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Abstract. In the B method, the invariant of a component cannot be vi-
olated outside its own operations. This approach has a great advantage:
the users of a component can assume its invariant without having to
prove it. But, B users must deal with important architecture restrictions
that ensure the soundness of reasonings involving invariants. Moreover,
understanding how these restrictions ensure soundness is not trivial. This
paper studies a meta-model of invariant composition, inspired from the
Spec# approach. Basically, in this model, invariant violations are mon-
itored using ghost variables. The consistency of assumptions about in-
variants is controlled by very simple proof obligations. Hence, this model
provides a simple framework to understand B composition rules and to
study some conservative extensions of B authorizing more architectures
and providing more control on components initialization.

1 Introduction

Approaches based on formal specifications or annotations become widespread.
They are based on specifications by contract [18] and invariants [13]. When com-
ponents like modules or objects, are involved, the notion of invariant requires a
careful attention, both in specification and validation processes. In particular,
several issues must be addressed [21]: which variables may an invariant depend
on? when do invariants have to hold? It has be proved that a very lax approach,
as initially adopted in JML [14,15], cannot be really implemented in static veri-
fiers. Indeed, when components are involved, verification is also expected to be
modular: invariants must be established without examining the entire program.
Consequently, specifiers need a methodology to explicitly reason about invariants
and their preservation in layered architectures.

In the B method [1], architectural restrictions ensure that when components
are combined, their respective invariants are preserved without further proof
obligations. Hence, in a well-formed architecture, invariant propagation and ver-
ification is a transparent process for developers. The simplicity of invariant com-
position and the control of proof obligations through composition are the main
features in industrial uses of the B method. For example, the Météor project [2,9]
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involves about 1000 components, while keeping manageable the proof process.
New projects as Roissy Val [3] and Line 1 of Paris involve even more components.
For railway applications, constructors have developed methodological guides to
build architectures which are adapted to the domain and fulfill architectural
restrictions. The B method has also been used in the domain of smart card ap-
plications [17,24,5]. But, as detailed in section 5, reconciling B restrictions and
natural architectures of applications is harder in this domain.

Alternatively, other approaches, like Spec# [16,6], are based on an explicit
treatment of invariants validity. In the Spec# approach, invariants are properties
that hold except when they are declared to be broken. The main difficulty of
this approach is the specification overheads: developers must describe which
invariants are expected to hold. Thus, the specification process becomes much
more complex and error-prone. In this paper, we propose to relax architectural
restrictions of B using Spec# ideas. But, we avoid Spec# specification overheads,
by characterizing some patterns of architectures.

Section 2 introduces the principles of invariant composition in the B method
and restrictions associated to this approach. Section 3 presents a meta-model
of invariant composition, inspired from the Spec# approach. Section 4 shows
how the invariant composition of the B method can be explained from our meta-
model. Finally, section 5 proposes a new invariant composition principle, and
illustrates the proposed approach through a case study.

2 A Brief Presentation of the B Method

At first, we recall some basic notions about the B method. The core language
of B specifications is based on three formalisms: data are specified using a set
theory, properties are first order predicates and the behavioral part is specified
by Generalized Substitutions. Generalized Substitutions can be defined by the
Weakest Precondition (WP ) semantics, introduced by E.W. Dijkstra [10], and
denoted here by [S]R. Here are two WP definition examples:

[ pre P then S end] R ⇔ P ∧ [S] R pre-conditioned substitution
[S1 ; S2] R ⇔ [S1] [S2] R sequential substitution

Generalized substitutions can equivalently be characterized by two predicates,
trm(S) and prd(S), that respectively express the required condition for substitu-
tion S to terminate, and the relation between before and after states (denoted
respectively by v and v′). Weakest precondition calculus includes termination:
we have [S]R ⇒ trm(S), for any R.

Definition 1 (trm and prd predicates)

trm(S) ⇔ [S]true prdv(S) ⇔ ¬[S]¬(v′ = v)

2.1 Abstract Machine

As proposed by C. Morgan [19], B components correspond to the standard notion
of state machines which define an initial state and a set of operations, acting
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on internal state variables. Moreover, an invariant is attached to an abstract
machine: this is a property which must hold in observables states, i.e. states
before and after operations calls. Roughly, an abstract machine has the following
shape1:

machine M
variables v
invariant I
initialization U
operations

o ← nom_op(i) =̂
pre P then S end ;

. . .
end

M is the component name, v a list
of variable names, I a property on
variables v, and U a generalized
substitution. In the operation def-
inition, i (resp. o) denotes the list
of input (resp. output) parameters,
P is the precondition on v and i,
and S is a generalized substitution
which describes how v and o are up-
dated.

