
Hardware/Software Support for Adaptive Work-Stealing in
On-Chip Multiprocessor

Quentin Meuniera, Frédéric Pétrot∗,a, Jean-Louis Rochb

aTIMA laboratory, INP Grenoble
bLIG, INP Grenoble and INRIA

Abstract

During the past few years, embedded digital systems have been requested to provide
a huge amount of processing power and functionality. A very likely foreseeable step
to pursue this computational and flexibility trend is the generalization of on chip mul-
tiprocessor platforms (MPSoC). In that context, choosing aprogramming model and
providing optimized hardware support to it on these platforms is a challenging task. To
deal in a portable way with MPSoCs having a different number of processors running
possibly at different frequencies, Work Stealing (WS) based parallelization is a current
research trend.

The contribution of this paper is to evaluate the impact of some simple MPSoCs’
architecture characteristics on the performance of WS in theMPSoC context. The pre-
vious evaluations of WS, either theoretical or experimental, were done on fixed mul-
ticores architectures. This work extends these studies by exploring the use of WS for
the codesign of embedded applications on MPSoC platforms with different hardware
capabilities, thanks to cycle-accurate measures.

We firstly study the architectural choices suited to WS algorithms and measure
the benefit of these architectural modifications. To assert whether WS is suited to
the MPSoC context, we experimentally measure its intrinsicimplementation overhead
on the most efficient architectural designs. Finally, we validate the performances of
the approach on two real applications: a regular multimediaapplication (Temporal
Noise Reduction) and an irregular computation intensive application (frames of the
Mandelbrot set).

Our results show that enhancing MPSoC platforms having up to16 processors with
widespread hardware support mechanisms can lead to important performance improve-
ments at acceptable hardware cost for the considered applications.

Key words: MPSoC Architectures, Concurrent Programs, Work Stealing,
Hardware/Software Codesign, Design Space Exploration

∗Corresponding author. Tel.:+33 4 76 57 48 70; Fax:+33 4 76 57 49 81.
Email addresses: Quentin.Meunier@imag.fr (Quentin Meunier),Frederic.Petrot@imag.fr

(Frédéric Pétrot),Jean-Louis.Roch@imag.fr (Jean-Louis Roch)

Preprint submitted to Journal of System Architecture March 3, 2010

1. Introduction

Even though in the past years many if not all embedded system were made of one
General Purpose Processor (GPP) and one Digital Signal Processor (DSP), there is a
trend (not only in academia) to think about having farms of power efficient processors
(small GPP or dual issue VLIW) to achieve differentiating compute intensive functions
in software [1, 2]. Thus, the parallel specifications used for embedded appliances tend
to be implemented for a large part as parallel programs.

Most of the algorithms used in the devices that are MPSoCs based are currently es-
sentially implemented as coarse-grain sequential tasks communicating through lossless
fifos, e.g. boolean/synchronous data-flow representations[3] for which optimal sched-
ules can be derived, or Kahn process networks[4] that have the property of having an
output that does not depend on the schedule while being less constrained than the pre-
vious formalisms. This trend has been adopted by several players of the consumer
electronic industry in order to benefit from the properties of these models[5]. Other ap-
proaches are more loose, using subsets of well known parallel programming libraries
for which the properties of the programming model is less clear: MPI[6], light versions
of Corba[7], OpenMP[8, 9], or even bare shared memory threads.

In order to provide optimizedad-hoc hardware implementations at the price of flex-
ibility, many authors have proposed codesign approaches tosupport these programming
models. Among many initiatives, we can cite [7] that introduces hardware support to
Corba-like communication and efficient SMP task managment and [10, 11] that define
specific hardware IP and software APIs to automate the mapping of process networks
with different kinds of FIFOs. [12] provides a very broad survey on thegeneral code-
sign approaches, whereas [13] focuses more on the topic of this paper: providing an
optimized hardware/software interface for given programming models.

Indeed, in this work, we look towards another type of parallel programming
based on a work stealing scheduling paradigm[14, 15]. We focus on a specialization
of work-stealing based algorithms, denoted in the following AWS (Adaptive Work-
Stealing) [16]. AWS algorithms are based on the principle that each processor executes
its own task until it becomes idle, and then steals a fractionof the remaining work on a
randomly chosen busy processor.

Work-Stealing algorithms have been shown to behave well in practice when the
workload cannot be well estimateda priori [17, 18, 19, 20], which is the case for
algorithms like encoding or compression often used in embedded consumer devices.
These algorithms also fit well applications running on embedded platforms in which
all the cpus do not run at the same frequency, thus creating anunbalanced workload.

Being able to bound the execution time is important for many embedded appli-
cations. This can be achieved by ana priori knowledge of execution times, but this
is hardly feasible on multiprocessor platforms. To deal with this issue, one common
strategy is to use iterative improvement algorithms when possible, such as iterative
turbodecoding [21] or video decoding [22].

As this approach may fit well with the foreseeable massively multiprocessor inte-
grated architectures that are currently being developed inthe industry, we believe that
this programming model may be well suited for some typical MPSoC applications, and
that it is thus worthwhile to perform a codesign analysis forit.

2

Our goal in this work is therefore to perform an analysis of the effect of some
simple MPSoC architecture characteristics on the performances of algorithms based
on the AWS programming paradigm. The type of architectural modifications we target
is the use of coherent caches, local memories and DMAs, and distributed locks, for
which we also determine how it must be taken into account in the software. We do
this by systematic cycle-accurate simulation of different platforms for several program
examples. We furthermore measure the overhead of the AWS algorithms compared to
the corresponding static parallel execution – called PAR inthe remainder of the article –
for the same hardware configurations. Based on the pre-partitioning of the input into
chunks of equal size, the PAR algorithm represents a lower bound on the execution time
in case of applications for which the workload is known beforehand: Indeed supplying
work-stealing at runtime has a cost, which is to be differentiated from the resulting
possible time saved due to the dynamic load balancing.

More precisely, we will:

• Measure the execution time for a synthetic application parallelized with AWS on
different architectures in order to evaluate how some usual design choices can
impact the performances and to which extent,

• Measure the speedup with either a PAR or an AWS parallelization compared to
the sequential execution time for these different architectures,

• Infer from these measures the overhead of an AWS algorithm compared to the
corresponding PAR,

• Validate the approach on two computationally intensive applications: one with a
uniform workload, and one with a non-uniform workload.

To the best of our knowledge, this work is the first one which exploits the specificity
of the AWS behaviour to drive the definition of both a hardware architecture and the
run-time library that makes an optimized use of it.

The remainder of the paper is organized as follows. Section 2briefly summarizes
the main points of the work stealing programming paradigm and gives an overview
of the works that have evaluated the implementation cost of work-stealing on, often
idealized, general purpose parallel machines. Section 3 introduces the initial hardware
platform, the basic operating system, and the application template. Section 3.4 details
the WS interface suited to data processing, and gives analytical run times on a synthetic,
thus theoretically analyzable, application that fits our template. Section 5 concurrently
explores several hardware architectures and their associated low level software to min-
imize the communication and synchronization costs. We thenanalyze the results in
Section 6, and give the limitations of the approach before concluding.

