Hardwar¢Software Support for Adaptive Work-Stealing in
On-Chip Multiprocessor

Quentin Meuniet, Frédéric Pétréf, Jean-Louis Roch

aTIMA laboratory, INP Grenoble
bLIG, INP Grenoble and INRIA

Abstract

During the past few years, embedded digital systems have fleggiested to provide
a huge amount of processing power and functionality. A vikely foreseeable step
to pursue this computational and flexibility trend is the gtization of on chip mul-
tiprocessor platforms (MPSoC). In that context, choosimagramming model and
providing optimized hardware support to it on these platf®is a challenging task. To
deal in a portable way with MPSoCs having &elient number of processors running
possibly at diferent frequencies, Work Stealing (WS) based parallelinas@ current
research trend.

The contribution of this paper is to evaluate the impact aissimple MPSoCs’
architecture characteristics on the performance of WS inRA80C context. The pre-
vious evaluations of WS, either theoretical or experimentare done on fixed mul-
ticores architectures. This work extends these studiexplpeng the use of WS for
the codesign of embedded applications on MPSoC platforrtis different hardware
capabilities, thanks to cycle-accurate measures.

We firstly study the architectural choices suited to WS athors and measure
the benefit of these architectural modifications. To assésther WS is suited to
the MPSoC context, we experimentally measure its intrimjdementation overhead
on the most fficient architectural designs. Finally, we validate the perfances of
the approach on two real applications: a regular multimeghplication (Temporal
Noise Reduction) and an irregular computation intensivaliegtion (frames of the
Mandelbrot set).

Our results show that enhancing MPSoC platforms having ap farocessors with
widespread hardware support mechanisms can lead to imppegormance improve-
ments at acceptable hardware cost for the considered apipiis.

Key words: MPSoC Architectures, Concurrent Programs, Work Stealing,
Hardwar¢Software Codesign, Design Space Exploration

*Corresponding author. Tet33 4 76 57 48 70; Fax33 4 76 57 49 81.
Email addresses: Quentin.Meunier@imag.fr (Quentin Meunier)Frederic.Petrot@imag.fr
(Frédéric Pétrot)Jean-Louis.Roch@imag. fr (Jean-Louis Roch)

Preprint submitted to Journal of System Architecture March 3, 2010

1. Introduction

Even though in the past years many if not all embedded systera made of one
General Purpose Processor (GPP) and one Digital Signaéssoc(DSP), there is a
trend (not only in academia) to think about having farms ofi@odficient processors
(small GPP or dual issue VLIW) to achieveifdrentiating compute intensive functions
in software [1, 2]. Thus, the parallel specifications usedefobedded appliances tend
to be implemented for a large part as parallel programs.

Most of the algorithms used in the devices that are MPSoGstba® currently es-
sentially implemented as coarse-grain sequential taskstmicating through lossless
fifos, e.g. boolearsynchronous data-flow representations[3] for which optischaed-
ules can be derived, or Kahn process networks[4] that haverbperty of having an
output that does not depend on the schedule while being testrained than the pre-
vious formalisms. This trend has been adopted by severgégdeaof the consumer
electronic industry in order to benefit from the propertiethese models[5]. Other ap-
proaches are more loose, using subsets of well known plapatigramming libraries
for which the properties of the programming model is lesarclMPI[6], light versions
of Corba[7], OpenMP[8, 9], or even bare shared memory tlwead

In order to provide optimizedd-hoc hardware implementations at the price of flex-
ibility, many authors have proposed codesign approachsasgioort these programming
models. Among many initiatives, we can cite [7] that introds hardware support to
Corba-like communication andficient SMP task managment and [10, 11] that define
specific hardware IP and software APIs to automate the mgpyiprocess networks
with different kinds of FIFOs. [12] provides a very broad survey orgireeral code-
sign approaches, whereas [13] focuses more on the topidsop#iper: providing an
optimized hardwarsoftware interface for given programming models.

Indeed, in this work, we look towards another type of paflgtlegramming
based on a work stealing scheduling paradigm[14, 15]. Wedan a specialization
of work-stealing based algorithms, denoted in the follawAWS (Adaptive Work-
Stealing) [16]. AWS algorithms are based on the principlé#aah processor executes
its own task until it becomes idle, and then steals a fraaifdhe remaining work on a
randomly chosen busy processor.

Work-Stealing algorithms have been shown to behave welrattice when the
workload cannot be well estimatedpriori [17, 18, 19, 20], which is the case for
algorithms like encoding or compression often used in embedonsumer devices.
These algorithms also fit well applications running on endeedplatforms in which
all the cpus do not run at the same frequency, thus creatinglaalanced workload.

Being able to bound the execution time is important for mampedded appli-
cations. This can be achieved by ampriori knowledge of execution times, but this
is hardly feasible on multiprocessor platforms. To deahwftis issue, one common
strategy is to use iterative improvement algorithms whessitbe, such as iterative
turbodecoding [21] or video decoding [22].

As this approach may fit well with the foreseeable massivaljtiprocessor inte-
grated architectures that are currently being developdieiindustry, we believe that
this programming model may be well suited for some typical3de applications, and
that it is thus worthwhile to perform a codesign analysisifor

Our goal in this work is therefore to perform an analysis af d#fect of some
simple MPSoC architecture characteristics on the perfooms of algorithms based
on the AWS programming paradigm. The type of architecturaliff@ations we target
is the use of coherent caches, local memories and DMAs, atdbdited locks, for
which we also determine how it must be taken into account énsibftware. We do
this by systematic cycle-accurate simulation dfetfient platforms for several program
examples. We furthermore measure the overhead of the AW$thlygs compared to
the corresponding static parallel execution — called PAIRéremainder of the article —
for the same hardware configurations. Based on the preipaitig of the input into
chunks of equal size, the PAR algorithm represents a lowandon the execution time
in case of applications for which the workload is known bef@nd: Indeed supplying
work-stealing at runtime has a cost, which is to bffedentiated from the resulting
possible time saved due to the dynamic load balancing.

More precisely, we will:

e Measure the execution time for a synthetic applicationlfgized with AWS on
different architectures in order to evaluate how some usuajmes$ioices can
impact the performances and to which extent,

e Measure the speedup with either a PAR or an AWS parallelizationpared to
the sequential execution time for theséetient architectures,

¢ Infer from these measures the overhead of an AWS algorithrpaced to the
corresponding PAR,

o Validate the approach on two computationally intensiveiapfions: one with a
uniform workload, and one with a non-uniform workload.

To the best of our knowledge, this work is the first one whigbleits the specificity
of the AWS behaviour to drive the definition of both a hardwanehiecture and the
run-time library that makes an optimized use of it.

The remainder of the paper is organized as follows. Sectibrie?ly summarizes
the main points of the work stealing programming paradigmh gires an overview
of the works that have evaluated the implementation costarkstealing on, often
idealized, general purpose parallel machines. Sectiotr@uces the initial hardware
platform, the basic operating system, and the applicagorptate. Section 3.4 details
the WS interface suited to data processing, and gives acallytin times on a synthetic,
thus theoretically analyzable, application that fits oanpéate. Section 5 concurrently
explores several hardware architectures and their assdd@mv level software to min-
imize the communication and synchronization costs. We #ralyze the results in
Section 6, and give the limitations of the approach beforekamling.

2. Background on Work Stealing and Related Work

2.1. Background

Work stealing is a scheduling paradigm for parallel comiores. It is a decentral-
ized thread scheduler [23]: whenever a processor runs aubidd, it steals work from
a randomly chosen processor.

