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NOTICE

The slides do not cover all the contents of the
Feedback Control part. Some exercises are solved on
the white board.
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Fundamentals of Dynamical Systems

goal: a unified view of seemingly disparate systems

• using the same concepts
• adapting techniques where necessary
• combining different techniques when systems have
heterogeneous components

... which they do in cyber-physical systems!

examples?
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Fundamentals of Dynamical Systems

dynamical system

• precisely identified entity
(we know what is part of the system and what isn’t)

• defining behaviors over some notion of time
(we know what ”before” and ”after” mean)

• with (possibly) observable outputs
• (possibly) influenced by a given set of inputs

examples for what is not a dynamical system?
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Fundamentals of Dynamical Systems

behavior

• evolution of states over time
• (possibly) decorated with input or output

formalized as executions, runs, words, traces, trajectories,…

examples?
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Fundamentals of Dynamical Systems

disturbance

• something that modifies the inputs or outputs of the
system

random changes in the environment, electromagnetic
interference, sensor noise, quantization error(!)

more examples?
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Fundamentals of Dynamical Systems

deterministic system

• if the inputs are known, there is only one future behavior

nondeterministic system

• if the inputs are known, there is a known set of future
behaviors
(actual behavior may be different each time we run the
system, but belong to the same set)

examples?
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Fundamentals of Dynamical Systems

stochastic system

• if the inputs are known, the future behavior is known with
a certain probability
(it’s the same behavior xyz% of the times we run the
system)

examples?
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Fundamentals of Dynamical Systems

state

• a set of independent physical quantities, the
specification of which completely determines the future
behavior of the system if the inputs are known

state-space

• the set of states of the system

example: motion of a car (with accelerator and brake pedals)
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Fundamentals of Dynamical Systems

transition

• relates a state to a successor state
• may depend on time and inputs

transition relation

• defines for each state the possible successor states
• a subset of states × time × inputs × states

state time,input−−−−−→ state′
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Fundamentals of Dynamical Systems

reachable states

• states in the closure of the transition relation
• starting from a given set of initial states
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Fundamentals of Dynamical Systems

finite state system

• the state space and the inputs are finite sets

What is maximum size of the transition relation
(deterministic/nondeterministic)?
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Fundamentals of Dynamical Systems

state-space exploration (enumerative)

• starting from a given initial state, visit all reachable states,
trying out all possible inputs

• = graph traversal, e.g., breadth-first search

always terminates if the state space is finite

example: check if the system can go to a given ”bad” state
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Fundamentals of Dynamical Systems

infinite state system

• the state space is an infinite set (enumerable or not)

state-space exploration no longer terminates
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Fundamentals of Dynamical Systems

symbolic state-space exploration

• like state-space exploration, but using sets of states
• terminate if successors ⊆ visited states or bad states
overlap visited states

• often uses overapproximation to operate on sets with
simple descriptions (intervals…)

may terminate even if state space is infinite
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Fundamentals of Dynamical Systems

Example: A program computing √
x0 using the babylonian

method
xk+1 =

1
2

(
xk +

x0

xk

)
.

implemented using int,float,rationals,reals,…

• state-space? initial state? inputs? outputs? time?
• transition relation? behaviors?
• deterministic? finite?
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Fundamentals of Dynamical Systems

Exercises:

Given an implementation using int,float,rationals,reals,…

1. When is enumerative state-space exploration applicable?
2. How to check if the sequence converges to √

x0?
3. Apply symbolic state-space exploration starting from

x0 = 8. Use integer intervals to describe sets of states.
Overapproximate if necessary.

4. Start from x0 = 9. How can the precision be increased?
5. Does always rounding up or always rounding down

cover all possibilities?
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Fundamentals of Dynamical Systems

Discrete-Time Dynamical System:

xk+1 = f (xk, uk) .

• state-space? initial state? inputs? outputs? time?
• why ”discrete-time”?
• transition relation?
• deterministic? finite?

Examples: Finite state machine (digital computer)

18



Fundamentals of Dynamical Systems

Discrete-Time Continuous Dynamical System:

xk+1 = f (xk, uk) .