2. Background on Work Stealing and Related Work

2.1. Background
Work stealing is a scheduling paradigm for parallel computations. It is a decentral-

ized thread scheduler [23]: whenever a processor runs out ofwork, it steals work from
a randomly chosen processor.

3

From work stealing reference implementation Cilk [18], a three keywords parallel
programming extension of C, interest for work-stealing on multicore architectures is
growing. In July 2007, Intel launched the open-source Threading Building Blocks
(TBB), a set of high level C++ primitives similar to the STL with thread safe containers
and parallel algorithms; available from mid 2008, Cilk++ extends C++ for portable
programming of multicores.

Cilk and TBB adopt the oldest-first randomized work stealingstrategy. The imple-
mentation is based on double-ended queues (deque). Each processor manages a deque
of ready tasks that it uses as a stack for its own tasks (LIFO):it pushes the tasks it cre-
ates or unblocks at the bottom of the deque; when it completesa task, it pops a new one
from the bottom of its deque if not empty. Otherwise, the processor is idle and becomes
a stealer: it sends a steal request to a randomly chosen processor, until finding avictim
processor with a non empty deque; then it picks a task from thetop of the deque of
the victim, the oldest one. Oldest-first work-stealing achieves provable performances.
Arora, Plaxton and Blumofe [14] showed that for any parallelprogram, the timeTp on

p identical processors verifies with high probability (w.h.p.): Tp ≤ O(Tseq

p + T∞) where
Tseq is the sequential execution time (that corresponds to the computational work) and
T∞ is the maximum depth (execution time on an unbounded number of processors).
With slight variants, similar bounds are achieved when the number of processors allo-
cated for the computation varies during execution [14] and for processors with variable
speeds [15]. In particular, the number of steal requests isO(pT∞) w.h.p.; therefore it is
small in the case whereT∞ ≪ Tseq.

This paper restricts to the caseT∞ ≪ Tseq which matches many important em-
bedded streaming applications. Since the numberO(p.T∞) of steal requests is small
with respect to the total work, theWork First Principle consists of putting most of the
overhead of the scheduling at steal request operations and optimize the sequential exe-
cution of the parallel algorithm. In [20], thedeque-free work-stealing implementation
consists of decreasing the overhead for the management of the deque by delaying tasks
creation only after a steal request occurs on a victim processor. In this case, the oper-
ation named "parallelism extraction" [20] creates a new task which is assigned to the
theft processor. Similarly, in theTascell framework [24], a worker creates a real task
only when requested by another idle worker. This strategy isnamedbactracking-based
load balancing; the worker performs parallel extraction by temporarily "backtracking"
and restoring its oldest task-spawnable state [24].

2.2. Related Works
Several works analyze the performance of work stealing on SMPs machines, either

discrete or integrated (multicores), especially in the context of Cilk [18]. Considering
CMPs, [25] focuses on the number of cache misses by comparingthe performance of
two different implementations of work stealing,i.e. traditional (WS) and Depth first
(PDF). In the case of our application template presented in Section 3.4, both strategies
are equivalent (as exhibited by the theoretical analysis ofthe cache misses).

Experiments of the use of the Capsule environment, that proposes a run-time sup-
port for recursive splitting of work are presented in [26]. These results are obtained on
a predefined 4 cores platform and do not explore alternativesimplementations of data
placement and synchronization.

4

In [16] is presented a processor-oblivious algorithm whichis the base of the AWS
algorithms used here. The algorithm is proved to be asymptotically optimal and it
is shown that the algorithm has a good experimental behaviour. This work however
does not encompass the embedded field nor architecture properties and remains mainly
theoretical.

[27] studies the problem of the memory hierarchy in MPSoC systems, and pro-
poses a methodology to compare different hierarchies, for a large range of applica-
tions. Different criterion are used to evaluate the results (time, energy, latency and
bandwidth issues, etc.), but none of the benchmarked algorithms is implemented using
a work-stealing technique. Additionally, the aim is not to compare the cost of different
parallelism techniques for the same program.

There is much work dealing with data-partitioning[28] and architecture properties
for parallel applications, but to the best of our knowledge,the architecture/software
support study for the adaptive work stealing that we conductin this research is the first
of its kind.

3. The MPSoC Architecture and Applications Templates

3.1. Hardware
Since the MPSoC design space is huge, we define a template architecture for which

we fix the parameters that we estimate being either non-relevant to or not interacting
significantly with our performance evaluation study. As it can be seen on Figure 1,
the platform is an interconnection of CPU sub-systems. All CPU sub-systems share a
common address space, and can access local or shared memory modules, a timer and
a lock engine that allows to take a lock by simply reading fromit, i.e. a hardware IP
which implements atest-and-set for a range of addresses[29]. The chosen processor
is a simple 4 stage pipeline, 4 windows, Sparc V8. The processor accesses separated
direct mapped data and instruction caches. This may be a bit less efficient than a 2-
way set associative cache, but simplifies the hardware implementation and ensures that
instructions cannot trash data andvice-versa. There is no automatic data prefetching
(excepted for filling a cache line), as in many integrated solutions, speculatively loading
instructions or data is not considered energy efficient. The architecture configuration is
presented Table 1, and all the architectures used in this study are variations of this one.

In order to avoid high contention on a unique shared memory location or high la-
tencies as it would occur on adance-hall architecture, the platform on which we based
our study has two levels of hierarchy. Each processor is connected on a local intercon-
nect to its peripherals and a local storage through a crossbar. These local interconnects
are connected via a bridge on a global interconnect on which are also connected the
shared memories.

The interconnect used is a Network-on-Chip based on the workof [30], as the scal-
ability of buses is very limited, and the complexity of crossbars becomes too important
for the number of processors targeted. The topology used is a2D-mesh, since it has a
good crossing-time versus complexity ratio, and has good layout properties for silicon
implementation.

It would have been interesting to use a scratch pad instead ofa memory plugged
on the local interconnect (i.e., a memory directly connected to the processor through

5

Table 1: Simulated platforms characteristics

Number of processors p = {1, ..., 16}
Number of memory banks p + 3
Processor model SPARC-V8 with FPU
Data cache size 16Kb
Data block size 8 words (32 bytes)
Instruction cache size 16Kb
Instruction block size 8 words
Cache associativity Direct-mapped
Write-buffer size 8 words
DMA Controller 2 initiator interfaces to issue 1 read

and 1 write per cycle at full speed
NoC topology 2D Mesh
Global NoC Latency

√
2n cycles forn interfaces

Local NoC Latency 1 cycle

Figure 1: Basic architecture schematic view

a dedicated interface [31]), but this wasn’t explored as being a limitation of processor
models available in the simulation environment. However, thanks to the local crossbar
latency, the timing behavior of both solutions would be verysimilar.

