Adaptive redundant residue system for cloud computing: a processor-oblivious and fault-oblivious technology

Jean-Louis Roch
INRIA MOAIS team, LIG lab.
Grenoble Université, France

Joint work with
C. Pernet [1], T. Roche [1, 4], S. Varrette [3, 2], S. Jafar [2], A. Krings [2], B. Cunche [4], M. Khonji[1], T. Stalinski[1]

Computer Science Dept, University of Western Ontario
Monday January 24, 2011

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

Context: High Performance Interactive Computation

INRIA - LIG Moais team

- Performance: multi-criteria trade-off
\hookrightarrow computation latency and computation bandwidth
- Application domains: interactive simulations (latency), computer algebra (bandwidth), ...

HPC platforms

From low computation latency to high computation bandwidth

- Parallel chips \& multi/many-core architectures: multicore cpu, GP-GPU, FPGA, MPSoCs
- Servers: Multi-processor with "sharedi" memory (CPUs + GPUs+...)
- Clusters: 72\% of top 500 machines, Heterogeneous (CPUs + GPUs + ...)
E.g. Tianhe-1A, ranked 1 in TOP500 nov 2010: 4.7 PFlops
- Global computing platforms: grids, P2P, clouds E.g. BOINC : in April 2010=5.1 PFlops

Cloud / Global computing platforms

Applications

- Data sharing (1980's), Data storage, Computation (1990's)

"Unbound" computation bandwidth

- Volunteer Computing: steal idle cycles through the Internet
- Folding@Home - 5 PFLOPS, as of March 17, 2009
- MilkyWay@Home-1.6 PFLOPS, as of April 2010 Thanks to GPUs !

Grid or cloud?

Beyond computation bandwidth, two important criteria:

- granularity: how small is the smallest bit of computational resource that you can buy;
- speed of scaling: how long it takes to increase the size of available resources.

Global computing architecture and trust

Open platforms are subject to attacks:

- machine badly configured, over clocking,
- malicious programs,
- client patched and redistributed: possibly large scale

Global computing architecture and trust

Open platforms are subject to attacks:

- machine badly configured, over clocking,
- malicious programs,
- client patched and redistributed: possibly large scale

Global computing platforms: drawbacks

Peers volatility

Peers can join/leave at any time.

Faults, crashes

As the number of nodes increases, the number of faults, process crashes increases as well.

Trust in Peers

Malicious Peers (intentionally or infected by malwares).

- Random Crashes
- Random Forgeries
- Byzantine behaviour (e.g., Peers collusion)

Related work: trusting the Cloud

Volatility

Replication, (partial) Re-execution, Checkpoint/restart

Trust

- Challenges / blacklisting [Sramenta\&ak 01]
- Replication of tasks:
- BOINC: credit evaluation
- Byzantine agreement: n processes for $n / 3$ faulty (one-third faulty replicas [Lamport82s])
- Check / Verification using postconditions (on the output) [Blum97]

Related work: trusting the Cloud

Volatility

Replication, (partial) Re-execution, Checkpoint/restart

Trust

- Challenges / blacklisting [Sramenta\&ak 01]
\Rightarrow expensive
- Replication of tasks:
- BOINC: credit evaluation
\Rightarrow Attacks can be adjusted
- Byzantine agreement: n processes for $n / 3$ faulty (one-third faulty replicas [Lamport82s])
\Rightarrow often expensive
- Check / Verification using postconditions (on the output) [Blum97]
\Rightarrow not always possible

Related work: trusting the Cloud

- Without trust assumptions, basic properties (eg integrity, atomicity, weak consistency, ...) cannot be guaranteed
- But, by maintaining a small amount of trusted memory and trusted computation units, well-known cryptographic methods reduce the need for trust in the storage [Cachin\&al. ACM SIGACT 2009]
- integrity by storing small hash (hash tree for huge data)
- authentication of data
- proofs of retrievability (POR) and of data possession (PDP)

Considered cloud computing platform

\Longrightarrow Two disjoint set of resources:

- U: The cloud, unreliable
- R: Resources blindly trusted by the user (reliable), but with limited computation bandwidth interconnected through a stable memory

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

How to take benefit of the Cloud for HPiC?