Proof obligations attached to machine M consist in showing that I is an
inductive property of component M :

Definition 2 (Invariant proof obligations)

(1) [U ]I initialization
(2) I ∧ P ⇒ [S]I operations

2.2 Invariants Composition

Abstract machines can be combined, through the two primitives includes and
sees to build new specifications. We do not consider here the clause uses, which
is not really used and supported by tools.

The first feature underlying invariant composition in the B method is invariant
preservation by encapsulated substitutions. A substitution S is an encapsulated
substitution relative to a given component M if and only if variables of M are
not directly assigned in S, but only through calls to M operations. Thus, any
encapsulated substitution relative to M preserves, by construction, invariant of
M (see [23]). The second feature underlying invariant composition is a set of
restrictions when components are combined together:

– M includes N means that operations of M can be defined using any N
operations and M invariant can constrain N variables.

– M sees N means that operations of M can only call read-only N operations
and M invariant can not constrain N variables.

Moreover there is no cycle in includes and sees dependencies and includes
dependency relation is a tree (each machine can be included only once). These
restrictions prevent from combining operations that constrain shared variables
in inconsistent ways. Let us consider the following example:

1 Some others rubrics are permitted such as constants, . . . . Because they have no
particular effect on the composition process, we do not take them into account here.
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machine N
variables x
invariant x ∈ NAT
initialization x := 0
operations

incr =̂ x := x + 1 ;
r ← val =̂ r := x

end

machine M
includes N
invariant even(x)
operations

incr2 =̂
begin incr ; incr end

end

(1) init ; incr2 ; r ← val ; incr2 ; admitted by B
(2) init ; incr2 ; incr ; incr2 ; rejected by B
(3) init ; incr2 ; incr ; incr ; incr2 ; rejected by B

Sequence 1 is authorized because it combines a read-only operation of N
with operations of M . Sequences 2 and 3 are rejected because they combine
modifying operations of N and M . The reject of sequence 2 prevents the second
call of operation incr2 to occur in a state where invariant of M is broken. But,
sequence 3 is rejected although each operation-call happens in a state where all
invariants visible from this operation are valid.

In practical experiments, these restrictions make the design of architectures
difficult [4,12]. Actually, components can share variables only in a very limited
way (at most one writer-several readers). Section 5 describes a smart card case
study [5] illustrating problems raised by a real application.

3 A Meta-model for B Components Inspired from Spec#

The Spec# approach [6,16] proposes a flexible methodology for modular verifi-
cation of objects invariants, which is based on a dynamic notion of ownership.
An ownership relation describes which objects can constrain others objects, i.e.
which object has an invariant depending on the value of another object. It is
imposed that this relation is dynamically a forest. This allows to generate proof
obligations ensuring that an object is not modified while it is constrained by the
invariant of an other object. Dynamic ownership of an object can be transfered
during execution, introducing some flexibility with respect to B restrictions. We
directly present the Spec# approach in the framework of B components and
generalized substitutions style.

Hence, this section proposes a new module language for B inspired from the
Spec# approach. In section 4, this module language is considered as a kind
of meta-model in which we interpret each composition mechanisms of B. This
allows to check very simply the soundness of B proofs obligations with respect
to components composition. And in section 5, we study how this meta-model
can be used to relax B restrictions on composition. In the present state of our
work, refinement of B is not considered, and let for future works.
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3.1 Static Ownership and Admissible Invariants

In our module language, we first assume a relation owns between components: we
write (M, N) ∈ owns to express that “M owns N ”. This relation owns is called
static ownership and is related to admissible invariants, i.e. the invariants which
are not automatically rejected by the static analyzer. By definition 3 below,
admissible invariants of M can only have free variables bound to components
transitively owned by M . In the following, M.Inv denotes the invariant stated
in component M , and M.Var denotes the set of variables declared in M , and
free(P ) denotes the set of unbound variables appearing in formula P , and owns∗

is the reflexive and transitive closure of relation owns.