From work stealing reference implementation Cilk [18], eethkeywords parallel
programming extension of C, interest for work-stealing aultroore architectures is
growing. In July 2007, Intel launched the open-source TdirepBuilding Blocks
(TBB), a set of high level €+ primitives similar to the STL with thread safe containers
and parallel algorithms; available from mid 2008, Gilk extends G+ for portable
programming of multicores.

Cilk and TBB adopt the oldest-first randomized work steatitrgtegy. The imple-
mentation is based on double-ended queues (deque). Eatdspon manages a deque
of ready tasks that it uses as a stack for its own tasks (LIE@)shes the tasks it cre-
ates or unblocks at the bottom of the deque; when it compéetiask, it pops a new one
from the bottom of its deque if not empty. Otherwise, the pasor is idle and becomes
a stealer: it sends a steal request to a randomly chosensgaycantil finding avictim
processor with a non empty deque; then it picks a task fronidpef the deque of
the victim, the oldest one. Oldest-first work-stealing aebhs provable performances.
Arora, Plaxton and Blumofe [14] showed that for any parglkelgram, the tim& , on
p identical processors verifies with high probability (w.h.g@, < O(T?seq + Tw) Where
Ty is the sequential execution time (that corresponds to thepatational work) and
Te is the maximum depth (execution time on an unbounded numibgrogessors).
With slight variants, similar bounds are achieved when thalmer of processors allo-
cated for the computation varies during execution [14] amgfocessors with variable
speeds [15]. In particular, the number of steal reques®pg .,) w.h.p.; therefore it is
small in the case wherk, <« Tey.

This paper restricts to the caSe, < Tsq Which matches many important em-
bedded streaming applications. Since the nuntigrT.,) of steal requests is small
with respect to the total work, thébrk First Principle consists of putting most of the
overhead of the scheduling at steal request operationsgmdipe the sequential exe-
cution of the parallel algorithm. In [20], thdeque-free work-stealing implementation
consists of decreasing the overhead for the managemere détjue by delaying tasks
creation only after a steal request occurs on a victim pgmresn this case, the oper-
ation named "parallelism extraction"[20] creates a new takich is assigned to the
theft processor. Similarly, in th@ascell framework [24], a worker creates a real task
only when requested by another idle worker. This strategaimedbactracking-based
load balancing; the worker performs parallel extraction by temporarilpacktracking”
and restoring its oldest task-spawnable state [24].

2.2. Related Works

Several works analyze the performance of work stealing oRPSMachines, either
discrete or integrated (multicores), especially in theterinof Cilk [18]. Considering
CMPs, [25] focuses on the number of cache misses by comptméngerformance of
two different implementations of work stealinige. traditional (WS) and Depth first
(PDF). In the case of our application template presentecati@ 3.4, both strategies
are equivalent (as exhibited by the theoretical analysik@tache misses).

Experiments of the use of the Capsule environment, thatgsexpa run-time sup-
port for recursive splitting of work are presented in [26heBe results are obtained on
a predefined 4 cores platform and do not explore alternaitimplementations of data
placement and synchronization.

In [16] is presented a processor-oblivious algorithm whicthe base of the AWS
algorithms used here. The algorithm is proved to be asymeptlit optimal and it
is shown that the algorithm has a good experimental behaviblis work however
does not encompass the embedded field nor architecturerespsnd remains mainly
theoretical.

[27] studies the problem of the memory hierarchy in MPSoQesys, and pro-
poses a methodology to comparédfelient hierarchies, for a large range of applica-
tions. Different criterion are used to evaluate the results (time,ggnéatency and
bandwidth issues, etc.), but none of the benchmarked #igasiis implemented using
a work-stealing technique. Additionally, the aim is not tompare the cost of fferent
parallelism techniques for the same program.

There is much work dealing with data-partitioning[28] amdrétecture properties
for parallel applications, but to the best of our knowledte architectursoftware
support study for the adaptive work stealing that we conhutttis research is the first
of its kind.

3. The MPSoC Architecture and Applications Templates

3.1. Hardware

Since the MPSoC design space is huge, we define a templatteatate for which
we fix the parameters that we estimate being either nonaetee or not interacting
significantly with our performance evaluation study. Asande seen on Figure 1,
the platform is an interconnection of CPU sub-systems. AUGub-systems share a
common address space, and can access local or shared meothrles) a timer and
a lock engine that allows to take a lock by simply reading fignh.e. a hardware IP
which implements dest-and-set for a range of addresses[29]. The chosen processor
is a simple 4 stage pipeline, 4 windows, Sparc V8. The pracessesses separated
direct mapped data and instruction caches. This may be adsitdicient than a 2-
way set associative cache, but simplifies the hardware mmgaiéation and ensures that
instructions cannot trash data avide-versa. There is no automatic data prefetching
(excepted for filling a cache line), as in many integratedtsmhs, speculatively loading
instructions or data is not considered enerfficeent. The architecture configuration is
presented Table 1, and all the architectures used in thdy stie variations of this one.

In order to avoid high contention on a unique shared memargtion or high la-
tencies as it would occur ondance-hall architecture, the platform on which we based
our study has two levels of hierarchy. Each processor isexted on a local intercon-
nect to its peripherals and a local storage through a crasEbase local interconnects
are connected via a bridge on a global interconnect on wiietalzo connected the
shared memories.

The interconnect used is a Network-on-Chip based on the @fdB0], as the scal-
ability of buses is very limited, and the complexity of crloass becomes too important
for the number of processors targeted. The topology use@iFmesh, since it has a
good crossing-time versus complexity ratio, and has goypaliaproperties for silicon
implementation.

It would have been interesting to use a scratch pad insteadhedmory plugged
on the local interconnect (i.e., a memory directly conngéd¢tethe processor through

Table 1: Simulated platforms characteristics

Number of processors

p=11..16)

Number of memory banks p+ 3

Processor model

SPARC-V8 with FPU

Data cache size

16Kb

Data block size

8 words (32 bytes)

Instruction cache size 16Kb
Instruction block size 8 words
Cache associativity Direct-mapped
Write-buffer size 8 words

DMA Controller

2 initiator interfaces to issue 1 read
and 1 write per cycle at full speed

NoC topology

2D Mesh

Global NoC Latency

V2n cycles forn interfaces

Local NoC Latency

1 cycle

Processor 0

Local Storage
© SPARC Vi TTY
=
v
S |INsT. |D.

I Local (Fast) Generic Micro Network I

Processor p-1

SPARC Vi

INST.| D,

cache

Local Storage

TTY

™

....... ILocaI (Fast) Generic Micro Network l

Bridge Bridge
[Generic Micro Network]
b Non
activated cache
Timer

Shared Ram 0

Shared Ram 1

Lock engine

Figure 1: Basic architecture schematic view

a dedicated interface [31]), but this wasn't explored asdpai limitation of processor
models available in the simulation environment. Howevsanks to the local crossbar

latency, the timing behavior of both solutions would be varyilar.

The address space seen by the processors is partitionedtinfassgments. One or
more segments can be mapped on a peripheral or a memorygtinggee following
constraints: all segments mapped on a peripheral canncadied, and all the seg-
ments relative to the same memory component must have treaehe attribute (i.e.

cached or not).

To summarize, the hardware design space that will be exploreur study will
mainly consists of evaluating how DMAs giod caches can improve data locality and
how the physical placement of locks can speed-up synctatioiz

3.2. Operating System and Task Assignment

We use the Decentralized Scheduling (DS) configuration aflaweight kernel
called Mutek[32], which provides an implementation of tt@3X pthreads for shared
memory multiprocessor machines. As opposed to its SMP amatiign in which all
processors share a single scheduler structure to perfekrsédection, the DS config-
uration greatly limits contention as each processor hamitsscheduler. Tasks can be
pinned on a desired processor in order to avoid migratiothahcase, each thread is
assigned to a processor at creation time. The thread’s atathocal data are stored
in the local storage of the processor. All experimentatimesdone using this identical
OS configuration.

