
Automatic Generation of Schedulings for
Improving the Test Coverage of Systems-on-a-Chip

C. Helmstetter∗† , F. Maraninchi∗, L. Maillet-Contoz† and M. Moy∗
∗Verimag, Centréequation - 2, avenue de Vignate,

38610 GÌERES — France
†STMicroelectronics, HPC, System Platform Group.
850 rue Jean Monnet, 38920 CROLLES — France

Abstract— SystemC is becoming a de-facto standard for the
early simulation of Systems-on-a-chip (SoCs). It is a parallel
language with a scheduler. Testing a SoC written in SystemC
implies that we execute it, for some well chosen data. We are
bound to use a particular deterministic implementation of the
scheduler, whose specification isnon-deterministic. Consequently,
we may fail to discover bugs that would have appeared using
another valid implementation of the scheduler. Current methods
for testings SoCs concentrate on the generation of the inputs,
and do not address this problem at all. We assume that the
selection of relevant data is already done, and we generate
several schedulings allowed by the scheduler specification. We
use dynamic partial-order reduction techniques to avoid the
generation of two schedulings that have the same effect on
the system’s behavior. Exploring alternative schedulings during
testing is a way of guaranteeing that the SoC description, and
in particular the embedded software, is scheduler-independent,
hence more robust. The technique extends to the exploration of
other non-fully specified aspects of SoC descriptions, like timing.

I. I NTRODUCTION

The Register Transfer Level (RTL) used to be the entry point
of the design flow of hardware systems, but the simulation
environments for such models do not scale up well. Devel-
oping and debugging embedded software for these low level
models before getting the physical chip from the factory is no
longer possible at a reasonable cost. New abstraction levels,
such as theTransaction Level Model (TLM)[1], have emerged.
The TLM approach uses a component-based approach, in
which hardware blocks are modules communicating with so-
called transactions. The TLM models are used for early
development of the embedded software, because the high level
of abstraction allows a fast simulation. This new abstraction
level comes with new synchronization mechanisms which
often make existing methods for RTL validation inapplicable.
In particular, recent TLM models do not have clock anymore.

SystemC is a C++ library used for the description of SoCs at
different levels of abstraction, from cycle accurate to purely
functional models. It comes with a simulation environment,
and is becoming ade factostandard. As TLM models appear
first in the design flow, they become reference models for
SoCs. In particular, the software that is validated with the TLM
model should remain unchanged in the final SoC. Here, we
concentrate on testing methods for SoCs written in SystemC.

The current industrial methodology for testing SoCs in

SystemC is the following. First, we identify what we want
to test (theSystem Under Test, or SUT), which is usually
an open system. We make it closed by plugginginput gen-
erators and a result checker, called oracle. SCV [2] is a
testing tool for SystemC. It helps in writing input gener-
ators by providing C++ macros for expressing constraints:
SCV_CONSTRAINT((addr()>10 && addr()< 50)||
(addr()>=2 && addr()<= 5)); is an SCV constraint
that will generate random values ofaddr . In most existing
approaches, the SUT writes in memory, and the oracle consists
in comparing the final state of the SUT memory to a reference
memory. As usual, the main difficulty is to get a good quality
test suite, i.e., a test suite that does not omitusefultests (that
may reveal a bug) and at the same time avoidsredundant
tests (that can expose the same bugs) as much as possible.
Specman [3] is a commercial alternative of SCV which uses
the e language for describing the constraints.

Contributions and Structure of the paper:We assume that
the choice of relevant data for the testing phase has already
been done: we consider a SoC written in SystemC, including
the data generator and the oracle. For each of the test data, the
system has to berun, necessarily with a particularimplemen-
tation of the scheduler. Since thespecificationof the scheduler
is non-deterministic, this means that the execution of tests
may hide bugs that would have appeared with another valid
implementation of the scheduler. Moreover, the scheduling is
due to the simulation engine only, and is unlikely to represent
anything concrete on the final SoC where we have true paral-
lelism. We would like the SoC description, and in particular the
embedded software, to be scheduler-independent. Exploring
alternative schedulings is a way of validating this property.

We present an automatic technique for the exploration of
schedulings in the case of SystemC. It is an adaptation and
application of the method fordynamicpartial order reduction
presented in [4]. This method allows to explore efficiently
the states of a system made of parallel processes (given as
object code) that execute on a preemptive OS and synchro-
nize with a lock mechanism. We show here that it can be
applied to SystemC too. Adaptations are needed because: the
SystemC scheduler is not preemptive; SystemC programs use
non-persistent event notifications instead of locks; evaluation
phases alternate with update phases; an eligible process cannot
be disabled by another one.

Our tool is based on forking executions: we start executing
the system for a given data-input, and as soon as we suspect
that several scheduler choices could cause distinct behaviors,
we fork the execution. We use anapproximatecriterion to
decide whether to fork executions. The idea is to look at the
actions performed by the processes, in order to guess whether
a change in their order (as what would be produced by distinct
scheduler choices) could affect the final state. This criterion
is approximate in the following sense: we may distinguish
between executions that in fact lead to the same final state;
but we cannot consider as equivalent two executions that lead
to distinct final states. The result is a complete, but not always
minimal, exploration of the scheduling choices for the whole
data-input.