Performance and correction

- Performance: massive parallelism (work \gg depth) \hookrightarrow workstealing, adaptive scheduling [Leiserson\&al. 2007]
- Correction of the results: proof \hookrightarrow verifications on R (e.g. randomized checking)
- Fault tolerance: to support resilience and/or errors \hookrightarrow ABFT: Algorithm Based Fault Tolerance

Execution time model on the cloud

Resource type	average computation bandwidth per proc	Total computation bandwidth	Usage
Cloud U	Π_{U}	$\Pi_{U}^{\text {tot }}$	computation
Client R	Π_{R}	$\Pi_{R}^{\text {tot }}$	certification

bandwidth: number of unit operations per second

Bound on the time required for computation+certification

Based on work-stealing, with high probability [Bender-Rabin02] :

$$
\text { Execution time } \leq \frac{W_{c}}{\Pi_{U}^{\text {tot }}}+\mathcal{O}\left(\frac{D_{c}}{\Pi_{U}}\right)+\frac{W_{r}}{\Pi_{R}^{\text {tot }}}+\mathcal{O}\left(\frac{D_{r}}{\Pi_{R}}\right) .
$$

Notations and target context:

- $W_{c}\left(\right.$ resp. $\left.D_{c}\right)=$ total work (resp. depth) executed on the cloud U;
- $W_{r}\left(\right.$ resp. $\left.D_{r}\right)=$ total work (resp. depth) executed on the client R;
- Target context: $W_{c}=O\left(W_{1}^{1+\epsilon}\right) ; D_{c} \ll W_{c} ; W_{r}, D_{r} \ll D_{c}$.
- Correction: may be computed either on R, or on U, or on both.

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
[Huang\&Abraham 98] [Saha 2006] [Dongarra \& al. 2006]
\Rightarrow use properties specific to the problem

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
[Huang\&Abraham 98] [Saha 2006] [Dongarra \& al. 2006]
\Rightarrow use properties specific to the problem
Example: Matrix-vector product

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
[Huang\&Abraham 98] [Saha 2006] [Dongarra \& al. 2006]
\Rightarrow use properties specific to the problem
Example: Matrix-vector product

uA
X

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
[Huang\&Abraham 98] [Saha 2006] [Dongarra \& al. 2006]
\Rightarrow use properties specific to the problem
Example: Matrix-vector product

u
uA

- pre-compute the product $B=A \times\left[\begin{array}{ll}I & R\end{array}\right]$
- compute $x=u B$ in parallel
- decode/correct x

Summary

Typical considered global computation

- Interactive computation between R (reliable) and the cloud U (unreliable);
- On U: Computations loosely coupled and fault tolerant
- On R: submission of the computation correction (if not too much errors) verification (if not too much errors)
\hookrightarrow homorphic residue system

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

Homomorphic residue system

- One-to-one mapping Φ from E to $E_{1} \times \ldots \times E_{n}$ that preserves the algebraic structure
- $\Phi: x \mapsto x_{1}, \ldots x_{n}$: projection $\Phi^{-1}\left(x_{1}, \ldots, x_{n}\right)$: lifting
- \hookrightarrow For a fixed computation P (straight-line program):

For input x : $\Phi\left(P_{x}\right)=\Phi(P)_{x_{1}}, \ldots, \Phi(P)_{x_{n}}$.

