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Abstract. We present a method based on abstract
interpretation for verifying secrecy properties of cryp-
tographic protocols. Our method allows one to verify
secrecy properties in a general model allowing an un-
bounded number of sessions, an unbounded number of
principals, and an unbounded size of messages. As ab-
stract domain we use sets of so-called super terms. Super
terms are obtained by allowing an interpreted construc-
tor, which we denote by Sup , where the meaning of a term
Sup (t) is the set of terms that contain t as subterm. For
these terms, we solve a generalized form of the unification
problem and introduce a widening operator.
We implemented a prototype and were able to ver-

ify well-known protocols such as, for instance, Needham–
Schroeder–Lowe (0.03 s), Yahalom (12.67 s), Otway–Rees
(0.01 s), and Kao–Chow (0.78 s).

Keywords: Cryptographic protocols – Security – Verifi-
cation – Abstract interpretation – Widening

1 Introduction

At the heart of almost every computer security architec-
ture is a set of cryptographic protocols that use cryp-
tography to encrypt and sign data. They are used to
exchange confidential data such as pin numbers and pass-
words, to authentify users, or to guarantee anonymity of
principals. It is well known that even under the idealized
assumption of perfect cryptography, logical flaws in the
protocol design may lead to incorrect behavior with unde-
sired consequences. Maybe the most prominent example
showing that cryptographic protocols are notoriously dif-
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ficult to design and test is the Needham–Schroeder pro-
tocol for authentication, introduced in 1978 [33]. An at-
tack on this protocol was found by Lowe using the CSP
model checker FDR in 1995 [26], and this led to a cor-
rected version of the protocol [27]. Consequently there
has been a growing interest in developing and apply-
ing formal methods for validating cryptographic proto-
cols [15, 29]. Most of this work adopts the so-called Dolev
and Yao model of intruders. This model assumes perfect
cryptographic primitives and a nondeterministic intruder
that has total control of the communication network and
has the capacity to forge new messages. It is known that
reachability is undecidable for cryptographic protocols in
the general case [20], even when a bound is put on the size
of messages [19]. Because of these negative results, from
the point of view of verification, the best we can hope for
is either to identify decidable subclasses, as in [5, 30, 35],
or to develop correct but incomplete verification algo-
rithms, as in [22, 24, 32].
In this paper, we present a correct verification algo-

rithm to prove secrecy without putting any assumption
on messages or on the number of sessions. Proving se-
crecy means proving that secrets, which are predefined
messages, are not revealed to unauthorized agents. The
main contribution of our paper is a method for proving
that a secret is not revealed by a set of rules that model
how the protocol extends the set of messages known to
the intruder.
Our method is based on the notion of safe messages

that guard a secret ; these are messages that contain se-
crets encrypted with safe keys. For example, suppose that
our secret is the nonce NB and that the keyK

−1
B – the in-

verse of KB – is not known by the intruder. We say that
KB is a safe key. Then, any message that contains NB
and that is encrypted withKB is a guard forNB, e.g.,NB
is protected in the message {{NA, NB}KB}Ki by the safe
message {NA, NB}KB .
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Following this idea, given a setK of safe keys we define
theK-guards as the set of messages encrypted with a key
in K. However, K-guards can fail at protecting a secret.
Indeed, a protocol may reveal some secrets embedded in
safe messages. Here is an example from the Needham–
Schroeder protocol (Example 1). Consider the action of
the responder – played by an honest principalB – in a ses-
sion with an intruder I. The action of B may be seen as
a rule {i, y}KB →{y, n2}Ki : On reception of any message
matching the left-hand side, B will decrypt and send y
to the intruder. So we conclude that the safe key KB can
guard a secret except in messages of the form {i, y}KB ,
where y is a secret.
The idea underlying our verification algorithm is then

to characterize the set of K-guards that will keep the se-
cret unrevealed in all sent messages. The K-guards that
do not protect their secret are called safe-breakers. Let
us consider again the Needham–Schroeder protocol and
the first transition of principal B described above. Then,
{I, y}KB is a safe-breaker.
The core of our verification algorithm takes a protocol

and computes an overapproximation of the set of safe-
breakers. This set is, in general, infinite. Therefore, we
represent it using terms: a term with variables represents
the infinite set of its ground instances.
A weakness of this symbolic representation is, how-

ever, that variables appear only at the leafs, and hence
they do not allow one to describe, for instance, the set
of terms that share a common subterm. To mitigate this
weakness, we introduce super terms, that is, terms with
an interpreted constructor, Sup , where a term Sup (t) is
meant for the set of terms that contain t as subterm. The
use of super terms in our verification method requires one
to solve a generalized form of the unification problem. On
the other hand, it allows us to define a widening operator
that ensures termination of a large class of protocols.
We developed a prototype in Caml that implements

this method. We have been able to verify several proto-
cols taken from [12] including, for instance, Needham–
Schroeder–Lowe (0.03 s), Yahalom (12.67 s), Otway–Rees
(0.01 s), and Kao–Chow (0.78 s).

Related work

Decidability Dolev et al. introduced the class of ping-
pong protocols and showed its decidability. The restric-
tion put on these protocols are, however, too restrictive,
and none of the protocols of [12] falls into this class. Re-
cently, Comon et al. [14] extended this class, allowing
pairing and binary encryption, but the use of nonces still
cannot be expressed in their model. Reachability is decid-
able for the bounded number of sessions [5, 10, 11, 30, 35]
or when nonce creation is not allowed and the size of mes-
sages is bounded [19]. These assumptions are in practice
not always justified.

Security protocol debugging For the general case, model
checking tools have been applied to discover flaws in cryp-

tographic protocols [13, 28, 31]. The tool described in [13]
is a model checker dedicated to cryptographic protocols.
Most of these methods bound the number of sessions to be
considered as well as the size of the messages.

Deductive methods Methods based on induction and
theorem proving have been developed (e.g., [9, 17, 34]).
These methods are general, i.e., they can handle un-
bounded protocols, but are not automatic, with the ex-
ception of [17]. This work can be seen as providing a gen-
eral proof strategy for verifying security protocols. The
strategy is implemented on the top of PVS and allows one
to handle many known protocols. The termination of this
strategy is, however, not guaranteed.

Logic-programming-based methods These methods are
based on modeling protocols in Horn Logic, e.g., as Pro-
log programs, as in [3, 7, 37] and developing suitable proof
strategies. The main difficulty in these methods is that
termination of the analysis is not guaranteed.