The address space seen by the processors is partitioned in a set of segments. One or
more segments can be mapped on a peripheral or a memory, respecting the following
constraints: all segments mapped on a peripheral cannot be cached, and all the seg-
ments relative to the same memory component must have the same cache attribute (i.e.

6

cached or not).
To summarize, the hardware design space that will be explored in our study will

mainly consists of evaluating how DMAs and/or caches can improve data locality and
how the physical placement of locks can speed-up synchronization.

3.2. Operating System and Task Assignment

We use the Decentralized Scheduling (DS) configuration of a lightweight kernel
called Mutek[32], which provides an implementation of the POSIX pthreads for shared
memory multiprocessor machines. As opposed to its SMP configuration in which all
processors share a single scheduler structure to perform task selection, the DS config-
uration greatly limits contention as each processor has itsown scheduler. Tasks can be
pinned on a desired processor in order to avoid migration. Inthat case, each thread is
assigned to a processor at creation time. The thread’s stackand local data are stored
in the local storage of the processor. All experimentationsare done using this identical
OS configuration.

3.3. Selected Applications Template

Our choice of a template for the applications has been motivated by three points.
Firstly, in order to evaluate the overhead of work-stealingwith respect to classical
standard approaches on embedded systems, the template has to enable calibration at
the cycle level of applications for which optimal parallelization is known. Secondly,
multimedia applications are compute and communication intensive: the application has
to be fine grained and representative of a class of multimediaprocessing such as digital
filters (temporal noise reduction, deblocking) or transforms (DCT). Lastly, it should
enable a theoretical analysis of the implementation of the work stealing in order to
have feedback on the experimentations.

We selected a synthetic template application fitting into these constraints, which
consists of having its input and output data stored in a buffer array, the operations on
the different elements of this array being independent. This array is located in shared
memory.

By considering an empty processing operation on each element, this synthetic ap-
plication has a very high communicationvs computation ratio, which enables an analy-
sis of the work stealing overhead in number of cycles. Furthermore, considering a fixed
number of identical processors and a constant time parameter of the processing of each
element, this overhead can be compared to the number of cycles of the standard static
parallelization, denoted PAR: the input data of sizen is equally shared between all the
p processors, each processor being in charge of a contiguous block of size n

p .
Besides, locally on each hardware processing unit, the processing on each element

can be achieved either by a generic or by a dedicated optimized component for the unit.
Such local choice is implicitly managed by work stealing which manages the execution
of the applications template on the hardware platform. Since work stealing is a fully
distributed algorithm, independent on one hand from the number, the configuration and
frequencies of processors, and on the other hand from the granularity of the application,
it enables codesign by global calibration of the platform.

7

3.4. Codesign based on work stealing: AWS
Codesign is usually considered as the process of producing the hardware and soft-

ware fitting the performances and cost constraints of high-level specifications. Among
the codesign topics, the design of hardware/software interfaces is very important and
our goal in this paper is to define a proper hardware/software interface for applications
which can be implemented using work-stealing.

In our codesign approach, presented Fig. 2, the work-stealing implementation is the
adaptation layer between the hardware platform and the application. Each processor
acts as a work-stealer: when idle, it sends a steal request toanother processor. The
work-stealing implements the management of steal requests, based on specific hard-
ware support provided by the Hardware Steal Engine, and the creation of tasks at the
application level. When the victim is in a stealable state, itcreates a task correspond-
ing to its oldest spawnable task. The effective description of the new created task is
provided by the application. The next section details the tunable implementation of the
AWS work-stealing layer and the application interface.

Figure 2: AWS: adaptive work-stealing based codesign

4. AWS Interface for Data Processing

4.1. Rationale of AWS
The implementation of the work-stealing is the bridging interface between the hard-

ware and the application. A major constraint in embedded systems and MPSoCs is that

8

the memory space has to be statically bounded. As a consequence, our specification of
the work-stealing does not allocate extra memory at runtime, nor requires concurrency
since at any time only one serial computation is in progress on each non-idle processing
unit.

Indeed, instead of managing on each unit a collection of ready tasks, AWS follows
the deque-free work-stealing algorithm proposed in [20] which is based on lazy task
creation. A non idle processorj performs the computation of its assigned task; when
a steal request from a processori occurs onj, a new task is created corresponding to a
ready part of the remaining work onj; then this task is assigned to processori which
starts its execution. The operation that constructs the description of the task (inputs)
is namedextract_seq() in the following; it is implemented at the application level.
Thus, effective task creation is delegated to the application: AWS only manages the
steal requests on the idle processors and the local execution of the local work on a non
idle one.

Both operations are dependent: a successful steal operation leads to an
extract_par() on the victim which modifies the remaining work. This synchroniza-
tion between the steal requests and the local work is managedat the work-stealing
level. To enable a wait-free implementation, the local workon a non-idle processor is
performed by a block of operations. These blocks are assumedwait-free and their def-
inition is delegated at the application level: a function namedextract_par() serially
iterates through the local work until its completion.

Finally, while structuring the implementation of the work-stealing strategy, it is
to be noted that this on-line coupling of two algorithms, a sequential one (from
extract_seq() operations) and a parallel one (fromextract_par() operations), is not
restrictive. On a first hand, recursive parallelism may be implemented at the application
level by managing, inside the local work, a collection of thefuture tasks to be stolen;
of course, memory constraints have then to be considered at the application level. On
the other hand, the scheduling of ready tasks on each processing unit is well known to
have a crucial impact on the performances. For instance, in [25], the classical oldest-
first ready task strategy (OWS) is compared to the parallel depth-first strategy (PDF)
that globally schedules tasks in a way that tracks the sequential execution. Considering
several applications, while OWS is generally more attractive than PDF with respect
to the number of steal requests, it compares poorly to PDF in terms of L2-cache miss
on architectures with cache-sharing between processors [25]. Yet, the delegation of
extract_par()/extract_seq() operations enables to tune the global scheduling at the
application level.

The main drawback of the proposed design is that for a complexapplication, all
induced synchronizations must be managed in the application code. However, this is
not necessarily a problem: several data processing applications, such as the ones con-
sidered in the previous applications template, do not require complex synchronizations.
Besides, a higher level library based on a wait-free implementation can efficiently man-
age synchronizations at the application level on top of AWS [14, 24].

4.2. Adaptive Work-Stealing Implementation
Based on previous design choices, this paragraph presents AWS implementation

and application programming interface on embedded systems, taking into account their

9

constraints.
The overall behavior is as follows. At start time, each processor is in busy state

and starts a computation, usually determined using the processor identifier. When a
processor goes into idle, it becomes a stealer. It cyclically selects a victim until it finds
some work to steal.

