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Stabilization by Feedback

• Stabilization by feed-back
• Pole Placement
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Consideration of Disturbance

• disturbance w(t) represents perturbations or modelling
error

• the output y(t) and the setpoint/reference r(t)

• the controller C and the system S are supposed to be
rational fractions C(s), S(s)

2



Transfer Function of the Closed-Loop System

We now compute the closed-loop transfer function:

Y (s) = S(s)(C(s)(R(s)− Y (s)) +W (s))

(1 + S(s)C(s))Y (s) = S(s)(C(s)R(s) +W (s))

where W (s), Y (s), R(s) are the Laplace transforms of the
disturbance w(t), the output y(t) and the reference r(t).
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Transfer Function of the Closed-Loop System

We obtain closed-loo thep transfer function:

Y (s) =
S(s)C(s)

1 + S(s)P (s)
R(s) +

S(s)

1 + S(s)C(s)
W (s)
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Control Problem Formulation

Y (s) =
S(s)C(s)

1 + S(s)C(s)
R(s) +

S(s)

1 + S(s)C(s)
W (s)

given the transfer function S(s) of the system, find C(s) such
that

1. S(s)C(s)

1 + S(s)C(s)
is stable et close to the identity (fidelity)

2. S(s)

1 + S(s)P (s)
is small (robustness or disturbance

rejection)
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Exemple: PID controllers

We consider the system S(s) =
1

s2
(double integrator) and a

proportional controller C(s) = a

We calculate the denominator of S(s)C(s)

1 + S(s)C(s)

which gives D = s2 + a

This is a second-order polynomial with purely imaginary roots

unstable!!!
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Pole Placement – Example: PID controller

We consider the system S(s) =
1

s2
(double integrator) and a

PI controller C(s) =
as+ b

cs+ d

The denominator of S(s)C(s)

1 + S(s)C(s)
is

D = s2(cs+ d) + as+ b = cs3 + ds2 + as+ b

This is a third-order polynomial with 3 roots that we can fix as
we want. We choose stable roots
(s+ 1)(s− e

3iπ
4 )(s− e

5iπ
4 ) = (s+ 1)(s2 +

√
2s+ 1) =

s3 + 2.4s2 + 2.4s+ 1

We identify : c = 1, d = 2.4, a = 2.4, b = 1
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Homework

Use Simulink to simulate this PI controller and the
system. Add some disturbance (by using the block
named “Band-Limited White Noise”). Is the result
satisfactory? If not, modify the controller to reject the
disturbance.
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