- Classical examples: residue number/polynomial systems:
- Polynomials: $\Phi(Q)=\left(Q\left(a_{1}\right), \ldots, Q_{(}\left(a_{n}\right)\right)$ [evaluation/interpolation]
- Integers: $\Phi(x)=\left(x \bmod a_{1}, \ldots, x \bmod a_{n}\right)$ a_{1}, \ldots, a_{n} : residue number system (relatively prime)

Integers: Chinese remainder algorithm

$$
\mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ over \mathbb{Z}

begin

Compute a bound β on $\max (|f|)$;
Pick $n_{1}, \ldots n_{k}$, pairwise prime, s.t. $n_{1} \ldots n_{k}>\beta$; for $i=1 \ldots k$ do

Compute $y_{i}=f\left(x \bmod n_{i}\right) \bmod n_{i}$
Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$
end
CRT: $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z}$ $\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi$
where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} n_{i} \\ \Pi_{i}=\Pi_{i} n_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod n_{i}\end{array}\right.$

Integers: Chinese remainder algorithm

$$
\mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ over \mathbb{Z}

begin

Compute a bound β on $\max (|f|)$;
Pick $n_{1}, \ldots n_{k}$, pairwise prime, s.t. $n_{1} \ldots n_{k}>\beta$; for $i=1 \ldots k$ do

Compute $y_{i}=f\left(x \bmod n_{i}\right) \bmod n_{i} ; \quad / *$ Evaluation */
Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$; /* Interpolation */ end

CRT: $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z}$ $\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi$
where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} n_{i} \\ \Pi_{i}=\Pi_{i} n_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod n_{i}\end{array}\right.$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow

Reduce P modulo $X-a$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials

Evaluation:
$P \bmod X-a$
Evaluate P in a
Interpolation:
$P=\sum_{i=1}^{k} \frac{\prod_{j \neq i}\left(x-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials Integers

Evaluation:
 $P \bmod X-a$
 Evaluate P in a
 $N \bmod m$
 "Evaluate' N in m

Interpolation:

$$
P=\sum_{i=1}^{k} \frac{\prod_{j \neq i}\left(X-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \quad N=\sum_{i=1}^{k} a_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}
$$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials Integers

Evaluation:

$P \bmod X-a$
Evaluate P in a
$N \bmod m$
"Evaluate' N in m

Interpolation:

$$
P=\sum_{i=1}^{k} \prod_{j \neq i} \prod_{j \neq i}\left(a_{i}-a_{j}\right) \mid \quad N=\sum_{i=1}^{k} a_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}
$$

Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over $K[X]$

For a program with $T_{\text {algebr. }}$ algebraic operations:

- size of coefficients
- $\mathcal{O}\left(\log \|\right.$ result $\left.\| \times T_{\text {algebr. }}\right)$
- degree of polynomials
- $\mathcal{O}\left(\right.$ deg $($ result $\left.) \times T_{\text {algebr. }}\right)$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials Integers

Evaluation:

$P \bmod X-a$
Evaluate P in a
$N \bmod m$
"Evaluate' N in m

Interpolation:

$$
P=\sum_{i=1}^{k} \frac{\Pi_{j \neq i}\left(x-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \quad N=\sum_{i=1}^{k} a_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}
$$

Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over $K[X]$

For a program with $T_{\text {algebr. }}$ algebraic operations:

- size of coefficients
- $\mathcal{O}\left(\log \|\right.$ result $\left.\| \times T_{\text {algebr. }}\right)$
- $\operatorname{det}(n,\|A\|)=$ $\mathcal{O}^{\sim}\left(n \log \|A\| \times n^{\omega}\right)$
- degree of polynomials
- $\mathcal{O}\left(\right.$ deg $($ result $\left.) \times T_{\text {algebr. }}\right)$
- $\operatorname{det}(n, d)=\mathcal{O}^{\sim}\left(n d \times n^{\omega}\right)$

Early termination
Classic Chinese remaindering

- bound β on the result
- Choice of the n_{i} : such that $n_{1} \ldots n_{k}>\beta$
\Rightarrow deterministic algorithm

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_{i} : such that $n_{1} \ldots n_{k}>\beta$
\Rightarrow deterministic algorithm

Early termination

- For each new modulo n_{i} :
- reconstruct $y_{i}=f(x) \bmod n_{1} \times \cdots \times n_{i}$
- If $y_{i}=y_{i-1} \Rightarrow$ terminated
\Rightarrow if n_{i} chosen at random: randomized algorithm (Monte Carlo)

