On the Synthesis of Discrete Controllers for
Timed Systems*
(An Extended Abstract)

Oded Maler! Amir Pnueli? Joseph Sifakis!

! SPECTRE — VERIMAG, Miniparc-ZIRST, 38330 Montbonnot, France,
Oded.Maler@imag.fr
2 Dept. of Computer Science, Weizmann Inst. Rehovot 76100, Israel,
amir@wisdom.weizmann.ac.il

Abstract. This paper presents algorithms for the automatic synthesis
of real-time controllers by finding a winning strategy for certain games
defined by the timed-automata of Alur and Dill. In such games, the
outcome depends on the players’ actions as well as on their timing. We
believe that these results will pave the way for the application of program
synthesis techniques to the construction of real-time embedded systems
from their specifications.

1 Introduction

Consider a dynamical system P whose presentation describes all its possible
behaviors. This system can be viewed as a plant to be controlled. A subset of
the plant’s behaviors, satisfying some criterion is defined as good (or acceptable).
If the plant is, e.g., an airplane, this subset might consist of all behaviors which
start at the departure point and end in the destination within some temporal
interval (and with the number of living passengers kept constant). A controller
C'is another system which can interact with P in a certain manner by observing
the state of P and by issuing control actions that influence the behavior of P,
hopefully restricting it to be included in the subset of good behaviors. Carrying
on with the airplane example, the controller might be in charge for turning the
engines on and off, increasing the fuel consumption, etc. The synthesis problem
is then, to find out whether, for a given P, there exists a realizable controller '
such that their interaction will produce only good behaviors.

There are many variants of the formulation of this problem, differing from
each other in the kind of dynamics considered and in the way the system and the
goodness criteria are specified. The two most extreme examples are reactive pro-
gram synthests and classical control theory. In the former, the models are based

* This research was supported in part by the France-Israel project for cooperation
in Computer Science and by the European Community ESPRIT Basic Research
Action Projects REACT (6021). VERIMAG is a joint laboratory of CNRsS, INPG, UJF
and VERILOG SA. SPECTRE is a project of INRIA.

on discrete transition-systems (automata). The plant P represents a combina-
tion of the environment actions and the specification of the desired interaction
between the synthesized program C' and the environment. The dynamics for this
case 1s defined by a non-deterministic automaton, whose acceptance condition
distinguishes good behaviors (interactions) from bad ones. The program has con-
trol over some of the transitions, and the problem is to find a strategy, that is,
an effective rule for selecting at each state one among the possible transitions,
such that bad behaviors are excluded. In classical control theory, the plant is
a continuous dynamical system defined by a non-autonomous (that is, with in-
put) differential equation. The input serves to express both the non-determinism
of the environment (disturbances) and the effect of the controller actions. The
controller synthesis problem in this context is to define a feed-back law, which
continuously determines the controller’s input to the plant, such that behavioral
specification are met.

In this paper we are concerned with real-ttme systems where discrete state-
transitions interact with the continuous passage of time. In this setting we model
the plant as a timed automaton, that is, an automaton equipped with clocks that
grow continuously in time while the automaton is in any of its states. The values
of the clocks may interfere with the transitions by appearing in guards, which
are the enabling conditions of the transitions. Thus, a transition may take place,
for example, only if some clock value has passed a certain threshold. Transitions
may as well reset clocks.

We show that the control synthesis problem is solvable when the plant specifi-
cation is given by a timed automaton. This means that another timed automaton
can be synthesized (when possible) such that its interaction with the environment
will introduce only good timed traces. We arrive to these results by providing
at first a simple and intuitive (if not new) solution to the discrete version of
the problem and then adapt it to timed automata defined over a dense time
domains. Technically, the solution is obtained by solving fixed-point equations
involving both discrete transition relations and linear inequalities.

The rest of the paper is organized as follows: in section 2 we give a motivating
toy example of a real-time controller synthesis problem. In section 3 we treat
the discrete case and the real-time case is solved in section 4. The last section
discusses some relevant past and future work.

