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Relation machine model / program 
•  One single (simple) computation for a given (simple) machine 

–  Example:  domain decomposition on the TERA computer :  
•  « static parallelization» (MPI) 

•  But, concurrently several different (simple) computations  
–  Example: multi-physic domains with adaptive irregular refinement 

  => composition of parallel computations is difficult 



Need an abstract machine model 
•  To enable composition of parallel programs,  

by abstracting the resources at the programming level 
•  Ideally: each computation performance should related to the effective 

allocated speed :  Πtot   
   

    

•  And yet to fit next machine generation 

•  Future MPSoC will have hundred of  
specialized units, with different frequencies  
(fixed but non predictable) 

•  Memory hierarchy  

€ 

Πave =

Π i(t)
i=1

p

∑
t=1

T

∑
T.p

€ 

Π tot = p.Πave [Bender&al 2002] 



Evolution of parallel programming 
•  Parallelism everywhere 

–  Distributed, Heterogeneous 
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Towards oblivious algorithms 
To design a single efficient algorithm  

with provable performances on an arbitrary architecture 

? 
Which algorithm  

to choose ? 
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 Objective: End-to-end parallel programming solutions 
for high-performance interactive computing  
with provable performances. 

         optimization       computational steering, VR        embedded 

 Performance is multi-objective      
 Adaptive to the platform 

              output 

QAP/Nugent  on Grid’5000�
 [PRISM, GSCOP, DOLPHIN]
 INRIA Grimage platform�
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Streaming on MPSoCs�

 [ST]
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The MOAIS team-project 



Adaptation: from application to architecture   

Architecture  

Interactive application 
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• Def: « An algorithm is said oblivious if no program variables 
dependent on hardware configuration parameters need to be tune 
to reach optimal performances » [Prokop&al] 

•  Analysis on a given (abstract) architecture which  proves optimality :  
 behaves as well as an optimal (off-line, non-oblivious) algorithm 

• Talk: Basic techniques to design oblivious algorithms 

•  1. Introduction - Motivation for obliviousness 
•  2. Processor oblivious   
•  3. Cache oblivious 
•  4. Conclusion - Towards cache and processor oblivious 

Outline  



•  1. Introduction - Motivation for obliviousness 

•  2. Processor oblivious   

•  3. Cache oblivious 

•  4. Towards cache and processor oblivious 
   



•   Prefix problem :  
•  input : a0, a1, …, an  
•  output :  π1, …, πn   with  

    Example: Parallel prefix 

•   Optimal parallelization on p identical processors: 
Optimal time Tp = 2n / (p+1)   

 performs only n operations 
(and minimal cache misses) 

•  Sequential algorithm :  
•  for (π[0] = a[0],  i = 1 ; i <= n;  i++ )  π[ i ] = π[ i – 1 ] * a [ i ] ; 

 p+1 bocks of n/(p+1) elements 
a0,   …,    an/(p+1)-1 an/(p+1),…, a2n/(p+1)-1  a(p-1)n/(p+1),…, apn/(p+1)-1 apn/(p+1),…, an 

PrefixSeq(n/p+1) PrefixSeq(n/p+1) PrefixSeq(n/p+1) 
π0,   …    , πn/(p+1)-1 

PrefixSeq(n/p+1) PrefixSeq(n/p+1) PrefixSeq(n/p+1) 
πn/(p+1),…, π2n/(p+1)-1  π (p-1)n/(p+1),…, πpn/(p+1)-1 πpn/(p+1),…, πn 

Barrier      prefix( p ) 

•   Non oblivious!  



Basic notations: Work and depth   :                

“Work” W = #total number operations performed 

“Depth” D =  #operations on a critical path 

  (~parallel “time” on  ∞ resources) 

For any greedy maximum utilization schedule Graham69, Brent70, Jaffe80, Bender-Rabin02]  
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         Relation to execution time T(p, Π) 

  There exist schedulers that reach the bound : 
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Work-Stealing: a basis to design 
processor-oblivious algorithm 

 Work-stealing = oblivious schedulers that reach: 

“A decentralized thread scheduler: whenever a processor runs 
out of work, it steals work from a randomly chose processor.” 

   Moreover: if D small, few steals request   [  O(p.D) w.h.p.  ] 

 Then, if both the work W >> D     (i.e.  D very small) 
 work-stealing ensures provable performances, 
 both theoretical and practical  [Cilk, TBB, Kaapi, …] 

 And if W  ~ Wseq : optimal processor oblivious performance 
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•   Prefix problem :  
•  input : a0, a1, …, an  
•  output :  π1, …, πn   with  

Application to parallel prefix 

•  Non oblivious tight lower bound on p identical processors: 
Optimal time Tp = 2n / (p+1)   
but performs  2.n.p/(p+1) ops 

[Nicolau&al. 1996] 

Oblivious 

 but  

non optimal 

• ; 

Depth D = 2. log n  
but performs W = 2.n ops [Ladner- 

Fisher-81] 

•  Oblivious parallel algorithm : recursive to minimize the depth D  



Adaptive scheme to simultaneously 
minimize D and W 

①   To minimize depth D  
– By enabling, at each steal, extraction of a fraction of the 

remaining work on the victim        => D = O (log W) 
•  => only O(log W) steals per proc  
•  small scheduling overhead 

② To minimize work W => “work first” principle 
    Optimize the sequential local execution, that mostly occurs 

–  the overhead of a stack can be avoided [Roch&al 08] 
•  contention between the local processor and its -potential- stealers 

can be made neglected 



•  Each resource performs a specialized sequential algorithm 
     - other resources act as co-processors 
     - at any time, sequential computation is in progress 
  

Adaptive parallel extraction 

Sequential computation 

Work? Here it is! 
Update? 