The paper is structured as follows: section II presents
an overview of SystemC. Section III is the formal setting;
Section IV explains the algorithms and section V proves the
properties of the method. We present our implementation and
evaluate it in section VI, related work in section VII, and we
conclude with section VIII.

II. SYSTEMC AND THE SCHEDULING PROBLEMS

A TLM model written in SystemC is based on anarchi-
tecture, i.e. a set of components and connections between
them. Components behavein parallel. Each component has
typed connectionports, and its behavior is given by a set
of communicatingprocessesthat can be programmed in full
C++. For managing the set of concurrent processes that
appear in the components, SystemC provides ascheduler, and
several synchronization mechanisms: the low-levelevents, the
synchronoussignals that trigger an event when their value
changes, and higher level, user-defined mechanisms based on
abstract communication channels.

ELAB EV UP EV UP TE

δ-cycle

EV

time

Fig. 1. Diagram of an execution

The static architecture is built by executing the so-called
elaboration phase(ELAB), which creates components and
connections. Then the scheduler starts running the processes
of the components, according to the informal automaton of
figure 2. Simulations of a SystemC model look like sequences
of evaluation phases(EV). Signalsupdate phase(UP) and
time elapse(TE) separate them (see figure 1).

A. The SystemC Scheduler

According to the SystemC Language Reference Manual [5],
the scheduler must behave as follows. At the end of the
elaboration phaseELAB , some processes areeligible, some
others arewaiting. During the evaluation phaseEV, eligible
processes are run in anunspecified order, non-preemptively,
and explicitly suspend themselves when reaching await in-
struction. There are two kinds ofwait instructions: a process
may wait for some time to elapse, or for an event to occur.

ELAB build the
platform

elect a process
and run it

EV

no eligible process
END

simulation time
advanceTE

no eligible process

signal values
updateUP

no eligible process
∃ eligible process

∃ eligible process

∃ eligible process

Fig. 2. Automaton of the SystemC Scheduler

While running, it may access shared variables and signals,
enable other processes by notifying events, or program delayed
notifications. An eligible process cannot become “waiting”
without being executed. When there is no more eligible
process, signals values are updated (UP) and δ-delayed no-
tifications are triggered, which can wake up processes. Aδ-
cycle is the duration between two update phases. Since there is
no interaction between processes during the update phase, the
order of the updates has no consequence. When there is still
no eligible process at the end of an update phase, the scheduler
lets time elapse (TE), and awakes the processes that have the
earliest deadline. A notification of a SystemC event can be
immediate,δ-delayed or time-delayed. Processes can thus be
become eligible at any of the three steps EV, UP or TE.

B. Examples

void top::A() {
wait(e);
wait(20,SC_NS);
if (x) cout << "Ok\n";
else cout << "Ko\n";}

void top::B() {
e.notify();
x = 0;
wait(20,SC_NS);
x = 1;}

Fig. 3. Thefoo example

To illustrate possible consequences of scheduling choices,
let us introduce two small examples of SystemC programs.
Figure 3 shows the examplefoo made of two processesA
andB. It has three possible executions according to the chosen
scheduling, leading to very different results:

• A;B;A;[TE];B;A: This scheduling leads to the printing of
the string “Ok”.

• A;B;A;[TE];A;B: The string “Ko” is printed. It is a
typical case ofdata-race: x is tested before it has been
set to 1.

• B;A;[TE];B: The execution ends after three steps only.
The “wait(e) ” statement has been executed before any
notification of evente. Since events are not persistent
in SystemC, processA has not been woken up. It is a
particular form ofdeadlock.

void top::A()
as in examplefoo

void top::B()
as in examplefoo

void top::C() {
sc_time T(20,SC_NS);
wait(T);

}
Fig. 4. Thefoobar example

It is useful to test all executions of thefoo example
because they lead to different final states. But consider
now the foobar example defined in figure 4.foobar
has 30 possible executions, but only 3 different final states.
12 executions are equivalent to “C;A;B;A;[TE];C;B;A”, 12
to “C;A;B;A;[TE];C;A;B” and 6 to “C;B;A;[TE];C;B”. The
method we present generates only 3 executions, one for each
final state (or equivalence class).

In general testing techniques, the idea of generating one
representative in each class of an equivalence relation is called
partition-based testing[6]. It is not always formally defined.

C. Communication Actions

We callcommunication actionsall actions that affect or use
a shared object. We consider only two kinds of shared objects:
events and variables. All other synchronization structures can
be modeled using these two primitives.

There are two operations on events:wait and notify; and
two operations on variables:read andwrite. In the sequel we
will distinguish caught notifications (those that have woken
up a process) frommissednotifications, andwrites that have
modified the current value from non-modifying ones. Of
course, theses distinctions can only be done dynamically in
the general case.