2 An Example of a Real-time Control Synthesis problem

Consider the following game depicted in figure 1. Player P; starts running from
the initial position marked by a circle at the left of the figure. It takes her e;
seconds to reach the junction. At the junction she can either wait and do nothing
or choose to run — either to the left or to the right. After having run in the chosen
direction for ey seconds she reaches the corresponding bridge, and if the latter is
not blocked (see below) she can run and reach the end position within ez seconds.
If this final position is reached within less than ¢ seconds since the game started,
Player P; wins. The other player P, starts the game located between the two

bridges and within d seconds she must choose between blocking the left or the
right bridge (which she does immediately upon making the decision). The whole

left-bridge

run-left ’ ’ 1\) \
.

e
center) e D

run-righh o R /

right-bridge

Fig. 1. A pursuit game.

system can be described as a product of two timed-automata having two clocks.
The first clock measures the amount of time elapsed since the beginning of the
game. The second clock, y is used to impose velocity constraints on the behavior
of P;. These two automata are depicted® in figure 2. The product of these two
automatais the timed-automaton of figure 3. One can see that there is a strategy
to win from state AJ iff max(d,e1) + e2 + ez < c. If this inequality holds, the
strategy for Player P; is to stay at BJ until # = max(d, e1). Then, after Player
P, takes the system to either BI or BK, Player P; takes the transition to CI or
DK, respectively and reaches the goal on time.

3 The Discrete Case

Definition1 (Plant). A plant automaton is a tuple P = (Q, X, , q0), where
Q is a finite set of states, X, is a set of controller commands, 6 : Q x X, — 29
15 the transition function and qo € Q s an initial state.

For each controller command o € Y. at some state ¢ € () there are several
possible consequences denoted by §(g, o). This set indicates the possible reactions

% In order to economize the use of arrows we employ a Statechart-like notation, i.e., an
arrow originating from a super-state (dashed rectangle) represents identical arrows
coming out of all the states contained in that super-state. We write transition guards
above the arrows, clock resettings below and invariants inside states (as in state J of
the first automaton). Note that the right automaton “observes” both clocks as well
as the state of the left automaton.

left-blocked

y>e2 y>63 A = (left-blocked)

e
| =\ ")
@ middle}

V=0 roncleft lefi-bridge . @
run-right right-bridge

True running junction y:=0 y>62 m '
' Uy>eSj/\ —(right-blocked)

right-blocked

Fig.2. The game as two interacting timed-automata.

of the plant to the controller’s command, some of which may reflect a possible
interference by the environment.* Choosing a command ¢ € Y. is what the
controller can do at every stage of the game. A good choice is supposed to work
for all possible continuations indicated by é(q, o).

Definition2 (Controllers). A controller (strategy) for a plant specified by
=(Q,%:,8,q0) is a function C : QT — X.. A simple controller is a con-
troller that can be written’® as a function C': Q — X..

According to this definition, a general controller may base its selection of the
next command upon the complete history of states visited up to this point. This
general definition does not impose any bound on the amount of memory the
controller might need in order to implement the strategy. We are interested in
the simpler cases of controllers that base their decisions on a finite memory, a
special case of which is the simple controller where the decision 1s based on the
last visited automaton state. Such controllers need only observe the current state
of the plant.

For an infinite sequence of states « : ¢[0],¢[1], ... and a natural number n,
we denote by «[0..n] the finite sequence ¢[0], ¢[1], ..., q[n].

Definition3 (Trajectories). Let P be a plant and let C : QT — 3. be a
controller. An infinite sequence of states o : q[0],q[1], ... such that q[0] = qo is

called a trajectory of P if
gli+1€ | s

celX.

* Unlike other formulation of 2-person games where there is an explicit description of
the transition function of both players, here we represent the response of the second
player (the environment) as a non-deterministic choice among the transitions labeled
by the same o.