Here it is! 

Jump 

•  When a stealer appears, it extracts some work (steal). 

•  When the work is completed, partial results are merged 
   (eventually, preemption of the stealer). 



Processor oblivious design 

•  implement the best (preemptive) sequential code 
•  add the parallelism extraction and merge 
•  use a work-stealing engine for the coupling  

• Performance guarantee by a three nested loops scheme 
•  Local sequential computation always active   [Danjean&al07] 


  Extraction/merge to define for each new program 


  Provable performances related to those functions 
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Practical performance [* = double, finest “grain” = 2048 double] 

 P-Oblivious + good cache locality from the sequential algorithm 

Provable perfomance of the 
P-obivious parallel prefix 

Lower bound 

Execution time


Single user Processors with small variations 

2 

Comparison with TBB 



Some instances at Moais 
•  Parallel Prefix [Traore&al]   

– Processor oblivious, reaches the lower bound:            
              2n/(p+1)Πave      [+O(p log2 n )] 

•  Oct-tree computation [Raffin&al]  

– Linear speed-up on CPUs + GPUs 
– Adaptation to realtime constraint 

•  Stream computations [Bernard&al]   
– compression, noise filtering on MPSoCs 

•  STL, Merging and sorting [Traore&al]  



•  1. Introduction - Motivation for obliviousness 

•  2. Processor oblivious   

•  3. Cache oblivious 

•  4. Towards cache and processor oblivious 
  mesh partitioning  



Why are we interested in 
cache performance ? 

• CPU-bounded vs I/O-bounded 



Memory Hierarchy 



Cache-aware model (CA) or external memory 
    out-of-core 
    disk access machine 
    I/O model 

[Aggarwal & Vitter 1988] 

W: #operations 

Q: #block transfers 



NxN matrices in row-major order 
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Multiplying in the CA model 



Multiplying in the CA model 
NxN matrices in submatrices 



Multiplying in the CA model 

• Cost for two sub-matrices 

• Total cost 
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CA                  

– Only two levels of the 
memory hierarchy 

– Fixed values of B and M 

– Machine-dependent 



[Frigo & al 1999] 
Cache-oblivious model (CO) 



CA vs CO 

– Only two levels of the 
memory hierarchy 

– Fixed values of B and M 

– Machine-dependent 

+ Efficient with all levels of the 
memory hierarchy 

+ Adapt to varying values of B & M 
•  multi-process scheduling 
•  disk seek time 

+ Machine-independent 



D&C matrix multiplication using a recursive layout 

Multiplying in the CO model 
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How to store efficiently a mesh ? 

DISK 



Idea 

• Triangles (or vertices) that are most likely to be 
accessed sequentially should be stored nearby 

query slice 

loaded blocks unloaded blocks 75% 33% 



Graph of sequential accesses 

G1: sequential access between triangles 

G2: sequential access between vertices 

G3: both 



Mesh layout problem: 

5 2 3 1 4 6 7 8 
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Minimize # of cache misses if each node touches all its neighbors ? 



Example 

cache (B=2,M=4) 
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Previous work on mesh layouts 

• Heuristic algorithm based on multi-level 
optimization 

• Good experimental results (2-5x improvement) 

• But no guarantee on : 
– time to compute the layout 
– layout quality 

[Pascucci & al 2005] 



Overlap graphs 

• Generalize planar graphs 

• Contain well-shaped meshes 

[Miller & al 98] 

circles d-dim spheres 



Separator for overlap graphs 

•  Separate the mesh into two roughly equal-size pieces 
cutting few edges 

•  Planar graphs [Lipton-Tarjan] 

• Overlap graphs (randomized linear time) 

[Miller & al 98] 
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Separator for overlap graphs 
[Miller & al 98] 



Our layout 

 Recursively cut the mesh 
 The order of the leaves gives the layout 



Analysis of the layout 

G 

G2 
G1 



To come 

•  Use the layout 
– Experiments with vtk 
– Develop CO visualization algorithms 

•  Improve the layout 
– Can we make it better/faster for AMR ? 
– What if only part of the mesh is accessed ? 
– Dynamic 
– Space partitioning (e.g. octree) 

•  Develop PO & CO visualization algorithms 



•  1. Introduction - Motivation for obliviousness 

•  2. Processor oblivious   

•  3. Cache oblivious 

•  4. Conclusion 
     Towards processor & cache oblivious 



A processor & cache oblivious model 

•  Deeper memory hierarchy 

•  Processor + Cache → Communications 
–  sharing a cache ↔ low cost communication 

SMT/HT (L1) 

Multicore (L2/L3)  

NUMA/SMP(RAM) 

Cluster (Small network) 

Grid (Large Network) 



PCO mesh layout 

Cut few edges so few cache misses/synchro 

Sequential computation 

Work? Here it is! 
Update? 

Here it is! 

Jump 

cache oblivious mesh layout 



Interaction cache / scheduling 

Cache sharing 

Can be as good as 
each core has a cache of full size 

Can be worse than 
each core has a cache of half size 



Conclusion 

•  PO+CO: Need a scheduler that is fully 
aware of the memory hierarchy 

•  Tradeoff between full parallelism and 
good cache complexity 

[Blelloch & al 2008] 



Questions? 