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_{i} : such that $n_{1} \ldots n_{k}>\beta$
\Rightarrow deterministic algorithm

Early termination

- For each new modulo n_{i} :
- reconstruct $y_{i}=f(x) \bmod n_{1} \times \cdots \times n_{i}$
- If $y_{i}=y_{i-1} \Rightarrow$ terminated
\Rightarrow if n_{i} chosen at random: randomized algorithm (Monte Carlo)
Advantage:
- Adaptive number of moduli depending on the output value
- Interesting when
- pessimistic bound: sparse/structured matrices, ...
- no bound available

Redundant residues codes

Principle:

- Chinese remaindering based parallelization
- Byzantines faults affecting some modular computations
- Fault tolerant reconstruction
\Rightarrow Algorithm Based Fault Tolerance (ABFT)

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

where $p_{1} \times \cdots \times p_{k}>x$ and $x_{i}=x \bmod p_{i} \forall i$

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
\begin{aligned}
& x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & \ldots & x_{k} & x_{k+1} & \ldots & x_{n} \\
\hline
\end{array} \mathrm{l}
\end{aligned}
$$

where $p_{1} \times \cdots \times p_{n}>x$ and $x_{i}=x \bmod p_{i} \forall i$

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & \ldots & x_{k} & x_{k+1} & \ldots \\
\hline
\end{array}
$$

where $p_{1} \times \cdots \times p_{n}>x$ and $x_{i}=x \bmod p_{i} \forall i$

Definition

(n, k)-code: $C=$
$\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{n}}\right.$ s.t. ヨ! $x,\left\{\begin{array}{l}x<p_{1} \ldots p_{k} \\ x_{i}=x \bmod p_{i} \forall i\end{array}\right\}$

Principle

Property

$$
X \in C \text { iff } X<\Pi_{k}
$$

$$
\Pi_{k}=p_{1} \times \cdots \times p_{k}
$$

Redundancy : $r=n-k$

Principle

Transmission Channel \equiv
Computation

Principle

Noisy Transmission Channel \equiv Unsecured Computation

Principle

Noisy Transmission Channel \equiv Unsecured Computation

Encoding
$\begin{array}{ll}\text { Input } \quad A \\ \\ & x^{\prime}<M_{n}\end{array}$

Solution $x<M_{k}$

Decoding

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod p_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} p_{i}$

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod p_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} p_{i}$

Detects up to r errors:

If $X^{\prime}=X+E$ with $X \in C, \# I \leq r$,

$$
X^{\prime}>\Pi_{k}
$$

- Redundancy $r=n-k$, distance: $r+1$
- \Rightarrow can correct up to $\left\lfloor\frac{r}{2}\right\rfloor$ errors in theory
- More complicated in practice...

Correction

- $\forall i \notin I: E \bmod p_{i}=0$
- E is a multiple of $\Pi_{V}: E=Z \Pi_{V}=Z \prod_{i \notin I}$
- $\operatorname{gcd}(E, \Pi)=\Pi_{V}$

Mandelbaum 78: rational reconstruction

$$
\begin{aligned}
& \qquad \begin{aligned}
X=X^{\prime}-E & =X^{\prime}-Z \Pi_{v} \\
\frac{X}{\Pi} & =\frac{X^{\prime}}{\Pi}-\frac{Z}{\Pi_{F}}
\end{aligned} \\
& \Rightarrow\left|\frac{X^{\prime}}{\Pi}-\frac{Z}{\Pi_{F}}\right| \leq \frac{1}{2 \Pi_{F}^{2}} \\
& \Rightarrow \frac{Z}{\Pi_{F}}=\frac{E}{\Pi} \text { is a convergent of } \frac{X^{\prime}}{\Pi} \\
& \Rightarrow \text { rational reconstruction of } X^{\prime} \bmod \Pi
\end{aligned}
$$

