
Twelve years of B Teaching in an engineer

school: from a correct by design approach to

analysis techniques and tools.

Marie-Laure Potet

Vérimag, centre équation, 2 avenue de Vignate – F-38610 Gières,
Marie-Laure.Potet@imag.fr

Abstract. Twelve years ago I introduced a B course at Ensimag, a well-
known french Mathematics and Computer Science engineer school. In this paper
I describe this experiment and the evolution of the contents of this course. In
particular I present a set of fundamental concepts that can be easily illustrated
with the help of the B framework. I also present some unpublished examples and
theoretical results.

1 Introduction

Twelve years ago I introduced a B course at Ensimag, a well-known french
Mathematics and Computer Science engineer school. In company of Didier Bert,
I also gave lectures to the ” Ecole des jeunes chercheurs en programmation ”,
dedicated to PhD students in the domain of programming1.

During this long period, these courses had been subject to many evolutions,
due first to my better understanding and knowledge of the domain and, more
important, to my perception of notions that students are able to acquire and
master and finally of notions that are intrinsically very challenging to under-
stand. Furthermore, during the last two decades, the context had changed :
formal techniques have acquired a new status in industry and in the every day
life of programmers. Due to safety and security constraints, a lot of tools and
approaches have been developed, allowing to verify some dedicated classes of
program properties. Then teaching formal methods, and more importantly the
underlying concepts, are no more considered as an esoteric idea. Due to this
evolutive context, the Ensimag B lectures had been subject to some evolutions,
that could be described in the form of three periods:

– First period: B studied as a whole method from specification to correct code
(correctness by construct).

– Second period: B used as a well-adapted support to introduce a set of fun-
damental aspects of programming science.

– Next period: B will be presented as a part of existing techniques for program
analysis for a larger public.

1 This school is supported by the GPL french working group.

Despite of these changes, I am convinced that the B method offers a very nice
and solid framework to present a set of interesting concepts, from methodological
aspects to theoretical foundations of programming. Furthermore, the existence of
robust tools taking into account the global process from abstract specifications to
executable code is a very attractive argument with respect to students. During
these twelve years I have compiled some experiences, practical exercises and
theoretical results which will be presented here.

In section 2, I present the first period of the Ensimag B teaching, with an
evaluation of how some notions have been introduced with which efficiency in
regard of students. I also present small and well-targeted modelling examples.
In section 3 I introduce some semantical aspects that illustrate the underly-
ing concepts relative to programming reasoning. I conclude in describing a new
cursus relative to static analysis techniques, including the weakest precondition
approach.

2 The B method studied as a whole

The Ensimag course dedicated to the formal aspects of programming takes place
in the second year of the curriculum, corresponding to the first year of a Master
degree. This course was proposed as an optional cursus, attracting students
interested by theoretical aspects of computer science.

The audience is composed of future engineers having the taste for techni-
cal and fundamental aspects and with some abilities with abstraction, due to a
solid background in Mathematics (issued from the very French cursus “classes
préparatoires aux grandes écoles”). That means that our students have no par-
ticular difficulty with mathematical notions such as set theory. More important,
they are also able to manipulate several levels of formalization such as syntax, se-
mantics and reasoning about semantics, without too difficulty. Finally Ensimag
students have some background in logic, compiling (realization of a small object
oriented language compiler) and rigorous algorithmics.

2.1 The objectives

The first version of the B method course has been proposed as the successor
of lectures relative to formal specifications, in which many approaches was pre-
sented (algebraic specifications, model based specifications, refinement notions
as in VDM and Z, . . .). At this stage the choice was to focus on the B method
which integrates the main steps of formal development into a single framework.
Furthermore, due to the fact that this method was supported by robust tools,
the challenge was to conciliate practice with a fine understanding of theoretical
concepts.

During this period, despite the fact that the aim was not to produce B
specialists, I followed the top-down approach preconized by the B-method in [1].
The aim was to initiate students into formalization and modelling activities and
into the top-down “correct by design” paradigm. Then the ambitious aim of this
course recovers three objectives, according to students skills:

– ability to formalize behaviours and properties with the help of abstract lan-
guages;

– ability to understand the semantics of programming languages and ability
to reason about programs in a formal way;

– ability to understand the theoretical concepts underlying correctness by de-
sign principle, for real programming language.

I list below the different concepts that are tackled and their understanding
by students.

