Feedback Control Using The Laplace Transform

Course Feedback Control and Real-time Systemsl

Thao Dang
Master of Science in Informatics at Grenoble
Univ. Grenoble Alpes, Laboratoire Verimag
thao.dangQuniv-grenoble-alpes.fr

Stabilization by Feedback

- Stabilization by feed-back
- Pole Placement

Consideration of Disturbance

- disturbance $w(t)$ represents perturbations or modelling error
- the output $y(t)$ and the setpoint/reference $r(t)$
- the controller C and the system S are supposed to be rational fractions $C(s), S(s)$

Transfer Function of the Closed-Loop System

We now compute the closed-loop transfer function:

$$
\begin{gathered}
Y(s)=S(s)(C(s)(R(s)-Y(s))+W(s)) \\
(1+S(s) C(s)) Y(s)=S(s)(C(s) R(s)+W(s))
\end{gathered}
$$

where $W(s), Y(s), R(s)$ are the Laplace transforms of the disturbance $w(t)$, the output $y(t)$ and the reference $r(t)$.

Transfer Function of the Closed-Loop System

We obtain closed-loo thee transfer function:

$$
Y(s)=\frac{S(s) C(s)}{1+S(s) P(s)} R(s)+\frac{S(s)}{1+S(s) C(s)} W(s)
$$

Control Problem Formulation

Control Problem Formulation

$$
Y(s)=\frac{S(s) C(s)}{1+S(s) C(s)} R(s)+\frac{S(s)}{1+S(s) C(s)} W(s)
$$

Control Problem Formulation

$$
Y(s)=\frac{S(s) C(s)}{1+S(s) C(s)} R(s)+\frac{S(s)}{1+S(s) C(s)} W(s)
$$

given the transfer function $S(s)$ of the system, find $C(s)$ such that

Control Problem Formulation

$$
Y(s)=\frac{S(s) C(s)}{1+S(s) C(s)} R(s)+\frac{S(s)}{1+S(s) C(s)} W(s)
$$

given the transfer function $S(s)$ of the system, find $C(s)$ such that

1. $\frac{S(s) C(s)}{1+S(s) C(s)}$ is stable et close to the identity (fidelity)

Control Problem Formulation

$$
Y(s)=\frac{S(s) C(s)}{1+S(s) C(s)} R(s)+\frac{S(s)}{1+S(s) C(s)} W(s)
$$

given the transfer function $S(s)$ of the system, find $C(s)$ such that

1. $\frac{S(s) C(s)}{1+S(s) C(s)}$ is stable et close to the identity (fidelity)
2. $\frac{S(s)}{1+S(s) P(s)}$ is small (robustness or disturbance rejection)

Exemple: PID controllers

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a proportional controller $C(s)=a$

Exemple: PID controllers

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a proportional controller $C(s)=a$
We calculate the denominator of $\frac{S(s) C(s)}{1+S(s) C(s)}$

Exemple: PID controllers

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a proportional controller $C(s)=a$
We calculate the denominator of $\frac{S(s) C(s)}{1+S(s) C(s)}$
which gives $D=s^{2}+a$

Exemple: PID controllers

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a proportional controller $C(s)=a$
We calculate the denominator of $\frac{S(s) C(s)}{1+S(s) C(s)}$
which gives $D=s^{2}+a$
This is a second-order polynomial with purely imaginary roots

Example: PID controllers

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a proportional controller $C(s)=a$
We calculate the denominator of $\frac{S(s) C(s)}{1+S(s) C(s)}$
which gives $D=s^{2}+a$
This is a second-order polynomial with purely imaginary roots unstable!!!

Pole Placement - Example: PID controller

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a
Pl controller $C(s)=\frac{a s+b}{c s+d}$

Pole Placement - Example: PID controller

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a PI controller $C(s)=\frac{a s+b}{c s+d}$
The denominator of $\frac{S(s) C(s)}{1+S(s) C(s)}$ is
$D=s^{2}(c s+d)+a s+b=c s^{3}+d s^{2}+a s+b$
This is a third-order polynomial with 3 roots that we can fix as we want. We choose stable roots
$(s+1)\left(s-e^{\frac{3 i \pi}{4}}\right)\left(s-e^{\frac{5 i \pi}{4}}\right)=(s+1)\left(s^{2}+\sqrt{2} s+1\right)=$ $s^{3}+2.4 s^{2}+2.4 s+1$

Pole Placement - Example: PID controller

We consider the system $S(s)=\frac{1}{s^{2}}$ (double integrator) and a PI controller $C(s)=\frac{a s+b}{c s+d}$
The denominator of $\frac{S(s) C(s)}{1+S(s) C(s)}$ is
$D=s^{2}(c s+d)+a s+b=c s^{3}+d s^{2}+a s+b$
This is a third-order polynomial with 3 roots that we can fix as we want. We choose stable roots
$(s+1)\left(s-e^{\frac{3 i \pi}{4}}\right)\left(s-e^{\frac{5 i \pi}{4}}\right)=(s+1)\left(s^{2}+\sqrt{2} s+1\right)=$ $s^{3}+2.4 s^{2}+2.4 s+1$

We identify : $c=1, d=2.4, a=2.4, b=1$

Homework

Use Simulink to simulate this PI controller and the system. Add some disturbance (by using the block named "Band-Limited White Noise"). Is the result satisfactory? If not, modify the controller to reject the disturbance.