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- Polynomial algorithm if $e \leq(n-k) \frac{\log p_{\min }-\log 2}{\log p_{\max }+\log p_{\min }}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- Polynomial algorithm if $e \leq(n-k) \frac{\log p_{\min }-\log 2}{\log p_{\max }+\log p_{\text {min }}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

- Errors have variable weights depending on their impact $\Pi_{F}=\prod_{i \in I} p_{i}$
- Example: $X=20, p_{1}=2, p_{2}=3, p_{3}=101$
- 1 error on $X \bmod 2$, or $X \bmod 3$, can be corrected
- but not on $X \bmod 101$

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean Alg:

- Chinese Remaindering over $K[X]$
- $p_{i}=X-a_{i}$
- Encoding = evaluation in a_{i}
- Decoding = interpolation
- Correction = Extended Euclidean algorithm étendu

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean Alg:

- Chinese Remaindering over $K[X]$
- $p_{i}=X-a_{i}$
- Encoding = evaluation in a_{i}
- Decoding = interpolation
- Correction = Extended Euclidean algorithm étendu
\Rightarrow Generalization for p_{i} of degrees >1
\Rightarrow Variable impact, depending on the degree of p_{i}
\Rightarrow Necessary unification [Sudan 01,...]

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

Generalized point of view: amplitude code

- Over a Euclidean ring \mathcal{A} with a Euclidean function ν
- Distance

$$
\begin{aligned}
\Delta: \mathcal{A} \times \mathcal{A} & \rightarrow \mathbb{R}_{+} \\
(x, y) & \mapsto \sum_{i \mid x \neq y\left[P_{i}\right]} \log _{2} \nu\left(P_{i}\right)
\end{aligned}
$$

Definition

(n, k) amplitude code $C=\{x \in \mathcal{A}: \nu(x)<\kappa\}$,
$n=\log _{2} \Pi, k=\log _{2} \kappa$.

Generalized point of view: amplitude code

- Over a Euclidean ring \mathcal{A} with a Euclidean function ν
- Distance

$$
\begin{aligned}
\Delta: \mathcal{A} \times \mathcal{A} & \rightarrow \mathbb{R}_{+} \\
(x, y) & \mapsto \sum_{i \mid x \neq y\left[P_{i}\right]} \log _{2} \nu\left(P_{i}\right)
\end{aligned}
$$

Definition

(n, k) amplitude code $C=\{x \in \mathcal{A}: \nu(x)<\kappa\}$,
$n=\log _{2} \Pi, k=\log _{2} \kappa$.

Property (Quasi MDS)

$d>n-k$ in general, and $d \geq n-k+1$ over $K[X]$.
\Rightarrow correction rate $=$ maximal amplitude of an error that can be corrected

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities
- Adaptive decoding: taking advantage of all the available redundancy
- Early termination: with no a priori knowledge of a bound on the result

Interpretation of Mandelbaum's algorithm

Remark

Rational reconstruction \Rightarrow Partial Extended Euclidean Algorithm

Property

The Extended Euclidean Algorithm, applied to (E, Π) and to ($X^{\prime}=X+E, \Pi$), performs the same first iterations until $r_{i}<\Pi_{v}$.

$$
\begin{gathered}
u_{i-1} E+v_{i-1} \Pi=\Pi_{v} \\
u_{i} E+v_{i} \Pi=0
\end{gathered} \begin{gathered}
u_{i-1} X^{\prime}+v_{i-1} \Pi=r_{i-1} \\
\quad u_{i} X^{\prime}+v_{i} \Pi=r_{i} \\
\Rightarrow u_{i} X=r_{i}
\end{gathered}
$$