Definition 3 (Admissible invariant through the owns relation)

free(M.Inv) ⊆
⋃

N∈ owns∗[M ] N.Var

Here, this notion of admissible invariant is the unique assumption about owns:
correct instances of the meta-model must define owns such that their notion
of admissible invariant matches exactly definition 3. In section 4, we show that
if we consider that owns corresponds exactly to includes clauses between B
components, then B is a quite simple instance of the meta-model. In section
5, in order to relax B restrictions related to includes clauses, we propose to
consider owns only as a particular sub-relation of includes.

Actually, static ownership is related to validity of invariants: the invariant
of a component M can not be safely assumed, when the state of a component
transitively owned by M has been modified outside of M scope. Moreover, we will
see that static ownership gives a hierarchical structure to validity of invariants:
if the invariant of component M can be safely assumed, then all the invariants
of components transitively owned by M can also be safely assumed.

3.2 Dynamic Ownership and Ghost Status Variable

Our module language controls the consistency of constraints on a component
M by ensuring that in each state of the execution, M has at most one unique
dynamic owner. Hence, validity of invariants is now precised: the invariant of a
component X constraining an other component M can be safely assumed, only
when X transitively owns a dynamic owner of M .

In order to express this control, each component M contains a ghost status
variable, called M.st, and belonging to {invalid, valid, committed}. By defi-
nition, a component X is a dynamic owner of M if and only if (X, M) ∈ owns
and X.st �= invalid. And, for each component M , M.st is intended to satisfy:

– if M.st = invalid then M.Inv may be false. In particular, any modification
on M variables is authorized. Moreover, M has no dynamic owner.

– if M.st = valid then M.Inv is established and M has no dynamic owner.
– if M.st = committed then M.Inv is established and M has a single dynamic

owner.
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More formally, for each component M , variable M.st has to verify the following
meta-invariants:

MI1 M.st �= invalid ⇒ M.Inv

MI2 M.st �= invalid∧ (M, N) ∈ owns ⇒ N.st = committed

MI3 M.st = committed∧ (A, M) ∈ owns ∧ (B, M) ∈ owns
∧ A.st �= invalid∧ B.st �= invalid ⇒ A = B

The first meta-invariant states that a component invariant can be safely as-
sumed if its status is different from invalid. Meta-invariant MI2 imposes that
when a component invariant is not invalid then components transitively owned
by this component have to be declared as committed. Finally MI3 ensures that
a component has at most one unique dynamic owner.

3.3 Preconditioned Assignment Substitution

In our module language, assignment substitution is preconditioned, but it can
occur outside of the component where the assigned variable is bound (there is a
priori no variable encapsulation). We have:

subst trm prd

N.Var := e N.st = invalid N.st′ = N.st ∧ N.Var′ = e

Meta-invariants MI2 and MI3 are obviously preserved by this substitution, be-
cause status variables remain unchanged. We want to prove that the assignment
substitution preserves the meta-invariant MI1 for any component M , i.e.:

M.st �= invalid ⇒ (N.st = invalid ⇒ [N.Var := e]M.Inv)

There are three cases:
1. if N = M then MI1 holds because hypotheses are contradictory.
2. if (M, N) ∈ owns+ then the two hypotheses N.st = invalid and M.st �=

invalidare also contradictory due to MI2: N.st must be equal to committed.
3. if (M, N) �∈ owns∗ then, due to definition 3, N.Var∩free(M.Inv) = ∅. In this

case M.Inv is obviously preserved by the assignment substitution N.Var := e.

3.4 pack(M) and unpack(M) Substitutions

Substitutions are extended with two new commands pack(M) and unpack(M).
The former requires the establishment of M invariant and the latter allows viola-
tion of M invariant. Status variables can only be modified via these commands.
They can be invoked in M or outside of M . They are formally defined by:
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subst trm prd

pack(M) ∀N.((M,N)∈owns⇒N.st=valid)
∧M.st = invalid
∧M.Inv

∀N.((M,N)∈owns⇒N.st′=committed)
∀N.(M �=N∧ (M,N) �∈ owns ⇒N.st′=N.st)
∧M.st′ = valid
∧M.Var′ = M.Var

unpack(M) M.st = valid ∀N.((M,N)∈owns⇒N.st′=valid)
∀N.(M �=N∧ (M,N) �∈ owns ⇒N.st′=N.st)
∧M.st′ = invalid
∧M.Var′ = M.Var