From an implementation point of view, each processor manages twowork_t struc-
tures which represent a part of the total work. At a given time, a piece of data is
contained in at most onework_t structure in the system. The firstwork_t structure
is a public structure which is visible to all the other processors. It is initialized with
an amount of work, generally the same amount for all the processors. The second
work_t structure is a private structure which is only visible for the processor and which
contains the amount of work to compute locally.

1 / * node_mutex : l o c k p r o t e c t i n g t h e sh a re d (s t e a l a b l e)
2 work o f t h e c u r r e n t node * /
3 aws_lock (node_mutex) ;
4 has_ loca l_wo rk= TRUE;
5 has_g loba l_work= TRUE;
6 whi le (has_g loba l_work) { / * s t e a l − l oop * /
7 whi le (has_ loca l_wo rk) { / * micro− l oop * /
8 s t a t u s = extract_seq () ; / * e x t r a c t l o c a l work l from w * /
9 i f (s t a t u s == STATUS_OK) {

10 aws_unlock (node_mutex) ;
11 local_run () ; / * work l o c a l l y on l * /
12 aws_lock (node_mutex) ;
13 } e l s e
14 has_ loca l_wo rk= FALSE ;
15 } / * end o f micro loop * /
16 / * t r y s t e a l * /
17 aws_unlock (node_mutex) ;
18 s t a t u s = steal () ; / * f e t c h sh a re d work t o do : w * /
19 aws_lock (node_mutex) ;
20
21 i f (s t a t u s == STATUS_OK)
22 has_ loca l_wo rk= TRUE;
23 e l s e
24 has_g loba l_work= FALSE ;
25 } / * end o f s t e a l − l oop * /
26 aws_unlock (node_mutex) ;

Figure 3: Core of the AWS algorithm.

The adaptive work-stealing algorithm is presented in Algorithm 4.2. After a suc-
cessful steal request, a processor gets a workw and executes two nested loops: the
steal-loop and the micro-loop. In the micro-loop, the processor executes a function
calledextract_seq() which extracts a small amount of work from the publicwork_t

w to the privatework_t l. Then the processor computes this workl with a function
calledlocal_run(): this computation is done sequentially without any preemption.
When the publicwork_t structurew is empty, the processor becomes a stealer and gets
out from the micro-loop. It scans all the publicwork_t structures until it finds a non-
empty one and then executes theextract_par() function which extracts some work

10

from the victim workv in its own publicwork_t structurew. The processor then enters
the micro-loop again. When all the publicwork_t structures are empty, the whole work
has been computed.

Thework_t structures generally do not contain the data itself, but instead a descrip-
tion of the work, such as an index on the beginning of the work and the size of the work.
For the case where the input data is a table, Figure 4 illustrates the node structure which

.

data already dealt with or belonging to another node

current data for this node

Node containing the two work_t structures

input data

data corresponding to the local work_t (being dealt with)

data corresponding to the shared work_t (stealable)

Figure 4: Data contained in a node

contains twowork_t structures pointing respectively towards the first and the last el-
ement of the work currently used by the local node, and the first and the last element
of the remaining amount of work which can be stolen. To bound the scheduling over-
head, theextract_seq() function must extract log of the remaining amount of work
andextract_par() must extract a fraction, generally half, of the remaining work. By
a theoretical analysis of the size of the chunks forextract_par() andextract_seq()
operation, the implementation guarantees asymptotic timeoptimality of stream com-
putations while being processor-oblivious (i.e. it does not depend on the number of
processors [16]). Initially, the input data is pre-allocated between the processors. After
a successful steal operation, theextract_par() extracts a half of the remaining inter-
val of the victim. Theextract_seq() extracts the first log2 elements of its remaining
interval.

In the restricted case of a very regular application, the static parallelization (PAR)
in chunks of equal size will provide optimal performances. This matches some digi-
tal signal or image processing codes that are static controlprograms [33]. Moreover,
we will first consider a low complexity and fine grained application: this enables to
quantify the overhead brought by the adaptive work stealingparadigm.

The simplicity of the template and its implementation facilitates a theoretical anal-
ysis. The following notations are used: as defined in section2, Tseq, Tp andT∞ denote
respectively the sequential execution time, the parallel execution time onp processors,
and the parallel execution time on an unbounded number of processors. We assume

11

that the processing timeτ of a single element verifiesτmin ≤ τ ≤ τmax. In the following
section, we consider that the instruction caches can hold the whole application and we
restrict the analysis to the data caches.

4.3. Theoretical Analysis for PAR

Let us first consider the number of data cache misses. LetMseq be the number
of cache misses of the reference sequential execution whichcorresponds to the linear
traversal of the array. In the PAR execution, each processorexecutes the sequential
algorithm on its own chunk. Thus the number of cache missesMPAR

p per processor ver-
ifies Mseq ≤ p × MPAR

p ≤ Mseq + p. Sincep ≪ Mseq, the overhead induced by parallel
cache misses is negligible.
Then, the execution timeT PAR

p is equal to the execution time of the chunk that maxi-
mizes the computational work. Assuming a constant time operation, we have

T PAR
p ≃

Tseq

p
. (1)

In the general case in which the computation time of an element may vary, we just
have

Tseq

p
≤ T PAR

p ≤ τmax

τmin

Tseq

p
. (2)

4.4. Theoretical Analysis for AWS

For AWS, we denoteτsteal a bound on the time of a steal (either successful or
unsuccessful) operation on a given processor. The overheadof AWS is related to the
total number #S of steal operations which is proportional toT∞.

Due to the initialization and the extraction of half of the work at steal and local
extraction of log2, we have thatT∞ = O

(

log2
Tseq

p

)

. Moreover, due to the cyclic search
of a victim processor, the total number of steal operations is #S = O(p × T∞). w.h.p.
and in the worst case

#S = O(p2 × T∞). (3)

Similarly to PAR, the numberMAWS
p of caches misses per processor for the traversal

of the array is bounded in the worst case by: the numberMseq of cache misses induced
by the sequential execution, plus at most two additional ones after each successful steal
operation: one on the stealing processor to load a new subarray, and one on the victim
to update its local work. Thus we have:Mseq ≤ p × MAWS

p ≤ Mseq + 2#S . Note that
in the case of the application template, the processor whichperforms a steal operation
is considered as idle, and therefore has no useful data in itscache. This is why we
can safely ignore the caches misses before the successful steal. Finally, the expected
execution time is:

T AWS
p =

Tseq

p
+ O(p × T∞). (4)

12

5. Hardware/Software Codesign for AWS Implementation

Beyond theoretical analysis, the effective performances for both PAR and AWS are
heavily related to the hardware configuration. At a fine grain, the application template
is communication intensive, so the use of caches and DMAs hasa direct impact.

A basic way to improve performance is to overlap computations and communica-
tions. In the case of our study, it will take the form of using the local storages to reduce
memory access latencies. This can be done by using a DMA to copy data in the local
storage of a processor while the latter is doing computations. The use of caches will
also be studied, along with the use of both caches and DMAs.