Typing and abstraction-based methods Type systems and
type checking have also been advocated as a method
for verifying security protocols (e.g., [1, 2, 23]). Although
these techniques can handle unbounded protocols, they
are, as far as we know, not yet completely automatic.
Closest to our work are partial algorithms based on ab-
stract interpretation and tree automata, presented in [22,
24, 25, 32]. The main difference is, however, that we com-
pute, not the set of messages that can be known to the
intruder, but a set of guards, as explained above. Our
method can handle unbounded protocols fully automat-
ically, though as a result it may discover false attacks.
Interesting enough is that this does not happen on any of
the practical protocols we tried (see Fig. 8 in Sect. 7.3).
We are actually working on a method that allows one to
analyze possible attacks.

2 Preliminary

If n ∈ N, then we denote by Nn the set {1, · · · , n}. Let
X be a countable set of variables and let F i be a count-
able set of function symbols of arity i, for every i ∈ N.
Let F =

⋃
i∈NF

i. The set of terms over X and F , de-
noted by T (X ,F), is the smallest set containing X and
closed under application of the function symbols in F ,
i.e., f(t1, · · · , tn) is a term in T (X ,F), if ti ∈ T (X ,F), for
i= 1, · · · , n, and f ∈Fn. As usual, function symbols of ar-
ity 0 are called constant symbols.Ground terms are terms
with no variables. We denote by T (F) the set of ground
terms over F .
A tree tr is a function from a nonempty finite subset

of ω∗ to X ∪F such that (1) if tr(u) ∈ Fn, then u · j ∈
dom(tr), for every j ∈ {0, · · · , n−1} and u · j �∈ dom(tr)
for every j ≥ n; and (2) if tr(u) ∈ X , then u · j �∈ dom(tr)
for every j ∈N.
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We identify terms with trees by associating to each
term t a tree Tr(t) as follows:

1. If x is a variable, then dom(Tr(x)) = {ε} and Tr(x)(ε)
= x.

2. If a ∈F0 is a constant symbol, then dom(Tr(a)) = {ε}
and Tr(a)(ε) = a.

3. For a term t = f(t0, · · · , tn−1), dom(Tr(t)) = {ε}∪
n−1⋃

i=0

i· dom(Tr(ti)), where · is word concatenation

extended to sets, Tr(t)(ε) = f , and Tr(t)(i ·u) =
Tr(ti)(u).

Henceforth, we tacitly identify the term t with Tr(t). The
elements of dom(t) are called positions in t. We use ≺
to denote the prefix relation on ω∗. We write t(p) to de-
note the symbol at position p in t and t|p to denote the
subterm of t at position p, which corresponds to the tree
t|p(x) = t(p ·x) with x ∈ dom(t|p) iff p ·x ∈ dom(t). We
write q−1p to denote the position obtained from p after re-
moving the prefix q. We write t� t′ (resp. t≺ t′) to denote
that t is a subterm (resp. proper subterm) of t′. Moreover,
t[t′/p] denotes the term obtained from t by substituting t′

for t|p . The set of variables in a term t is defined as usual
and is denoted by var (t).

3 Models for cryptographic protocols

In this section, we describe how we model cryptographic
protocols and give a precise definition of the properties
we want to verify. We begin by describing the messages
involved in a protocol model.

3.1 Messages

The set of messages is denoted by T (F) and contains
terms constructed from constant symbols and the func-
tion symbols encr : T (F)×K→T (F) and pair : T (F)×
T (F)→T (F). Constant symbols are also called atomic
messages and are defined as follows:

1. Principal names are used to refer to principals in
a protocol. The set of all principals is P .

2. Nonces can be thought of as randomly generated num-
bers. As no one can predict their values, they are used
to convince one of the freshness of a message. We de-
note byN the set of nonces.

3. Keys are used to encrypt messages. An atomic key
of the form f(A1, · · · , Ar), where f is pbk, pvk, or
smk and each Ai is a principal name. Intuitively, pbk,
pvk, and smk stand, respectively, for public, private,
and symmetric keys. The key pbk(A1, · · · , Ar) is an in-
verse of the key pvk(A1, · · · , Ar), and vice versa; a key
smk(A1, · · · , Ar) is its self-inverse. If k is a key, then
we use k−1 to denote its inverse.
We denote by AK(A1, · · · , Ar) the set of keys de-
scribed above and let K=

⋃

�A∈P+
AK( �A) denote the set

of all keys.

For the sake of simplicity we left out the signatures
and hash functions, but we can easily handle them in our
model. Let A= P ∪N ∪K and F =A∪{encr,pair}. As
usual, we write (m1,m2) for pair(m1,m2) and {m}k in-
stead of encr(m, k). Message terms are the elements of
T (X ,F), that is, terms over the atoms A, a set of vari-
ables X , and the binary function symbols encr and pair.
Messages are ground terms in T (X ,F).

Role terms To describe the transitions that can be per-
formed by a principal in a session of a cryptographic
protocol, we introduce role terms. Let XN be a set of
variables that range over nonces with n, n1, . . . as typi-
cal variables and XP be a set of variables that range over
principals with p, p1, . . . as typical variables. We assume
that X , XN , and XP are pairwisely disjoint.
Role terms are terms constructed from variables in

X ∪XN ∪XP using the binary function symbols encr and
pair and where constants are not allowed. More precisely,
role terms are defined by the following tree grammar:

Key ::= pbk(p1, · · · , pr) | pvk(p1, · · · , pr)

| smk(p1, · · · , pr) ;

RT ::= n | p |Key | x |

pair(RT1,RT2) | encr(RT,Key) ,

where p, p1, · · · , pr ∈ XP and x ∈ X .

3.2 Cryptographic protocols – syntax

To describe cryptographic protocols, we need to describe
the transitions the principals can perform. In our setting,
transitions have the form t→ t′, where t and t′ are role
terms with var (t′) ⊆ var (t), t is called the guard of the
transition, and t′ is its action.
Now, a cryptographic protocol is described by a pa-

rameterized session description where the parameters are
the involved principals, the fresh nonces, and the used
keys. A session description is then given by a tuple
(P, tran, fresh), where

– P is a vector (p1, · · · , pr), r ≥ 1, of distinct principal
variables in XP ,
– tran is a function that associates to each principal
variable in P a finite sequence of transitions,
– fresh associates to each principal variable p in P a dis-
joint finite set of nonce variables in XN . By abuse
of notation we sometimes write fresh(P ) to denote⋃

p∈P
fresh(p).