Control of dynamic ownership appears in these commands. The precondition
of pack(M) imposes that the components statically owned by M have no dy-
namic owners, then pack(M) makes M the dynamic owner of all the components
that it statically owns. Of course, unpack(M) has the reverse effect. Here, let us
note that the precondition of unpack(M) imposes that M has itself no dynamic
owner. In other words, if we want to unpack a component N in order to modify it
through a preconditioned assignment, we are first obliged to unpack its dynamic
owner (and so on recursively). It is easy to prove that meta-invariants MI1,
MI2 and MI3 are preserved by these pack and unpack.

Finally, each substitution S built from preconditioned assignment, pack and
unpack constructors and other standard B substitutions satisfies proposition 1.

Proposition 1 (Meta-invariants preservation)

MI1 ∧ MI2 ∧ MI3 ∧ trm(S) ⇒ [S](MI1 ∧ MI2 ∧ MI3)

3.5 Revisiting Example of Section 2.2

substitution Se condition status modification
incr2 ; M.st = valid
unpack(M) ; M.st = valid M.st := invalid||N.st := valid
incr ; N.st = valid
incr ; N.st = valid

pack(M) ;

⎧
⎨

⎩

N.st = valid
∧M.Inv
∧M.st = invalid

M.st := valid||N.st := committed

incr2 ; M.st = valid

In our meta-model, sequence 3 of example section 2.2 can be extended by pack
and unpack substitutions such that if Se denotes the resulting substitution,
then we can prove trm(Se). In the table above, we have represented the proof
obligation generated for trm(Se) by associating each basic step of the sequence
to its precondition and its modification of the environment.

In order to express the B semantics of components M and N of the example
into our meta-model, we impose that (M, N) ∈ owns and that substitutions
of modifying operations defined in a component X are implicitly bracketed by
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unpack(X) and pack(X). Hence, in calls to modifying operations of X , variable
X.st is required to be valid before the call, and is ensured to be valid after
the call. Moreover, we impose that this sequence starts in a state such that
M.st = valid and N.st = committed. This interpretation of the B language is
justified in section 4.

4 Encoding B Operations in This Meta-model

This section proposes to check the consistency of invariants in B architectures,
by embedding B components into our meta-model, and verifying that proofs
obligations of B allow to discharge the proof obligations from the meta-model.

First, we consider that (M, N) ∈ owns if and only if M contains a clause
“includes N ”. Indeed, clause sees can not be included in the ownership relation
defined section 3, because it does not authorize seen variables to be constrained
by the invariant part. So, we consider a relation sees, such that (M, N) ∈ sees if
and only if M contains a clause sees N . Moreover, if (M, N) ∈ sees, there is no
meta-invariant like MI2 ensuring that validity of M invariant implies validity of
N invariant. Indeed, modifying operations of N can be called while M is valid:
this leads to an intermediary state where N is unpacked, but M not. Hence,
below, the status of seen components is managed in preconditions of operations.

At last, we need to label B operations using status variables, according to
implicit conditions of B with respect to component invariants. We distinguish
three cases: the initialization process, operations belonging to component inter-
faces and local operations.

4.1 Initialization Process

In the B method, global initialization is an internal process which sequentializes
local initializations in an order compatible with component dependencies. This
step is analog to the Ada elaboratephase and is tool-dependent: depending on the
architecture, several orders could be possible, resulting in different initial values.
This global process can be described in the following way: let < be a partial order
defined by N < M if and only if (M, N) ∈ owns ∪ sees. From < a total order is
built giving in that an initialization procedure specified in the following way:

pre ∀ N . (N ∈ COMP ⇒ N.st = invalid)
then

U1 ; pack(C1) ;
. . .
Un ; pack(Cn) ;

end

with Ci denoting the component labeled by i in the total order and Ui the initial-
ization substitution of component Ci. COMP represents the set of components
concerned by the global initialization process. We proved that this initialization
procedure terminates, and establishes meta-invariants MI1, MI2 and MI3
(thanks to proposition 1).