Besides, in AWS, additional synchronizations occur due toextract_par() and
steal operations: tuning their implementation may be critical. For instance, accessing
a lock at eachextract_seq() operation will be inefficient at a fine grain. Since most
accesses are local, distributing the locks and the structures on the local interconnects
may allow to reduce access latencies.

5.1. Using DMAs

In order to explore the use of DMAs, the basic architecture ismodified by adding
a DMA unit on each local interconnect (Figure 5). This way, the input data can be
accessed in the local storage instead of the shared memory. Memory allocation in the
local storages is made possible thanks to a specific system call.

Figure 5: Architecture with DMAs

The first issue to deal with when using DMAs is synchronization, i.e. we want to be
sure that the data accessed locally is the expected one (in other words, that the copy is
finished). This can be done either by polling or by interruption. Polling appears more
attractive as it allows to start the processing of data before the end of the copy. Our im-
plementation of polling uses a DMA register which contains the number of transfered
items and uses this value to compute the next index until which the processing can be

13

performed. This cost of these requests is thus negligible asthe speed of the copy is
faster than the speed of processing elements.

The second question is to decide when to perform the copy fromthe shared mem-
ory to the local storage. Several possibilities were envisaged: at the beginning of the
local_run() function, in theextract_seq() function, or in theextract_par() func-
tion. Additionally, for the first two cases, the copy can refer either to the current data
set (on demand memory access), or to the next data set (read-ahead) to be processed.

Copying a part of the stolen data in theextract_par() function allows to start the
computation right when theextract_seq() function is later called. However, this strat-
egy prevents communication and computation from being overlapped (local_run()).
The alternative strategy is to program the DMA at the beginning of either the
local_run() or theextract_seq() functions, with similar results. However, only the
first solution is applicable on both PAR and AWS. Therefore, all experimentations
presented in the following program the DMA in the beginning of the local_run()

function.
About the read-ahead question, copying the next set of data (i.e. the one corre-

sponding to the data processed in the next call toextract_seq()) requires to be able
to distinguish the first and last calls toextract_seq() after anextract_par(). Since
copying the current set of data only adds a few reads of the status register, we decided
to limit to on demand memory access.

5.2. Using Caches

For our synthetic application, caches may seem useless since we access each piece
of data only once. But actually, using caches allows to prefetch a data line. In order
to maintain cache coherency among all the caches, we used theimplementation of a
write-through directory-based hardware mechanism (Figure 6) detailed in in [34].

Figure 6: Architecture with coherent caches

14

5.3. Using Caches and DMAs

Figure 7: Architecture with caches and DMAs

We also investigated the joint usage of both caches and DMAs,as they operate on
different parts of the transfer: the DMA copies data locally and acache prefetches it
(Figure 7). The cached memory segment is the one corresponding to the local storage.
Since only one processor accesses a given local storage, it does not need to be cached
in a coherent way. To optimize the accesses and prevent falsesharing, the base address
of the local table, and the size of the locally accessed data are systematically aligned on
the cache block size. This can be ensured at allocation time using a memory allocator
that guaranties alignment (posix_memalign).

5.4. Distributing Locks and Work Structures

Another way to reduce access latencies is to distribute the locks on each node in-
stead of accessing them through the global interconnect. Similarly, thework_t struc-
tures can be stored locally and not in shared memory.

This requires that each processor gets an access to the localinterconnects of the
other processors. As a consequence, this increases the access time to the lock in case
of a steal. However, steals are proven to remain rare (eq.3 [15]). Therefore, following
the Work First Principle, the majority of accesses to locks or work_t structures are
local: it namely happens when a node extracts work to processit sequentially.

In order to limit the number of joint hardware/software configurations to compare,
we decided to implement and run the following two configurations:

• the basic architecture, without neither data cache coherence nor specific DMA
support (see Figure 1 with shared values uncached), that provides reference per-
formance measures,

• the architecture with coherent caches.

15

6. Results and Analysis

The simulations were done using the Cycle-Accurate Bit-Accurate (CABA) Sys-
temC models of the SOCLib[35] library.

We ran the experiments for two data configurations: the first one consists of arrays
with a total of 100,000 elements, while the second one of arrays with a total of only
10,000 elements. As explained in section 4.2, the number of elements extracted via
theextract_seq() function must beO(log(m)), wherem is the number of remaining
elements.

6.1. Comparing the Execution Times on Different Architectures

The Figures 8(a) and 8(b) show the normalized execution times (w.r.t. the times
on the basic architecture) for the PAR and AWS algorithms, with arrays of 100,000
elements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12 14 16

e
x
e
c
u
ti
o
n

ti
m

e
/e

x
e
c
u
ti
o
n

ti
m

e
o
n

b
a
s
ic

a
rc

h
.

number of processors

with coherent caches
with DMAs

with DMAs and caches

(a) PAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12 14 16

e
x
e
c
u
ti
o
n

ti
m

e
/e

x
e
c
u
ti
o
n

ti
m

e
o
n

b
a
s
ic

a
rc

h
.

number of processors

with coherent caches
with DMAs

with DMAs and caches

(b) AWS

Figure 8: Execution times on the different architectures for 1 to 16 processors, normalized w.r.t. the times
on the basic architecture, with 100k elements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12 14 16

e
x
e
c
u
ti
o
n

ti
m

e
/e

x
e
c
u
ti
o
n

ti
m

e
o
n

b
a
s
ic

a
rc

h
.

number of processor

with coherent caches
with DMAs

with DMAs and caches

(a) PAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12 14 16

e
x
e
c
u
ti
o
n

ti
m

e
/e

x
e
c
u
ti
o
n

ti
m

e
o
n

b
a
s
ic

a
rc

h
.

number of processors

with coherent caches
with DMAs

with DMAs and caches

(b) AWS

Figure 9: Normalized execution times on the different architectures for 1 to 16 processors with 10k elements

16

The first noticeable information is that the simulation times obtained with AWS
and PAR are close for the 3 configurations, but a bit less regular with AWS compared
to PAR. This can be explained by the traffic due to the final synchronisation in AWS. In
fact, depending on the order of all the requests sent in this phase (O(p2)), some threads
can commute and go into idle, which introduces overhead.

Going more into details for each architecture, we notice that coherent-caches and
the architecture with DMAs and caches perform the best and doequally well (speedup
from 4 to 1.7), whereas the architectures with DMAs alone does not show a significant
time-saving compared to the basic architecture. However, for a high number of proces-
sors, improvements are visible for both PAR and AWS for this architecture. This can
be explained by the fact that for a high number of processors,the latency on the shared
interconnect becomes high enough so that copying data in thelocal storage is worth.

We can also see that the time saved is decreasing as the numberof processors
is increasing for the two fastest configurations (Coherent caches, DMA and caches).
Indeed, these configurations optimize the data accesses, inducing faster computation.
However, this does not help improving the parallelism cost nor the synchronizations
overheads, which represent a higher percentage of the totalexecution time with many
processors.