3.3. Sdected Applications Template

Our choice of a template for the applications has been ntetivhy three points.
Firstly, in order to evaluate the overhead of work-stealvith respect to classical
standard approaches on embedded systems, the template drzebte calibration at
the cycle level of applications for which optimal paraltaliion is known. Secondly,
multimedia applications are compute and communicatianisite: the application has
to be fine grained and representative of a class of multim@dieessing such as digital
filters (temporal noise reduction, deblocking) or transfer(DCT). Lastly, it should
enable a theoretical analysis of the implementation of tbekvgtealing in order to
have feedback on the experimentations.

We selected a synthetic template application fitting intesthconstraints, which
consists of having its input and output data stored in ffebwarray, the operations on
the diferent elements of this array being independent. This asrégcated in shared
memory.

By considering an empty processing operation on each eletién synthetic ap-
plication has a very high communicatisacomputation ratio, which enables an analy-
sis of the work stealing overhead in number of cycles. Funtioee, considering a fixed
number of identical processors and a constant time parawifdtee processing of each
element, this overhead can be compared to the number ofsoyttbe standard static
parallelization, denoted PAR: the input data of side equally shared between all the
p processors, each processor being in charge of a contiglmelsdf sizel.

Besides, locally on each hardware processing unit, theegeiieg on each element
can be achieved either by a generic or by a dedicated optilc@m®ponent for the unit.
Such local choice is implicitly managed by work stealing ethinanages the execution
of the applications template on the hardware platform. &imork stealing is a fully
distributed algorithm, independent on one hand from thebramthe configuration and
frequencies of processors, and on the other hand from thelgrity of the application,
it enables codesign by global calibration of the platform.

3.4. Codesign based on work stealing: AWS

Codesign is usually considered as the process of produsenbjardware and soft-
ware fitting the performances and cost constraints of hégktlspecifications. Among
the codesign topics, the design of hardwsoéware interfaces is very important and
our goal in this paper is to define a proper hardyso#ware interface for applications
which can be implemented using work-stealing.

In our codesign approach, presented Fig. 2, the work-atgatiplementation is the
adaptation layer between the hardware platform and thecapipih. Each processor
acts as a work-stealer: when idle, it sends a steal requestdiher processor. The
work-stealing implements the management of steal requieased on specific hard-
ware support provided by the Hardware Steal Engine, andréagion of tasks at the
application level. When the victim is in a stealable staterétates a task correspond-
ing to its oldest spawnable task. Thfeetive description of the new created task is
provided by the application. The next section details timalle implementation of the
AWS work-stealing layer and the application interface.

Application Template

extract par () extract seq() local run()

AWS: Adaptive Work Stealing based Codesign

Streal
Requests

Processor 0 Processor p-1

Local Storage Local Storage
n DMA PARC Vi DMA

m : n 2 ? L))

w0) . [INST.IDATA 2 *

S K 1N M- R H

< [Local (Fast) Generic Micro Network] [Local (Fast) Generic Micro Network]

()]

c

w Bridge Bridge

©

g

g [Generic Micro Network]

o A N~ .

B i) Software

P : = dependant :

£ ——— optionaland :
:parametrizable :

suckenoine :hardware :

:components

Figure 2: AWS: adaptive work-stealing based codesign

4. AWS Interfacefor Data Processing

4.1. Rationale of AWS

The implementation of the work-stealing is the bridgingnfice between the hard-
ware and the application. A major constraint in embeddetbsysand MPSoCs is that

the memory space has to be statically bounded. As a consagjumir specification of

the work-stealing does not allocate extra memory at runtimoerequires concurrency
since at any time only one serial computation is in progressach non-idle processing
unit.

Indeed, instead of managing on each unit a collection ofyrésgks, AWS follows
the deque-free work-stealing algorithm proposed in[20jciwhs based on lazy task
creation. A non idle processgrmerforms the computation of its assigned task; when
a steal request from a processarccurs onj, a new task is created corresponding to a
ready part of the remaining work gjn then this task is assigned to procesisatich
starts its execution. The operation that constructs theriggi®n of the task (inputs)
is namedextract_seq() in the following; it is implemented at the application level
Thus, dfective task creation is delegated to the application: AWS omhnages the
steal requests on the idle processors and the local exeaftibe local work on a non
idle one.

Both operations are dependent. a successful steal operdmds to an
extract_par () on the victim which modifies the remaining work. This synctira-
tion between the steal requests and the local work is manag#dte work-stealing
level. To enable a wait-free implementation, the local wonka non-idle processor is
performed by a block of operations. These blocks are asswaitdree and their def-
inition is delegated at the application level: a functiomeal extract_par () serially
iterates through the local work until its completion.

Finally, while structuring the implementation of the wastealing strategy, it is
to be noted that this on-line coupling of two algorithms, @uwantial one (from
extract_seq() operations) and a parallel one (framtract_par () operations), is not
restrictive. On a first hand, recursive parallelism may bglémented at the application
level by managing, inside the local work, a collection of thiure tasks to be stolen;
of course, memory constraints have then to be consideréx application level. On
the other hand, the scheduling of ready tasks on each pingasst is well known to
have a crucial impact on the performances. For instanc@binfhe classical oldest-
first ready task strategy (OWS) is compared to the parallefhdiyst strategy (PDF)
that globally schedules tasks in a way that tracks the sdiglierecution. Considering
several applications, while OWS is generally more attracthan PDF with respect
to the number of steal requests, it compares poorly to PDering of L2-cache miss
on architectures with cache-sharing between processajs [&t, the delegation of
extract_par()/extract_seq() operations enables to tune the global scheduling at the
application level.

The main drawback of the proposed design is that for a comggbgkication, all
induced synchronizations must be managed in the applicatde. However, this is
not necessarily a problem: several data processing afiphisasuch as the ones con-
sidered in the previous applications template, do not requ@mplex synchronizations.
Besides, a higher level library based on a wait-free implgatéon can éiciently man-
age synchronizations at the application level on top of AWE py].

4.2. Adaptive Work-Sealing I mplementation

Based on previous design choices, this paragraph pres&vi& ilplementation
and application programming interface on embedded systeking into account their

P
P O O©WOoWLO~NOOUOMWNDNLEPREL

NNNMNRNRNNNERRRRR R BP
O WNRPOOWOWNOO U DMWNDN

constraints.

The overall behavior is as follows. At start time, each pssce is in busy state
and starts a computation, usually determined using theepsae identifier. When a
processor goes into idle, it becomes a stealer. It cydicallects a victim until it finds
some work to steal.

From an implementation point of view, each processor manag@work_t Struc-
tures which represent a part of the total work. At a given fimeiece of data is
contained in at most ongrk_t structure in the system. The firgbrk_t structure
is a public structure which is visible to all the other prams. It is initialized with
an amount of work, generally the same amount for all the m®ms. The second
work_t Structure is a private structure which is only visible foe grocessor and which
contains the amount of work to compute locally.