Amplitude decoding, with static correction capacity

Amplitude based decoder over R

Data: $П, X^{\prime}$

Data: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude Result: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

```
    \(\alpha_{0}=1, \beta_{0}=0, r_{0}=\Pi ;\)
    \(\alpha_{1}=0, \beta_{1}=1, r_{1}=X^{\prime}\);
    \(i=1\);
    while \(\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right)\) do
        Let \(r_{i-1}=q_{i} r_{i}+r_{i+1}\) be the Euclidean division of \(r_{i-1}\) by \(r_{i}\);
        \(\alpha_{i+1}=\alpha_{i-1}-q_{i} \alpha_{i}\);
        \(\beta_{i+1}=\beta_{i-1}-q_{i} \beta_{i} ;\)
        \(i=i+1\);
    return \(X=-\frac{r_{i}}{\beta_{i}}\)
```

end

- reaches the quasi-maximal correction capacity

Amplitude decoding, with static correction capacity

Amplitude based decoder over R

Data: П, X^{\prime}
Data: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude Result: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

```
    \(\alpha_{0}=1, \beta_{0}=0, r_{0}=\Pi ;\)
    \(\alpha_{1}=0, \beta_{1}=1, r_{1}=X^{\prime}\);
    \(i=1\);
    while \(\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right)\) do
        Let \(r_{i-1}=q_{i} r_{i}+r_{i+1}\) be the Euclidean division of \(r_{i-1}\) by \(r_{i}\);
        \(\alpha_{i+1}=\alpha_{i-1}-q_{i} \alpha_{i}\);
        \(\beta_{i+1}=\beta_{i-1}-q_{i} \beta_{i} ;\)
        \(i=i+1\);
    return \(X=-\frac{r_{i}}{\beta_{i}}\)
```

end

- reaches the quasi-maximal correction capacity
- requires a a priori knowledge of τ
\Rightarrow How to make the correction capacity adaptive?

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on X
\Rightarrow pessimistic estimate
\Rightarrow how to take advantage of all the available redundancy?
redondance effective utilisable

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on X
\Rightarrow pessimistic estimate
\Rightarrow how to take advantage of all the available redundancy?
redondance effective utilisable

- Allow early termination: variable n and unknown bound

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

A first adaptive approach

Termination criterion in the Extended Euclidean alg.:

- $\alpha_{i+1} \Pi-\beta_{i+1} E=0$
$\Rightarrow E=\alpha_{i+1} \Pi / \beta_{i+1}$
\Rightarrow test if β_{j} divides Π
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(\beta_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

A first adaptive approach

Termination criterion in the Extended Euclidean alg.:

- $\alpha_{i+1} \Pi-\beta_{i+1} E=0$
$\Rightarrow E=\alpha_{i+1} \Pi / \beta_{i+1}$
\Rightarrow test if β_{j} divides Π
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(\beta_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

Example

$$
\begin{array}{l|lll}
p_{i} & 3 & 5 & 7 \\
\hline x_{i} & 2 & 3 & 2
\end{array}
$$

- $x=23$ with 0 error
- $x=2$ with 1 error

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

Detecting a gap

$$
\begin{gathered}
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X \\
\begin{array}{|c|c|}
\hline \beta_{i} X &
\end{array} \\
\begin{array}{ll}
r_{i}
\end{array}
\end{gathered}
$$

Detecting a gap

$$
\begin{aligned}
\alpha_{i} \Pi-\beta_{i}(X+E) & =r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X \\
& \begin{array}{|c|c|}
\hline \beta_{i} X &
\end{array}
\end{aligned}
$$

Detecting a gap

$$
\begin{aligned}
& \alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \\
& \hline \begin{array}{l|l|}
\hline & \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X \\
\hline & \\
\hline \beta_{i} X & \\
\hline
\end{array}
\end{aligned}
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.

Detecting a gap

$$
\begin{aligned}
& \alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \\
& \Rightarrow \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X \\
& r_{i} \\
& \hline \beta_{i} X 2^{g} \\
& \hline
\end{aligned}
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- $\quad \Rightarrow$ Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\begin{aligned}
& \alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \\
& \\
& \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X \\
& \beta_{i} X \quad 2^{2} \\
& \hline
\end{aligned}
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- $\quad \Rightarrow$ Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\begin{aligned}
\alpha_{i} \Pi-\beta_{i}(X+E) & =r_{i} \\
& \left.\begin{array}{|l|l|l}
\hline & r_{i} & \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X \\
& \begin{array}{|l|l|}
\hline \beta_{i} X & 2^{g} \\
\hline
\end{array}
\end{array}\right)
\end{aligned}
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- $\quad \Rightarrow$ Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\begin{aligned}
& \alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \\
& \begin{array}{|l|r|}
\hline & \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X \\
\hline \beta_{i} X & r^{9} \\
\hline
\end{array}
\end{aligned}
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- $\quad \Rightarrow$ Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Property