The Figures 9(a) and 9(b) show the execution times with arrays of 10,000 elements.
Compared to the previous results, the non-regularity of AWS execution times is am-
plified by the small input data size. The management of parallelism in AWS is too
expensive for this input data size. This exhibits a limitation of work stealing which is
that it cannot provide good performances at a too fine granularity, even with optimized
hardware support.

6.2. Comparing Sequential and Parallel Execution Times on a Given Architecture

Figure 10 shows the normalized execution times for each architecture and for large
input data size.

If all curves globally have the same shape, we can still notice that for both PAR and
AWS, the relative time saved thanks to the parallelism is bigger for slower architectures
(basic and then DMA): the maximal speedup obtained is almost7 for the slowest archi-
tecture and only 4 for the faster ones. Indeed, as the total execution time is longer, the
parallelization overhead, remaining constant, is proportionally smaller w.r.t the total
execution time. The same happens for AWS which performs from 5% to 35% worse
than PAR depending on the configuration, because of the parallelism overhead. But
an important point to notice is that the configuration with DMAs and caches is doing
significantly worse than the configuration with coherent caches, especially for AWS:
the overhead of AWS compared to PAR is around 20% for the coherent caches, while
it is around 35% for DMAs and caches, suggesting that using coherent caches is the
best solution to our problem. Finally, these graphs show that for this input data size,
the optimal number of processors is around 6.

The graphics showing the same normalized execution times with the small input
data size are given Figure 11.

Once again, these graphics reveal that AWS overhead is prohibitive when the data
size is too small. The optimal number of processors for this input size seems to be

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(a) Basic architecture

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(b) With DMAs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(c) With coherent caches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(d) With DMAs and caches

Figure 10: Normalized execution times on the different architectures for 1 to 16 processors with 100k ele-
ments

around 4, while AWS execution times on the fastest architectures (DMAs+ caches and
coherent caches) quickly go beyond the sequential execution time.

Finally, the last trend to notice is that the better the performance for an architecture,
the worst the speedup for a given number of processors, for both PAR and AWS. As
previously, this is explainable by Amdahl’s law, because a part of the application cannot
be parallelized.

Though we expected AWS to be slower than PAR, we thought that the relative
overhead would be smaller with a small input data size. This shows that improving
performances on local runs will be limited at a certain pointby the parallelism creation
and by synchronizations. This fact motivated the next experiment.

6.3. Distributed Locks and Work Structures

On Figure 12 are presented the relative time-savings of configurations with local
locks and distributedwork_t structures, for the basic architecture and the architecture
with coherent caches. The PAR times were obviously almost identical, since there
are no accesses to sharedwork_t structures, nor to the corresponding locks. First,
the time saved is not negligible, even though this must be considered as a maximum

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(a) Basic architecture

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(b) With DMAs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(c) With coherent caches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

e
x
e

c
u
ti
o

n
 t
im

e
/s

e
q

u
e

n
ti
a
l
e

x
e
c
u

ti
o
n

 t
im

e

processor number

par
aws

(d) With DMAs and caches

Figure 11: Normalized execution times for different architectures for 1 to 16 processors with 10k elements

Figure 12: Normalized execution times with distributed locksand work structures, on two architectures

time-savings since we are in a case in which there are almost no steals. Secondly, the
time saved on an architecture is increasing as the global execution time is decreasing.

19

This is not obvious since if for a constant time-savings, thedecrease of the global time
makes it greater, the parallelization involves here fewer accesses to the locks and work
structures, and therefore a smaller time-savings.

Besides, the time saved is relatively bigger for the basic architecture. This can be
explained by the fact that in the presence of caches, the workstructures will be cached
as well if they are located in shared memory; therefore, moving these structures in the
local storages does not save any time.

6.4. Comparison of Theoretical and Practical AWS Overhead

As seen in Equation 3, the theoretical AWS overhead is quadratic in the number of
processors when the processor on which work is to be stolen are traversed cyclically.
Figure 13 plots the overheads (i.e. the sum of the cycles spent on all processors minus
the sequential time) for the synthetic application with 100k elements and on the basic
architecture. On the same figure is also plotted a quadratic regression of the data, thus
showing that the expected theoretical results are confirmedby our experiments.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2 4 6 8 10 12 14 16

a
c
c
u
m

u
la

te
d

ru
n

tim
e

in
k
c
y
c
le

number of processor

Total execution time

3859+148x²

Figure 13: AWS overhead behavior

6.5. Conclusion

The two approaches presented to improve performance using DMAs or caches
follow somehow the two basic memory models existing for contemporary MPSoCs:
hardware-managed, implicitly-addressed, coherent caches and software-managed,
explicitly-addressed local memories[27].

Our results tend to show that for AWS algorithms, the two architectures involv-
ing caches work better than using an explicit copy alone, andthat the solution with
hardware-managed coherent caches scales better with smalldata than the solution with

20

both DMAs and caches. However, our model could be accused here, since the local
storages cannot be accessed with a 1-cycle latency by the processor.

We notice that the AWS implementation of the algorithms are very sensitive to
small synchronization changes. After investigation, we found that it is due to the fact
that when a thread goes into idle (because the mutex requiredis already taken), it
actually consumes a lot of time due to the double context-switch required to yield
the processor and gain it again. Using spin locks instead of mutexes could lower this
sensitivity. The results also show that AWS is more sensitiveto data size variations
than a static parallelization, therefore recommending to use AWS when the input data
size is large enough.

7. Performances on Two Real Applications

We used two applications for our study: a Luma and Chroma Temporal Noise
Reduction (TNR) application, and the computation and drawing of pictures from the
Mandelbrot set.

We chose these applications because we want to cover both ends of the spectrum
regarding application workload regularity.

7.1. TNR Overview

The TNR application is an image filtering program. It contains several successive
computations on a frame: temporal noise reduction, spatialnoise reduction, motion
detection and fading. Each computation is an iteration on all the pixels of the image
via a double for loop, which represents a high level of parallelism. The frame size in
the sequence used is 714x244.

The application isa priori very regular since the data is split into small blocks and
the number of computations performed almost doesn’t differ from one block to another.

We ran the experiments on a varying number of processors (between 1 and 16)
for the decoding of 4 or 6 frames. Since the computations on this application were
time-consuming, we chose the following configurations:

• the basic architecture for PAR (Basic PAR)

• the basic architecture for AWS (Basic AWS)

• the architecture with caches and distributed locks and workstructures for AWS
(Enhanced AWS)

7.2. TNR Results

The detailed results for the decoding of 6 frames on 4 processors are presented
in Table 7.2. Comparing the columns for configurations BasicPAR and Basic AWS
shows that the execution times are very close between PAR andAWS, and that none of
them is performing significantly better than the other.