/+ node_mutex: lock protecting the shared (stealable)
work of the current node =*/
aws_lock (node_mutex);
has_local_work= TRUE;
has_global_work= TRUE;
while (has_global_work) { /+ steal —loop x/
while (has_local_work) { /x micro-loop =/
status = extract_seq(); /+ extract local work | from w */
if (status == STATUS_OK) {
aws_unlock (node_mutex) ;

local_run(); /+x work locally on | «/
aws_lock (node_mutex);
} else
has_local_work= FALSE;
} /+x end of micro loop x/

/x try steal =/

aws_unlock (node_mutex);

status = steal(); /+ fetch shared work to do : w x/
aws_lock (node_mutex);

if (status == STATUS_OK)
has_local_work= TRUE;
else
has_global_work= FALSE;
/+x end of steal -loop */
aws_unlock (node_mutex);

Figure 3: Core of the AWS algorithm.

The adaptive work-stealing algorithm is presented in Althon 4.2. After a suc-
cessful steal request, a processor gets a wodnd executes two nested loops: the
steal-loop and the micro-loop. In the micro-loop, the peswe executes a function
calledextract_seq() which extracts a small amount of work from the publizk_t
w to the privatework_t |. Then the processor computes this wonkith a function
called1ocal_run(): this computation is done sequentially without any preéompt
When the publiciork_t structurew is empty, the processor becomes a stealer and gets
out from the micro-loop. It scans all the publierk_t structures until it finds a non-
empty one and then executes theract_par () function which extracts some work

10

from the victim workv in its own publicwork_t structurew. The processor then enters
the micro-loop again. When all the publierk_t structures are empty, the whole work
has been computed.

Thework_t structures generally do not contain the data itself, bueaxsa descrip-
tion of the work, such as an index on the beginning of the warkthe size of the work.
For the case where the input data is a table, Figure 4 illesttae node structure which

Node containing the two work_t structures

_ L1
| LR .]

current data for this node
|:| data already dealt with or belonging to another node

|:| data corresponding to the local work_t (being dealt with)
|:| data corresponding to the shared work_t (stealable)

Figure 4: Data contained in a node

contains twowork_t Structures pointing respectively towards the first and Hse ¢l-
ement of the work currently used by the local node, and thedird the last element
of the remaining amount of work which can be stolen. To bounedscheduling over-
head, theextract_seq() function must extract log of the remaining amount of work
andextract_par () must extract a fraction, generally half, of the remainingkvdy

a theoretical analysis of the size of the chunksefiract _par () andextract_seq()
operation, the implementation guarantees asymptotic ¢iptienality of stream com-
putations while being processor-oblivious (i.e. it does adepend on the number of
processors [16]). Initially, the input data is pre-all@mhbetween the processors. After
a successful steal operation, theract_par () extracts a half of the remaining inter-
val of the victim. Theextract_seq() extracts the first logelements of its remaining
interval.

In the restricted case of a very regular application, thticsparallelization (PAR)
in chunks of equal size will provide optimal performancesisTmatches some digi-
tal signal or image processing codes that are static coptograms [33]. Moreover,
we will first consider a low complexity and fine grained apation: this enables to
quantify the overhead brought by the adaptive work stegdargdigm.

The simplicity of the template and its implementation fiaies a theoretical anal-
ysis. The following notations are used: as defined in se@jdieg, Tp andT., denote
respectively the sequential execution time, the paraketetion time orp processors,
and the parallel execution time on an unbounded number aiegenrs. We assume

11

that the processing timeof a single element verifies,n, < 7 < Tmax. In the following
section, we consider that the instruction caches can hel@vtiole application and we
restrict the analysis to the data caches.

4.3. Theoretical Analysisfor PAR

Let us first consider the number of data cache misses. Msgf be the number
of cache misses of the reference sequential execution veoicksponds to the linear
traversal of the array. In the PAR execution, each processecutes the sequential
algorithm on its own chunk. Thus the number of cache miM;f’p%R per processor ver-
ifies Mgoq < P X MPAR < Mgq + p. Sincep < Mgy, the overhead induced by parallel
cache misses is negligible.

Then, the execution tim&7”® is equal to the execution time of the chunk that maxi-
mizes the computational work. Assuming a constant timeaifmer, we have

T
PAR _ 'Seq
Tp _T. Q)

In the general case in which the computation time of an el¢mexy vary, we just
have
Ten _ prar Tmox T 2)
p P Tmin P .

4.4, Theoretical Analysisfor AWS

For AWS, we denotergey a bound on the time of a steal (either successful or
unsuccessful) operation on a given processor. The overdfe®d/S is related to the
total number % of steal operations which is proportionalTq.

Due to the initialization and the extraction of half of thenk@t steal and local
extraction of log, we have thaT., = O(Iog2 Tﬁ) Moreover, due to the cyclic search
of a victim processor, the total number of steal operatisi¥Si= O(p x Ts). w.h.p.
and in the worst case

#S = O(p? X Tw). (3)

Similarly to PAR, the numbe?"¥s of caches misses per processor for the traversal
of the array is bounded in the worst case by: the nunibgg of cache misses induced
by the sequential execution, plus at most two additionas@fier each successful steal
operation: one on the stealing processor to load a new suyhamd one on the victim
to update its local work. Thus we havBlsg < p x MEWS < Mgq + 2#S. Note that
in the case of the application template, the processor wecforms a steal operation
is considered as idle, and therefore has no useful data gadise. This is why we
can safely ignore the caches misses before the successdll Binally, the expected
execution time is:

T
TAWS = %’“ +O0(p X Too). (4)

12

5. Hardware/Software Codesign for AW S Implementation

Beyond theoretical analysis, th&ective performances for both PAR and AWS are
heavily related to the hardware configuration. At a fine gréia application template
is communication intensive, so the use of caches and DMAs ldirect impact.

A basic way to improve performance is to overlap computatiand communica-
tions. In the case of our study, it will take the form of usihg tocal storages to reduce
memory access latencies. This can be done by using a DMA tpdata in the local
storage of a processor while the latter is doing computatidrne use of caches will
also be studied, along with the use of both caches and DMAs.

Besides, in AWS, additional synchronizations occur duexttract_par() and
steal operations: tuning their implementation may beaaiti For instance, accessing
a lock at eackxtract_seq() operation will be infficient at a fine grain. Since most
accesses are local, distributing the locks and the strestom the local interconnects
may allow to reduce access latencies.

5.1. Using DMAs

In order to explore the use of DMAS, the basic architectumadslified by adding
a DMA unit on each local interconnect (Figure 5). This way thput data can be
accessed in the local storage instead of the shared mememol§ allocation in the
local storages is made possible thanks to a specific systém ca

Processor 0 Processor p-1

Local Storage DMA Local Storage DMA
SPARC V. pi rTY SPARC V8| [Cop TTY
g Igp':lt g Input
ata
2 |insT. |D & | nsT.| DATA Pata
LY N N M "M ™ N A
| Local (Fast) Generic Micro Network | | Local (Fast) Generic Micro Network |
- [;lil [EIZ] -
[Generic Micro Network]
AWS Non activated cache
Data
(1+0) Timer
Lock engine

Shared Ram 0 Shared Ram 1

Figure 5: Architecture with DMAs

The first issue to deal with when using DMAs is synchronizatiee. we want to be
sure that the data accessed locally is the expected oneh@nwbords, that the copy is
finished). This can be done either by polling or by interropti Polling appears more
attractive as it allows to start the processing of data lestoe end of the copy. Our im-
plementation of polling uses a DMA register which contaims number of transfered
items and uses this value to compute the next index until lwtiie processing can be

13

performed. This cost of these requests is thus negligibtbh@speed of the copy is
faster than the speed of processing elements.

The second question is to decide when to perform the copy thenshared mem-
ory to the local storage. Several possibilities were egéda at the beginning of the
local_run() function, in theextract_seq() function, or in theextract_par() func-
tion. Additionally, for the first two cases, the copy can redgher to the current data
set (on demand memory access), or to the next data set (headhato be processed.