2.2 Modelling aspects

This part concerns the ability of students to:
– state properties with the set theory notations
– describe behaviours with the generalized substitution language (GS)
– apply weakest precondition calculus (WP)
– understand proof obligations relative to invariant properties (PO)

Notions Students ability
use of set theory not a problem

use of GS notation difficulty with non-determinism
WP calculus not really a problem

PO understanding not easy to be exact
and proof argumentation with logical reasoning

Let here some examples illustrating data structure modelling, non determinism
and properties.

Examples Used notions
a memory allocator non-determinism
a dynamic class loader formalisation of trees to specify a class hierarchy
a RBAC security policy specification based on relations and

search of inductive invariants
a simple elevator how expected properties can be formalized with the

help of type properties, invariant and dynamic behaviours

The allocator and the RBAC examples are given below. The dynamic class
loader is described in [8] and the lift example is extracted from the course of
EJCP072.

The memory allocator example. Let MEM be a given set, null a dis-
tinguished constant of this set and used ⊆ MEM , the set of addresses that
have been allocated. This subset is initialized with the set {null}. Here is the
specification of the allocator operation:

2 http://www-lsr.imag.fr/users/Didier.Bert/enseignement.html

r ←− allocate =
choice

any v where v ∈MEM − used

then used := used ∪ {v} || r := v

end

or r := null

end

In this example two forms of non-determinism are used: the choice substi-
tution corresponds to the fact that the allocator can, or not, supply a memory
cell. The second form of no-determinism (substitution any) corresponds to the
fact that the address that is returned is chosen by the allocator. Then the user
of such a component has a priori no information about the behaviour of the
allocator. In particular he systematically must test if the returned value is null

or not. This example illustrates non-determinism.

The RBAC security policy example. We consider below a general model
for role-based security policies in which roles are attached to subjects and per-
missions are attached to roles. As in RBAC[5], some roles can be declared in
conflict. In this case a safety invariant states that a subject can not own two
roles in conflict. This example illustrates how invariant properties could be en-
forced during the proof process in order to obtain an inductive invariant. Here
is the declaration part of this model.

machine RBAC

sets

SUBJECT, ROLE, PERMISSION

variables

subject2role, role2permission, conflict

invariant

subject2role ∈ SUBJECT ↔ ROLE ∧
role2permission ∈ ROLE ↔ PERMISSION ∧
conflict ∈ ROLE ↔ ROLE ∧
subject2role ∩ (subject2role ; conflict)= ∅

end

The last part of this invariant states that nobody can own two roles which
are in conflict. Now we consider the operation AddRole that adds a new role r

for a given subject s.

AddRole(r, s) =
pre r ∈ ROLE ∧ s ∈ SUBJECT ∧ r 6∈ conflict[subject2role[{s}]]
then subject2role := subject2role ∪ {s 7→ r}
end

In order to establish the invariant preservation we have to prove:

(subject2role ∪ {s 7→ r}) ∩ ((subject2role ∪ {s 7→ r}) ; conflict) = ∅

under the hypothesis subject2role∩ (subject2role ; conflict) = ∅ (the invariant
initially holds) and r 6∈ conflict[subject2role[{s}]] (the precondition). This
proof obligation can be split into for cases:

{s 7→ r} ∩ (subject2role ; conflict) = ∅ comes from the precondition

{s 7→ r} ∩ ({s 7→ r} ; conflict) = ∅ missing hypothesis (irreflexivity)
subject2role ∩ (subject2role ; conflict) = ∅ comes from the invariant hypothesis

subject2role ∩ ({s 7→ r} ; conflict) = ∅ missing hypothesis (symmetry)

For the second case the invariant must be enforced by the irreflexivity prop-
erty of the relation conflict (conflict ∩ id(ROLE) = ∅). For the last case, the
symmetry of conflict have to be added (conflict−1 = conflict). With these two
further properties the proof obligation attached to the operation AddRole can
now be proved.

Finally an interesting exercise, in term of modelling and properties state-
ment, is to add hierarchical roles (a tree) and the property that this hierarchy
is compatible with the relation conflict (it is not possible to inherit of two roles
which are in conflict).

2.3 Formal development process

In this part we discuss how the notions relative to formal development process
are understood by our students. We focus on the following notions:

– notion of refinement (its intuitive definition and its proof obligations)
– refinement properties like transitivity and monotonicity
– implementation constraints and proof obligations (bounded integers and

overflow detection for instance)
– practical aspects (practice of the AtelierB : firstly with demos and after

through exercises.)