III. F ORMAL SETTING

We will now explain how we generate schedulings for multi-
threaded models written in SystemC. In the whole section,
the SUT is a SystemC program. We suppose that we have an
independent tool for generating test cases that only contain
the data. We call SUTD the object made of the SUT plus one
particular test data1. We have to generate a relevant set of
schedulings for this data.

Most of the definitions in this section are quite standard in
the literature on partial order reduction techniques.

A. Representation of the SUTD

When data is fixed, a SUT execution is entirely defined by
its scheduling; a scheduling is entirely defined by an element
of (P ∪ {δ, χ})∗ whereP is a process identifier andδ, χ are
special symbols used to mark theδ-cycle changes and time
elapses respectively. We consider full states of a SUTD to be
full dumps of the SUTD memory, including the position in the
code of each process. The SUTD can be seen as afunction
from the schedulings to the full states. It is partial: not all the
elements of(P ∪ {δ, χ})∗ represent possible schedulings of
the SUTD (because of the synchronization constraints between
processes).

1Strictly speaking, the SUT includes a data generator, not a single piece
of data. But the generator does not depend on the scheduling, hence the
distinction is not necessary here.

Definition 1 (Schedulings):Let M be a SUTD.PM is the
set of its processes;SM is the set of its reachable full states;
FM : (PM ∪ {δ, χ})∗ −→ SM is its associatedfunction. FM

is partial. A schedulingis an element of(PM ∪ {δ, χ})∗; a
valid schedulingis an element of the definition domain of
FM : DFM

⊂ (PM ∪ {δ, χ})∗.
For the programs of Section II-B, we have:DFfoo

=
{ABAχBA,ABAχAB, BAχB} and Ffoobar(ABC) =
Ffoobar(ACB) = Ffoobar(CAB).

Definition 2 (Transitions):A transition is one execution of
one process in a particular scheduling. Each transition of a
scheduling is identified by its process identifier indexed by the
occurrence number of this process identifier in the scheduling.
For example, in the schedulingpqp there are 3 transitions:p1,
q1 andp2, in that order.

Definition 3 (Permutations):Let u = vpiwqj be a valid
scheduling where the transitionpi (resp.qj) corresponds to the
i-th (resp.j-th) execution of processp (resp.q). Permuting the
transitionspi andqj means generating a new valid scheduling
u′ such thatu′ begins byv and thej-th transition ofq in u′

is before thei-th transition ofp: there existsx, y, z such that
u′ = vxqjypiz. u′ is called apermutation ofpi and qj for u.

We will use lettersp, q, r to denote processes,a, b, c, . . .
to denote transitions andu, v, . . . to denote sub-sequences
of schedulings. Indexes will be omitted when obvious by
context. An equivalence on the set of schedulings is needed
to determine whether two schedulings lead to the same final
state. We first define the relation∼:
∀uabv ∈ DFM

, uabv ∼ ubav ⇔
(ubav ∈ DFM

∧ FM (uabv) = FM (ubav))
Definition 4 (Equivalence of Schedulings):The

equivalence of schedulings is the reflexive and transitive
closure of the relation∼. It is noted≡.
This definition complies with the property:∀u, v ∈ DFM

, u ≡
v ⇒ F (u) = F (v). Therefore, if we generate one element of
each equivalence class of≡, we will have all possible final
states. It allows to detect all property violation as soon as the
corresponding output checker has been included into the SUT
and drives it to a special final state when it detects an error.

B. Transition Dependency and Permutation Choice

We produce alternative schedulings by permuting some
transitions of a given scheduling, but only when this can lead
to a non-equivalent scheduling. For example, suppose that
we are executing a SUTD and we have just executed the
processp and then the processq (u = u1piqj). If there is
no causal reason why the transitionqj was after the transition
pi (processq was not waiting for an event notified inpi), then
we can permute these two transitions. In that case, executing
q instead ofp in the stateFM (u1) can be a divergent path as
illustrated on figure 5. The question we have to answer is: “Do
these two schedulings lead to the same state?” or formally:
“FM (u1pq) = FM (u1qp)?”. Note that we may not be able
to prove thatFM (u1pq) = FM (u1qp) because we want to
answer this questionwithout executingu1qp entirely. Hence
we rely on the common objects accessed by the transitions to

guess whether a permutation has some effect on the final state.
This is incomplete. If we cannot prove that the final states are
equal, we generate the new scheduling.

∃ ?

q

p q

p =?

u1

Fig. 5. A Potential Divergent Path, black circles represent global states of
the model

A

B

t=20t=0

time

Fig. 6. Dynamic Dependency Graph

We now study the two questions: which transitionscan
we permute? which transition permutations areuseful? The
answer to the first question is given by thepermutability
relationship; the answer to the second question is given
by the commutativityrelationship (it is useless to permute
commutative transitions).

