Oblivious parallel programming

Vincent Danjean, Bruno Raffin,
Jean-Louis Roch, Marc Tchiboukdjian

MO A i S team-project

Louvre, Musée de I’'Homme

Sculpture (Téte)

Artist : Anonyme

Origin: Rapa Nui [Easter Island]

Date : between the XIst and the XVth century
Dimensions : 1,70 m high

t{{ L
DE RECNERCKRE EN
o, | % com o GRENOBLE
I G SL_II.-I:QIII_IUIII. u N I V E R S I T E S

L

Relation machine model / program

* One single (simple) computation for a given (simple) machine
— Example: domain decomposition on the TERA computer :
 « static parallelization» (MPI)

« But, concurrently several different (simple) computations
— Example: multi-physic domains with adaptive irregular refinement

I e D gy =] _.: 1
P e e T T e

=> composition of parallel computations is difficult

Need an abstract machine model

To enable composition of parallel programs,

by abstracting the resources at the programming level
* |deally: each computation performance should related to the effective
allocated speed : I, .
IE

IT,,=pll,, M =t=li=l [Bender&al 2002]

* And yet to fit next machine generation

» Future MPSoC will have hundred of
specialized units, with different frequencies
(fixed but non predictable) ";;“'E 3

 Memory hierarchy

Evolution of parallel programming

« Parallelism everywhere
— Distributed, Heterogeneous

Grids

Cluster SMP

multi-core

MPT OpenMP

MapReduce [Google] Cuda [Nvidia]
TBB [Intel]

Cilk++ [CilkArts] «SPIRIT

Fortress [Sun]

Towards oblivious algorithms

To design a single efficient algorithm
with provable performances on an arbitrary architecture

parallel
P=max
Sequential paraIIeI parallel

algorlthm P=100

Which algorithm
to choose ?

The MOAIS team-project

» Objective: End-to-end parallel programming solutions
for high-performance interactive computing
with provable performances.

optimization computational steering, VR embedded

QAP/Nugent on Grid’5000 . \ 4f)
[PRISM, GSCOP, DOLPHIN] INRIA Grimage platform Streaming on MPSoCs

[MOAIS, PERCEPTION, EVASION] [ST]
» Performance is multi-objective
» Adaptive to the platform

Adaptation: from application to architecture

w-—->0=

Outline

‘Def. « An algorithm is said oblivious if no program variables
dependent on hardware configuration parameters need to be tune
to reach optimal performances » [Prokop&al]

» Analysis on a given (abstract) architecture which proves optimality :
behaves as well as an optimal (off-line, non-oblivious) algorithm

*Talk: Basic techniques to design oblivious algorithms

* 1. Introduction - Motivation for obliviousness

» 2. Processor oblivious

» 3. Cache oblivious

* 4. Conclusion - Towards cache and processor oblivious

* 1. Introduction - Motivation for obliviousness
« 2. Processor oblivious
e 3. Cache oblivious

* 4. Towards cache and processor oblivious

Example: Parallel prefix

® Prefix problem :

*input:ay, aq, ..., a, i
e output : my, ..., m, with 7 = [[ag

® Sequential algorithm :

® for (n[0] =2a[0], i=1;i<=n; i++) a[i]=n[i-1]=«a]i]; performs Onlynoperatzons

(and minimal cache misses)

® Optimal parallelization on p identical processors:

Optimal time T, =2n/ (p+1) W i m 'M '

p+1 bocks of n/(p+1) elements
|

I Ao, - Bnp1)1 Anyp+1y- -1 B2nj(p+1)-1 A(p-1)ni(p+1)+-+1 Bpn/(p+1)-1 Aonj(p+1)re-+> An

[PrefixSeq(n/p+1)] [PrefixSeq(n/p+1)] [PrefixSeq(n/p+1)]

gy . ,nn,(pﬂ)_qll ‘l’ ¢'

| Barrler\\ preflx{o\) |\\
] [

PrefixSeq(n/p+1)] [PrefixSeq(n/p+1)]

® Non oblivious! (Prefixseq(n/p+1)

Tni(p+1)r+==2 T2ni(p+1)-1 T (p-1)ni(p+1)2- =3 Tpni(p+1)-1 Tpni(p+1)2===3 Tn

Basic notations: Work and depth

“Work” \W = #total number operations performed

“Depth” D = #operations on a critical path

O

(~parallel “time” on o resources)

Relation to execution time T(p, II)

For any greedy maximum utilization schedule Grahame9, Brent70, Jaffe80, Bender-Rabin02]

1

ave

Max(

L

p

) < Time(p,Il) < ! (W+D)
Have p

» There exist schedulers that reach the bound : 111 (

w
P

+ O(D))

Work-Stealing: a basis to design
processor-oblivious algorithm

» Work-stealing = oblivious schedulers that reach: ; (W O(D))
+
I\ p

“A decentralized thread scheduler: whenever a processor runs
out of work, it steals work from a randomly chose processor.”