Notions Students understanding
refinement principle familiar with data representation

Refinement PO intrinsically hard to appropriate
Refinement properties very very abstract

practical work difficulties due to syntactic restrictions

Refinement proof obligations are intrinsically hard to integrate. Let S be
an abstract substitution relative to variables x, T be a concrete substitution
relative to variables y and let L be the refinement relationship between x and y.
Refinement proof obligations can be presented using two forms:

First form L ∧ trm(S)⇒ [T]¬[S]¬L
Second form L ∧ trm(S) ∧ prd(T)⇒ trm(T) ∧ ∃x′(prd(S) ∧ [x, y := x′, y′]L)

The first form is a bit disturbing for students due to the double negation.
The second form is a little bit intuitive but requires to introduce trm and prd

predicates which are again new abstract notions to integrate. I now systemati-
cally use the first form because it does not require new concepts. Furthermore
the following intuitive formulation can be used: for any concrete behaviour (T)
it is not true that any abstract behaviour (S) does not establish L. Then, for each
concrete behaviour, there exists at least one abstract behaviour that establishes
L.

Finally the development of examples, with the help of a robust tool such
as the AtelierB, is very interesting because students can precisely understand
the correctness by design approach. Furthermore they formalize informal rea-
sonings used in algorithmics (such as invariant and variant of a while statement
for instance). Furthermore practical exercises are generally motivating, even so
students are generally disturbed by the semi-decidability of proofs. Here are
examples we used:

Examples Notions that are used
gcd program proofs of iteration and absence of overflows
element research in an array a sophisticated iteration invariant
modelling and controlling a lock simple data refinement
a booking service example a global development

The three first examples are available at www-verimag.imag.fr/~potet/Page-
B. They are tailored to be used in practical labs: components are partially spec-
ified and, if students state the right formulae, proofs are automatically estab-
lished3. The last example is developed in several documents (in french) (web
pages of Didier Bert or Marie-Laure Potet). It is also used to illustrate proof
obligations relative to iteration and how these proof obligations depend on the
initial specification. We develop this part of this example below.

Let SEAT be the set 1..maxseat and let taken be the subset of SEAT

that has been already assigned. The operation booking can be specified in the
following way:

place←− booking =
pre card(taken) 6= maxseat

then

any p where p ∈ SEAT − taken

then taken := taken ∪ {p} || place := p

end

end

At the implementation level we represent the set taken by an array tab (tab ∈
1..maxseat→ BOOL ∧ tab−1[{TRUE}] = taken) and the booking operation
is implemented in the following way:

3 depending on the way the formula is written.

place←− booking =
var ind in

ind := 1;
while tab(ind) = TRUE do

ind := ind + 1;
invariant . . .
variant maxseat− ind

end;
tab(ind) := TRUE ;
place := ind ;

end

The invariant part has to be completed by the formula:

ind ∈ 1..maxseat ∧ FALSE ∈ tab[ind..maxseat]

that means that a free seat appears at the current index (ind) or in the rest
of tab. Now if we modify the specification in order to choose the smaller free
number the where part of the specification becomes: p = min(SEAT − taken).
Then the invariant of the implementation has to be enforced in order to prove
that we always choose the seat with the minimal number:

ind ∈ 1..maxseat ∧ tab[1..ind− 1] ⊆ {TRUE}

2.4 Conclusion of the first period

In a top-down design process (from abstract models until implementations) stu-
dents become comfortable when implementations are tackled. They rediscover
known notions and a formalization of their usual practice.

Furthermore, it seems difficult for them to integrate in the same time many
theoretical notions such as a specification language, the weakest precondition
calculus and the refinement theory, in parallel of the methodological aspects of
formal development process. Then I choose to focus first on the proof of program
approach, using the substitution language in its whole (without distinction be-
tween generalized substitutions allowed at the different level of components). In
this way students practice proof of programs, learn how to state invariant prop-
erties and discover new notions as non-determinism. Practical exercises start
with classical programs with iteration (as gcd) to go towards specifications. Fi-
nally the refinement theory is introduced. This approach has proved to be more
attractive for students, because it starts from their background and knowledge.