® Which means that for every ¢ € @, w,w’ € Q*, C(wq) = C(w'q).

r e
y>e2 /\y> e3
= EI
i
run-left left-bridge
ght right-bridge

running junction y:i=0 y>e2
y:=0

: right-blocked

’ True
Jox<d
y>e2 my>63
— EJ
V=0 pyneft left-bridge

run-right right-bridge

G H
win lose

running junction y:=0 y>e2 /F_J\
DJ y:=0 Uy>63

left-bridge
run-right right-bridge
junction v:=0 y>e2

running

DK y:=0

()

. left-blocked

Fig. 3. The game described globally.

and a C-trajectory if q[i + 1] € 6(q[i], C(«[0..9])) for every
sponding sets of trajectories are denoted by L(P) and Lo (P).

Clearly, every C-trajectory is a trajectory and Lo (P) C L(P). What remains
is to define acceptance conditions, that is, a criterion to classify trajectories as
good or bad. For every infinite trajectory o € L(P), we let Vis(«) denote the set
of all states appearing in « and let Inf(«) denote the set of all states appearing

in « infinitely many times.

t > 0. The corre-

Definition4 (Acceptance Condition). Let P = (@, 2., 4, q0) be a plant. An
acceptance condition for P s

e {(F,0),(F,0),(F,00),(F,00),(F,Rn)}
where F = {(Fy, Gi) Y=, (Rabin condition) and F, F; and G; are certain subsets

of @ referred as the good states. The set of sequences of P that are accepted
according to £2 1s defined as follows:

L(P,F,0) |{ae L(P): Vis(a) C F} a always remains in F'
L(P,F,0) {a€ L(P): Vis(a)NF # 0} a eventually visits F
L(P,F,o0){a € L(P) : Inf(a) C F'} o eventually remains in F
L(P,F,O00){a € L(P) : Inf(a) N F # 0} o wvisits I infinitely often
L(P,F,Rp) {e € L(P) : Fi. o visits F; infinitely often
a € L(P,F;,,00)N L(P, Gy, OO)}Hand eventually stays in G;

Definition5 (Controller Synthesis Problem). For a plant P and an accep-
tance condition §2, the problem Synth(P,$2) is: Find a controller C' such that
Lo (P) C L(P, £2) or otherwise show that such a controller does not exist.

In case the answer is positive we say that (P, £2) is controllable.

Definition6 (Controllable Predecessors). Let P = (@, 2., 4, q0) be a plant.
We define a function 7 : 29 +— 29, mapping a set of states P C Q into the set
of its controllable predecessors, i.e., the set of states from which the controller
can “force” the plant into P in one step:

7#(P)={¢ : o€ X, .8(q,0) C P}

Theorem 1. For every 2 € {(F, ©), (F,0),(F,<0),(F,00),(F,R1)}
the problem Synth(P, £2) is solvable. Moreover, if (P, {2) is controllable then it
is controllable by a simple controller.®

Sketch of Proof: Let us denote by W the set of winning states, namely, the
set of states from which a controller can enforce good behaviors (according to
criterion £2). They can be characterized by the following fixed-point expressions:

5 A first variant of this theorem has been proved by Biichi and Landweber in [BL69]
with respect to the more general Muller acceptance condition. In that case the con-
troller is finite-state but not necessarily simple. The fact that games defined by Rabin
condition can be won using a simple (memory-less) strategies is implicit in various
papers on decision problems for tree-automata [V94]. In a more extensive version
of the paper, we hope to present an alternative and more systematic treatment of
winning strategies with respect to Boolean combinations of acceptance conditions as
well as a fixed-point characterization of R, for a general n. Impatient or pessimistic
readers may look at such a characterization in [TW94a].

0:wW (Fam(v)) (1)
O pW (Fua(w)) (2)
o0 : pWvH (x(H) O (FU(W))) (3)
0O v WuH (W(H) U(Fn T(W))) (4)
Ru:pW{m(W) U vy pl . WuGn (s U (Faa(v))} ()

The plant is controllable iff o € W.