Example 1. The Needham–Schroeder protocol for au-
thentication can be described as follows using the usual
informal notation for cryptographic protocols:

A→B : {A,N1}kB
B→A : {N1, N2}kA
A→B : {N2}kB
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Fig. 1. Needham–Schroeder protocol

Intuitively, A plays the role of the initiator of the
session, while B is a responder. In our setting it is de-
scribed by the session description given in Fig. 1, where
P = (p1, p2), fresh(p1) = {n1}, and fresh(p2) = {n2}. As
one can see, our description is much more detailed
and elevates many of the ambiguities of the informal
description. �

3.3 The intruder model

In this section, we describe how an intruder can create
new messages from already known messages. We use the
most commonly used model, introduced by Dolev and
Yao [18], which is given by a formal system 	. The in-
truder capabilities for intercepting messages and sending
(fake) messages are fixed by the operational semantics.
Thus, the derivability of a message m from a setE of mes-
sages, denoted by E 	m, is described by the following
axiom and rules:

– Ifm ∈E, then E 	m.
– If E 	m1 and E 	m2, then E 	 pair(m1,m2). This
rule is called pairing.
– If E 	m and E 	 k ∈ K, then E 	 encr(m, k). This is
called encryption.
– If E 	 pair(m1,m2), then E 	m1 and E 	m2. This is
called projection.
– If E 	 encr(m, k), E 	 k′, and k and k′ are inverses,
then E 	m. This is called decryption.

Pairing and encryption rules are called composition rules,
while projection and decryption are called decomposition
rules. As usual, derivations in the system 	 can be seen as
proof trees.
For a set of messagesM , we use the notationE 	M to

denote E 	m for eachm inM and E �	M to denote E �	
m for eachm inM .
It is worth noticing that the intruder cannot forge

any key term from the knowledge of its subterms, e.g,
A,B �	 smk(A,B). No rules are provided to the intruder
to do so. Consequently, from the intruder point of view,
the key terms are atomic keys.

Critical and noncritical positions Since there is no way
to deduce the key used for encryption from an encrypted
message, we consider their positions not critical, i.e., it is
a safe place for a secret. For instance, the position of the
key k for the encr constructor – as in the term encr(m, k)
– is not critical; on the other hand the position of m is
critical. The critical position corresponds to the subterm
relation in the strand space model [21, 36].

Formally, given a term t, a position p in t is called non-
critical if there is a position q such that t(q) = encr and
p= q ·1; otherwise it is called critical. We will also use the
notation s ∈c m to denote that s appears in m at a crit-
ical position, i.e., there exists p ∈ dom(m) such that p is
critical andm|p = s.
For a term t we use the notation E �	 t to denote that

no instance of t is derivable from E, that is, for no substi-
tution σ : X → T (F), we have E 	 σ(t).
We also use the notation E �	∈c t to denote that no

message derivable from E contains an instance of t at
a critical position, that is, for every message m and
ground substitution σ, if E 	m, then σ(t) �∈c m. The re-
lation �	∈c is naturally extended to sets of terms.

3.3.1 Operational semantics

In the rest of this section, let S = (P, tran, fresh) be
a given session description. We want to describe the
behavior of the protocol described by S without any re-
striction on the numbers of sessions and principals. To
do so, we need to define instantiated transitions and in-
stantiated sessions. We use natural numbers as session
identifiers.

Session instances A session instance is fixed by a pair
(i, π), where i is its identifier and π is a vector of prin-
cipals that instantiate the principal variables p1, · · · , pr.
Therefore, we introduce the set Inst = N×Pr of session
instances. As we impose that the principal variables in P
must be distinct, we can use π(pj) to refer to the jth prin-
cipal name in the vector π, i.e., we can identify π with
a function π : P →P . We refer to a session instance by its
identifier.
We assume that we have for each fresh variable n ∈

fresh(P ) an injective function that associates for each
session instance a fresh nonce value, n : N→N such that
n1(i1) �= n2(i2), if n1 �= n2 or i1 �= i2. That is, any fresh pa-
rameter is instantiated with different values in different
sessions. Moreover, different fresh parameters are instan-
tiated with different values in the same or in different
sessions. We write N i for the value of n(i), where n is
a nonce fresh variable and i is the session instance identi-
fier. Intuitively, we use N i as the nonce corresponding to
the fresh variable n in the session instance (i, π).
To produce an instance of the session description, we

have to choose a fresh session number and a substitu-
tion that associates a constant name to each principal
variable in P . Hence, given (i, π)∈ Inst, we generate a ses-
sion instance, denoted by (S)iπ , by applying the following
transformations to all role terms that appear in S:
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Fig. 2. Transitions of the (0, π)-instance

– We replace each principal variable p by π(p).
– Each nonce variable n ∈ fresh(P ) byN i,π.

We denote by tiπ the message term obtained from t
by applying the transformations above. Then, the (i, π)-
instance of a transition t→ t′ is tiπ → t

′i
π . Given p ∈ P ,

we denote by traniπ(p) the sequence of (i, π)-instantiated
transitions obtained from tran(p).

Example 2. Let (i= 0, π = (A,B)) be a session instance.
Moreover, n1(0) =N1 and n2(0) =N2. Then, the (0, π)-
instance of the Needham–Schroeder protocol contains the
transitions given in Fig. 2.

Configurations and transitions In order to define global
configurations that may arise during the protocol execu-
tion, we need to define the state of each session instance.
The state of a session instance Si is given by a pair

(π, τ), where τ associates for each role of the protocol
p ∈ P the sequence of its instantiated actions that are
left to be executed. Initially in the session instance Si,
τ(p) = traniπ(p).
The configuration set of the protocol defined by S is

given by a pair (ξ, E), where dom(ξ) =N is the set of iden-
tifiers of the sessions created in the configuration, ξ(i)
describes the state of the session instance Si, and E is
a set of messages. The operational semantics is defined as
a labeled transition system over the set of configurations.
There are two sets of transitions:

1. Transitions that create new sessions:

i �∈ dom(ξ)

(ξ, E)→ (ξ[i 
→ (π, τ)], E)
,

where τ is a function that associates for each role of
the protocol p∈ P the sequence of instantiated actions
τ(p) = traniπ(p) and π is an arbitrary assignment of
principals to parameters. That corresponds to creat-
ing a new session instance (i, π).

2. Transitions that correspond to transitions inside ses-
sions:

(τ, E)⇒ (τ ′, E′)

(ξ, E)→ (ξ[i 
→ (π, τ ′)], E′)
,

where ξ(i) = (π, τ) and⇒ is defined below.
The relation⇒ describes session state changes caused
by firing principal transitions. We have (τ, E)⇒
(τ ′, E′) if there is t→ t′, which is the first transi-
tion in τ(p) for p ∈ P , and there is a substitution
ρ : X → T (F) such that E 	 tρ. E′ = E ∪{t′ρ} and
τ ′ = τ [p 
→ tail(τ(p))]. Where tail function returns all
but the first element in a sequence.

