
Oblivious parallel programming

 Vincent Danjean, Bruno Raffin,
Jean-Louis Roch, Marc Tchiboukdjian

 team-project
Lab. d’Informatique de Grenoble

http://moais.imag.fr

Louvre, Musée de l’Homme

Sculpture (Tête)

Artist : Anonyme

Origin: Rapa Nui [Easter Island]

Date : between the XIst and the XVth century

Dimensions : 1,70 m high

Relation machine model / program
•  One single (simple) computation for a given (simple) machine

–  Example: domain decomposition on the TERA computer :
•  « static parallelization» (MPI)

•  But, concurrently several different (simple) computations
–  Example: multi-physic domains with adaptive irregular refinement

 => composition of parallel computations is difficult

Need an abstract machine model
•  To enable composition of parallel programs,

by abstracting the resources at the programming level
•  Ideally: each computation performance should related to the effective

allocated speed : Πtot

•  And yet to fit next machine generation

•  Future MPSoC will have hundred of
specialized units, with different frequencies
(fixed but non predictable)

•  Memory hierarchy

€

Πave =

Π i(t)
i=1

p

∑
t=1

T

∑
T.p

€

Π tot = p.Πave [Bender&al 2002]

Evolution of parallel programming
•  Parallelism everywhere

–  Distributed, Heterogeneous

MPSoC

MapReduce [Google]

Grids

Cluster
 SMP

GPU

multi-core

TBB [Intel]	

Fortress [Sun]

Cuda [NVidia] 	

…SPIRIT	

MPI OpenMP	

 Cilk++ [CilkArts]

Towards oblivious algorithms
To design a single efficient algorithm

with provable performances on an arbitrary architecture

?
Which algorithm

to choose ?

Sequential
algorithm

parallel
P=2 parallel

P=100

parallel
P=max

. . .
… …

 Objective: End-to-end parallel programming solutions
for high-performance interactive computing
with provable performances.

 optimization computational steering, VR embedded

 Performance is multi-objective
 Adaptive to the platform

 output

QAP/Nugent on Grid’5000�
 [PRISM, GSCOP, DOLPHIN]
 INRIA Grimage platform�

 [MOAIS, PERCEPTION, EVASION]

Streaming on MPSoCs�

 [ST]

input

The MOAIS team-project

Adaptation: from application to architecture

Architecture

Interactive application
Pe

rf
or

m
an

ce
 Adaptive control of execution

model: abstract representation

algorithm: scheduling,
 fault tolerance

M
O
A
I
S

• Def: « An algorithm is said oblivious if no program variables
dependent on hardware configuration parameters need to be tune
to reach optimal performances » [Prokop&al]

•  Analysis on a given (abstract) architecture which proves optimality :
 behaves as well as an optimal (off-line, non-oblivious) algorithm

• Talk: Basic techniques to design oblivious algorithms

•  1. Introduction - Motivation for obliviousness
•  2. Processor oblivious
•  3. Cache oblivious
•  4. Conclusion - Towards cache and processor oblivious

Outline

•  1. Introduction - Motivation for obliviousness

•  2. Processor oblivious

•  3. Cache oblivious

•  4. Towards cache and processor oblivious

•  Prefix problem :
•  input : a0, a1, …, an
•  output : π1, …, πn with

 Example: Parallel prefix

•  Optimal parallelization on p identical processors:
Optimal time Tp = 2n / (p+1)

 performs only n operations
(and minimal cache misses)

•  Sequential algorithm :
•  for (π[0] = a[0], i = 1 ; i <= n; i++) π[i] = π[i – 1] * a [i] ;

 p+1 bocks of n/(p+1) elements
a0, …, an/(p+1)-1 an/(p+1),…, a2n/(p+1)-1 a(p-1)n/(p+1),…, apn/(p+1)-1 apn/(p+1),…, an

PrefixSeq(n/p+1) PrefixSeq(n/p+1) PrefixSeq(n/p+1)
π0, … , πn/(p+1)-1

PrefixSeq(n/p+1) PrefixSeq(n/p+1) PrefixSeq(n/p+1)
πn/(p+1),…, π2n/(p+1)-1 π (p-1)n/(p+1),…, πpn/(p+1)-1 πpn/(p+1),…, πn

Barrier prefix(p)

•  Non oblivious!

Basic notations: Work and depth :

“Work” W = #total number operations performed

“Depth” D = #operations on a critical path

 (~parallel “time” on ∞ resources)

For any greedy maximum utilization schedule Graham69, Brent70, Jaffe80, Bender-Rabin02]

€

1
 Πave

Max W
p

;D








 ≤ Time(p,Π) ≤ 1

 Πave

W
p

+ D










 Relation to execution time T(p, Π)

  There exist schedulers that reach the bound :

€

 1
 Πave

W
p

+O(D)










Work-Stealing: a basis to design
processor-oblivious algorithm

 Work-stealing = oblivious schedulers that reach:

“A decentralized thread scheduler: whenever a processor runs
out of work, it steals work from a randomly chose processor.”