The Dynamic Dependency Graph (DDG)represents the
synchronizations that occur for a particular scheduling. Fig-
ure 6 represents the schedulingabaχba of the foo program
of figure 3. Each horizontal line is a process. New cycles
(δ or χ) are represented by vertical lines. Each box is a
process transition. Dashed arrows (resp. plain lines) between
boxes indicate that the two transitions are dependent but not
permutable (resp. non commutative). We may move some
transitions on the horizontal axis, remaining among thevalid
and equivalent schedulings, provided we do not permute two
boxes linked by an arrow or line.

Definition 5 (Permutability):The transitionsa and b are
causally permutablein the valid schedulingu1au2bu3, noted
(a, b) ∈ P , if and only if: {u1v1ba ∈ DFM

|∃v2, u1v1abv2 ≡
u1au2bu3} = ∅.
In other words, two transitions are not permutable if:

1) there is an equivalent scheduling in which they are
consecutive;

2) the second transitionb can be elected in place of the first
transitiona in this equivalent scheduling.

Definition 6 (Commutativity of Transitions):The non-
causally ordered transitionsa and b are commutativein the
valid schedulingu1au2bu3 if and only if:
∀u1v1abv2 ≡ u1au2bu3, u1v1abv2 ≡ u1v1bav2

Commutativityis not defined for causally ordered transitions.
The theory of partial order reduction relies on the definition

of dependenttransitions [7]. In our work, we define the
dependency relationshipD as follows:

Definition 7 (Dependency of Transitions):The transitions
a andb aredependentif and only if they are not permutable,
or permutable but not commutative.

The causal orderspecifies which transitions can be per-
muted in a particular scheduling without permuting dependent
transitions, including themselves. All schedulings of the same
equivalence class have the same causal order. Unlike the
permutability relationship, the causal order is a partial order.

Definition 8 (Causal Order):The transitionsa and b are
causally orderedin the valid schedulingu = u1au2bu3,
noted a ≺u b, if and only if (a, b) ∈ transitive closure of
{(x, y) ∈ D|x <u y}.

IV. A LGORITHMS

A. Computation of the Commutativity Relationship

The first step is to detect pairs of transitions which are
not commutative. We compute here a relationshipC for all
pairs of transitions. This computed relationship is correct for
permutable transitions, which is sufficient for our problem.
Two transitions may be non-commutative ((a, b) 6∈ C) only if
they contain non-commutativecommunication actionson the
same shared object (see section II-C). Note that the order of
these actions within a transition is irrelevant. We examine all
cases below.
For shared variables there are three cases of non-commutative
actions (since operations on variables have no effect on process
eligibility, we just need to check whether the equality of
resulting states is still verified after permutation):

1) a read followed by amodifying write
2) a modifying writefollowed by aread
3) a write followed by amodifying write

In all other cases, the transitions are commutative, as in
example 2. Note that the nature of awrite depends on the
scheduling we consider. Amodifying writecan become anon-
modifying writefor another scheduling, and reciprocally.

Example 1:Variablex initially set to 0. The first transition
executes the actionx=x+2 . The second executesx=4-x . It
is a modifying writefollowed by a read so we consider that
the two transitions are not commutative (point 2 above).

Example 2:Variablex initially set to 2. The first transition
executes the actionx=4 . The second transition also executes
this instruction. It is amodifying write followed by a non-
modifying write.

Note thatC is symmetric, which may not be obvious from
point 3 above. But permutating amodifying writewith a non-
modifying writeis still a modifying writefollowed by anon-
modifying write, except if there is another pair of dependent
actions. Example 2 also illustrates this remark.
For events, there are three cases of non-commutative actions:

1) a notification followed by await
2) a wait followed by anotification
3) a caught notificationfollowed by anotification

The dependency between await and anotify is quite obvious:
if the wait comes first, then the corresponding process is woken
up by thenotify, otherwise it remains sleeping. Example 3
illustrates the third case.

Example 3:Suppose one runs this three-process model:
• Initial state: processA waiting for e, B andC eligible.
• ProcessA: cout <<’a’; x = 1;

• ProcessB: cout <<’b’; x = 2; e.notify();
• ProcessC: cout <<’c’; e.notify();

There is exactly one transition per process, noteda, b and
c. Four schedulings are valid:bac, bca, cba and cab. In bac
and bca, b is dependent witha (2 modifying writes) but they
are causally ordered (processA was enabled by the transition
b). However if we permuteb and c, b is no longer causally
ordered witha sinceA was enabled byc instead ofb.

Permuting two notifications of an event does not modify the
resulting state of the SUTD, but modifies the computed causal
order. That’s why they are considered as non-commutative.

B. Computation of the Causal Partial Order

In order to compute the permutability, we need to compute
the causal order≺. We denote prec(u) the set{a, b ∈ u|a ≺ b}
obtained after the execution of the schedulingu.

We compute the causal order step by step. Obviously, for
the empty scheduling we have prec(ε) = ∅. Let a and b be
two transitions, we havea ≺ b and so(a, b) ∈ D at least in
the three following cases:

• a or b indicate a newδ-cycle or time-elapsed.
• a andb belong to the same process (by definition)
• the process of transitionb has been woken up bya.