For a given plant and the induced controllable predecessor function 7, it is
straightforward to calculate the sets W defined by the fixed-point expressions
(1)-(5) and check whether ¢ € W. However, it may be illuminating to review
the iterative process by which these sets are calculated.

Consider the cases & and O: the iteration processes can be described, respec-
tively, by the following schemes:

Wo:=0 Wo :=Q
o fori=0,1,..., repeat 0. fori=0,1,..., repeat
’ Wip1 := FUr(;) ’ Wip1 := Fna(W;)
until W, = W; until Wi, = W;

For the {-case, each W, contains the states from which a visit to F' can be
enforced after at most i steps and in the O-case, it consists of the states from
which the plant can be kept in F' for at least ¢ steps. The sequences {W;} are
monotone over a finite domain and hence convergence is guaranteed.

This procedure is constructive in the following sense: in the process of cal-
culating W41, whenever we add a state ¢ to W; (or do not remove it from W;
in the O-case) there must be at least one action o € X, such that é(¢, o) C W;.
So we define the controller at ¢ as C(¢) = 0. When the process terminates the
controller is synthesized for all the winning states. It can be seen that if the pro-
cess fails, that is, g0 € W, then for every controller command there is a possibly
bad consequence that will put the system outside F', and no controller, even an
infinite-state one, can prevent this.

Consider now the case O<: this case calls for nested iterations; an external
major iteration varying the values of the set W, and a nested minor iteration
varying the values of the set H. This double iteration is described by the following
scheme:

Wo ZIQ

fori=0,1,..., repeat
Ho Zzw
for j =0,1,..., repeat

1,1 s m(H,) U (F A w(W)
until Hj+1 = H]'
Wiy == H;
until W, = W;

The major iteration starts with Wy =). For that value of W, we iterate on
H to compute the set of states from which a single visit to F' can be enforced.
For the next major iteration, we take W7 to be this set. We now recompute H
with respect to Wy which yields the set of states from which one can enforce a
visit to F followed by a visit to Wi (and hence two visits to F'). This process
constructs a decreasing sequence Wy, Wy, ..., where each W; is the set of states
from which ¢ visits to F' can be enforced. This sequence converges to the set
of states from which the plant can be driven to F' infinitely many times. The
strategy is extracted within the last execution of the inner loop as in the $-case.
Formulation of the iterative processes for &0 and R is left as an exercise. 1

4 The Real Time Case

Timed automata ([AD94]) are automata equipped with clocks whose values grow
continuously. The clocks interact with the transitions by participating in pre-
conditions (guards) for certain transitions and they are possibly reset when some
transitions are taken. We let 7' denote IRT (the non-negative reals) and let
X = T (the clock space). We write elements of X as x = (z1,...,24) and
denote the d-dimensional unit vector by 1 = (1,...,1). Since X is infinite and
d

non-countable, we need a language to express certain subsets of X as well as
operations on these subsets.

Definition7 (k-polyhedral sets). Let k be a posilive integer constant. We
associate with k three subsets of 2% :

— Hy — the setl of half-spaces consisting of all sels having one of the following
forms: X, 0, {x € RT : x;#c}, {x € RY : x; — xj#c}, for some # € {<, <
>, 21 ced{0,.. .k}

— HY) — the set of convex sets consisting of intersections of elements of Hy.

— H; — the set of k-polyhedral sets containing all sets obtained ;from Hy via
unton, intersection and complementation.

Clearly, for every k, H} has a finite number of elements, each of which can be
written as a finite union of convex sets. Some authors call the elements of Hj,
TegIons.

Definition 8 (Reset Functions). Let F(X) denote the class of functions f :
X — X that can be written in the form f(x1,...,2q4) = (f1,...fa) where each
fi s either x; or 0.