 Moreover: if D small, few steals request [O(p.D) w.h.p.]

 Then, if both the work W >> D (i.e. D very small)
 work-stealing ensures provable performances,
 both theoretical and practical [Cilk, TBB, Kaapi, …]

 And if W ~ Wseq : optimal processor oblivious performance

€

 1
 Πave

W
p

+O(D)










•  Prefix problem :
•  input : a0, a1, …, an
•  output : π1, …, πn with

Application to parallel prefix

•  Non oblivious tight lower bound on p identical processors:
Optimal time Tp = 2n / (p+1)
but performs 2.n.p/(p+1) ops

[Nicolau&al. 1996]

Oblivious

 but

non optimal

• ;

Depth D = 2. log n
but performs W = 2.n ops [Ladner-

Fisher-81]

•  Oblivious parallel algorithm : recursive to minimize the depth D

Adaptive scheme to simultaneously
minimize D and W

①  To minimize depth D
– By enabling, at each steal, extraction of a fraction of the

remaining work on the victim => D = O (log W)
•  => only O(log W) steals per proc
•  small scheduling overhead

② To minimize work W => “work first” principle
 Optimize the sequential local execution, that mostly occurs

–  the overhead of a stack can be avoided [Roch&al 08]
•  contention between the local processor and its -potential- stealers

can be made neglected

•  Each resource performs a specialized sequential algorithm
 - other resources act as co-processors
 - at any time, sequential computation is in progress

Adaptive parallel extraction

Sequential computation

Work? Here it is!
Update?

Here it is!

Jump

•  When a stealer appears, it extracts some work (steal).

•  When the work is completed, partial results are merged
 (eventually, preemption of the stealer).

Processor oblivious design

•  implement the best (preemptive) sequential code
•  add the parallelism extraction and merge
•  use a work-stealing engine for the coupling

• Performance guarantee by a three nested loops scheme
•  Local sequential computation always active [Danjean&al07]

  Extraction/merge to define for each new program

  Provable performances related to those functions

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Work-
stealer 1

Main
Seq.

Work-
stealer 2

π1

time

P-Oblivious Prefix on 3 proc.

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

π1

 a5 a6 a7 a8 a9 a10 a11 a12

2

 π2

α6

3

α7

 π3

αi=a5*…*ai

time

P-Oblivious Prefix on 3 proc.

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

π1

 a5 a6 a7 a8

2

 π2

α6

3

α7

 π3

 βi=a9*…*ai

 a9 a10 a11 a12

αi=a5*…*ai

π4 Preempt α8

 α8 π4

α8

β10

4

time

P-Oblivious Prefix on 3 proc.

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

π1

a5 a6 a7 a8

2

 π2

α6

3

 π3

 βi=a9*…*ai
a9 a10 a11 a12

αi=a5*…*ai

 π4

β10

4

α7 π5

 β11

5

 π8

π6

π8 Preempt

π9

β11

 π11

6

time

P-Oblivious Prefix on 3 proc.

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

π1

a5 a6 a7

2

 π2

α6

3

 π3

 βi=a9*…*ai
a9 a10

αi=a5*…*ai

 π4

4

π5

5

 π8

π6

π9

 π11

6

π10

π7

 π12

7

time

P-Oblivious Prefix on 3 proc.

Parallel

Sequential

P0

P1

P3

10

 π0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

π1

a5 a6 a7

2

 π2

α6

3

 π3

 βi=a9*…*ai
a9 a10

αi=a5*…*ai

 π4

4

π5

5

 π8

π6

π9

 π11

6

π10

π7

 π12

7

Implicit critical path on the sequential process Tp = 7 Tp
*
 = 6

time

P-Oblivious Prefix on 3 proc.

Practical performance [* = double, finest “grain” = 2048 double]

 P-Oblivious + good cache locality from the sequential algorithm

Provable perfomance of the
P-obivious parallel prefix

Lower bound

Execution time

Single user Processors with small variations

2

Comparison with TBB

Some instances at Moais
•  Parallel Prefix [Traore&al]

– Processor oblivious, reaches the lower bound:
 2n/(p+1)Πave [+O(p log2 n)]

•  Oct-tree computation [Raffin&al]

– Linear speed-up on CPUs + GPUs
– Adaptation to realtime constraint

•  Stream computations [Bernard&al]
– compression, noise filtering on MPSoCs

•  STL, Merging and sorting [Traore&al]

•  1. Introduction - Motivation for obliviousness

•  2. Processor oblivious

•  3. Cache oblivious

•  4. Towards cache and processor oblivious
 mesh partitioning

Why are we interested in
cache performance ?