Example 3. Consider again our running example, the
Needham–Schroeder protocol, and a session between eA
and eB, identified by 0, with principal eA in the last
step of the protocol. Hence, π(p1) = A and π(p2) = B
and the state ξ(0) of the session is (π, τ), where τ(p1) =
{(N1, z)}KA → {z}KB and τ(p2) = ε. Here, we use the
shorter notationKA for pbk(A).
Moreover, let {N1, N2}KA ∈ E; then eA can fire its

last transition, which modifies the session state: (τ, E)→
(τ ′, E′),where τ ′(p1) = τ

′(p2) = εandE
′=E∪{{N2}KB}.

Clarifying remarks In our model, the intruder has the
ability to intercept any message sent by a principal and
principals have no guarantee about the origin of a mes-
sage. Thus, the intruder can intercept messages, use them
to create fake messages, and deliver these to the princi-
pals. Following Bolignano [8], in our model this is real-
ized by modeling sending of messages as adding messages
to the set E and by modeling receiving of messages as
reading messages deducible from E. Principals use, how-
ever, the guards of the transitions to check the genuine-
ness of received messages. For instance, in the Needham–
Schroeder example, the guard {(p1, y)}pbk(p2) of the tran-
sition of principal p2 means that principal p2 accepts any
and only messages that are pair with p1 in the first pos-
ition and encrypted by pbk(p2). Consider now the guard
of the second transition of p1, namely, {(n1, z)}pbk(p1).
Here, p1 refuses (and the execution blocks) if the message
to be read is not an encryption by pbk(p1) of a pair whose
first message is the nonce n1 sent in the first transition.

3.4 Secrecy modeling

A secrecy goal states that a designated message should
not be made public. A secret is public when it is deducible
from the set of messages intercepted by the intruder. In
our setting, a secret is defined by a role term. For in-
stance, in the Needham–Schroeder example a secret we
want to prove is n2, the nonce sent by p2. More precisely,
each session instance is associated with a secret we want
to prove. Here arises the important question concerning
the initial knowledge of the intruder and his ability to
profit from the actions of honest participants in parallel
and previous sessions. In other words, when proving that
the secret associated to session i running between par-
ticipants A and B remains unrevealed, we have to take
into account that an intruder can profit from a session
between A and C to break the protocol. Actually, we can-
not even rely on the honesty of C; she can be seen as an
intruder’s accomplice.



62 L. Bozga et al.: Pattern-based abstraction for verifying secrecy in protocols

As in the previous section, let S = (P, tran, fresh) be
a given session description. A secret template is given by
a role term s. Given (i, π) ∈ Inst, we denote by C(E, π, i)
the constraint stating that the intruder cannot initially
know messages that contain fresh nonces, private keys, or
symmetric keys of the principals in π.
Moreover, let C(E) denote the condition

∀(i, π) ∈ Inst ·C(E, π, i).

We are now ready to define our secrecy property formally.
A protocol described by S satisfies the secrecy property
defined by the secret template s in the initial set E0
of an intruder’s messages, denoted by Secret(S, s, E0) or
�	P s, if for every (i, π) ∈ Inst if C(E0), (∅, E0)→∗ (ξ, E)
and ξ(i) = (π, τ) then E �	 siπ. The definition of secrecy
can be easily extended to a set S of secret templates by:
Secret(S, S, E0) iff Secret(S, s, E0), for all s ∈ S.

4 Finite abstraction of atomic messages
and sessions

In this section we fix an arbitrary cryptographic protocol
given by a session description S = (P, tran, fresh) and fix
a secret s given by a role term. To prove that s is a secret,
we are faced with the following problems:

1. The definition of our verification problem is a reach-
ability problem quantified universally over all (i, π) ∈
Inst.

2. There is no bound on the number of sessions that can
be created.

3. There is no bound on the size of the messages that
occur during execution of the protocol.

In this section, we present an abstraction that copes with
the first two problems. The other problem is handled
in the next section. We proceed in two steps. First, we
present an abstraction that is parameterized by (i0, π0) ∈
Inst; then we argue that the abstract system we obtain
does not depend on the choice of (i0, π0). The main idea
of the abstraction is as follows. Clearly, the behavior of
a participant does not depend on its identity. This is sim-
ply a consequence of defining protocol sessions in a pa-
rameterized manner as we did. It also does not depend on
the identifier associated to the session.
Therefore, we fix an arbitrary session where the par-

ticipants, say we have two, areA andB. Then, we identify
with the intruder I all participants other than A and B.
Moreover, we identify all sessions in which neither A nor
B is involved. Concerning the other sessions, that is, those
where A or B is involved, we identify:

– All sessions where A plays the role of p1, B plays the
role of p2, and the session is different from the fixed
session;
– All sessions where B plays the role of p1 and A plays
the role of p2;
– All sessions whereA plays the role of p1 and the role of
p2 is played by a participant different from A or B;

– All sessions where B plays the role of p1 and the role
of p2 is played by a participant different from A or B,
etc.;
– All sessions whereA plays the role of p2 and the role of
p1 is played by a participant different from A or B;
– All sessions whereB plays the role of p2 and the role of
p1 is played by a participant different from A or B.

Identifying sessions means also identifying the nonces
and keys used in these sessions. This leaves us with
a system where we have a finite number of participants,
nonces, and keys, but an unbounded number of sessions.
Therefore, we apply an abstraction that removes the con-
trol. To summarize, we model a protocol as a set of tran-
sitions that can be taken in any order and any number of
times. The number of messages as their size are left not
bounded.
Furthermore, we consider only two principals, one

honest principal A and one dishonest principal, the in-
truder I. That this abstraction is safe and complete is
proved in [16].
We now present this idea formally. Let (i0, π0) ∈ Inst

be fixed. For a concrete semantic object x, we use the
notation x(i0,π0) to denote its abstraction, and in case
(i0, π0) is known from the context we use x

�.
We start by defining the abstract domains N� =

{�,⊥} and P� = {A, I} and the abstractions:

– i� =

{
� if (i, π) = (i0, π0)
⊥ otherwise

;

– p� =

{
A if p= π0(pi), pi ∈ P
I otherwise

.

We extend the abstraction of participants to vectors of
participants by taking the abstractions of the components.
The abstraction of the nonce N i of a session instance

(i, π), denoted by (N i)�, is given by:

– NI , if n ∈ fresh(p) and π(p)� = I;
– N , if i� =�; and
– Nπ

�
, otherwise,

whereNI is a fresh constant.
Thus, as abstract sets of nonce, we haveN �(I) = {NI}

andN �(Aj) = {N,Nπ
�
| n ∈ fresh(pj), π(pj) =Aj}.

Example 4. For Needham–Schroeder, we have the fol-
lowing set of abstract nonces:

N � = {NI , N1, N2, N1
A,x, N2

x,A | x ∈ {A, I}}.