In these cases, we note:a ≺β b. The rest of the paragraph
below is adapted from [4]. Having prec(u), we compute
prec(ub) as follows:

prec1(ub) = prec(u) ∪ {a ≺β b|a ∈ u}
prec2(ub) = prec1(ub) ∪ {(a, b) 6∈ C|a ∈ u}
prec(ub) = transitive closure of prec2(ub)

Finally, we have(a, b) ∈ P in u1au2bu3 if and only if: (a, b) ∈
transitive closure of prec1(u1au2b).

The following property is useful to optimize the implemen-
tation: Letu1au2bu3cu4 be a scheduling. Then process(a) =
process(b) ∧ b≺ c ⇒ a≺ c. Owing to this property, we can
represents the causal order with an arrayT of sizep×s where
s is the number of steps andp is the number of processes.
The elementT [a, q] is the last transition of processq which
is causally beforea; i.e.: a ≺ b ⇔ num(a) ≤ T [b, process(a)].
Some other optimizations are well explained in [4].

C. Generation of one alternative scheduling

We are now able to determine if two transitions are not
commutative (hence should be permuted). Now we explain
how we treat such a pair of transitions. Letuavb be a
scheduling such that(a, b) ∈ D ∩ P . Let v = v1 . . . vn where
v1, . . . , vn are transitions. The goal is to generate a new valid
scheduling withb beforea. We proceed as follows:

• The first partu is unmodified.
• We execute allvi such thata 6≺ vi.
• We executeb and thena (unlike some other concurrent

languages,b cannot disablea in SystemC).
• Then, since two dependent transitions have been per-

muted, we do not know whether the non-executed tran-
sitionsvi such thata ≺ vi are still defined. We are then
free to choose the rest of the scheduling.

D. Generation of a full schedulings suite

We start by executing the SUTD with a random scheduling.
In parallel with the SUTD execution, we run a checker:

• the checker computes the causal partial order “≺” and
builds the Dynamic Dependency Graph.

• if it discovers two non-commutative transitionspi andqj ,
with pi beforeqj :
– it generates a new scheduling such thatqj beforepi by

permuting the transitions with the algorithm described
above; the constraint “qj beforepi” is saved with the
new scheduling to prevent further permutations of the
same transitions.

– it continues the current execution, adding the opposite
constraint “pi beforeqj” to all of its further children.

Then we replay the SUTD with each generated schedulingu.
When we reach the end ofu, we continue the SUTD execution
with a random scheduling. In parallel, we compute the causal
order and generate new schedulings for each non-commutative
pair of transitions, as for the previous schedulings. Thanks
to the constraints saved with the generated schedulings, each
new generated scheduling is more constrained than its father
scheduling and so there are fewer and fewer new schedulings
at each iteration. When the checker does not generate any new
scheduling, we have a complete test suite.

Checker

wait(e)

modify(x)

notify(e), modify(x)

read(x)

Trace:
A
B
A
A
B

SUTD.exe

Schedulings:
A; B; A; B; A
B; A

Fig. 7. First iteration of the analysis for thefoo example. The first execution
activates processesA and B in the orderABAAB. The checker generates
two new schedulings. One to permuteA1 and B1 (unordered accesses to
evente) and the other to permuteA3 andB2 (unordered accesses to shared
variablex).

V. PROPERTIES

The algorithm guarantees that we generate at least one
element of each equivalence class (for the equivalence of
definition 4).

Theorem 1:Let GM be the set of all generated schedulings
of a modelM . For any schedulingu ∈ DFM

, there exists a
schedulingv ∈ GM such thatu ≡ v.

There are two useful and direct corollaries. First, if a local
process state is present in a scheduling ofDFM

, it is also
present in a scheduling ofGM . Furthermore, we generate all
the final states, including all deadlocks.

To prove the property, we need the definition of≡−prefix
and≡−dominant for schedulings, directly adapted fromprefix
anddominantproperties of Mazurkiewicz traces [7].

Definition 9: Let p, d ∈ DFM
be two schedulings,p is an

≡−prefix of d andd an≡−dominant ofp if and only if there
exists a schedulingu ∈ DFM

such thatu ≡ d and p is a
string-prefix ofu.

Proof: We proceed by contradiction, and assume that
there exists a schedulingu ∈ DFM

which breaks the property.
We can writeu in the formu = u1au2 whereu1 is the longest
prefix of u such that:

∃u1u
′
2 ∈ DFM

andv ∈ G such thatu1u
′
2 ≡ v

This decomposition is unique so we just have to prove that
u1a has an≡−dominant inG to get the wanted contradiction.

Let v ∈ G be a generated completed scheduling such that
u1 is a≡−prefix of v. As a consequence, there exists a valid
schedulingu1u

′
2 such thatu1u

′
2 ≡ v If there is no non-

determinism when we are in the stateFM (u1), then we must
haveu′

2 = au′
3 and sov would be a≡−dominant ofu1a.