12 S. Boulmé and M.-L. Potet

4.2 Interface Operations

In the same way, B operations of a component M can be labeled by status
information. We consider two forms of operations: modifying operations and
read-only operations. Let pre P then S end be the definition of an operation
belonging to interface of M . This operation can be labeled in the following way:

modifying pre P ∧ M.st = valid
case ∧ ∀ N .((M, N) ∈ (owns ∪ sees)+ ⇒ N.st �= invalid)

then unpack(M) ; S ; pack(M) end

read-only pre P ∧ M.st �= invalid
case ∧ ∀ N .((M, N) ∈ (owns ∪ sees)+ ⇒ N.st �= invalid)

then S end

In the modifying case, direct assignments of M variables can occur because
M is unpacked. For read-only operations, status precondition is weakest because
a read-only operation does not contain assignment. Hence, read-only operations
can be called, even if M is committed. Formula ∀ N .((M, N) ∈ (owns∪sees)+ ⇒
N.st �= invalid) preconditions, guarantees that invariants of transitively seen
components are also valid, as said at the beginning of this section.

As before, proof obligations of termination contain proof obligations of B
invariants, corresponding to termination of pack calls. Finally, if S does not
contain explicit pack and unpack substitutions and respects B restrictions (M
variables can be directly assigned, included variables are only assignable through
operation calls and seen variables can not be modified in any way) then all status
conditions are established by construction. In particular, any operation body S
of component M fulfills the following property, for any component N :

Proposition 2 (Status preservation through B operations)

MI1 ∧ MI2 ∧ MI3 ∧ prd(S) ⇒ N.st′ = N.st

4.3 Local Operations

In B, local operations can be introduced at the level of implementation [8]. They
authorize assignment of component variables as well as direct assignments of
included variables2. Local operations can be seen as private operations allowing
to factorize code. They do not have to preserve local invariant. Proof obligations
given in [8] consists in proving the preservation of all invariants of included
components. So, let M be a component which (transitively) includes components
N1, . . . , Nn. A local operation in M , defined by the substitution pre P then S
end, can be labeled3 in the following way:

2 At the level of implementation, inclusion takes the form of an imports clause. Here
we do not distinguish these two mechanisms, as it is done in B for the clause sees.

3 To simplify, we do not take into account seen components.
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pre P ∧ M.st = invalid ∧ N1.st = valid ∧ . . . ∧ Nn.st = valid
then unpack(N1) ; . . . ; unpack(Nn) ;

S ;
pack(N1) ; . . . ; pack(Nn) ;

end

Remark that several other forms of local operations would be possible. For in-
stance, we should define friendly local operations that must be called in a state
where the local invariant holds. Such operations would not require to repeat the
invariant (or some part of it) in the precondition of a local operation, as it is
often necessary. Similarly, developers could choose which variables are assigned
and so which included components needs to be unpacked. This would avoid to
reproved all imported invariants: this may be interesting even if such proofs are
obvious. To introduce such flexibility we now define an extension of B language
allowing to directly manipulate conditions on status variables and substitutions
pack and unpack.

5 A More Flexible Composition Principle

Modifying the previous interpretation of B in our meta-model, this section pro-
poses to extend B with a more flexible invariant composition principle, allowing
to specify more sharing between components and more natural architectures.
Specifications can now directly reference component status variables but only in
precondition or assertion parts. Moreover, specifications can perform unpack and
pack substitutions. By this way, developers can precisely state when invariants
must hold. Now, invariant preservation proof obligation is no more an external
process, but directly integrated into the language. Let pre P then S end be
an operation definition. Now, its proof obligation is:

(MI1 ∧ MI2 ∧ MI3 ∧ P ) ⇒ trm(S)

Such a proof obligation guarantees the consistent use of status variables. More-
over, if S contains some pack substitutions then the termination proof obligation
contains proofs obligations relative to the validity of the expected invariants.

Finally, to obtain a powerful invariant composition principle, we propose a
more flexible initialization process and a smaller notion of ownership than the B
includes relation.