3 B as a support to illustrate underlying concepts of

formal reasoning about programs

The B method is a well-adapted framework to visit some important concepts, like
semantics definition and properties underlying proofs of programs. Refinement
is then introduced as an extension of this approach. In this part the aim is that

students understand some fine aspects of semantics definition and are able to
reason about it. We present here three aspects: an extension of the B weakest
precondition calculus taking into account a new feature (abnormally exit through
exceptions), the proof of the invariant preservation by operation call, that is
the base on incremental development and, finally, the theoretical framework
underlying B refinement proof obligations.

3.1 Weakest precondition for exception features

Here the aim is to extend the B language by exceptions, which is an already so-
phisticated feature. Some results presented here are borrowed from Lilian Burdy
work [2]. The original part is the proof of the correctness of this extension, based
on a mapping between programs with exception and without exception. In this
way students can discover that it is possible to formally reason at the semantics
level. We describe below this extension.

We extend the B language with the possibility to declare exceptions. We also
extend the generalized substitution language in the following way:

raise e raising exception e

begin S a block with exception handling
catch when e1 then S1

. . . the handling part
when en then Sn with i 6= j ⇒ ei 6= ej

end

The new weakest precondition calculus wpe(S, F). Let EXC be the set of
exception names with a distinguished constant no (no ∈ EXC) that corresponds
to normal behaviours. The weakest precondition calculus is now denoted by
wpe(S, F) with F a function relating an exceptional exit with a postcondition,
i.e.

F ∈ EXC →p Predicate

This calculus can be defined in the following way:

wpe(skip, F) F (no)
wpe(x := v, F) [x := v] F (no)
wpe(raise e, F) F (e)
wpe(P =⇒ S, F) P ⇒ wpe(S, F)
wpe(S1 [] S2, F) wpe(S1, F) ∧ wpe(S2, F)
wpe(S1 ; S2, F) wpe(S1, F ⊳− {no 7→ wpe(S2, F)})

where ⊳− denotes the overriding B operator. In the case of sequencing, if S1

stops abnormally with an exception e the expected postcondition is F (e) because
S2 is not executed. Otherwise S1 must establish the precondition issued from
the execution of S2, as in classical B. The weakest precondition of blocks with
handling is defined in the following way:

wpe(
begin S wpe(S,

catch when e1 then S1 F ⊳− {e1 7→ wpe(S1, F),
. ,
when en then Sn en 7→ wpe(Sn, F)}

end, F))

An example. Let here the following program for which we want to establish
the postcondition F1 = {no 7→ x = 2, stop 7→ x = 1}, meaning that the post-
condition x = 2 is expected when the program terminates normally and the
postcondition x = 1 is expected when the exception stop is raised:

begin x := 1; if y > 0 then raise stop end ; x := 2 end

and here is now the same program enriched by the weakest precondition calculus
(must be read from the bottom to the top):

begin

(F4) {(y > 0⇒ true) ∧ (¬(y > 0)⇒ true) }
x := 1;
(F3) {no 7→ (y > 0⇒ x = 1) ∧ (¬(y > 0)⇒ true), stop 7→ x = 1}
if y > 0 then raise stop end ;

(F2) {no 7→ true, stop 7→ x = 1}
x := 2
(F1) {no 7→ x = 2, stop 7→ x = 1}

end

with:

Formula Its definition
F1 F1(no) = (x = 2), F1(stop) = (x = 1)
F2 F2(no) = [x := 2]F1(no) = true, F2(stop) = F1(stop)
F3 F3(no) = F2(stop) if y > 0, F3(no) = F2(no) if ¬(y > 0),

F3(stop) = F2(stop)
F4 F4 = [x := 1]F3(no) = true

Semantics Correctness. In this part we show how to establish the correct-
ness of the wpe definition with respect to the classical B weakest precondition
calculus, using a systematic transformation between programs with exceptions
and without exception. To do that we add a new variable exc (exc ∈ EXC).
Let C(S) be this transformation defined in the following way:

C(x := v) =̂ x := v ; exc := no

C(skip) =̂ exc := no

C(raise e) =̂ exc := e

C(S1 ; S2) =̂ C(S1) ; if exc = no then C(S2) end

and:

C(begin S catch when e1 then S1 . . . when en then Sn end) =̂
C(S);
if exc 6= no then choice exc = e1 =⇒ exc := no ; C(S1)

or . . .or exc = en =⇒ exc := no ; C(Sn) end

end

Now the correctness of the wpe calculus can be established using the following
equivalence:

wpe(S, F) ⇔ [C(S)]
∧

ei∈dom(F)(exc = ei ⇒ F (ei))

An interesting exercise (not developed here) is to prove the correctness of
the raise and the catch block substitutions. Extending the weakest precondition
calculus for new features is an attractive exercise for students because they have
to build a formal definition. Furthermore, in this case, their solution can be
proved to be correct, thanks to the natural definition of the function C.