Copying a part of the stolen data in thesract_par () function allows to start the
computation right when thextract_seq() function is later called. However, this strat-
egy prevents communication and computation from beinglapped focal_run()).
The alternative strategy is to program the DMA at the begignof either the
local_run() Of theextract_seq() functions, with similar results. However, only the
first solution is applicable on both PAR and AWS. Thereforé,eaperimentations
presented in the following program the DMA in the beginnirfgtiee 1ocal_run()
function.

About the read-ahead question, copying the next set of datathe one corre-
sponding to the data processed in the next cadktiract_seq()) requires to be able
to distinguish the first and last calls éatract_seq() after anextract_par(). Since
copying the current set of data only adds a few reads of thesstagister, we decided
to limit to on demand memory access.

5.2. Using Caches

For our synthetic application, caches may seem useless sim@access each piece
of data only once. But actually, using caches allows to pcafa data line. In order
to maintain cache coherency among all the caches, we uséaohfiementation of a
write-through directory-based hardware mechanism (Eig)detailed in in [34].

Processor 0 Processor p-1
Local Storage Local Storage
° SPARC V TTY SPARC V TTY
g 2
s Ims-r. DATA S | nst.[DATA
A N * A "™
I Local (Fast)-G ic Micro Network | lLocaI (Fast)-Generie-Micro Network ‘
Bridge Bridge
——— Cached segment
l:l Component suppo—?
Timer rting the hardware :
Lock engine coherent cache mechanism
Shared Ram 0 Shared Ram 1 PSP PPRRPPPR: :

Figure 6: Architecture with coherent caches

14

5.3. Using Caches and DMAs

Processor 0 Processor p-1

Local Storage DMA Local Storage DMA
SPARC V! pi TTY SPARC V pied| _TTY
g Input @ Input
] Data < Data
8 |InsT. [DATA & | insT.| DATA|
N N M . W N M
| S I
I Local (Fast) Generic Micro Network | Local (Fast) Generic Micro Network I
Bridge [::I Bridge
[Generic Micro Network]
AWS ——— Cached segment
Data
(1+0) Timer
Lock engine

Shared Ram 0 Shared Ram 1

Figure 7: Architecture with caches and DMAs

We also investigated the joint usage of both caches and DId#&\they operate on
different parts of the transfer: the DMA copies data locally amadche prefetches it
(Figure 7). The cached memory segment is the one corresmptalthe local storage.
Since only one processor accesses a given local storagesstribt need to be cached
in a coherent way. To optimize the accesses and preventstadsang, the base address
of the local table, and the size of the locally accessed datsystematically aligned on
the cache block size. This can be ensured at allocation t#img @ memory allocator
that guaranties alignmenidsiz_memalign).

5.4. Distributing Locks and Work Structures

Another way to reduce access latencies is to distributedtislon each node in-
stead of accessing them through the global interconneniile8ly, the work_t struc-
tures can be stored locally and not in shared memaory.

This requires that each processor gets an access to tharntealonnects of the
other processors. As a consequence, this increases tresdirne to the lock in case
of a steal. However, steals are proven to remain rare (e§]3 [Therefore, following
the Work First Principle, the majority of accesses to locksi&rk_t structures are
local: it namely happens when a node extracts work to pratesguentially.

In order to limit the number of joint hardwassftware configurations to compare,
we decided to implement and run the following two configumasi

e the basic architecture, without neither data cache coberear specific DMA
support (see Figure 1 with shared values uncached), thatesoreference per-
formance measures,

e the architecture with coherent caches.

15

6. Resultsand Analysis

The simulations were done using the Cycle-Accurate Bitukate (CABA) Sys-
temC models of the SOCLIib[35] library.

We ran the experiments for two data configurations: the finstapnsists of arrays
with a total of 100,000 elements, while the second one ofyarvéth a total of only
10,000 elements. As explained in section 4.2, the numbeleofents extracted via
the extract_seq() function must bed(log(m)), wherem is the number of remaining
elements.

6.1. Comparing the Execution Times on Different Architectures

The Figures 8(a) and 8(b) show the normalized executionstifmer.t. the times
on the basic architecture) for the PAR and AWS algorithmshwitrays of 100,000
elements.

T T T 12 T T T
_S' with coherent caches —— 5 with coherent caches —+—
=B with DMAs —x— o =11 with DMAs —x— -|
© with DMAs and caches —%— g with DMAs and caches —k—
L2 1 @ !
£ ©
Q09 -2 09
5 >k 5
o e — ©08
£
é 07 Sor
c S %
So oo -
5
3 ¥ 9 L
Q05 Qos —
X
H X%
% 04 /K/) D04 o
-g 03 E 03 ek
[=
5 = 5
202 S02
5
o
8 0.1 §l<> 041
3 ¢
0 0

4 12 14 16

°

6 8 10 12 14 16
number of processors

(a) PAR (b) AWS

6 8 10
number of processors

Figure 8: Execution times on theffiirent architectures for 1 to 16 processors, normalized whet times
on the basic architecture, with 100k elements

.12 — T T 12 T T T
% with coherent caches —— < /i with coherent caches —+—
5" with DMAs —x— - [SRE] with DMAs —x— —|
o with DMAs and caches —%— g \ with DMAs and caghes —%—
Q2 L 4 L
§] \ ——
09 Qo9
5 I i i B]
© 08 08
£ g K=
=07 = 07
g 5 /\ N
-% 06 =] Sos A <
S os 3 4/ \'/
X /"’ @ 05 \/
s s x
D 04 //\ g 04
£ o N
5 = z E
= 02 Loz
3 5
8 53
Qo1 @ 01
x
@ o
0 4
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
number of processor number of processors
(@) PAR (b) AWS

Figure 9: Normalized execution times on th&elient architectures for 1 to 16 processors with 10k elements

16

The first noticeable information is that the simulation tsnabtained with AWS
and PAR are close for the 3 configurations, but a bit less aeguith AWS compared
to PAR. This can be explained by theftra due to the final synchronisation in AWS. In
fact, depending on the order of all the requests sent in tras@Q(p?)), some threads
can commute and go into idle, which introduces overhead.

Going more into details for each architecture, we noticé toherent-caches and
the architecture with DMAs and caches perform the best arehdally well (speedup
from 4 to 1.7), whereas the architectures with DMAs alonesdu® show a significant
time-saving compared to the basic architecture. Howeweg high number of proces-
sors, improvements are visible for both PAR and AWS for thihi@ecture. This can
be explained by the fact that for a high number of processioedatency on the shared
interconnect becomes high enough so that copying data inthéstorage is worth.

We can also see that the time saved is decreasing as the nomprycessors
is increasing for the two fastest configurations (Coherashes, DMA and caches).
Indeed, these configurations optimize the data accessksing faster computation.
However, this does not help improving the parallelism castthe synchronizations
overheads, which represent a higher percentage of theetatalition time with many
processors.

The Figures 9(a) and 9(b) show the execution times with ar&$0,000 elements.
Compared to the previous results, the non-regularity of A& etion times is am-
plified by the small input data size. The management of peisth in AWS is too
expensive for this input data size. This exhibits a lim@atof work stealing which is
that it cannot provide good performances at a too fine graibylaven with optimized
hardware support.

6.2. Comparing Sequential and Parallel Execution Times on a Given Architecture

Figure 10 shows the normalized execution times for eachitaatbre and for large
input data size.