We denoteN � =N �(I)∪
⋃

j∈Nr

N �(Aj).

It remains to define the abstraction of keys. We take
the abstract set K� that consists of a distinguished key
KI and the keys in AK(p

�
1, · · · , p

�
l) with p

�
1, · · · , p

�
l ∈ P

�

and p�j �= I, for all j ∈ Nl. The abstraction of a key
k(p1, · · · , pn) is defined by:

k�(p1, .. , pn) =

⎧
⎨

⎩

k(p�1, · · · , p
�
n)

if p�i �= I, i= 1, · · · , n
KI otherwise

.
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Example 5. For Needham–Schroeder we have the follow-
ing set of abstract keys:

K� = {KI , pbk(A), pvk(A)} .

We denote A� = P�∪N �∪K�.
The abstraction of a message term t, denoted by t�,

is obtained as the homomorphic extension of the abstrac-
tions on participants, nonces, and keys. For a set T of
terms, let T � = {t� | t ∈ T}.
The set T (F)� of abstract messages is the set of

ground terms overA� and the constructors encr and pair
as for T (F). Similarly, we can define the set of abstract
terms by allowing variables in X .
We are now ready to define the abstraction of a cryp-

tographic protocol that will be given as a pair (C�, R),
where C� is a set of constraints of the form E� �	∈c m�,
withm∈ T (F)� andE ⊆T (F)�, andR is a set of abstract
transitions. We call (C�, R) an abstract protocol. The pair
(C�, R) defines a transition system whose initial states
are sets E� ⊆ T (F)� that satisfy C� and where we have
E�→R E�

′
if there is t→ t′ in R and ρ : X → T (F)� such

that E� 	 ρ(t) and E�
′
=E�∪{ρ(t′)}.

The abstraction S� of the cryptographic protocol de-
fined by S is defined by:

– C� is the abstraction of C(E, π0, i0) and
– The set R of abstract transitions t�1→R t

�
2 such that

t1→ t2 is a transition in some session instance Siπ .

We also callR abstract transition rules. Let ST = (C�, R)
be an abstract protocol and E�0 ⊆ T (F)

�. We say that ST
preserves the secret s� in E�0, denoted by E

�
0 �	PT s

�, if for
all E� ⊆ T (F)�, if C�(E�0) and E

�
0→

∗
R E

�, then E� �	 s�.
To relate a cryptographic protocol and its abstraction,

we need to relate derivation by the intruder on the con-
crete and abstract messages. We can prove by structural
induction onm the following:

Lemma 1. LetE be a set of messages andE� = {m�|m∈
E}. Then, E 	m implies E� 	m�, for any message m ∈
T (F). �

Proof. We prove by induction on the tree derivation

1. E 	m in one step: Hence, m ∈ E. By definition of
E� = {m� |m ∈E}, thenm� ∈E�, and then E� 	m�.

2. Induction step. E 	m in k+1 steps. We make a case
analysis on the last derivation step:

– Case of pairing, m = (m1,m2). We have E 	m1
and E 	m2 in k steps; then by induction hypoth-
esis E� 	m�1 and E

� 	m�2 and by pair rule we
have E� 	 (m�1,m

�
2), but (m

�
1,m

�
2) = (m1,m2)

�, so
E� 	 (m1,m2)�.
– Case of encryption,m= {t}k. Similarly to the pre-
vious case.
– Case of left projection. We have E 	 (m,m′) in k
steps; then by induction hypothesis E� 	 (m,m′)�,
but (m,m′)� = (m�,m′�), soE� 	 (m�,m′�), and by

left projection rule we have E� 	m�. Similarly for
right projection.
– Case of decryption. We have E 	 {m}k and E 	
inv(k) in k steps; then by induction hypothesis
E� 	 {m}�k and E

� 	 (k−1)�, which is equivalent to
E� 	 {m�}k� and E

� 	 (k�)−1; then by decryption
rule we have E� 	m�.

We can also prove the following lemma to relate con-
crete and abstract term instantiations.

Lemma 2. Let t1 and t2 be two terms and let ρ : X →
T (F) be a ground substitution. Then, ρ(t1) = ρ(t2) implies
ρ�(t�1) = ρ

�(t�2), where ρ
�(X) is defined as ρ(X)�. �

Proof. We have that ρ(t1) = ρ(t2) implies ρ(t1)
� = ρ(t2)

�,
and we prove by structural induction on term t that
ρ(t)� = ρ�(t�):

1. Case t atomic – by definition.
2. Case t= f(t1, t2), where f ∈ {pair, encr}:
ρ(t)�= ρ(f(t1, t2))

�

= f(ρ(t1), ρ(t2))
�

= f(ρ(t1)
�, ρ(t2)

�)

= f(ρ�(t�1), ρ
�(t�2)) by induction hypothesis

= ρ�(f(t�1, t
�
2))

= ρ�(f(t1, t2)
�)

= ρ�(t�).

Using Lemmas 1 and 2, we can prove that (C�, R) is
indeed an abstraction of S where the abstraction of a con-
figuration (ξ, E) is E�:

Proposition 1. Let S = (P, tran, fresh) be a protocol
and S� = (C�, R) its abstraction. Let (ξ1, E1) and (ξ2, E2)
be concrete configurations. Then,

(ξ1, E1)→ (ξ2, E2) implies E
�
1→R E

�
2.

Moreover, if C(E) is true, then also C�(E�). �

Proof. Following the protocol transitions we have two
cases:

1. Transitions that create new session (i, π):
We have E1 =E2 and then E

�
1→R E

�
2.

2. Inside session transition (t→ t′) ∈ tran:
We have (ξ1, E1)→ (ξ2, E2), where E2 = E1 ∪ (t′σ)
and σ is a substitution σ :X →T (F) such thatE 	 tσ.
We will prove that there is an abstract transition in R
such that E�1→R E

�
1∪{(t

′σ)�}.
By Lemma 1 we have E 	 tσ⇒E� 	 (tσ)� (∗).
Also, since (t→ t′) ∈ tran in the abstract transition
R of the protocol, we have t� → t′�. Then, from (∗)
using Lemma 2 we obtainE�1→R (E

�
1∪{(t

′σ)�}; hence
E�1→R E

�
2.

Exploiting Proposition 1 and the fact that (C�, R)
does not depend on (i0, π0), that is, we have the same con-
straints and transitions for all (i, π) ∈ Inst, we can prove:
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Fig. 3. Abstract rules of Needham–Schroeder protocol

Corollary 1. The protocol defined by S satisfies the se-
crecy property defined by S in E0 if its abstraction (C

�, R)
preserves S� in E�0, i.e.,

E�0 �	(C�,R) S
� implies Secret(S, S, E0).