3.2 Semantics of operation calling

In this part we formally define operation calls and several modes of parameter
passing. In particular we show that by-reference parameters are not adapted for
verification, because invariant properties are not preserved. Results presented
here are extracted from [7, 3].

Operation call definition. Let r ← op(p) =̂ pre P then S end be the
definition of the operation op and let v ← op(e) be a call of op. In B, incremental
development is based on the encapsulation principle. That means that variables
v are disjointed from variables of the component in which op is defined. We define
here two parameter-passing modes: by copy (by value) mode or by reference (by
address) mode.
By copy semantics:

pre [p := e]P then var p, r then p := e ; S; v := r end end

By reference semantics:

pre [p := e]P then [p, r := e, v]S end

Semantics by substitution corresponds to by-reference parameters when the
effective parameters reduce to simple variables (as v in B). If any expressions
are admitted, substitution corresponds to the by name mode passing. For the
definition of substitution into substitution see [1].

In the B method, the semantics of operation calls uses the definition associ-
ated to the by-reference mode although it is a by-copy mode. This is due to the
fact that operation call semantics is only defined at the level of abstract machine
components in which sequentiality and while substitutions are prohibited. In the
general case these two modes of parameters differ.

An example. For instance let consider the definition op(y)=̂ pre even(y) then

x:=x+1 ; x:=x+y+1 end and the piece of code x:=0 ; op(x) ; print(x). The by-
reference semantics produces the code x:=0 ; x:=x+1 ; x:=x+x+1 ; print(x)
that prints the value 3. On the contrary the by-copy semantics produces the
code x:=0 ; var y in y:=x ; x:=x+1 ; x:=x+y+1 end ; print(x) that prints the
value 2.

Invariant preservation by parameter passing. The by-reference parameter
does not preserve invariant. For instance we can establish that the operation op

above preserves the invariant even(x). But, as shown above, the call op(x) does
not preserves this property (3 is not an even value). On the contrary the by-copy
semantics has good properties for verification: invariants are preserved by calls.

Theorem 1 Invariant preservation by call
Let r ← op(p) =̂ pre P then S endbe the definition of an operation op and

let v ← op(e)be an operation call, as defined before. Let I be a property on x, the
set of variables of the component in which op is defined (x ∩ v = ∅). Then:

∀r, p (I ∧ P ⇒ [S]I)
⇒

(I ∧ [p := e]P ⇒ [var p, r in p := e ; S ; v := r end]I)

On one hand, by monotonicity of ⇒ with respect to substitution, we can
derive from I ∧ P ⇒ [S]I the formula: [p := e]I ∧ [p := e]P ⇒ [p := e][S]I (a).
On the other hand the conclusion reduces to I ∧ [p := e]P ⇒ ∀ p, r ([p :=
e][S][v := r]I). Because v does not appear in I (the encapsulation principle)
then the right part reduces to [p := e][S]I. Then the conclusion of the rule is
obtained from (a) because p is not free in I. Similar results can be established for
refinement, i.e. refinement proofs established at the level of operation definition
are preserved by by-copy operation call semantics. This property is harder to be
established (see [7] for a proof).

As before, formalization of parameter-passing modes is an attractive exercise
for students. On the contrary, property as invariant preservation by operation
calls is a less natural question for students. They generally do not really un-
derstand why such properties are important, even so we show some incremental
constructions, as the clause includes for instance.

3.3 Refinement theory

The B method gives a syntactic notion of refinement in term of proof obligations.
It is interesting to give a more semantic definition. Then as in the classical
theory of refinement developed by Willem-Paul de Roever and Kai Engelhardt
[4], refinement notion gives this semantic point of view and proofs are conducted
by the help of simulations.

Although the notions that will be introduced here are a little bit complex they
are interesting according to several reasons. First they give a semantic definition
of refinement in term of component substitution principle. Second they introduce
how this definition can be implemented in several operational ways. And finally
they allow to illustrate the classical notions of correctness and completeness of
an operational procedure with respect to a semantic definition.