If all curves globally have the same shape, we can still edtiat for both PAR and
AWS, the relative time saved thanks to the parallelism isdidgr slower architectures
(basic and then DMA): the maximal speedup obtained is alihfmtthe slowest archi-
tecture and only 4 for the faster ones. Indeed, as the totaitdon time is longer, the
parallelization overhead, remaining constant, is prapoally smaller w.r.t the total
execution time. The same happens for AWS which performs fréetd 35% worse
than PAR depending on the configuration, because of thelgiésal overhead. But
an important point to notice is that the configuration with B#/and caches is doing
significantly worse than the configuration with coherenthes; especially for AWS:
the overhead of AWS compared to PAR is around 20% for the caheaehes, while
it is around 35% for DMAs and caches, suggesting that usimgmmt caches is the
best solution to our problem. Finally, these graphs showftitathis input data size,
the optimal number of processors is around 6.

The graphics showing the same normalized execution timgstive small input
data size are given Figure 11.

Once again, these graphics reveal that AWS overhead is jiedityhen the data
size is too small. The optimal number of processors for thisii size seems to be

17

15

15
T T
par —— | par —— |
2 4 aws —x— 2 4 aws —x—
=13 = 13
S 12 % 12
é 11 f § 11
s 1 4 1
o o
© 09 T 0.9 \
2 os 2 o
o o
3 o7 3 o7
Q O
o o6 ©»n 0s
o o
£ 05 g 05
Z os S o
o o
'cg 03 \ ‘g 03 \\ g
g o2 S e S g o2 = e
3 0.4 [== s 0.1 T
0 o
0 2 4 6 8 10 12 14 16] 2 4 6 8 10 12 14 16
processor number processor number
(a) Basic architecture (b) With DMAs
15 T 15 T
a par —— | 1 par —— |
g aws —x<— E aws —x<—
= 13 = 13 X
5 12 S 12
ERRE R
2 R
o o
T 0e T 09
T o8 T o8
o o
3 o7 = o7
Q o
o o6 ©»n 06
o o
£ 05 g 05
= = —4
c 04 c 04 \(\x S——
2 os — e X 2 gy
3 T 3 1
I R R—— o
g o2 g o2
x x
D o1 D o1
[(]
o > s s s 0 1 w1 0 2 e s s 0 n 1w
processor number processor number
(c) With coherent caches (d) With DMAs and caches

Figure 10: Normalized execution times on th&elient architectures for 1 to 16 processors with 100k ele-
ments

around 4, while AWS execution times on the fastest architest(tDMAs+ caches and
coherent caches) quickly go beyond the sequential exectitie.

Finally, the last trend to notice is that the better the penfnce for an architecture,
the worst the speedup for a given number of processors, thr &R and AWS. As
previously, this is explainable by Amdahl’s law, becausard pf the application cannot
be parallelized.

Though we expected AWS to be slower than PAR, we thought tleatdtative
overhead would be smaller with a small input data size. Th@avs that improving
performances on local runs will be limited at a certain pbinthe parallelism creation
and by synchronizations. This fact motivated the next erpent.

6.3. Distributed Locks and Work Structures

On Figure 12 are presented the relative time-savings of garafiions with local
locks and distributeglork_t structures, for the basic architecture and the architectur
with coherent caches. The PAR times were obviously almaaitidal, since there
are no accesses to sharegtk_t structures, nor to the corresponding locks. First,
the time saved is not negligible, even though this must baidered as a maximum

18

execution time/sequential execution time

execution time/sequential execution time

15
14
13
12

11

09
08
07
06
05

03
02
01

15
14
13
12

11

09
08
07
06
05

03
02
o1

T
par ——

aws —<— |

15

T
par ——

- aws —<—

13

12

Iy -

09

08

07

06

05 \\
04

03 —+=

02

execution time/sequential execution time

01

4 6 8 10 12 14

processor number

(a) Basic architecture

16 0 2 4 6 8 10 12 14 16
processor number

(b) With DMAs

15

T T
par —— | . par
aws —x— 2 aws
£
= 13
5 12 \
R
2 1 =
o
< 09
T o8
15}
= o7
@
\ @ 08
EN R 2 s A
II— = I
=R \\ —_— | +—t
<}
= 03
=
g o2
x
@ o1
0
4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

processor number

(c) With coherent caches

processor number

(d) With DMAs and caches

Figure 11: Normalized execution times fofférent architectures for 1 to 16 processors with 10k elements

c 12 T T T T
] basic architecture ——
2 architecture with coherent caches —x<—
@
5 1
[
23
Sg 1
@5 N \
22 o9 AN ——
5 ™~
& |+
e \.\‘k/ e
$ 2 08
L5
oL
o5
o
25 o7
G2
P
2o
2 E
@5 06
£
c
8
s 0.5
§ 0 2 4 6 8 10 12 14 16
B

processor number

Figure 12: Normalized execution times with distributed loaks work structures, on two architectures

time-savings since we are in a case in which there are alnoosterals. Secondly, the
time saved on an architecture is increasing as the globaliéra time is decreasing.

19

This is not obvious since if for a constant time-savings,déerease of the global time
makes it greater, the parallelization involves here feweeases to the locks and work
structures, and therefore a smaller time-savings.

Besides, the time saved is relatively bigger for the basibitgcture. This can be
explained by the fact that in the presence of caches, the stnrktures will be cached
as well if they are located in shared memory; therefore, ngthese structures in the
local storages does not save any time.

6.4. Comparison of Theoretical and Practical AWS Overhead

As seen in Equation 3, the theoretical AWS overhead is quadnathe number of
processors when the processor on which work is to be stotetrarersed cyclically.
Figure 13 plots the overheadse(the sum of the cycles spent on all processors minus
the sequential time) for the synthetic application with R@fements and on the basic
architecture. On the same figure is also plotted a quadediession of the data, thus
showing that the expected theoretical results are confitmgexlir experiments.

50000

T T T T
Total execution time +

45000 1 3859+148x

40000

35000

30000

25000

20000

15000

accumulated run time in kcycle

10000

5000

0 | | | | | | | |

number of processor

Figure 13: AWS overhead behavior

6.5. Conclusion

The two approaches presented to improve performance uduwgsDor caches
follow somehow the two basic memory models existing for eamtorary MPSoCs:
hardware-managed, implicitly-addressed, coherent caches and software-managed,
explicitly-addressed local memories[27].

Our results tend to show that for AWS algorithms, the two dectiires involv-
ing caches work better than using an explicit copy alone, thatithe solution with
hardware-managed coherent caches scales better withdateathan the solution with

20

both DMAs and caches. However, our model could be accuses] bierce the local
storages cannot be accessed with a 1-cycle latency by tbegsaor.

We notice that the AWS implementation of the algorithms ang/ \&ensitive to
small synchronization changes. After investigation, wenfbthat it is due to the fact
that when a thread goes into idle (because the mutex reqisratteady taken), it
actually consumes a lot of time due to the double contextebwiequired to yield
the processor and gain it again. Using spin locks insteadutéxes could lower this
sensitivity. The results also show that AWS is more sensttivdata size variations
than a static parallelization, therefore recommendingsto AWS when the input data
size is large enough.

7. Performances on Two Real Applications

We used two applications for our study: a Luma and Chroma BteatpNoise
Reduction (TNR) application, and the computation and dngvaf pictures from the
Mandelbrot set.

We chose these applications because we want to cover boshoétige spectrum
regarding application workload regularity.

7.1. TNR Overview

The TNR application is an image filtering program. It consaseveral successive
computations on a frame: temporal noise reduction, spatisdle reduction, motion
detection and fading. Each computation is an iteration bthalpixels of the image
via a double for loop, which represents a high level of patialin. The frame size in
the sequence used is 714x244.