Example 6. In our model, which yields an overapproxi-
mation of the possible runs of the protocol, we can de-
scribe the Needham–Schroeder protocol by the rules of
Fig. 3.
In this form, the relation between the message ex-

pected to fire a transition and the corresponding answer
is made explicit through variables. Each rule of a session
corresponds to a transition of the Needham–Schroeder
protocol, as shown in Fig. 3 in which the roles and nonces
are instantiated w.r.t. the principals of the session. Ad-
ditionally, a verification tool requires a constraint C(E)
on the initial knowledge of the intruder defined by E �	∈c

{N1, N2, pvk(A) } and a secrecy property defined by the
set of messages {N2, pvk(A)}.

5 The verification method

Throughout this section we assume that we are given
a protocol P = (C,R) and a set of secrets defined by a set
S of messages.We present an algorithm that allows one to
verify that a protocol preserves a set of secrets. If a princi-
pal A wants to protect a secret s, he has to encrypt every
occurrence of s in every message sent with a key whose in-
verse is not known to the intruder. The secret s itself need
not to be directly encrypted; it is enough that the secret
only appears as part of encrypted messages.
The basic idea of our method is to compute the set of

encrypted messages that protect the secrets. As we will
see, encryption with a safe key is not always sufficient to
protect a secret in every message. The honest principals
following the protocol can unwittingly help the intruder
in decrypting messages.
In order to develop this idea formally, we need to in-

troduce a few definitions. In the sequel, we let K ⊆ K
denote a fixed but arbitrary set of keys and we assume
∅ �=K �= K. Keys in K are safe keys, i.e., keys whose in-
verses are not known to the intruder and therefore pro-
tectm. We callK-guard any encrypted message {m}k ∈
T (F), where k is a safe key. We call safe-breaker a pair
({m}k, p), where {m}k is a K-guard and p is a criti-
cal position in {m}k.1 Intuitively, p denotes the position

1 Critical and noncritical positions as well as the notation ∈c are
introduced in Sect. 3.3.

of a secret, and a safe-breaker ({m}k, p) means that, in
the specific case of message {m}k, the intruder can pass
through the protection of key k and obtain the subterm at
position p.

Definition 1. Let m and s be two messages, B a set of
safe-breakers, and K a set of safe keys. We denote by
¬
(
m〈B〉

K
s
)
(or ¬m〈B〉

K
s for readability) the predicate “s

is reachable inm by application of some safe-breakers in B
together with the intruder’s decomposition rules.” We use
the predicate postively and negatively. The positive version
of the predicate, m〈B〉

K
s, can be read as “the secret s is

insensitive to B in a message m.” For the sake of simpli-
city, we define the negation of the predicatem〈B〉

K
s by the

following inference rules:

¬m〈B〉
K
m

¬m〈B〉
K
s, k �∈K

¬{m}k〈B〉Ks

¬m1〈B〉Ks

¬(m1,m2)〈B〉K s

¬m2〈B〉Ks

¬(m1,m2)〈B〉Ks

k ∈K, ¬({m}k)|p〈B〉Ks, ({m}k, p) ∈ B

¬{m}k〈B〉Ks

This definition is easily generalized to sets of mes-
sages: Let M and S be sets of messages and B a set of
safe-breakers. We say that the secrets S are insensitive to
B inM , denoted byM〈B〉

K
S, if ∀m ∈M,∀s∈ S. m〈B〉

K
s.

Morevoer, a secret of S is reachable inM with the help of
safe-breakers B, denoted by ¬M〈B〉

K
S, if ∃m ∈M,∃s ∈

S. ¬m〈B〉
K
s.

Example 7. Let m = pair(A, {A, {N}k1}k2), and let k1
and k2 be two safe keys, i.e., {k1, k2} ⊆K. Thenm〈∅〉KN
holds, meaning that N is not deducible from m without
a safe-breaker. Indeed, the intruder would not gain any-
thing in splitting the pair, since N is protected in both
parts: A〈∅〉

K
N and {A, {N}k1}k2〈∅〉KN hold.

Let b1 = ({A, {N}k1}k2 , 01 and b2 = ({N}k1 , 0) be two
safe-breakers. Let B =

{
b1, b2

}
. Then, m〈B〉

K
N does

not hold, meaning that the safe-breakers can be applied
to get the secret N . This is illustrated by Fig. 4. In-
deed, by Definition 1 m〈B〉

K
N is true if and only if we

have A〈B〉
K
N and {A, {N}k1}k2〈B〉KN . The former one

holds, but this is not the case with the latter one: an
application of the first safe-breaker provides {N}k1 =
{A, {N}k1}k2 |01 . Then, an application of the second safe-
breaker providesN = ({N}k1)|0 . SinceN〈B〉KN does not
hold (this is the case where m= s), Definition 1 entails
¬
(
m〈B〉

K
N
)
.
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Fig. 4. Example 7: Application of safe-breakers

The notion of a message being insensitive to safe-
breakers does not take into account the capabilities of the
intruder to decompose and compose new messages.

Example 8. Consider the set of messages E =
{
s1, s2

}
.

Whatever B we choose, the property E〈B〉
K
(s1, s2) triv-

ially holds since (s1, s2) does not belong to E. However,
the pair (s1, s2) can be derived from E using the pairing
rule.

This example shows that we have to give particular care
to the treatment of composed secrets as they can be ob-
tained by either composition or decomposition. To do so,
we define the closure under decomposition of a term. Tak-
ing the closure of a set S of secrets ensures that the in-
truder cannot derive a message in S solely by composition
rules.
LetM be a set of sets of messages and letm be a mes-

sage. We say thatM is closed w.r.t. m if it consists of all
messages on some path of m. We denote by c(m) the set
of all sets of messages closed w.r.t.m.
Then, a set M of messages is closed against compo-

sition if for any m ∈M there exists a set of messages
M ′ ∈ c(m) such thatM ′ ⊆M .

Example 9. Consider the message ({(A,N)}k, B). The
sets closed w.r.t. this message are the following:
{
({(A,N)}k, B), B

}
;{

({(A,N)}k, B), {(A,N)}k, k
}
;{

({(A,N)}k, B), {(A,N)}k, (A,N), A
}
;{

({(A,N)}k, B), {(A,N)}k, (A,N), N
}
.

The closure computation helps in preventing the intruder
from making m by composition: it tells us that it is suffi-
cient to ensure that one of these sets of messages remains
completely unknown to the intruder.

We can prove the following:

Lemma 3. Let S and E be two sets of messages such
that S ∩E = ∅, and assume S is closed against composi-
tion. Then, no message in S can be derived using only
composition rules. In symbols we write E �	c S, where 	c
denotes a derivation that uses only composition rules.