Moreover: if D small, few steals request [O(p.D) w.h.p.]

» Then, if both the work W >> D (i.e. D very small)
work-stealing ensures provable performances,
both theoretical and practical [Cilk, TBB, Kaapi, ...]

> And if W ~ W, : optimal processor oblivious performance

seq *

Application to parallel prefix

® Prefix problem :

*input: ay, a, ..., a, i
-output : my, ..., m, with m; =][] ax

® Oblivious parallel algorithm : recursive to minimize the depth D

aga;a,aza, ... aa,

\ Depth D = 2. log n
[Ladner-
Fisher-81] qﬁ [éﬁ /¥ qﬁ but performs W =2.n ops —> Oblivious
reflx fS|ze n/
“’%é % <é "
* Non oblivious tlght lower bound on p identical processors:

Optimal time T, =2n/ (p+1) —>
but performs 2 n.p/(p+1) ops non optimal

but

Adaptive scheme to simultaneously
minimize D and W

@ To minimize depth D

— By enabling, at each steal, extraction of a fraction of the
remaining work on the victim =>D =0 (log W)
« =>only O(log W) steals per proc
« small scheduling overhead

(@ To minimize work W => “work first” principle
Optimize the sequential local execution, that mostly occurs

— the overhead of a stack can be avoided [Roch&al 08]

« contention between the local processor and its -potential- stealers
can be made neglected

Adaptive parallel extraction

« Each resource performs a specialized sequential algorithm

- other resources act as co-processors
- at any time, sequential computation is in progress

* When a stealer appears, it extracts some work (steal).

* When the work is completed, partial results are merged
(eventually, preemption of the stealer).

Processor oblivious design

* implement the best (preemptive) sequential code
» add the parallelism extraction and merge

* use a work-stealing engine for the coupling

« Performance guarantee by a three nested loops scheme
» Local sequential computation always active [Danjean&al07]

Extraction/merge to define for each new program

Provable performances related to those functions

P-Oblivious Prefix on 3 proc.

Ty 84 8y 83 8y 85 85 d;dgdg dqg 341 3qp
Main
Seq.

Sequential

Parallel

Work- ——
stealer 1

Work- =
stealer 2

v

time

P-Oblivious Prefix on 3 proc.

Sequential

Main
Seq.

ai=ab*aradiel

ds dg d7 dg dg dqgdqq dyp
Work- —_—
stealer 1 =

e‘é\
%\QQM
Work-
stealer 2

v

P-Oblivious Prefix on 3 proc.

Sequential
Main
Seq.
\ N
Preempt \ U4
\ .
Parallel
a a6 a7 aS (X|=a5 ... al

Work-
stealer 1 =

Bi=a9*...*ai

10 844
Work- | |
stealer 2 J |

v

P-Oblivious Prefix on 3 proc.

nga, a, as a, — > — >

Main
Seq.

Sequential

Preempt \ Tg 11
Parallel
as a5 a; ag ai=ab5*...*ai
Work-
stealer 1 = J'E5 J-EG (X7 \
Bi=a9*...*ai

dg dqp 4

Work-
stealer 2

|||

v

0 1 2 3 4 5 6

time

P-Oblivious Prefix on 3 proc.

Sequential
nga, a, as a, — > — > .

Main

Parallel
ai=ab*...*ai
Work-
stealer 1 =
Bi=a9*...*ai

Work-
stealer 2

Il

v

0 1 2 3 4 5 6 7

time

P-Oblivious Prefix on 3 proc.

Sequential
nga, a, as a, — > — > .

Seq. %
~

Implicit critical path on the sequential process

Parallel
ai=ab*...*ai
Work-
stealer 1 =
Bi=a9*...*ai

Work-
stealer 2

v

Provable perfomanc

P-obivious parallel

. . 2n W
< |
Execution time <~ (pF1).Mave |

e of the
prefix
O (log™n

I—ICL’Ue

Lower bound

€ [* = double, finest “grain” = 2048 double]

) adapt. prefix putat. tine (s) ——
(s} —— § tbb prefi putati th gr 100 tine {s) <
L4 Gy— AN, tbb pref: putat. ith au tine (s) —#—
b — a5 PN tbb prefix conputation with grai 1875 : tine (s) —a—
{s) \
(s} — 1A
1.2 40 + \
Y

5

Nunbre de processeul

Processors with small variations

Nunbre de processeurs

Single user

35

- 30

Foest

20 |

15 -

o 10 -

— I
e lfi:f;i,‘ \
-—w_ﬂg ——cE
T 2
2 4 6 8 10 12 14 16
Nonber of processors

Comparison with TBB

P-Oblivious + good cache locality from the sequential algorithm

Some instances at Moais

Parallel Prefix [Traore&al]

— Processor oblivious, reaches the lower bound:
2n/(p+1) . [+O(p log? n)]

: S -
Oct-tree computation [Raffingall -~ Fw e |
— Linear speed-up on CPUs + GPUs ‘
— Adaptation to realtime constraint

Stream compu’ra’rions [Bernard&al]
— compression, noise filtering on MPS0oCs

STL, N\erging and SOT"l'ing[Traore&al]

1. Introduction - Motivation for obliviousness
2. Processor oblivious
3. Cache oblivious

4. Towards cache and processor oblivious
mesh partitioning

Why are we interested In
cache performance ?