Definition9 (Timed Automata). A timed aulomaton is a tuple

=(Q,X, X, I, R, qo) consisting of), a finite set of discrete states,” a clock
domain X = (IRT)? for some d > 0, an input alphabet ¥ (X = X.U{e} including
the controller actions Y. and a single environment action €), I : Q — HY' is the
state invariance function (we denote I(q) by I;) and R C Q x X H{ x F(X)xQ
is a set of transition relations, each of the form {q,0,9,f, ¢}, where q¢,¢' € Q,
o€ X, geHY, and f € F(X), q0 € Q is the initial state of T.

A configuration of T is a pair (¢,x) € @ x X denoting a discrete state and
the values of the clocks. When in a configuration (¢,x) such that x € I, the
automaton can “let” time progress, i.e., remain in ¢ and let the values of the
clocks increase uniformly as long as x is still in I,. Whenever 7 is in (¢, x) such
that for some r = {(¢,0,9,f,¢') € R, x € g (the “guard”of r is satisfied), the
automaton can respond to a ¢ input and move to (¢’, f(x)). Sometimes I,Ng # 0
and both options are possible, namely at some configurations we can either stay
in ¢ and let x increase with time or take a transition.

Without loss of generality, we assume that for every ¢ € @ and every x € X,
there exists some ¢ € 1" such that x + 1¢ ¢ I,. That 1s, the automaton cannot
stay in any of its discrete states forever.

Definition 10 (Steps and Trajectories). A step of T is a pair of configura-
tions ((¢,%),(¢',x')) such that either:

1. ¢ =¢" and for somet € T, x' = x4+ 1, x € I, and x' € I,. In this case we
say that (¢’,x’) is a t-successor of (¢,x) and that ((¢,x),(¢’,x")) is a t-step.

2. There is some r = {q,0,9, f,¢') € R such that x € g and x' = f(x). In this
case we say that (¢, x') is a o-successor of (¢,x) and that ((¢,x), (¢',x’)) is
a o-step.

A trajectory of T is a sequence 5 = (q[0],x[0]), (¢[1],x[1]),... of configurations
such that for every i, ((q[f], x[?]), (¢[¢ + 1], x[i + 1])) is a step.

A trajectory is non-Zeno if it has infinitely many ¢-steps and the sum of the
corresponding ¢’s diverges. We denote the set of all non-Zeno trajectories that
7 can generate by L(7). Given a trajectory 3 we can define Vis(5) and Inf(5)
as in the discrete case by referring to the projection of § on @ and use L(7, {2)
to denote acceptable trajectories as in definition 4.

Definition 11 (Real-time Controllers). A simple real-time controller is a

function C: Q@ x X — X, U{L}.

" Called “locations” by some authors, in order to distinguish them from global states
that include the clock values — we will use “configurations” for the latter.

According to this function the controller chooses at any configuration (g,x)
whether to issue some enabled transition o or to do nothing and let time go
by. We denote by Y1 the range of controller commands ¥, U {L}. We also
require that the controller is k-polyhedral, i.e, for every o € X1 C~1(0) is a
k-polyhedral set.

Definition12 (Controlled Trajectories). Given a simple controller C', a
pair ((q,x),(¢',x")) of configurations is a C-step if it is either

1. an e-step, or
2. a o-step such that C(q,x) = o € X, or
3. at-step for some t €T such that for everyt',t' €[0,1), C(¢,x+1¢') = L.

A C-trajectory is a trajectory consisting of C-steps. We denote the set of C-
trajectories of 7 by L (7).

Definition13 (Real-Time Controller Synthesis). Given a timed automa-
ton T and an acceptance condition (2, the problem RT-Synth(7, £2) is: Con-
struct a real-time controller C' such that Lo(7T) C L(T, £2).

In order to tackle the real-time controller synthesis problem we introduce the
following definitions. For t € T and ¢ € X, the configuration (¢',x’) is defined
to be a (1, 0)-successor of the configuration (¢, x) if there exists an intermediate
configuration (g,X), such that (g,X) is a ¢-successor of (¢,x) and (¢’,x’) is a
o-successor of (7,%).% Then we define function & : (Q x X) x (T' x T) s 293X
where 4((q,x), (t,0)) stands for all the possible consequences of the controller
attempting to issue the command o € ¥} after waiting ¢ time units starting at
configuration (¢, x).