Our purpose now is to define conditions such that for
any set E of messages, if the secrets of S are insensitive

to safe-breakers in the set of messages E, then the secrets
are protected in all messages derivable from E. In other
words, we look for a condition that ensures the stability
of protection under the derivation rules that define Dolev
and Yao’s intruder.

Example 10. Consider the set of messages E =
{
k2,

{s}k1
}
. The safe-breaker ( {{s}k1}k2 , 00 ) does not help

getting the secret s since it cannot be applied to any mes-
sage of E; E does not contain the message {{s}k1}k2 .
Therefore, E〈( {{s}k1}k2 , 00 )〉Ks holds.
However, the term {{s}k1}k2 is derivable from E using
the encryption rule, and then the safe-breaker can be used
to get the secret s. �

In order to catch this ability of the intruder – to forge
a message and to bring principals to play some transitions
that decompose the message – we define a closure on safe-
breakers that enriches the set of safe-breakers with their
subencrypted messages.
Let (b, p) be a safe-breaker, and let ssb(b, p) denote the

sub-safe-breakers of (b, p), that is, the set of all proper sub-
terms of b that are safe-breakers for position p. A formal
definition of the function ssb is given in Appendix A, but
let us give an intuitive example.

Example 11. Consider two keys k1, k2 ∈K and the mes-
sage b= { ({N}k1 , A) }k2 , and assume N at position 000
in b is the secret. Then, by definition, b is a K-guard
and the pair (b, 000) denotes a safe-breaker for N in b.
Moreover, each encryption with a key in K in b that
is above N = b|000 defines a K-guard of N . The func-
tion ssb computes the position of N in each of these
K-guards and returns the set of safe-breakers associ-
ated to thesesK-guards. For instance, ssb(b, 000) returns{
({N}k1 , 0)

}
, and both ssb(b, 01) and ssb(b, 00) return ∅,

since there is no K-guard that is a proper subterm of b
and above b|01 =A (resp. b|00 = {N}k1).

We are now able to express the conditions that guaran-
tee stability of the predicateE〈B〉

K
S under the deduction

rules of the intruder. In the rest of the paper, B denotes
a set of safe-breakers and S denotes a set of secrets.

Definition 2. A pair (B,S) is well formed with respect
to a set of safe keys K if the following conditions are
satisfied:
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1. S is closed against composition.
2. K−1 = {k−1 | k ∈K} ⊆ S, that is, the inverse of the
safe keys is secrets.

3. For any safe-breakers (b, p) ∈ B, all its sub-safe-
breakers already belong to B. Formally, ∀(b, p) ∈
B. ∀(b′, p′) ∈ ssb(b, p) · (b′, p′) ∈ B.

Intuitively, Condition 1 ensures that the intruder will
always miss at least one part of a composed secret pre-
venting him from deducing it by composition. Condi-
tion 2 ensures that the intruder will not be able to decrypt
a secret protected by a key of K. The last condition of
well-formedness takes into account the ability of the in-
truder to use encryption in order to obtain a message that
can be broken using a safe-breaker.
The main property of the predicate E〈B〉

K
S is that it

is stable under the intruder’s deduction rules.

Proposition 2. Let E be a set of messages and (B,S)
a pair of safe-breakers and secrets. If (B,S) is well formed
and E〈B〉

K
S holds, then the secrets of S are insensi-

tive to B in any message m derivable from E, that is,
E 	m⇒m〈B〉

K
S.

Proof. See Appendix B.1.

The following corollary is an immediate consequence
of Proposition 2.

Corollary 2. If E〈B〉
K
S and (B,S) is well formed, then

E �	 S.

Under well-formedness of (B,S) the predicateE〈B〉
K
S

is stable w.r.t. to the intruder inference system. We now
come to the computation of a well-formed pair (B,S) that
ensures in addition the stability of E〈B〉

K
S w.r.t. any in-

terleaving of sessions of a given protocol P = (C,R).

Definition 3 (stability of (B,S)w.r.t. to rules). Let
r = t1 → t2 be a rule in R. The pair (B,S) is stable
w.r.t. the rule r if for every substitution σ the property
σ(t1)〈B〉KS implies σ(t2)〈B〉KS. A pair (B,S) is stable
w.r.t. a set of rulesR if it is stable w.r.t. to each rule inR.

The stability of the pair (B,S) w.r.t. to a rule t1→ t2 ex-
presses the fact that the message produced by firing the
transition t1→ t2 has no effect on the protection of S.
Then, using Proposition 2, we can prove by induction the
following theorem:

Theorem 1. Let S be a set of secrets and B a set of safe-
breakers. If (B,S) is well formed and stable w.r.t. all rules
in R, and if, additionally, E0〈B〉KS holds for every set
of messages E0 that satisfies C, then �	P S, i.e., the se-
crets in S are preserved in any execution of the protocol
P = (C,R).

Proof. See Appendix B.2.

Theorem 1 gives a sufficient condition to conclude that
the secrets in S are preserved in spite of the protocol P =

(C,R). Given a protocol P = (C,R) and a set S of secrets,
we compute a set B of safe-breakers and a set S′ of secrets
such that:

– The set of messages initially known to the intruder –
defined by the constraint C onE0 – satisfiesE0〈B〉KS

′;
– S ⊆ S′;
– (B,S′) is well formed;
– (B,S′) is stable w.r.t.R.

6 Computing stable secrets and safe-breakers

In this section, we develop an algorithm that computes
a stable pair (B,S′). This is done in two steps. First, we
develop a semantic version of the algorithm in which we
do not consider questions related to representing sets of
safe-breakers. Then, we define a symbolic representation
for safe-breakers, and we develop a symbolic algorithm.