Semantic definition of refinement. Let M be a component refined by an-
other component R. As defined in the B-Book (chapter 11, p 511) a substitution
U is an external substitution for M and R if it contains no reference to the
variables of components M and R (vM or vR). Internal variables can only be
consulted or modified through operation calls. We denote by UM and UR the
generalized substitutions obtained by U in replacing operation calls respectively
by their definition in M and R. The definition below is issued from the B-Book
[1].

Definition 1 Semantic characterization of data refinement.
M can be substituted by R if components M and R propose the same set of

operations with the same interface and, for each external substitution U for M

and R, we have any vM in initM ; UM end ⊑ any vR in initR ; UR

end.

In this definition internal variables are encapsulated by the any substitution
and initialized by the init substitution of M and R component.

Simulations and proof obligations. Definition 1 characterizes refinement as
a substitution principle but gives no manner to establish refinements because
all external substitutions have to be considered. Then, as in B, simulations are
established with the help of a refinement relation α (the gluing invariant) and
describe commutations of the following diagram:

AS

CS
C

AA

C

α α
α α−1−1

In this diagram, AS and CS correspond to the before-after relation of the
abstract and concrete substitutions4. For simulations can be defined (named L,
L−1, U and U−1), depending how the diagram commutes:

4 Termination condition are not considered here.

Simulations (notation X) Proof obligations (notation ⊑X
α)

L-simulation (forward/downward simulation) α−1 ; CS ⊆ AS ; α−1

L−1-simulation (backward/upward simulation) CS ; α ⊆ α ; AS

U -simulation α−1 ; CS ; α ⊆ AS

U−1-simulation CS ⊆ α ; AS ; α−1

Two important properties are attached to simulations: correctness and
completeness of their definition with respect to refinement definition (def. 1).
Let M and R be two components. A simulation X is correct if whereas there
exists α such that the proof obligations ⊑X

α hold then M is effectively refined
by R in the sense of definition 1. On the contrary, a simulation X is complete
if, for every components M and R respecting definition 1, it is possible to find
a relation α such that proof obligations ⊑X

α hold. Results are the following ones
[4]:

– correctness of L and L−1 simulations
– correctness of U simulation if α is total (α ∈ C ↔ A ∧ id(C) ⊆ α ; α−1)
– correctness of U−1 simulation if α is a function (α ; α−1 ⊆ id(A))

If α is a total function then U -simulation and U−1-simulation are two equiv-
alent notions. All stand-alone simulations are incomplete. On the contrary a
combination of L et L−1 is complete. We illustrate these results by an example.

Example. This example is borrowed from Steve Dunne [6]. Let’s consider the
two following B machines, that can be considered as equivalent ones: they both
admit the same set of external substitutions.

machine CASINO1
variables i

invariant i ∈ 0..36
initialisation i :∈ 0..36
operations

r1←− spin=̂ r1 := i || i :∈ 0..36
end

machine CASINO2

operations

r2←− spin=̂ r2 :∈ 0..36
end

There exists α (∅) such that CASINO2 ⊑L
α CASINO1 and CASINO1 ⊑L−1

α

CASINO2. On the contrary there exists no α such that CASINO1 ⊑L
α CASINO2.

Let’s show that CASINO2 ⊑L CASINO1:

i ∈ 0..36⇒ [r1 := i || i :∈ 0..36]¬[r2 :∈ 0..36]¬(r1 = r2)
i ∈ 0..36⇒ [r1 := i]∃r2 (r2 ∈ 0..36 ∧ r1 = r2)
i ∈ 0..36⇒ [r1 := i]r1 ∈ 0..36
true

CASINO1 6⊑L CASINO2:

i ∈ 0..36⇒ [r2 :∈ 0..36]¬[r1 := i || ii :∈ 0..36]¬(r1 = r2)
i ∈ 0..36⇒ ∀r2 (r2 ∈ 0..36⇒ i = r2)
i ∈ 0..36 ∧ r2 ∈ 0..36⇒ i = r2
false

Using a logical form, proof obligations relative to L−1-simulation can be stated
as: ∀c, a′ (∃c′ (C ∧ [c, a := c′, a′]α) ⇒ ∃a (α ∧ A)). Let’s show that CASINO1

⊑L−1

CASINO2:

∀r1′(∃r2′(r2′ ∈ 0..36 ∧ r1′ = r2′)⇒ ∃i(i ∈ 0..36 ∧ r1′ = i))
∀r1′(r1′ ∈ 0..36⇒ ∃i (i ∈ 0..36 ∧ r1′ = i))
true

In general our students are interested by a formal definition of refinement
in term of component substitution because this characterization corresponds to
the classical notions of encapsulation and component contract. Without surprise,
they have some difficulties with the different forms of simulation and examples.