« CPU-bounded vs I/0O-bounded

Memory Hierarchy

Cache

Block transfers

Access times 10%s 102ns 10°ns

[Aggarwal & Vitter 1988]

CaChe-aware mOdel (CA) or external memory

out-of-core
disk access machine
I/O model

Cache Block transfers Disk

e

Size M _
M/B blocks Size B Infinite size

W: #operations

Q: #block transfers

Multiplying in the CA model

NxN matrices in row-major order : naive doesn’t work

Using the naive N3 algorithm:
W(N)=0(N)N>
W (N)=O(N>)

Memory accesses in B are suboptimal:

O(N) = O(% + N).N2

o(N)=0o(v*)

Multiplying in the CA model

NxN matrices in submatrices

Multiplying in the CA model

NxN matrices in submatrices

e Cost for two sub-matrices
W(N)=0(Jﬁ3) O(N) =0(%)

* Total cost 2
W(N) = O(Jﬁ 3).o(i).o(N—)

w(Ny=0(N?)

CA

— Only two levels of the
memory hierarchy

— Fixed values of B and M

— Machine-dependent

Cache-oblivious model (CO)

[Frigo & al 1999]

Cache Block transfers Disk

Optimal replacement
strategy

Unknown size M Unknown size B Infinite size

CAvs CO

— Only two levels of the Efficient with all levels of the
memory hierarchy memory hierarchy

. Adapt to varying values of B & M
— Fixed values of B and M « multi-process scheduling
 disk seek time

— Machine-dependent Machine-independent

Multiplying in the CO model

D&C matrix multiplication using a recursive layout

Multiplying in the CO model

D&C matrix multiplication using a recursive layout

W(N) ={ SWQ%)O(NZ) if N>1

O(1) otherwise
w(N)=0(N?)

) 300V) 0@’7) if N > M/,
o) = i O(V%) ’ otherwise 3

0 =0V i) [

N

v
<

AXB

How to store efficiently a mesh ?

|dea

 Triangles (or vertices) that are most likely to be
accessed sequentially should be stored nearby

75% loaded blocks unloaded blocks

\CIuery slice/

Graph of sequential accesses

Mesh layout problem:

Minimize # of cache misses if each node touches all its neighbors ?

Example

cache (B=2,M=4)

Previous work on mesh layouts

[Pascucci & al 2005]

 Heuristic algorithm based on multi-level
optimization

» Good experimental results (2-5x improvement)

* But no guarantee on :
—time to compute the layout
— layout quality

Overlap graphS [Miller & al 98]

* Generalize planar graphs

» Contain well-shaped meshes

circles d-dim spheres

Separator for overlap graphs

[Miller & al 98]

« Separate the mesh into two roughly equal-size pieces
cutting few edges

* Planar graphs [Lipton-Tarjan]
E(G,,G,)=./8d]

« Overlap graphs (randomized linear time)

d+1
d+2

E(G,.G,) = 0(\6\ ‘4)

5

G

Gy|=——]]

eparator for overlap graphs

[Miller & al 98]

Our layout

®Recursively cut the mesh W™ =0\logN)

® The order of the leaves gives the layout

Analysis of the layout

TN S
o aeetmt————

#block transfers = 0(% +# outgoing edges)

G Out(G) = Out(G,) + Out(G,) +|E(G,,G,)|

—— KW)=s max KON)+ K(1-8)N)p+ N

d+1
= Sd+2

ey

P

aQ

@

N
N —

K(M) =

#block transfers = O N + Nl
B M

To come

« Use the layout
— Experiments with vtk
— Develop CO visualization algorithms

* Improve the layout
— Can we make it better/faster for AMR ?
— What if only part of the mesh is accessed ?
— Dynamic
— Space partitioning (e.g. octree)

* Develop PO & CO visualization algorithms

1. Introduction - Motivation for obliviousness
2. Processor oblivious
3. Cache oblivious

4. Conclusion
Towards processor & cache oblivious

A processor & cache oblivious model

 Deeper memory hierarchy

* Processor + Cache — Communications
— sharing a cache < low cost communication

PCO mesh layout

Cut few es ew cache misses/synchro

Interaction cache / scheduling

Can be worse than
each core has a cache of half size

Memory

Cache sharing

Can be as good as
each core has a cache of full size
Memory

Conclusion

 PO+CO: Need a scheduler that is fully
aware of the memory hierarchy seiioch & al 2008,

* Tradeoff between full parallelism and
good cache complexity

Questions?