Consequentlya is neither δ nor χ and the process ofa
is defined and eligible inFM (u). Since an eligible process
cannot become “sleeping” without running,a is present inu′

2

sou′
2 = w1aw2. Sincea is eligible inFM (u), it is not causally

after any element ofw1. There are three cases:
• if w1 is empty then we get the needed contradiction
• if w1 = xb with b I a then there exists another possible

schedulingu1u
′′
2 ≡ v such thatu′′

2 = w′
1abw2 with w′

1

shorter thanw1.
• if w1 = xb with (b, a) ∈ D then:

– Transitionb is beforea in v but they are permutable.
– So we have generated a schedulingv′ with a beforeb,

using the algorithm described in section IV-C.
– There exists a possible schedulingu1u

′′
2 ≡ v′ such as

u′′
2 = w′

1abw′
2 with w′

1 shorter thanw1.
Consequently, by induction on the length ofw1, we get the
needed contradiction.

VI. PROTOTYPEIMPLEMENTATION AND EVALUATION

A. The prototype

Figure 8 is an overview of the tool. Thechecker implements
the checking algorithm of section IV-D. It has to be aware
of all communication actions. Some of them can be detected
by instrumenting the SystemC kernel, some other cannot
(like accesses to a shared variable, that are invisible from the
SystemC kernel). We choose to instrument the C++/SystemC
source code. For each communication action in the code of
a SystemC process, we add an instruction that notifies the
operation to a global recorder. For example, consider the
instruction x=y where x and y are shared variables. The
two following instructions are added close to the assignment:
recorder->read(&y);recorder->write(&x) . In-
strumentation is based on the open-source SystemC front-end
Pinapa [8], and is compositional.

Another solution would have been to interpret or instrument
the binaries. However, using a SystemC front-end has some
benefits: it allows to generate astatic dependency graph (SDG)
which represents a superset of the communications that can
occur between processes (see Figure 9). Moreover, it is easier
to link the observed behavior to the source code.

The instrumented SystemC program is compiled with a
patched SystemC kernel. The patches are: 1) replacing the
election algorithm of the SystemC scheduler by an interac-
tive version, still complying with the SystemC specification;

SystemC

Model

New

Schedulings

(XML)

Raw Trace

Dynamic

Dependency

Graph

Static

Dependency

Graph (DOT)

Intrumented

Model

+ mapping

Checked

Trace

(XML)

Patched
SystemC
KernelAnalyzer

Pinapa XSLT

Style−SheetChecker

Fig. 8. The Prototype’s Architecture

A x,e CB

Fig. 9. Static Dependency Graph for thefoobar example. Nodes represent
processes. Arrows represent possible communications between processes. An
arrow goes from the master (i.e. the notifier for a SystemC event, the writer
for a shared variable) to the slave.

2) adding code to record the communication actions that
cannot be detected in the code of the processes, and their
consequences (e.g., enabling of a process). When we execute
the instrumented platform with the patched SystemC kernel,
we can detect dependencies dynamically or save a detailed
trace and run the checker afterwards. In both cases, we get
a list of new schedulings to be executed, and a record of the
computed dependencies, usable as input for other checkers
or visualization tools, like the production of the dynamic
dependency graph (DDG).

B. Evaluation

In order to validate our tool and to evaluate the quality of the
test suites produced, we studied several industrial SoC models.
Assume that running one test-case takes some timeT . In order
to cover the scheduling choices, we have to run more than one
test-case. Let us denoteV the number ofvalid schedulings,
andG the number of schedulingsgeneratedby our tool. It is
interesting to compareV × T with G × T + O, whereO is
the overhead due to the computation of new schedulings.

With a real application, it is often difficult to evaluateV .
We chose to evaluate our method on three examples. First,
we considered a SystemC encoding of the indexer problem
presented in [4]2, because it is easy to evaluateV . However,
the indexer is not representative of the typical SystemC code
found in industry. We then looked at two industrial case-
studies: the first one has about 50 000 lines of code but only
4 processes, and it does not model a full SoC; the second
one has about 250 000 lines of code and 57 processes, and it
represents a full SoC.

1) The Indexer Example:There aren components and
one global 128-element array used as a hash table. Each
component is composed of 2 threads which communicate
using a shared variable and a SystemC event. Each component
writes 4 messages in the global hash table. This corresponds to
schedulings of length11×n. For n ≤ 11, there is no collision

2For the SystemC version see:http://www-verimag.imag.fr/
˜helmstet/indexer.cpp .

in the hash table and all schedulings lead to the same final
state. Forn ≥ 12 there are collisions hence non-equivalent
schedulings. Our prototype generates valid schedulings leading
to distinct states of the hash table. In this example, we generate
exactly one scheduling per equivalence class. The number of
generated schedulings is far smaller than the number of valid
schedulings (at least3.35E11 for n = 2, and 2.43E25 for
n = 3). Results are summarized in table I. Time is given only
to help estimating the curve, not as an absolute measure.

components generated schedulings time
1 . . . 11 1 ≤ 11 ms

12 8 60 ms
13 64 4 s
14 512 35 s
15 4096 5 mn

TABLE I

RESULTS FOR THE INDEXER EXAMPLE

2) The MPEG Decoder System:This system has 5 compo-
nents: a master, a MPEG decoder, a display, a memory and a
bus model. There are about 50 000 lines of code and only 4
processes. This is quite common in the more abstract models
found in industry, because there is a lot of sequential code,
and very few synchronizations. We added 340 instrumentation
lines to detect communication actions.