5.1 Initialization and Reinitialization Process

As stated section 4.1, in the B method initialization is a global process. Because
more sharing is now admitted, we make explicit the initialization process in us-
ing operations which establish invariants (on the contrary to interface operations
which preserve invariant). In this way, the developer can specify an initialization
order in a precise way, avoiding uncontrollable non-determinism of B initializa-
tion process. At last, initializations can be invoked in any place, in order to
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reinitialize variables. Let U be the initialization substitution of component M .
Several form of initialization operations are possible:

case 1 pre M.st = invalid then U ; pack(M) end

case 2 pre M.st = invalid ∧ N.st �= invalid
then U ; pack(M) end

case 3 pre M.st = invalid ∧ N.st = invalid
then N.Init ; U ; pack(M) end

Case 1 corresponds to initialization of a stand-alone machine. Case 2 corresponds
to an initialization depending on another initialization, like when M sees N in B.
Case 3 corresponds to an initialization performing another initialization: here,
N.Init denotes an initialization operation of component N . Case 3 implicitly
happens in B when M includes N : in particular, the elaboration of M invariant
involves initial values of N .

5.2 A Smaller owns Relation

Modular invariant composition is based on two orthogonal aspects: on one hand,
it is necessary to control components that constrain shared variables and, on the
other hand, it is also necessary to control assignment of shared variables. In the
Spec# approach, the ownership relation allows to control in which way variables
are constrained and the preconditioned assignment substitution allows to control
when sets of variables can be updated. In B, these two aspects are syntactically
grouped together through the two clauses clauses sees and includes:

read operation modifying operation
variables can be constrained includes includes
variables cannot be constrained sees -

The case uncovered by B corresponds to components that call any operations of
a given component M but do not constrain its variables. In this case, there is no
problem as soon as the shared component is not committed (all other components
with an invariant depending on these variables are invalid). So, we narrow relation
owns to only keep the subrelation corresponding to components whose variables
are effectively strengthened by new invariants. Formally, we now define the owns
relation as the smallest subrelation of includes+ (the transitive closure of the re-
lation induced by includes clauses) respecting the notion of admissible invariant
(def. 3). Such a relation exists and is unique. All results of section 3 apply here.

With this smaller owns relation, we now have more meaningful architectures
than before. Let us compare three approaches. Approach 1 is strict B, based on
static restrictions about architectures. Approach 2 is the approach of section 4,
in which the owns relation is assimilated to the clause includes. At last, ap-
proach 3 corresponds to the smaller definition of owns given above. We consider
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the three architectures given below. In the two first approaches, both kind of ar-
rows represent an includes clause. In approach 3, o-arrows represent an owns
pair, and i-arrows represent a includes pair that is not a owns pair.

In approach 1, all these architectures are rejected. In approach 2, architecture
Nested1 is meaningless, because A1 can be never packed. Indeed, B1 must be
packed before A1, but when B1 is packed, C1 is committed, and A1 can not be
packed. On the contrary, in approach 3, A1 can be packed because C1 is not com-
mitted by B1. Moreover, interface operations of B1 can call interface operations
of C1. In approach 2, architecture Triangle can be used with restrictions: one
of the two components A2 or B2 must be invalid because C2 can be committed
only once. In approach 3, C2 is never committed, thus A2 and B2 can be packed
and can freely call interface operations of C2. Finally, architecture Diamond is
also meaningless in approach 2 (A3 can not be packed). On the contrary, in
approach 3, interface operations of B3 can call interface operations of D3 when
C3 is invalid. In A3, we may thus need to unpack C3 before to call operation of
B3 and then repack C3.

5.3 A Case Study

We present here an example extracted from the Java Card byte-code interpreter
case study developed in the BOM project [FME’03]. A Java card virtual machine
has a four components architecture:

– PgMemory contains the byte-code of the program to run. It performs an
abstraction of the physical memory.

– Installer performs the loading of the byte-code into the memory of the card.
– Interpreter provides operations corresponding to each instruction of the

virtual machine.
– V M is the main component, it provides an operation to install a program

and run it step-by-step, using the operations of Interpreter.

In Java Card, the format of byte-code is required to satisfy well-formness
properties that guarantee safety and security properties of the execution [20]: for
instance, a valid instruction starts by an op-code directly followed by its well-
typed parameters, a method entry point always refers an op-code, etc. These
properties need to be expressed in the different components of our architecture:
– PgMemory: the byte-code stored in memory is well-formed (invariant Imem).
– Installer: the byte-code already loaded is well-formed (invariant Iinst).
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– Interpreter: the program counter always points to a valid instruction (in-
variant Iinterp).

This architecture can not be directly
implemented in B because invariants
Iinst and Iinterp constrain the state of
PgMemory (see the discussion in the
conclusion). On the contrary, in the pro-
posed approach, the diamond architec-
ture on the right is adapted.