The application is priori very regular since the data is split into small blocks and
the number of computations performed almost doesffédirom one block to another.

We ran the experiments on a varying number of processors/¢eet 1 and 16)
for the decoding of 4 or 6 frames. Since the computations @napplication were
time-consuming, we chose the following configurations:

¢ the basic architecture for PAR (Basic PAR)
¢ the basic architecture for AWS (Basic AWS)

e the architecture with caches and distributed locks and wtitlctures for AWS
(Enhanced AWS)

7.2. TNR Results

The detailed results for the decoding of 6 frames on 4 pracesse presented
in Table 7.2. Comparing the columns for configurations B&A& and Basic AWS
shows that the execution times are very close between PARWSR] and that none of
them is performing significantly better than the other.

The performance improvement due to caches and distriboitid Is approximately
15% per frame, with a data cache hit ratio greater than 99%acin the time saved is

21

lower than with our test-case application since here thererany more computations
for one transaction or lock access.

The broad results for 1, 2, 4, 8 and 16 processors are presEigere 14. This
graph shows the average decoding time for 4 frames. As withodegsors, AWS
and PAR perform always similarly, but this graph allows td puevidence that the
Enhanced AWS configuration is morfective when the number of processors is high.
This can be explained by the fact that as the number of proceswreases, the global
latency increases too, so exploiting locality with cached Bbcal locks gives better
results. Furthermore, the number of locks accesses gro@gat), so distributing the
locks when the number of processors is high reduces coatenti

Frame Processing Time on
Basic PAR | Basic AWS | Enhanced AWS
1 6512 6514 5559
2 6 527 6518 5571
3 6529 6531 5576
4 6532 6 531 5578
5 6529 6 527 5571
6 6 525 6523 5567

Table 2: TNR Execution Times (in KCycles)

T T
Basic AWS

Basic PAR mmmmm |
Enhanced AWS =

0.8

0.6

0.4

Execution Time Normalized w.r.t. Basic AWS

0.2

1 2 4 8 16
Number of Processors

Figure 14: TNR Execution Time for the decoding of 4 frames, Ndized w.r.t. Basic AWS

This shows that for real fine-grained regular applicatiovisich are the worst-case
for AWS algorithms, the overhead of AWS is very limited and #atS still gives very
acceptable results.

7.3. Mandelbrot Overview

The Mandelbrot application consists of creating a sequefipietures representing
a zoom on some point located on the border of the Mandelbtpirserder to create

22

an Motion-Jpeg video output. The computation consists etkimg if z,,1 = 22 + ¢
converges to a fixed point fare C andz, = 0. This computation is very local, takes
place entirely in the data cache, and benefits from the pegtiéelprovided by a write
buffer in the write-through cache. As opposed to TNR, it cannatvékk parallelizeda
priori since we don’t know in advance for which pixels the compotaivill quickly
diverge or at the opposite converge. For the simulation,amethhe computation of 4
frames (represented Figure 15) on 4 processors, and forfohese frames, we ran the
computation on 1 to 16 processors. The parameters of thecafph are presented in
Table 7.3.

(a) frame 1 (b) frame 2

(c) frame 3 (d) frame 4

Figure 15: Frames Computed in Simulation

Image size 800x 600

Max iterations up to 5000 for frame 4

Center coordinates (-0.74364421961;03182604688)
Zoom relative to image 1 {1,5.64,1.02x 1(°,4.53 x 1P}

Table 3: Parameters of the Frame Computations

The maximum number of iterations is chosen so that the imageahgood final
rendering, i.e. high enough so that all the points convergould be colored (and not

23

considered divergent).
We ran the frame computations on the basic architectureXBr&hd AWS.

7.4. Mandelbrot Results
The computation results for 4 processors are shown in tathle 7

Frame | Processing| Processing| Speedup| Number | % of
time with | time with | relative | of steals| pixels
PAR AWS to PAR stolen

1 5,212 2,958 1.76 34 29.8

2 11,995 6,139 1.95 49 30.7

3 20,549 13,706 1.50 19 15.0

4 59,269 25,591 231 42 18.9

Table 4: Mandelbrot Results on 4 processors (times in Kcycles

These results exhibit that AWS outperforms PAR on this appbo, with a
speedup ranging fromAto 231. Even if the number of frames is too small to allow a
generalisation, this already proves that AWS can do bettar #hstatic parallelization
in the case of unbalanced parallel computations.

In addition to the computation of the frames in AWS, we outputdach frame an
image which identifies the processor having computed aqodati pixel (Figure 16).
This allows to visualize the repartition of the work on th&elient processors in this
particular cases, and how the stealing mechanism impagetotnputation.

Finally, Figure 17 shows the computation times of frame #4 om 16 processors.
This exhibits that the time saved by AWS dynamic load balapésnnot dependant
from the number of processors as there is approximatelytarfador 2, 4, 8 and 16
processors.

8. Summary and Future Work

In this paper, we first focused on the problem of MPSoC archite design choices
for AWS algorithms. We showed, using a synthetic applicatiord thanks to the capa-
bility of adaptation of the hardware and low level softwaseatspecification template
provided by the codesign approaches, that important pagioce improvements could
be reached for both AWS and PAR strategies. We then focuseeooverhead of
AWS algorithms compared to statically scheduled paraligb@ihms, and put in evi-
dence that the cost of dynamic load balancing was not neigigihen the input data
size was too small; we also found that distributing data okdowhich are mainly ac-
cessed locally can drastically improve performances. Iinge applied these results
on real applications, and showed that AWS could lead to afsigni gain in case of
applications with a non uniform workload, while its overdeamained low for appli-
cations with a uniform workload.

The architecture model considered in this work, thoughdpegalistic for MPSoCs,
remains simple and does not take into account the posgibfltiaving higher levels of

24

(a) frame 1 (b) frame 2

|
(c) frame 3 (d) frame 4

Figure 16: Visual representation of the work on the proceséar the Mandelbrot Frames. Legenill
Proc. 0, Proc. 1" Proc. 2 Proc. 3.

18000

AWS ——
16000 \ PAR
14000 \
12000
o
i
E 10000
-
S
2 8000
¢
w
6000
4000
2000
0
12 4 8 16

Number of Processors

Figure 17: Execution Time for the computation Mandelbrot fraite

memory angbr interconnect hierarchy, or several processors locatetl@same local
interconnect. We also limited our study to 16 processo,dgh in the near future,

25

architectures with many more processors are conceivable.

Despite these limitations, and because we think that the AWfgramming
paradigm can be very useful including in the embedded domarbelieve our work
to be important as a first study of codesign for this class gbrithms on MPSoC
architectures.

Future work includes the evaluation of the influence of theheaproperties (size
and number of words per line) and of the use of spin locks @ust# mutex locks.
We also aim at applying lock-free parallel algorithms[38] & AWS in order to take
advantage of the properties of this type of algorithms, evkéeping the féiciency of
AWS parallelization.

References

[1] A. Duller, D. Towner, G. Panesar, A. Gray, W. Robbins,qairay technology:
The tool’s story, in: Proceedings of the conference on Desigitomation and
Test in Europe, Munich, Germany, 2005, pp. 106-111.

[2] D. Wentzldt, P. Grifin, H. Hofmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. B. lll, A. Agarwal, On-chip interconneatiarchitecture of the
tile processor, IEEE Micro 27 (5) (2007) 15-31.

[3] S. Edwards, L. Lavagno, E. A. Lee, A. Sangiovanni-Vintedi Design of em-
bedded systems: Formal models, validation, and synthBsix;. of the IEEE
85 (3) (1997) 366—390.