Definition14 (Extended Transition Function). For every t € T and ¢ €
Y., the set 6((q,x),(t,0)) consists of all the configurations (¢',x") such that
etther

1. (¢',x') is a (t,0)-successor of (¢,x), or
2. (¢',x') is a (', e)-successor of (¢,x) for some t' € [0,1].

This definition covers successor configurations that are obtained in one of two
possible ways. Some configurations result from the plant waiting patiently at
state ¢ for ¢ time units, and then taking a o-labeled transition according to the
controller recommendation. The second possibility is of configurations obtained
by taking an environment transition at any time ¢’ < t. This is in fact the crucial
new feature of real-time games — there are no “turns” and the adversary need
not wait for the player’s next move.

As in the discrete case, we define a predecessor function that indicates the
configurations from which the controller can force the automaton into a given
set of configurations.

® Note that this covers the case of (¢/,x’) being simply a o-successor of (¢,x) by
viewing it as a (0, o)-successor of (¢, x).

Definition 15 (Controllable Predecessors). The controllable predecessor
function w29 x 2% — 29 x 2% is defined for every K C Q x X by

7(K)={(¢,x) : €T 3oe X, .5q,x),(t,o) C K}

As in the discrete case, the sets of winning configurations can be characterized
by a fixed-point expressions similar to (1)—(5) over 29 x 2X. Unlike the discrete
case, the iteration is not over a finite domain, yet some nice properties of timed-
automata (see [AD94], [ACD93], [HNSY94] for more detailed proofs) guarantee
convergence. Assume that @ = {qo,...,¢m}. Clearly, any set of configurations
can be written as K = {qo} x Py U ---U{gm} X Py, where Py, ... P, are
subsets of X. Thus, the set K can be uniquely represented by a set tuple K =
(Py, ..., Pm) and we can view 7 as a transformation on set tuples.

A set tuple K is called k-polyhedral if each component P;, ¢ = 0,...,m,
belongs to Hj. We will show that the function 7 always maps a k-polyhedral
set tuple to another k-polyhedral set tuple. As a first step, we will represent the
function 7 in terms of its action on components. Without loss of generality, we
assume that for every ¢ € Q, 0 € X, there is at most one r = (¢, 0,9, f,¢) € R.
Let (P, ...,P.L) =a({Po,...,Pn)). Then, for each i = 0,... m, the set P/
can be expressed as

x €l Ax+ 1t el N
x+ 1t €g A flx+1t) € BA
Pl = U {x : HeT. [(v<t) /\ +o(6)
{gi,0.9.f,05)ER {gie,9' " ax)ER
(x+1t'€g — flx+1t') € Pr)

This ugly-looking formula just states that x is in P/ iff for some j, o and ¢ we can
stay in ¢; for ¢ time units and then make a transition to some configuration in
{¢;} x P;, while all other environment transitions that might be enabled between
0 and ¢ will lead us to a configurations which are in some {p} x Py.

Claim 2 (Closure of X} under 7). If K = (Py,..., Py) is k-polyhedral so is
a(K)=(P},...,P.).

Sketch of Proof: It can be verified that every P/ can be written as a Boolean
combinations of sets of the form:

IoN{x @ Hx+el, Ngnf (PHAV <t x+1t €gd U P}

for some guards g, ¢’ and reset functions f, f’, where we use f~(P) to denote
{x: f(x) € P}. Since timed reachability is distributive over union, i.e.,

{x:Jx+LeSHUS={x:Ttx+1teStU{x: Tt x+1t €5}

it 1s sufficient to prove the claim assuming k-convex polyhedral sets. Clearly,
when [is a reset function f=1(S) = {x : f(x) € S} is k-convex whenever S is.
So what remains to show is that for any two k-convex sets S7 and S5, the set

mr +(S1, S2), denoting all the points in 7 from which we can reach Sy (via time
progress) without leaving S, and defined as

