
The Laplace Transform

Why?

Important tool to solve and reason about stationary and linear
differential equations

and to understand design tools such as Simulink,
Lustre-Scade

• Definition
• Differential equations
• Exponential Functions
• Examples
• Initial Value and Final Value Theorems
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Definition

Lx(s) =
∫ ∞

0

x(t)e−st

(under the existence condition)

Why???
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Differential equations

Because the Laplace transform enables transforming ordinary
differential equations into algebraic equations (that we know
how to manipulate usually)

thanks to two properties:

1. Linearity:

L(αx+ βy) = αLx+ βLy

2. The derivatives are transformed into products:

L(x′)(s) = sLx(s)− x(0)
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Proof

Integration by parts

∫ ∞

0

x′(t)e−st = [x(t)e−st]∞0 −
∫ ∞

0

x(t)(−s)e−st

if limt→∞ x(t)e−st = 0, we have

L(x′)(s) = sLx(s)− x(0)

4



Example: an ODE

First-order linear differential equation with constant
coefficients:

y′ = −ay + bx

L(y′)(s) = sLy(s)− y(0) = −aLy(s) + bLx(s)

(s+ a)Ly(s) = bLx(s) + y(0)
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Example: an ODE (cont’d)

(s+ a)Ly(s) = bLx(s) + y(0)

Ly(s) = 1

s+ a
(bLx(s) + y(0))

This differential equation has been “solved” and the solution is
a rational fraction
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Exponential Functions

The exponential (gamma) functions are transformed into
rational fractions:

γn(t) =
tn

n!
e−λt

Lγn(s) =
(

1

s+ λ

)n+1
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Proof

By induction :

n = 0∫ ∞

0

e−λte−st =

∫ ∞

0

e−(s+λ)t =

[
−e−(s+λ)t

s+ λ

]∞
0

=
1

s+ λ

provided that limt→∞ e−(s+λ)t = 0

n+ 1

Integration by parts∫ ∞

0

tn+1

(n+ 1)!
e−λte−st =

[
− tn+1

(n+ 1)!

e−(s+λ)t

s+ λ

]∞
0

−
∫ ∞

0

− tn

n!

e−(s+λ)t

s+ λ

=
1

s+ λ

∫ ∞

0

tn

n!
e−(s+λ)t
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Examples of signal

Step signal: u(t) =
{

1 si t ≥ 0

0 otherwise

This is the case where n = 0, λ = 0

Lu(s) = 1

s

Ramp signal: r(t) = u(t)t This is the case where
n = 1, λ = 0

Lr(s) = 1

s2
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Other signals

Sinusoid: sin(ωt)

sin(ωt) =
eiωt − e−iωt

2i

Lsin(s) =
1

2i

(
1

s− iω
− 1

s+ iω

)
=

1

2i

s+ iω − (s− iω)

(s− iω)(s+ iω)

=
ω

s+ ω
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Example of System

First-order system:

Ly(s) = 1

s+ a
(bLx(s) + y(0))

Response to a step signal that starts with y(0) = 0:

Lx(s) = 1

s

Ly(s) = b

s(s+ a)
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Resolution

Partial fraction decomposition: b

s(s+ a)
=

A

s
+

B

s+ a

bs

s(s+ a)
=

As

s
+

Bs

s+ a

b

s+ a
= A+

Bs

s+ a

s = 0

b

0 + a
= A

b(s+ a)

s(s+ a)
=

A(s+ a)

s
+
B(s+ a)

s+ a

b

s
=

A(s+ a)

s
+B

s = −a

b

−a
= B

Ly(s) = b

a

(
1

s
− 1

s+ a

)
. Hence, y(t) = b

a
(1− e−at)
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Other Method

Using the Laplace approach, we need find the poles (roots of
the polynomials)
However, we know how to do this for polynomials of degrees
less than or equal to 5 (already difficult beyond degree 2)

Otherwise, numerical integration
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Other Properties

Initial Value Theorem:

lim
t→0

x(t) = lim
s→∞

sLx(s)

if the limits exist

Final Value Theorem:

lim
t→∞

x(t) = lim
s→0

sLx(s)

if the limits exist
14



Proof

Initial Value Theorem:
Lx′(s) + x(0) = sLx(s)

lim
s→∞

Lx′(s) = 0

Initial Value Theorem:
Lx′(s) + x(0) = sLx(s)

lim
s→0

Lx′(s) =

∫ ∞

0

x′(t) = [x(t)]∞0 = lim
t→∞

x(t)− x(0)
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Applications

How to know the final value of the responses of a system to
a step signal without calculating the solution?

Take the Laplace transform of the response (in the running
example):

Ly(s) = b

s(s+ a)

It suffices to use the Final Value Theorem:

lim
s→0

s
b

s(s+ a)
= lim

s→0

b

(s+ a)
=

b

a
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