4 Conclusion

I present below some general conclusions about this twelve years of B teaching at
Ensimag and some propositions for a new course (under development) dedicated
to a larger audience and a larger spectrum.

4.1 Conclusion of my experiments

During this long period the B method has proved to be a solid framework for
teaching formal methods. First the underlying concepts (set theory, general-
ized substitution notation) are simple and expressive enough. That means that
students can easily and quickly write specifications and codes. Second, when ex-
amples are well-made, the AtelierB tool can be used successfully by students. Its
main advantage, among other tools dedicated to formal methods, is the support
of the global development process, from abstract specification until executable
programs. Even so the interactive prover is not very intuitive, with a few in-
troduction students are able to develop some simple proofs. Tractable examples
and their educational aims have been given section 2.

Nevertheless, the B method has been designed to be efficient and tractable
in an industrial context, encapsulating some complex notions and introducing a
set of restrictions that are not always easy to justify. Then teaching B, and using
it to study theory of programming, requires to break this framework in order to
enter into details of the internal machinery, as described section 3.

Finally, the main difficulties for students are relative to refinement theory
whereas the refinement process is intuitive enough. Nevertheless, this complexity
seems inherent to all formal methods.

4.2 The future

The curriculum of Ensimag is under modification in order to be closer of the
LMD reform. In the Information System Engineering curriculum, it has been
decided to impose a course with some formal contents. The audience should now
be around 50-60 people.

Furthermore, as pointed in the introduction part, formal techniques have
acquired a new status in industry and in the every day life of programmers.
Due to safety and security constraints, a lot of tools and approaches have been
developed, allowing to verify some dedicated classes of program properties. Be-
cause our future engineers have to know the state-of-the-art technologies, we
have decided to study a larger set of formal approaches, from rapid and very
approximative tools to precise but interactive approaches, depending on the tar-
get of the verification process (bug finder, verification of some particular form
of properties, proof of assertions . . .). Depending on the chosen approach, some
questions as false-positives (a program is declared as erroneous whereas it is cor-
rect) and false-negatives (an incorrect program is not detected) can be studied,
with respect to a given notion of correctness.

Moreover some advanced features will be examined as object oriented pro-
grams, pointer and component oriented verification. On the contrary, some other
aspects will not be presented at all, such as refinement and modelling. It seems
more realistic to plan a new course (at the M2 level and as an optional one)
dedicated to these aspects. In this case a broader spectrum has to be targeted,
including temporal logic, communication models (automata, process algebra)
and refinement theory (data refinement as well as behaviour refinement).

References

1. J.R. Abrial. The B-Book. Cambridge University Press, 1996.
2. Lilian Burdy and Antoine Requet. Extending B with Control Flow Breaks. In ZB

2003: Formal Specification and Development in Z and B, volume 2651 of LNCS,
pages 513–527, 2003.

3. D.Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable Translator of
B Specifications to Embedded C programs. In FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science. Springer, 2003.

4. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and their Comparison. Cambridge University Press, 1998.
5. Ferraiolo D.F. and Kuhn Richard. Role-Based Access Control. In Proceedings

of the 15th NIST-NSA National Computer Security Confe rence, pages 554–563,
Baltimore, MD, USA, October 1992. Nat’l Inst. Standards and Technology.

6. Steve Dunne. Introducing Backward Refinement into B. In ZB 2003: Formal Spec-

ification and Development in Z and B, volume 2651 of LNCS, pages 178–196, 2003.
7. M-L. Potet. Spécifications et développements formels: Etude des aspects composi-

tionnels dans la méthode B. Habilitation à diriger des recherches, Institut National
Polytechnique de Grenoble, 5 décembre 2002.

8. Nicolas Stouls. Systèmes de transitions symboliques et hiérarchiques pour la concep-

tion et la validation de modèles B raffinés. Thèse de doctorat, Institut Polytechnique
de Grenoble, 2007.