T 4(S1,82) = {x: | x+ L €S AV <t.x+ 1t €5}

is also k-convex. Based on elementary linear algebra it can be shown that
m +(S1,52) 1s an intersection of some of the half-spaces defining 57 and Sy,
together with half-spaces of the form z; > 0, and half-spaces of the form
{x : #; — xj#fc} where ¢ is an integer constant not larger than the maximal
constant in the definitions of S} and Sz (see figure 4 for intuition). [|

T2 T2

S2

51

Fig.4. The set 7, (51, 52) for the sets S1, .52 appearing in the right hand side appears
in the left. One can see that the the integer constant ¢’ in the new inequality =1 —z2 < ¢’
is an integer and is smaller than the constant ¢ in the S5 inequality z1 < c.

Theorem 3 (Control Synthesis for Timed Systems). Given a timed
automaton T and an acceptance condition

2 €{(F,©),(F,0),(F, 00),(F,00),(F,R1)},
the problem RT-Synth(7, {2) is solvable.

Sketch of Proof: We have just shown that 29 x H} is closed under 7. Any
of the iterative processes for the fixed-point equations (1)-(5) starts with an
element of 29 x ‘H;. For example, the iteration for < starts with Wy = @ x F.
Each iteration consists of applying Boolean set-theoretic operations and the
predecessor operation, which implies that every W; is also an element of 29 x H,
— a finite set. Thus, by monotonicity, a fixed-point is eventually reached. [|

The strategy is extracted in a similar manner as in the discrete case. When-
ever a configuration (¢, x) is added to W, it is due to one or more pairs of the
form ([t1,12], o) indicating that within any ¢, ¢; <t < ¢, issuing o after waiting
t will lead to a winning position. Hence by letting C'(¢,x) = L when ¢; > 0 and
C(¢,x) = 0 when t; = 0 we obtain a k-polyhedral controller.

5 Relation to Other Work

The problem of finding a winning strategy for finite and infinite games has a long
history, and it lies in the intersection of Logic, Game Theory, Descriptive Set
Theory and Program Synthesis. The pioneering constructive result in this area
is due to Biichi and Landweber (see [BL69], [TB73] [R72]) where the winning
strategy is extracted from the description of the game, in the case when the
game is w-regular. These games can be viewed as a special case of a more general
type of games expressed using Rabin’s t{ree automata, introduced by Gurevich
and Harrington ([GH82]). Emerson and Jutla [EJ91] used fixed-point equations
(over aricher language) to characterize winning states for games associated with
such automata.

The idea that a reactive program can be viewed as a two-person game which
the program plays against the environment, attempting to maintain a temporal
specification, has been explored in [PR89] and [ALWR89]. It has been realized
there that finding a winning strategy for such a game is tantamount to synthe-
sizing a program for the module that guarantees to maintain the specification
against all environment inputs and their timing. For the finite-state case, algo-
rithms for such synthesis were presented, based on checking emptiness of tree
automata. The area of infinite games is still very active and mentioning all the
results and contribution in this area is beyond the scope of this paper — [T94] is
a good place to start.

Within the control community, Ramadge and Wonham ([RW87], [RW89)])
have built an extensive automata-theoretic framework (RW) for defining and
solving control synthesis problems for discrete-event systems. Thistle and Won-
ham [TW94a] have proposed a fixed-point characterization for the winning states
in an automaton game, and their approach is very close to ours in what concerns
the discrete part. A similar characterization of controllability has been suggested
by Le Borgne [LB93] in the context of dynamical systems over finite fields.

As for real-time games, an extension of the RW framework for discrete timed
systems has been proposed in [BW93]. Unlike this approach, we work in the
timed automaton framework (suggested by Alur and Dill [AD94] and studied
extensively by, e.g., [ANSY94], [ACD93]), where Time is a continuous entity,
whose passage interacts with discrete transitions.