- Loss of correction capacity: very small in practice
- Test of the divisibility for the remaining candidates
- Strongly reduces the number of divisibility tests

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

Experiments

Size of the error	10	50	100	200	500	1000
$g=2$	$1 / 446$	$1 / 765$	$1 / 1118$	$2 / 1183$	$2 / 4165$	$1 / 7907$
$g=3$	$1 / 244$	$1 / 414$	$1 / 576$	$2 / 1002$	$2 / 2164$	$1 / 4117$
$g=5$	$1 / 53$	$1 / 97$	$1 / 153$	$2 / 262$	$1 / 575$	$1 / 1106$
$g=10$	$1 / 1$	$1 / 3$	$1 / 9$	$1 / 14$	$1 / 26$	$1 / 35$
$g=20$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$

Table: Number of remaining candidates after the gap detection: c / d means d candidates with a gap $>2^{g}$, and c of them passed the divisibility test. $n \approx 6001$ (3000 moduli), $\kappa \approx 201$ (100 moduli).

Experiments

Figure: Comparison for $n \approx 26016$ ($m=1300$ moduli of 20 bits), $\kappa \approx 6001$ (300 moduli) and $\tau \approx 10007$ (about 500 moduli).

Experiments

Figure: Comparison for $n \approx 200917$ ($m=10000$ moduli of 20 bits), $\kappa \approx 170667$ (8500 moduli) and $\tau \approx 10498$ (500 moduli).

Gap: Euclidean Algorithm down to the end \Rightarrow overhead

Plan

Introduction
High performance computing and cloud
Related works on trusting the clouds
Cloud computing and performance ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
First approach and the gap
Experiments
Early termination

Early termination

Figure: Fault tolerant distributed computation with early termination

Conclusion

Residue systems : "technology" suited to cloud computing: parallelism, fault-tolerant, verification
New metric for redundant residue codes:

- Unification with finer bounds on the correction capacities
- Enables adaptive decoding

Adaptative decoding and early termination

- Gap method: limited overhead, better performances
- Framework for interactive computing with a cloud

Perspective

- ABFT in exact linear algebra, determinant [LinBox]
- ABFT with (exact) floating point arithmetic
- Theoretical efficiency of the gap method,
- Generalization to adaptive list decoding [Sudan, Guruswami]

Jean-Louis Roch's References for this talk

Rajid Khonji, Clément Pernet, Jean-Louis Roch, Thomas Roche, and Thomas Stalinski.
Output-sensitive decoding for redundant residue systems.
In ISSAC '10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pages 265-272, New York, NY, USA, Jul 2010. ACM.

Axel W. Krings, Jean-Louis Roch, Samir Jafar, and Séebastien Varrette.
A Probabilistic Approach for Task and Result Certification of Large-scale Distributed Applications in Hostile Environments.
In European Grid Conference EGC'2005 (http://genias.biz/egc2005/),
Amsterdam, The Netherlands, February 2005. Springer-Verlag, LNCS.
Jean-Louis Roch and Sébastien Varrette.
Probabilistic Certification of Divide \& Conquer Algorithms on Global Computing
Platforms. Application to Fault-Tolerant Exact Matrix-Vector Product.
In Parallel Symbolic Computation'07 (PASCO'07), London, Ontario, Canada, July 2007. ACM.

Thomas Roche, Jean-Louis Roch, and Matthieu Cunche.
Algorithm-based fault tolerance applied to P2P computing networks.
In The First International Conference on Advances in P2P Systems, pages
144-149, Sliema, Malta, Oct 2009. IEEE.