• f is a continuous function of x and u:
• a small enough change in the input (or in time) generates
an arbitrarily small change in the output

Examples: Digital controller (considering floating point as real
numbers); sun position at noon every day
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Fundamentals of Dynamical Systems

Discrete-Time Continuous Dynamical System:

xk+1 = f (xk, uk) .

two main categories:

• f is linear: xk+1 = Axk +Buk

either converging, diverging, or periodic
• f is nonlinear:
possibly chaotic behavior
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Linear Map

scalar case:
xk+1 = axk

for which values of a:

• converging,
• diverging,
• periodic?
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Logistic Map

demographic model with reproduction and starvation
[R. May, 1976]

xk+1 = rxk(1− xk)
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Logistic Map
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Fundamentals of Dynamical Systems

Discrete-Time Piecewise Continuous Dynamical System:

xk+1 =



f1 (xk, uk) , xk ≤ c1
...
fi (xk, uk) , ci−1 < xk ≤ ci
...
fm (xk, uk) , xk > cm

• may exhibit complex behavior even for simple fi

Example: continuous systems with saturation of signals
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Tent Map

xk+1 =

µxk, xk <
1
2
,

µ(1− xk), xk ≥ 1
2
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Tent Map

xk+1 =

µxk, xk <
1
2
,

µ(1− xk), xk ≥ 1
2
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Tent Map

xk+1 =

µxk, xk <
1
2
,

µ(1− xk), xk ≥ 1
2
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Tent Map vs Logistic Map

tent map:

xk+1 =

µxk, xk <
1
2
,

µ(1− xk), xk ≥ 1
2

logistic map:
yk+1 = ryk(1− yk)

for µ = 2 and r = 4:

xk =
2
π
sin−1√yk

relation between piecewise linear and nonlinear system
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Fundamentals of Dynamical Systems

Continuous-Time (Continuous) Dynamical System:

Typically given by a differential equation system:

ẋ(t) = f (x(t), u(t)) .

• can be converted to discrete-time system by sampling
at time points, e.g., t = kδ

Example: Motion of a car
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Fundamentals of Dynamical Systems

Discrete-Continuous Dynamical System (Hybrid System):

• mix of discrete and continuous dynamics
• discrete state changes are considered instantaneous
• discrete state determines continuous dynamics

Example: Motion of a car with gear shift
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Levels of Abstraction

discrete (state) system (discrete dynamics)

continuous system (continuous dynamics)

• discrete or continuous time

discrete-continuous (hybrid) system

What is the ”right” model?
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Example: Robot in a Maze

• robot turning at exactly 90 degrees, timing irrelevant:
discrete system
Can the robot leave the maze?

• maze door opens and closes at specific times: timed
system
Can the robot leave the maze while the door is open?

• robot not turning exactly 90 degrees:
hybrid (discrete-continuous) system
accumulation of deviations!
Can the robot leave the maze while the door is open?
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Overview

Dynamical Systems

Fundamentals of Dynamical Systems

Specifying and Analyzing Properties
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Specifying and Analyzing Properties

boolean properties

• state property: state → {true, false}
e.g., predicate over the state variables

• behavior property: behavior → {true, false}
e.g., all states along the behavior satisfy the property

• system property: system → {true, false}
e.g., all behaviors from initial states satisfy property

these generalizations to behaviors over time are called
temporal logics

examples?
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Specifying and Analyzing Properties

probabilistic properties

• behavior probability: behavior → [0, 1]

e.g., probability that the behavior is taken (from given
initial state)

• probabilistic property: system → [0, 1]

e.g., probability that any behavior from the initial states
satisfies the property

these generalizations to behaviors over time are called
probabilistic temporal logics

examples?
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Specifying and Analyzing Properties

safety: nothing bad ever happens

analysis techniques:

• inductive invariants,
• state-space exploration (enumerative, symbolic)

examples?
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Specifying and Analyzing Properties

liveness: something good eventually happens

analysis techniques:

• temporal logics,
• model checking (generalization of state-space
exploration),

• ranking functions

examples?
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Specifying and Analyzing Properties

probabilistic safety and liveness: nothing bad/something
good happens with a certain probability

analysis techniques:

• probabilistic temporal logics,
• model checking,
• fault-tree analysis

examples?
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Specifying and Analyzing Properties

quantitative semantics of safety and liveness: distance to
nothing bad/something good happening

• e.g., min distance of any behavior to violating the
property

Example: x(t) ≤ c for all t ≥ 0 (boolean safety)

• quantitative semantics q = mint≥0 c− x(t)

property satisfied iff q ≥ 0.

measure of robustness
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Specifying and Analyzing Properties

real-time scheduling: system achieves given tasks in given
time frame

analysis techniques:

• model checking,
• worst-case execution time (WCET) analysis

quantitative property:

• computing worst-case execution time

examples?
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Specifying and Analyzing Properties

stability: system will remain close to its steady state if
disturbances (inputs) small enough

analysis techniques:

• linear algebra,
• Lyapunov functions (continuous ranking functions)

quantitative property:

• stability (gain) margin: amount that feedback can be
increased while remaining stable

examples?
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