The performance improvement due to caches and distributed locks is approximately
15% per frame, with a data cache hit ratio greater than 99%. Infact, the time saved is

21

lower than with our test-case application since here there are many more computations
for one transaction or lock access.

The broad results for 1, 2, 4, 8 and 16 processors are presented Figure 14. This
graph shows the average decoding time for 4 frames. As with 4 processors, AWS
and PAR perform always similarly, but this graph allows to put in evidence that the
Enhanced AWS configuration is more effective when the number of processors is high.
This can be explained by the fact that as the number of processors increases, the global
latency increases too, so exploiting locality with caches and local locks gives better
results. Furthermore, the number of locks accesses grows inO(p2), so distributing the
locks when the number of processors is high reduces contention.

Frame Processing Time on
Basic PAR Basic AWS Enhanced AWS

1 6 512 6 514 5 559
2 6 527 6 518 5 571
3 6 529 6 531 5 576
4 6 532 6 531 5 578
5 6 529 6 527 5 571
6 6 525 6 523 5 567

Table 2: TNR Execution Times (in KCycles)

Figure 14: TNR Execution Time for the decoding of 4 frames, Normalized w.r.t. Basic AWS

This shows that for real fine-grained regular applications,which are the worst-case
for AWS algorithms, the overhead of AWS is very limited and thatAWS still gives very
acceptable results.

7.3. Mandelbrot Overview

The Mandelbrot application consists of creating a sequenceof pictures representing
a zoom on some point located on the border of the Mandelbrot set, in order to create

22

an Motion-Jpeg video output. The computation consists of checking if zn+1 = z2
n + c

converges to a fixed point forc ∈ C andz0 = 0. This computation is very local, takes
place entirely in the data cache, and benefits from the postedwrite provided by a write
buffer in the write-through cache. As opposed to TNR, it cannot bewell parallelizeda
priori since we don’t know in advance for which pixels the computation will quickly
diverge or at the opposite converge. For the simulation, we ran the computation of 4
frames (represented Figure 15) on 4 processors, and for one of these frames, we ran the
computation on 1 to 16 processors. The parameters of the application are presented in
Table 7.3.

(a) frame 1 (b) frame 2

(c) frame 3 (d) frame 4

Figure 15: Frames Computed in Simulation

Image size 800× 600
Max iterations up to 5000 for frame 4
Center coordinates (−0.74364421961; 0.13182604688)
Zoom relative to image 1 {1 ,5.64, 1.02× 106

, 4.53× 106}

Table 3: Parameters of the Frame Computations

The maximum number of iterations is chosen so that the image has a good final
rendering, i.e. high enough so that all the points converging could be colored (and not

23

considered divergent).
We ran the frame computations on the basic architecture for PAR and AWS.

7.4. Mandelbrot Results

The computation results for 4 processors are shown in table 7.4.

Frame Processing Processing Speedup Number % of
time with time with relative of steals pixels
PAR AWS to PAR stolen

1 5,212 2,958 1.76 34 29.8
2 11,995 6,139 1.95 49 30.7
3 20,549 13,706 1.50 19 15.0
4 59,269 25,591 2.31 42 18.9

Table 4: Mandelbrot Results on 4 processors (times in Kcycles)

These results exhibit that AWS outperforms PAR on this application, with a
speedup ranging from 1.5 to 2.31. Even if the number of frames is too small to allow a
generalisation, this already proves that AWS can do better than a static parallelization
in the case of unbalanced parallel computations.

In addition to the computation of the frames in AWS, we output for each frame an
image which identifies the processor having computed a particular pixel (Figure 16).
This allows to visualize the repartition of the work on the different processors in this
particular cases, and how the stealing mechanism impacts the computation.

Finally, Figure 17 shows the computation times of frame #4 on1 to 16 processors.
This exhibits that the time saved by AWS dynamic load balancing is not dependant
from the number of processors as there is approximately a factor 2 for 2, 4, 8 and 16
processors.

8. Summary and Future Work

In this paper, we first focused on the problem of MPSoC architecture design choices
for AWS algorithms. We showed, using a synthetic application, and thanks to the capa-
bility of adaptation of the hardware and low level software to a specification template
provided by the codesign approaches, that important performance improvements could
be reached for both AWS and PAR strategies. We then focused on the overhead of
AWS algorithms compared to statically scheduled parallel algorithms, and put in evi-
dence that the cost of dynamic load balancing was not negligible when the input data
size was too small; we also found that distributing data or locks which are mainly ac-
cessed locally can drastically improve performances. Finally, we applied these results
on real applications, and showed that AWS could lead to a significant gain in case of
applications with a non uniform workload, while its overhead remained low for appli-
cations with a uniform workload.

The architecture model considered in this work, though being realistic for MPSoCs,
remains simple and does not take into account the possibility of having higher levels of

24

(a) frame 1 (b) frame 2

(c) frame 3 (d) frame 4

Figure 16: Visual representation of the work on the processors for the Mandelbrot Frames. Legend:
Proc. 0, Proc. 1, Proc. 2, Proc. 3.

Figure 17: Execution Time for the computation Mandelbrot frame#4

memory and/or interconnect hierarchy, or several processors located on the same local
interconnect. We also limited our study to 16 processors, though in the near future,

25

architectures with many more processors are conceivable.
Despite these limitations, and because we think that the AWS programming

paradigm can be very useful including in the embedded domain, we believe our work
to be important as a first study of codesign for this class of algorithms on MPSoC
architectures.

Future work includes the evaluation of the influence of the cache properties (size
and number of words per line) and of the use of spin locks instead of mutex locks.
We also aim at applying lock-free parallel algorithms[36, 37] to AWS in order to take
advantage of the properties of this type of algorithms, while keeping the efficiency of
AWS parallelization.

References

[1] A. Duller, D. Towner, G. Panesar, A. Gray, W. Robbins, picoarray technology:
The tool’s story, in: Proceedings of the conference on Design, Automation and
Test in Europe, Munich, Germany, 2005, pp. 106–111.

[2] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. B. III, A. Agarwal, On-chip interconnection architecture of the
tile processor, IEEE Micro 27 (5) (2007) 15–31.

[3] S. Edwards, L. Lavagno, E. A. Lee, A. Sangiovanni-Vincentelli, Design of em-
bedded systems: Formal models, validation, and synthesis,Proc. of the IEEE
85 (3) (1997) 366–390.

[4] G. Kahn, The semantics of a simple language for parallel programming, in: Proc.
of Information Processing 74, Stockolm, Sweden, 1974, pp. 471–475.

[5] M. Duranton, The challenges for high performance embedded systems, in: Pro-
ceedings of the 9th Euromicro Conference on Digital System Design., Dubrovnik,
Croatia, 2006, pp. 3–7, keynote address.