LCMPEG DISPLAY

BUS

MASTER MEMORY

Fig. 10. Architecture of the MPEG decoder system

The test is stopped after the third decoded image, which
corresponds to 150 transitions. One simulation takes 0.39 s.
Our tool generates128 schedulingsin 1 mn 08 s. No bug is
found, which guarantees that this test-case will run correctly
on any SystemC implementation. Running the model 128
times takes more time than generating the schedulings (we
haveG×T = 128×0.39 s≈ 50 s andO ≈ 1 mn 08−50 s≈
18 s). Thus the overheadO remains acceptable.

On this example, we noticed that the number of generated
schedulings could be improved. This MPEG decoder, as many
other TLM models, uses a pair (event, variable) to implement
a persistent eventas follows (x is initially 0):

ProcessP runs:x=1; e.notify();
ProcessQ runs: if (!x) wait(e); x=0;

The two valid schedulingsP; Q and Q; P; Q lead to the
same final state, but our tool currently generates both schedul-
ings because it cannot prove it. The intuition is that these
schedulings are not equivalent according to the dependency
relationship as computed in section IV. Detecting this kind of
structures in the source code and taking them into account for
the computation of the dependency relationship would allow
to generate less schedulings.

3) A Complete SoC:Complete models of Socs are typi-
cally 3 to 6 times bigger than the MPEG decoder. We are
currently evaluating our tool on a model —let us call it XX—
corresponding to a full SoC: it has about 250 000 lines of
code and 57 processes. At the moment we are limited by the
code instrumentation tool which still requires some manual
work, so we looked at only one case study of this type, but
the instrumentation tool will soon be fully automatic. For tests
of length around 200 transitions, we expect the tool to behave
well on XX: the ability to cope with this number of processes
has been tested with the indexer example, and the ability to
cope with the complexity of a large and realistic SystemC
description has been tested with the MPEG example.

The interesting point with XX is thegranularity of the
transactions. With the MPEG decoder, the granularity cor-
responds to an algorithm that takes one line of the image
at a time. Something interesting can be observed by a test
oracle after 150 transitions only (three images have already
been decoded). XX corresponds to an algorithm that takes
one pixel of the image at a time. It may be the case that the
test oracle has to observe thousands of transitions. XX is a
very good case-study for observing the combined influence of
the test length and the granularity on the performances of our
technique. One phenomenon we can expect, and that we have
to validate with the case-study, is the following: very abstract
TLM descriptions have large-grain transactions, but loose
synchronisations; while the more detailed TLM descriptions
have finer-grain transactions, but stronger synchronizations. If
the number of alternative schedulings decreases (because of
stronger synchronizations) when the granularity of a descrip-
tion increases (and thus the length of the interesting test-cases),
the method may still be applicable. We also comment on this
point in the conclusion.

VII. R ELATED WORK

Existing work (see, for instance [9]) addresses formal ver-
ification for TLM models. The idea is to extract a formal
model from the SystemC code, and to translate it into the
input format of some model-checker. In such an approach,
the complete model that is model-checked has to include a
representation of the scheduler. It is sufficient to use a non-
deterministic representation that reflects the specification of
SystemC, and then a property that is proved with this non-
deterministic scheduler is indeed true for any deterministic
implementation. Model-checking is likely to face the state-
explosion problem, so testing methods are still useful. But we
need the same guarantee on the results of the test being valid
for any implementation of the simulation engine.

Partial order reduction techniques are quite old, but their
dynamicextension is quite recent. As far as we know, it is
not included in VERISOFT [10] yet. Partial order reduction is
used in many model checkers for asynchronous concurrent
programs such as Spin [11] or JAVA PATHFINDER [12].
However, since we use testing, our work is more related with
tools which work directly on the program without abstractions,

such as VERISOFT or CMC [13]. The main difference is that
our tool is adapted to the TLM SystemC constructs.

To get a complete validation environment, one need to
include a test case generator and an output checker. For
the latter,assertion-based verification[14] proposes to derive
monitors from assertion languages. However, these languages
are often based on the notion of clocks which are absent in
TLM. If ABV is extended to TLM, it will become useful in
our framework.

VIII. C ONCLUSION AND FURTHER WORK

We presented a method to explore the set of valid schedul-
ings of a SystemC program, for a given data input. This is
necessary because the scheduling is a phenomenon due to the
simulation engine only, and is unlikely to represent anything
concrete on the final SoC. Exploring alternative schedulings
during testing is a way of guaranteeing that the SoC descrip-
tion, and in particular the embedded software, is scheduler-
independent, hence more robust. By using dynamic partial or-
der reduction, we maximize the coverage and keep the number
of tests as low as possible. Our tool also produces several
graphical views that help in debugging SoCs. With the proto-
type tool, we have highlighted unwanted non-determinism in
a bus arbiter for a transaction-accurate protocol. Also, some
SoC descriptions are scheduler-dependent because they exploit
the initial state of the most used implementation. In this case,
covering the valid schedulings reveals deadlocks. Our tool
is already mature enough to be used for industrial SystemC
descriptions of SoCs.