[4] G. Kahn, The semantics of a simple language for paratleiamming, in: Proc.
of Information Processing 74, Stockolm, Sweden, 1974, pp-475.

[5] M. Duranton, The challenges for high performance emkeddsystems, in: Pro-
ceedings of the 9th Euromicro Conference on Digital Systesidh., Dubrovnik,
Croatia, 2006, pp. 3—7, keynote address.

[6] A. Agbaria, D.-I. Kang, K. Singh, Lmpi: Mpi for heterogenus embedded dis-
tributed systems, in: Proceedings of the 12th InternatiGoaference on Parallel
and Distributed Systems, IEEE, Minneapolis, MN, 2006, [9:-86.

[7] P. Paulin, C. Pilkington, E. Bensoudane, Stepnp: A sysievel exploration plat-
form for network processors, IEEE Design & Test of Computed96) (2002)
17-26.

[8] J. Oh, S. W. Kim, C. Kim, Openmp and compilation issue inbexdded appli-
cations, in: Proceedings of the International Workshop per@P Applications
and Tools, Vol. 2716 of Lecture Notes in Computer Scienceing§pr, Toronto,
Canada, 2003, pp. 109-121.

[9] H. Blume, J. von Livonius, L. Rotenberg, T. G. Noll, H. Bat, J. Brakensiek,
Openmp-based parallelization on an mpcore multiprocgdstiorm - a perfor-
mance and power analysis, Journal of Systems Architectanebedded Systems
Design 54 (11) (2008) 1019-1029.

26

[10] D. Hommais, F. Pétrot, I. Augé, A practical tool box foisgem level communi-
cation synthesis, in: Proceedings of the ninth internafiggmposium on Hard-
warég'software codesign, ACM, Copenhagen, Denmark, 2001, pp3i8—

[11] E. Faure, A. Greiner, D. Genius, A generic hardysoéiware communication
mechanism for multi-processor system on chip, targetitlggctenmunication ap-
plications, in: Proceedings of the 2nd International Whdgson Reconfigurable
Communication-centric Systems-on-Chip, Montpellierarkare, 2006, pp. 237-
242,

[12] M. Gries, Methods for evaluating and covering the dessgace during early
design development, Integration, the VLSI Journal 38 (2p@® 131-183.

[13] A. A. Jerraya, W. Wolf, Hardwaysoftware interface codesign for embedded sys-
tems, Computer 38 (2) (2005) 63—69.

[14] N. S. Arora, R. D. Blumofe, C. G. Plaxton, Thread sché&udylfor multipro-
grammed multiprocessors., Theory of Computing Systems2342001) 115-
144.

[15] M. A. Bender, M. O. Rabin, Online scheduling of parajpebgrams on heteroge-
neous systems with applications to cilk, Theory of Compmusiystems 35 (2002)
2002.

[16] J. Bernard, J.-L. Roch, D. Traoré, Processor-obligiparallel stream computa-
tions, in: PDP, IEEE Computer Society, 2008, pp. 72—76.

[17] E. Mohr, D. A. Kranz, R. H. Halstead, Jr., Lazy task cieat A technique for
increasing the granularity of parallel programs, IEEE Bations on Parallel and
Distributed Systems 2 (3) (1991) 264—280.

[18] M. Frigo, C. E. Leiserson, K. H. Randall, The implemeiaa of the cilk-5 mul-
tithreaded language, in: Programming Language Design ampdementation,
1998, pp. 212-223.

[19] D. P. Papadopoulos, Hood: A user-level thread libramy rhultiprogramming
multiprocessors, Ph.D. thesis, The University of Texasustih (Sep. 21 1998).

[20] D. Traoré, J.-L. Roch, N. Maillard, T. Gautier, J. BemhaDeque-free work-
optimal parallel stl algorithms, in: Euro-Par 2008 Pataieocessing, Lecture
Notes in Computer Science, 2008, pp. 887-897.

[21] A. Matache, S. Dolinar, F. Pollara, Stopping rules farbb decoders, in: JPL
TMO Progress Report, 2000, pp. 42-142.

[22] M. Mattavelli, S. Brunetton, D. Mlynek, Computatiorgdaceful degradation for
video sequence decoding, in: Proceedings of the IntemmtiGonference on
Image Processing, 1997, pp. 330-333.

[23] K. Agrawal, C. E. Leiserson, Y. He, W.-J. Hsu, Adaptiverk-stealing with par-
allelism feedback, ACM Transactions on Computer System8R6

27

[24] T. Hiraishi, M. Yasugi, S. Umatani, T. Yuasa, Backtrankbased load balancing,
SIGPLAN Not. 44 (4) (2009) 55-64.

[25] S. Chen, P. B. Gibbons, M. Kozuch, V. Liakovitis, A. Aiteaki, G. E. Blelloch,
B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, C. Wilfersdd¢cheduling threads
for constructive cache sharing on CMPs, in: Proceedinghefl9th Annual
ACM Symposium on Parallel Algorithms and Architectures, M®ress, San
Diego, 2007, pp. 105-115.

[26] O. Certner, Z. Li, P. Palatin, O. Temam, F. Arzel, N. Ora@ practical ap-
proach for reconciling high and predictable performancaadn-regular parallel
programs, in: Proceedings of the conference on Designpaiion and test in
Europe, Munich, Germany, 2008, pp. 740-745.

[27] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozstian, M. Horowitz,
C. Kozyrakis, Comparing memory systems for chip multipesoegs, in: 34th In-
ternational Symposium on Computer Architecture, ACM, Sagb, California,
2007, pp. 358—-368.

[28] M. Chu, R. Ravindran, S. Mahlke, Data access partitigrfor fine-grain paral-
lelism on multicore architectures, in: Proceedings of biAnnual IEEFACM
International Symposium on Microarchitecture, 2007, §2-380.

[29] B. Saglam, V. Mooney, Ill, System-on-a-chip processygmchronization support
in hardware, in: Proceedings of the conference on Desigopaation and test in
Europe, IEEE, Munich, Germany, 2001, pp. 633—641.

[30] A. Sheibanyrad, A. Greiner, I. Miro-Panades, Multisironous and fully asyn-
chronous nocs for gals architectures, IEEE Design & Testah@uters 25 (6)
(2008) 572-580.

[31] P. R. Panda, N. D. Dutt, A. Nicolau,fficient utilization of scratch-pad mem-
ory in embedded processor applications, in: Proceedingiseo1 997 European
conference on Design and Test, Paris, France, 1997, pp. 7-11

[32] F. Pétrot, P. Gomez, Lightweight implementation of fiesix threads api for
an on-chip mips multiprocessor with vci interconnect, inrod® of the Design
Automation and Test in Europe, Embedded Software Forum,idhy@ermany,
2003, pp. 10182-10187.

[33] P. Feautrier, Dataflow analysis of array and scalaregfees, International Jour-
nal of Parallel Programming 20 (1) (1991) 23-53.

[34] P. Guironnet de Massas, F. Pétrot, Comparison of memvatg policies for noc
based multicore cache coherent systems, in: Proceedinijje afonference on
Design, automation and test in Europe, Munich, Germany320p. 997-1002.

[35] The Soclib Consortium, Soclib: an open platform fotwél prototyping of multi-
processors system on chip, Tech. rep., [Online]. Avaitaht&p;/www.soclib.fr
(2008).

28

[36] K. Fraser, T. Harris, Concurrent programming withadks, ACM Transactions
on Computer Systems 25.

[37] M. Herlihy, Wait-free synchronization, ACM Transamtis on Programming Lan-
guages and Systems 13 (1991) 124-149.

29