[6] A. Agbaria, D.-I. Kang, K. Singh, Lmpi: Mpi for heterogeneous embedded dis-
tributed systems, in: Proceedings of the 12th International Conference on Parallel
and Distributed Systems, IEEE, Minneapolis, MN, 2006, pp. 79–86.

[7] P. Paulin, C. Pilkington, E. Bensoudane, Stepnp: A system-level exploration plat-
form for network processors, IEEE Design & Test of Computers19 (6) (2002)
17–26.

[8] J. Oh, S. W. Kim, C. Kim, Openmp and compilation issue in embedded appli-
cations, in: Proceedings of the International Workshop on OpenMP Applications
and Tools, Vol. 2716 of Lecture Notes in Computer Science, Springer, Toronto,
Canada, 2003, pp. 109–121.

[9] H. Blume, J. von Livonius, L. Rotenberg, T. G. Noll, H. Bothe, J. Brakensiek,
Openmp-based parallelization on an mpcore multiprocessorplatform - a perfor-
mance and power analysis, Journal of Systems Architecture -Embedded Systems
Design 54 (11) (2008) 1019–1029.

26

[10] D. Hommais, F. Pétrot, I. Augé, A practical tool box for system level communi-
cation synthesis, in: Proceedings of the ninth international symposium on Hard-
ware/software codesign, ACM, Copenhagen, Denmark, 2001, pp. 48–53.

[11] E. Faure, A. Greiner, D. Genius, A generic hardware/software communication
mechanism for multi-processor system on chip, targeting telecommunication ap-
plications, in: Proceedings of the 2nd International Workshop on Reconfigurable
Communication-centric Systems-on-Chip, Montpellier, France, 2006, pp. 237–
242.

[12] M. Gries, Methods for evaluating and covering the design space during early
design development, Integration, the VLSI Journal 38 (2) (2004) 131–183.

[13] A. A. Jerraya, W. Wolf, Hardware/software interface codesign for embedded sys-
tems, Computer 38 (2) (2005) 63–69.

[14] N. S. Arora, R. D. Blumofe, C. G. Plaxton, Thread scheduling for multipro-
grammed multiprocessors., Theory of Computing Systems 34 (2) (2001) 115–
144.

[15] M. A. Bender, M. O. Rabin, Online scheduling of parallelprograms on heteroge-
neous systems with applications to cilk, Theory of Computing Systems 35 (2002)
2002.

[16] J. Bernard, J.-L. Roch, D. Traoré, Processor-oblivious parallel stream computa-
tions, in: PDP, IEEE Computer Society, 2008, pp. 72–76.

[17] E. Mohr, D. A. Kranz, R. H. Halstead, Jr., Lazy task creation: A technique for
increasing the granularity of parallel programs, IEEE Transactions on Parallel and
Distributed Systems 2 (3) (1991) 264–280.

[18] M. Frigo, C. E. Leiserson, K. H. Randall, The implementation of the cilk-5 mul-
tithreaded language, in: Programming Language Design and Implementation,
1998, pp. 212–223.

[19] D. P. Papadopoulos, Hood: A user-level thread library for multiprogramming
multiprocessors, Ph.D. thesis, The University of Texas at Austin (Sep. 21 1998).

[20] D. Traoré, J.-L. Roch, N. Maillard, T. Gautier, J. Bernard, Deque-free work-
optimal parallel stl algorithms, in: Euro-Par 2008 Parallel Processing, Lecture
Notes in Computer Science, 2008, pp. 887–897.

[21] A. Matache, S. Dolinar, F. Pollara, Stopping rules for turbo decoders, in: JPL
TMO Progress Report, 2000, pp. 42–142.

[22] M. Mattavelli, S. Brunetton, D. Mlynek, Computationalgraceful degradation for
video sequence decoding, in: Proceedings of the International Conference on
Image Processing, 1997, pp. 330–333.

[23] K. Agrawal, C. E. Leiserson, Y. He, W.-J. Hsu, Adaptive work-stealing with par-
allelism feedback, ACM Transactions on Computer Systems 26(3).

27

[24] T. Hiraishi, M. Yasugi, S. Umatani, T. Yuasa, Backtracking-based load balancing,
SIGPLAN Not. 44 (4) (2009) 55–64.

[25] S. Chen, P. B. Gibbons, M. Kozuch, V. Liakovitis, A. Ailamaki, G. E. Blelloch,
B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, C. Wilferson,Scheduling threads
for constructive cache sharing on CMPs, in: Proceedings of the 19th Annual
ACM Symposium on Parallel Algorithms and Architectures, ACM Press, San
Diego, 2007, pp. 105–115.

[26] O. Certner, Z. Li, P. Palatin, O. Temam, F. Arzel, N. Drach, A practical ap-
proach for reconciling high and predictable performance innon-regular parallel
programs, in: Proceedings of the conference on Design, automation and test in
Europe, Munich, Germany, 2008, pp. 740–745.

[27] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz,
C. Kozyrakis, Comparing memory systems for chip multiprocessors, in: 34th In-
ternational Symposium on Computer Architecture, ACM, San Diego, California,
2007, pp. 358–368.

[28] M. Chu, R. Ravindran, S. Mahlke, Data access partitioning for fine-grain paral-
lelism on multicore architectures, in: Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007, pp. 369–380.

[29] B. Saglam, V. Mooney, III, System-on-a-chip processorsynchronization support
in hardware, in: Proceedings of the conference on Design, automation and test in
Europe, IEEE, Munich, Germany, 2001, pp. 633–641.

[30] A. Sheibanyrad, A. Greiner, I. Miro-Panades, Multisynchronous and fully asyn-
chronous nocs for gals architectures, IEEE Design & Test of Computers 25 (6)
(2008) 572–580.

[31] P. R. Panda, N. D. Dutt, A. Nicolau, Efficient utilization of scratch-pad mem-
ory in embedded processor applications, in: Proceedings ofthe 1997 European
conference on Design and Test, Paris, France, 1997, pp. 7–11.

[32] F. Pétrot, P. Gomez, Lightweight implementation of theposix threads api for
an on-chip mips multiprocessor with vci interconnect, in: Proc. of the Design
Automation and Test in Europe, Embedded Software Forum, Munich, Germany,
2003, pp. 10182–10187.

[33] P. Feautrier, Dataflow analysis of array and scalar references, International Jour-
nal of Parallel Programming 20 (1) (1991) 23–53.

[34] P. Guironnet de Massas, F. Pétrot, Comparison of memorywrite policies for noc
based multicore cache coherent systems, in: Proceedings ofthe conference on
Design, automation and test in Europe, Munich, Germany, 2008, pp. 997–1002.

[35] The Soclib Consortium, Soclib: an open platform for virtual prototyping of multi-
processors system on chip, Tech. rep., [Online]. Available: http://www.soclib.fr
(2008).

28

[36] K. Fraser, T. Harris, Concurrent programming without locks, ACM Transactions
on Computer Systems 25.

[37] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming Lan-
guages and Systems 13 (1991) 124–149.

29