There are at least two ways of improving the prototype
performances. The first is to reduce the number of branches
explored. A promising solution is to use partial state mem-
orization. It is unrealistic to save all the states and compare
the new state at each step due to the size and complexity of
a SystemC model state. However, we can save some states
and compare only particular new states. We plan to compare
each forked execution every new delta-cycle. The second way
is to reduce the time overhead needed for runtime checking.
Some check results are predictable. Consequently doing static
analysis before simulation can avoid runtime computation.

Further work on testing SoCs is threefold. First, the algo-
rithm that fully explores alternative schedulings can be used
on large platforms only if the length of the test is reasonable.
A promising idea for very long tests is to use the method
locally on the TLM description: a first execution of the whole
platform P is used to record the output transactions of some
sub-system S of P. Then, our method is applied on a platform
P’ obtained by substituting S’ with S in P. S’ is a sequential
algorithm that plays the recorded transactions. It does not
introduce scheduling choices. The idea is that the method then
concentrates on the schedulings due to P−S, forgetting the
schedulings due to S.

Second, the whole approach and the SystemC prototype is
being adapted to the exploration of non-fully specified timings
in the TLM models. Indeed, TLM models are not cycle-
accurate, but people use to label them by approximate timing

properties of the components, in order to estimate the timing
properties of the SoC early. In this case, the timings should not
be taken as fixed values. The embedded software will be more
robust if it works correctly for slightly distinct timings. In the
testing process, it is useful to explore alternative timings, with
the same idea of generating only those timings that are likely
to change the global behavior of the SoC. An overview of the
method can be found in [15].

We also started working on efficient implementations of
the SystemC simulation engine, by exploiting multi-processor
machines. Here, the difficulty is to guarantee that a multi-
processor simulation does not exhibit behaviors that are not
allowed by the non-deterministic reference definition of the
scheduler. The formal setting we described here is appropriate
for defining the set of behaviors that the multi-processor
simulation may produce, without changing the behavior of the
embedded software.

REFERENCES

[1] F. Ghenassia, Ed.,Transaction-Level Modeling with SystemC. TLM
Concepts and Applications for Embedded Systems. Springer, June 2005,
iSBN 0-387-26232-6.

[2] J. Rose and S. Swan, “SCV Randomization,” Cadence Design Systems,
Inc., 2003,
www.testbuilder.net/reports/scv randomization.pdf .

[3] T. Kuhn, T. Oppold, M. Winterholer, W. Rosenstiel, M. Edwards, and
Y. Kashai, “A framework for object oriented hardware specification,
verification, and synthesis,” inDAC ’01: Proceedings of the 38th
conference on Design automation. New York, NY, USA: ACM Press,
2001, pp. 413–418.

[4] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” inSymposium on Principles of programming
languages (POPL). New York, NY, USA: ACM Press, 2005, pp. 110–
121.

[5] SystemC v2.0.1 Language Reference Manual, Open SystemC Initiative,
2003,http://www.systemc.org/ .

[6] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data
selection,” inProceedings of the international conference on Reliable
software, 1975, pp. 493–510.

[7] A. Mazurkiewicz, “Trace theory,” inAdvances in Petri nets 1986, part
II on Petri nets: applications and relationships to other models of
concurrency. New York, NY, USA: Springer-Verlag New York, Inc.,
1987, pp. 279–324.

[8] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa,” 2005,
http://greensocs.sourceforge.net/pinapa/ .

[9] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “LusSy: A toolbox
for the analysis of systems-on-a-chip at the transactional level,” in
International Conference on Application of Concurrency to System
Design, June 2005.

[10] P. Godefroid, “Model checking for programming languages using
VeriSoft,” in Symposium on Principles of Programming Languages
(POPL), ACM, Ed. New York, NY, USA: ACM Press, 1997, pp.
174–186.

[11] G. J. Holzmann, “The model checker SPIN,”Software Engineering,
vol. 23, no. 5, pp. 279–295, 1997.

[12] W. Visser, K. Havelund, G. Brat, and S.-J. Park, “Model checking
programs,” in Proc. of the 15th IEEE International Conference on
Automated Software Engineering, 2000.

[13] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill, “CMC: A
Pragmatic Approach to Model Checking Real Code,” inProceedings of
the Fifth Symposium on Operating Systems Design and Implementation,
Dec. 2002.

[14] “Assertion-based verification,” Synopsis, 2003,
http://www.synopsys.com/products/simulation/
assertion based wp.html .

[15] C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz, “Test coverage
for loose timing annotations,” in11th International Workshop on Formal
Methods for Industrial Critical Systems, August 2006.

