractions for their
components. The two methods can be used together in a complete
verification environment.

Automatic abstractions can be based on the structure of the source
code, since Pinapa provides all the information. It may need to ex-
tend hpiom to support annotations coming from the structure of the
program, and usable by dedicated verification techniques. For example,
hpiom automata for the individual processes in SystemC use transitions
as “microsteps” to represent the computation between two synchro-
nization points, and also to represent these synchronizations steps.
However, since the scheduler is non-preemptive, the parts of the control
flow between explicit synchronization points are atomic, with respect
to the parallel composition of the processes. It would be easy to use
Pinapa in order to identify the parts of the automaton associated to
a process that constitute atomic reactions of this process. Of course,
since processes are decribed with a general programming language,
an atomic reaction can be any algorithm, with loops and conditional
structures. This means that a sub-automaton of any shape has to be
abstracted by one transition. The difficulty is to label this transition
with a kind of summary of the computations that happen inside the
component, and that would be sufficient for the global view and analysis
of the system. We will consider abstract interpretation techniques for
determining these “summaries”.
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If we consider the other approach, in which we ask the designer
to provide local specifications, a promising approach is the systematic
use of contracts for some of the components. They can be used for at
least two purposes: verify, component by component, that each part
of the platform meets its specifications (either by formal verification
or by testing), and abstract a component and replace it by its specifi-
cation for a global proof. We already mentioned the case of processor
components: a processor is an interpreter of the binary code, and it
has to deal with complex data which is the C code to be executed! C
should be abstracted (the values exchanged being replaced by unknown
values encoded by inputs) but we need some assumptions about the
behavior of the processor concerning the way it synchronizes with other
components. This can be described by a contract.
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