• CPU-bounded vs I/O-bounded

Memory Hierarchy

Cache-aware model (CA) or external memory
 out-of-core
 disk access machine
 I/O model

[Aggarwal & Vitter 1988]

W: #operations

Q: #block transfers

NxN matrices in row-major order

()
)()(
.)(
3

2

NONW
NNONW

=

=

()3

2

)(

.)(

NONQ

NN
B
NONQ

=








 +=

Using the naive N3 algorithm:

Memory accesses in B are suboptimal:

: naive doesn’t work

Multiplying in the CA model

Multiplying in the CA model
NxN matrices in submatrices

Multiplying in the CA model

• Cost for two sub-matrices

• Total cost








=




=

B
MONQMONW)()(

3

()









=
























=

=






















=

MB
NONQ

M
NO

M
NO

B
MONQ

NONW

M
NO

M
NOMONW

3

2

3

23

)(

..)(

)(

..)(

NxN matrices in submatrices

CA

– Only two levels of the
memory hierarchy

– Fixed values of B and M

– Machine-dependent

[Frigo & al 1999]
Cache-oblivious model (CO)

CA vs CO

– Only two levels of the
memory hierarchy

– Fixed values of B and M

– Machine-dependent

+ Efficient with all levels of the
memory hierarchy

+ Adapt to varying values of B & M
•  multi-process scheduling
•  disk seek time

+ Machine-independent

D&C matrix multiplication using a recursive layout

Multiplying in the CO model

() ()

()3

2

)(

otherwise)1(
1 if 28)(

NONW

O
NNONWNW

=





 >+

=

() ()
()







=





 >+

=

MB
NONQ

B
NO

MNB
NONQ

NQ

3

2

22

)(

otherwise
3 if 28

)(

D&C matrix multiplication using a recursive layout

Multiplying in the CO model

How to store efficiently a mesh ?

DISK

Idea

• Triangles (or vertices) that are most likely to be
accessed sequentially should be stored nearby

query slice

loaded blocks unloaded blocks 75% 33%

Graph of sequential accesses

G1: sequential access between triangles

G2: sequential access between vertices

G3: both

Mesh layout problem:

5 2 3 1 4 6 7 8

5

2

3

1

4

6

7

8

Minimize # of cache misses if each node touches all its neighbors ?

Example

cache (B=2,M=4)

2 1

3 4

5 6

7 8

5

2

3

1

4

6

7

8

5 2 3 1 4 6 7 8

disk

Previous work on mesh layouts

• Heuristic algorithm based on multi-level
optimization

• Good experimental results (2-5x improvement)

• But no guarantee on :
– time to compute the layout
– layout quality

[Pascucci & al 2005]

Overlap graphs

• Generalize planar graphs

• Contain well-shaped meshes

[Miller & al 98]

circles d-dim spheres

Separator for overlap graphs

•  Separate the mesh into two roughly equal-size pieces
cutting few edges

•  Planar graphs [Lipton-Tarjan]

• Overlap graphs (randomized linear time)

[Miller & al 98]

G
d
dGG
2
1, 21 +

+
≤






=

− dGOGGE
11

21),(

G1

G2

Separator for overlap graphs
[Miller & al 98]

Our layout

 Recursively cut the mesh
 The order of the leaves gives the layout

Analysis of the layout

G

G2
G1

To come

•  Use the layout
– Experiments with vtk
– Develop CO visualization algorithms

•  Improve the layout
– Can we make it better/faster for AMR ?
– What if only part of the mesh is accessed ?
– Dynamic
– Space partitioning (e.g. octree)

•  Develop PO & CO visualization algorithms

•  1. Introduction - Motivation for obliviousness

•  2. Processor oblivious

•  3. Cache oblivious

•  4. Conclusion
 Towards processor & cache oblivious

A processor & cache oblivious model

•  Deeper memory hierarchy

•  Processor + Cache → Communications
–  sharing a cache ↔ low cost communication

SMT/HT (L1)

Multicore (L2/L3)

NUMA/SMP(RAM)

Cluster (Small network)

Grid (Large Network)

PCO mesh layout

Cut few edges so few cache misses/synchro

Sequential computation

Work? Here it is!
Update?

Here it is!

Jump

cache oblivious mesh layout

Interaction cache / scheduling

Cache sharing

Can be as good as
each core has a cache of full size

Can be worse than
each core has a cache of half size

Conclusion

•  PO+CO: Need a scheduler that is fully
aware of the memory hierarchy

•  Tradeoff between full parallelism and
good cache complexity

[Blelloch & al 2008]

Questions?