V M

Installer Interpreter

PgMemory

i i

o o

In V M , Installer and Interpreter do not need to be valid in the same time:
when one is valid, it dynamically owns PgMemory and the other is invalid. So
the V M main operation performs the ownership transfer of PgMemory in the
following way:

PgMemory.Init ; Installer.Init ; Installer.load ;
unpack(Installer) ;
Interpreter.Init ; Interpreter.exec

6 Conclusion

The approach proposed here allows to express invariants which are only valid
on some portions of programs. Such invariants can also be expressed in B by
predicate of the form co = i ⇒ Ii where co is a variable simulating an “ordinal
counter” and Ii the expected invariant when co = i. Such forms of invariants
are extensively used in B-event development. Nevertheless, this solution is not
modular because variable co can not be updated by several components. For
instance, a B solution for the case study of section 5.3 consists in building an
architecture where Installer includes PgMemory, Interpreter sees PgMemory
and V M includes both Installer and Interpreter. The invariant Iinterp is stated
at the level of component V M , in the form co = interp ⇒ Iinterp. This needs
to add the precondition co = interp to each operation of Interpreter (see [12]
for a general solution). Variable co is assigned by V M , but, each Interpreter
operation-call requires precondition co = interp to be established. As stated in
[4], this solution forces to specify some expected invariants in a top component,
rather than in components where operations concerned by these invariants are
defined. Moreover, invariants of the form co = i ⇒ Ii may be confusing because
such invariants should never be violated, but strongly depend on the control. The
Spec# approach systematizes this solution, by introducing explicitly variables
and statements relative to invariants validity. Hence, the notion of invariant
validity is more explicit, while preserving soundness and modularity of invariant
proofs.

The adaptation of the Spec# approach to B proposed in this paper leads to
very simple proof obligations about status variables, most of them being obvious.
Nevertheless, on the contrary to the B method in which invariant composition



Interpreting Invariant Composition in the B Method 17

is a transparent process, the Spec# approach is very permissive making specifi-
cation and proof an hard task. Hence, it is necessary to propose some patterns
having good properties, like the different form of B operations described sec-
tion 4. Moreover, it seems also possible to define a static analysis allowing to
approximate whether status variables are used in a consistent way.

Other approaches have been studied in order to overcome B restrictions and
in particular the single writer constraint. In [4], a rely-guarantee approach has
been proposed in order to support architectures where two components A and B
both need to constrain variables of C and to write into these variables. Basically,
in this approach, the user must express in C what A and B are authorized to
do on variables of C. Hence, both A and B know an abstraction of the other
behavior on C, and can verify that this behavior is compatible with their own
invariants. This approach is thus compatible with refinement (in particular, re-
finements of A and B refine their respective abstraction with respect to C). Our
approach seems suitable for the multiple writers paradigm only when all own-
ership transfers between successive writers are performed via a reinitialization
operation. But, in the other cases, when interface operations of writers are inter-
leaved without reinitialization, then our approach is not modular with respect to
the previous rely-guarantee approach: each ownership transfer requires a proof
that the invariant of the new owner hold. On the contrary, the rely-guarantee
approach of [4] does not authorize some combinations which are permitted by
our approach. Indeed, our approach does not impose that invariants of all writers
hold concurrently for all possible interleavings. Hence, it would be interesting to
study the extension of our approach with rely-guarantee. Some proposals in this
direction have already been studied for Spec# by Naumann and Barnett [7,22].

Finally, the main characteristics of the B method are its notion of component
refinement and the monotonicity property allowing substitution of operation
specifications by their implementations. Technically, refinement in B is based on
invariants [11]: the relations between abstract and concrete data are expressed
in a “gluing” invariant of the refining component. If we want to mix B refinement
with our approach, we have the following problem: when we use some pack(M)
outside of component M , we are obliged to prove that the invariant of M holds,
but also that invariants of all refinements of M hold in order to ensure the
substitutability principle. Let us remark that when pack(M) is used inside an
operation of M , this problem does not occur: the proofs that gluing invariants
hold are done in refining operations. Moreover, unpack(M) may occur outside
of M without problem. Thus, in practice, it seems that refinement is compatible
with our approach when it is restricted such that pack(M) calls occur only in
component M . The case study of section 5 is an example where our approach
accepts an architecture not admitted B, which is still compatible with refinement.
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