The only work within the RW framework on timed automata that we are
aware of is that of Wong-Toi and Hoffman [WTH92]. Our work differs from
theirs in the following aspects: They adhere to the language-oriented approach
of [RW89], while we prefer to develop a state-oriented model, which we believe to
be more adequate for real-time and hybrid systems because timed languages are
not easy objects to work with. Secondly, they solve the control problem by com-
pletely “discretizing” the timed-automaton into a finite-state automaton (the
“region graph”) and then solve the discrete synthesis problem. This procedure
can introduce an unnecessary blow-up in the size of the system. Our method,
working directly on the timed automaton, makes only the discretizations neces-
sary to solve the control problem.

The approach we have outlined can be extended immediately to treat hybrid

automata — a generalization of timed automata where the continuous variables
can grow in different rates, and where the guards and invariants can be con-
structed from arbitrary linear inequalities. As in the the corresponding analysis
problems for such systems, the fixed-point iteration might not converge, and
thus we have only a semi-decision procedure.

Another interesting and important problem is that of partial observation: We
assumed that the controller can precisely observe the the whole configuration of
the plant, including the values of all the relevant clocks. In realistic situations
the plant can be observed only up to some equivalence relation on its states, and
the controller has to operate under some uncertainty.

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Computer
Science 126, 183-235, 1994.

[ACDY3] R. Alur, C. Courcoubetis, and D.L. Dill, Model Checking in Dense Real
Time, Information and Computation 104, 2-34, 1993.

[ALW89] M. Abadi, L. Lamport, and P. Wolper, Realizable and Unrealizable Concur-
rent Program Specifications. In Proc. 16th Int. Collog. Aut. Lang. Prog., volume
372 of Lect. Notes in Comp. Sci., pages 1-17. Springer-Verlag, 1989.

[BW93] B.A. Brandin and W.M. Wonham, Supervisory Control of Timed Discrete-
event Systems, IFEF Transactions on Automatic Control, 39, 329-342, 1994.

[BL69] J.R. Biichi and L.H. Landweber, Solving Sequential Conditions by Finite-state
Operators, Trans. of the AMS 138, 295-311, 1969.

[EJ91] E.A. Emerson and C.J. Jutla, Tree Automata, u-calculus and Determinacy,
Proc. 32nd FOCS, 1991.

[GH82] Y. Gurevich and L. Harrington, Trees, Automata and Games, Proc. 14th
STOC, 1982.

[ANSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic Model-
checking for Real-time Systems,; Information and Computation 111, 193-244, 1994.

[LB93] M. Le Borgne, Dynamical Systems over Finite Fields, Ph.D. thesis, Univ.
Rennes 1, 1993 (In French).

[PR89] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module, In Proc.
16th ACM Symp. Princ. of Prog. Lang., pages 179-190, 1989.

[R72] M.O. Rabin, Automata on Infinite Objects and Church’s Problem, AMS, 1972.

[RW87] P.J. Ramadge and W.M. Wonham, Supervisory Control of a Class of Discrete
Event Processes, SIAM J. of Control and Optimization 25, 206-230, 1987.

[RW89] P.J. Ramadge and W.M. Wonham, The Control of Discrete Event Systems,
Proc. of the IEFE 77, 81-98, 1989.

[TW94a] J.G. Thistle and W.M. Wonham, Control of Infinite Behavior of Finite Au-
tomata, SIAM J. of Control and Optimization 32, 1075-1097, 1994.

[T94] W. Thomas, On the Synthesis of Strategies in Infinite Games, These proceedings.

[TB73] B.A. Trakhtenbrot and Y.M. Barzdin, Finite Automata: Behavior and Synthe-
s28, North-Holland, Amsterdam, 1973.

[V94] M.Y. Vardi, Personal communication.

[WTH92] H. Wong-Toi and G. Hoffmann, The Control of Dense Real-Time Discrete
Event Systems, Technical report STAN-CS-92-1411, Stanford University, 1992.

This article was processed using the INTpX macro package with LLNCS style