6.1 A semantic verification algorithm

In Fig. 5 we present an algorithm that computes a pair
(B,S) that is well formed and is stable w.r.t. the rules
of the protocol. The algorithm uses a function Closure
that when applied to a set of messages yields a closure
of this set. That is, we describe an algorithm that is pa-
rameterized by a choice of such a function. Its correction
does not depend on this choice. In fact, we can integrate
computing the closure of sets into the algorithm, and we
can for a given set try all possible closure sets. This is,
however, cumbersome and does not add new insight. The
algorithm takes as input a set of rules R, a set of se-
crets S, a set of safe keys K, and a set of safe-breakers
B. It is a fixpoint computation of a well-formed stable
pair, starting with (B,S). If it terminates, it returns an
augmented set of secrets S′ and an augmented set of safe-
breakers B′.
We now explain intuitively the clue point of the al-

gorithm. Let us take a rule tp→ tc in R, a substitution
σ : X → T (F) such that a secret s is insensitive to B in
σ(tp), the premise of the instantiated rule. If the secret s is
not protected in σ(tc), the conclusion of the instantiated
rule, then each K-guard of σ(tp) that protects an occur-
rence of the secret s is not efficient in this case and it must
be added to the set of safe-breakers. Indeed, the intruder
does not need the inverse of the keys in K to get the se-
cret: it will be unwittingly revealed by a principal who
plays the rule σ(tp)→ σ(tc). Think, for instance, of a pro-
tocol with {(y, x)}pbk(A)→ {x}pbk(y) as a rule of princi-
pal A. Principal A will respond with {Secret}pbk(i) upon
receipt of the message {(i,Secret)}pbk(A), thereby unwit-
tingly decrypting the secret for the intruder. Thus theK-
guard {(i,Secret)}pbk(A) is a particular case where pbk(A)
does not protect the secret and

(
{(i,Secret)}pbk(A), 01

)

must be added to the set the safe-breakersB. Case 2 in the
algorithm considers the case where a secret is vulnerable
to safe-breakers in the conclusion, and the premise does
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Fig. 5. Semantic version of verification algorithm

not contain a secret. In this case, the apparently harmless
premise is as compromising as the secret, and so it must
be added to the set of secrets. The following proposition
summarizes the properties of the algorithm.

Proposition 3. If the algorithm of Fig. 5 applied to
(R,S,K,B) terminates, it returns S′ and B′ that satisfy
the following conditions:

1. (B′,S′) is well-formed,
2. (B′,S′) is stable w.r.t. R, and
3. S ⊆ S′.

Proof. The well-formed property of (B′,S′) derives di-
rectly from the operations made in the algorithm. First,
the set of secrets S′ is closed each time. Second, any time
a dangerous premise with respect to a secret s is found
we add to B′ all message transducers obtained by its sub-
terms of the form {m}k, with k ∈K, which dominates the
secret s and the related positions. This ensures the second
condition of well-formedness.
If the algorithm reaches a fixpoint (B′,S′), then the

until condition of repeat termination will be reached.
That is, all rules in R produce a dangerous substitution
DS that generates newB and newS, which are already in
B′ respectively S′.

Since we start with the set S′ = S, and then the al-
gorithm only augments it, the last condition, S ⊆ S′, is
obviously satisfied.

Using Proposition 3 and Theorem 1, we can prove the
following corollary.

Corollary 3. If the algorithm of Fig. 5 terminates with
(B′,S′) as the result, and each set of messages E0 that
satisfies C(E0) also satisfies E0〈B′〉KS

′, we can conclude
�	P S′, and hence �	P S.

6.2 A symbolic representation of safe-breakers

To develop an effective version of our semantic algorithm,
we need to represent (potentially infinite) sets of safe-
breakers. To do so, we introduce a symbolic representa-
tion of safe-breakers: a breaking-pattern is a pair ({t}k, p),
where {t}k is a term over variables in X and p is a criti-
cal position in {t}k. A secret s embedded in a messagem
is insensitive to a breaking-pattern (b, p) if it is insensi-
tive to any instance of the pattern b, meaning that the
following property holds:

m〈
{
(σ(b), p) | σ : X → T (F)

}
〉
K
s .
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For instance, the messages {(Secret, (B,A))}K and {(A,
(B,Secret))}K are insensitive to the breaking-pattern2(
{(A, (x, y))}K , 010

)
, while the secret of message {(A,

(Secret, B))}K is revealed by applying the breaking-
pattern with the substitution [x← Secret, y←B].
A breaking-pattern is then a symbolic representation

of a set of safe-breakers. In fact, the symbolic algorithm
deals with sets of breaking-patterns. So we go one step
further and introduce super terms to represent sets of
breaking-patterns. Let us now define formally those sym-
bolic representations used in theHermes tool, our imple-
mentation of the symbolic algorithm.
The super terms are defined by the following BNF:

st ::=N | P |K | x | pair(st1, st2) |

encr(st,K) | Sup (st) ,

whereN ∈N , P ∈ P ,K ∈K, and x ∈ X . The set of super
terms is denoted by PT (X ,F). Notice that every term
in T (X ,F) is also a super term in PT (X ,F). The differ-
ence between the two is that super terms make use of the
special Sup function symbol.
Intuitively, as can be seen from the following defin-

ition, Sup (t) represents all terms containing the term t
as a subterm. For instance, the terms A, pair(x,A),
encr(A,K), · · · all belong to [[Sup (A)]].

Definition 4. Given a super term st, the set of all cor-
responding terms is denoted by [[st]]. It is defined as
follows:

[[st]] = {st} if st is a constant or a variable
[[pair(st1, st2)]] = {pair(t1, t2) | t1 ∈ [[st1]], t2 ∈ [[st2]]}
[[encr(st1, k)]] = {encr(t1, k) | t1 ∈ [[st1]]}
[[Sup (st)]] = { t ∈ T (X ,F) | ∃ a position p in t

such that t|p ∈ [[st]] }

Definition 5. Given a super term st and a critical pos-
ition p, we denote by [[(st, p)]]bp the set of breaking-terms
associated to the breaking-super term (st, p). We overload
the function [[·]] as the meaning is clear from its argument.
For breaking-super terms, the function [[·]] is defined as
follows:

[[(st, p)]] = {(st, p)} if st is a constant or a variable

[[(pair(st1, st2), ε)]] =

{(pair(t1, t2), ε) | t1 ∈ [[st1]], t2 ∈ [[st2]]}

[[(pair(st1, st2), 0.p)]] =

{(pair(t1, t2), 0.q) | (t1, q) ∈ [[(st1, p)]], t2 ∈ [[st2]]}

[[(pair(st1, st2), 1.p)]] =

{(pair(t1, t2), 1.q) | t1 ∈ [[st1]], (t2, q) ∈ [[(st2, p)]]}

[[(encr(st, k), ε)]] = {(encr(t, k), ε) | t ∈ [[st]]}

[[(encr(st, k), 0.p)]] = {(encr(t, k), 0.q) | (t, q) ∈ [[(st, p)]]}

[[(encr(st, k), 1.p)]] = ∅

2 010 is the position of x in {(A, (x, y))}K

[[(Sup (st), ε)]] = ∅

[[(Sup (st), 0.p)]] = {(t, q.r) | (t|q , r) ∈ [[(st, p)]]}

[[(Sup (st), 1.p)]] = ∅

Example 12. The super term
(
Sup (pair(A, x)), 01

)
de-

notes all breaking-patterns (b, p) that contain pair(A, x)
as a submessage of b and where p corresponds to the pos-
ition of x. The computation of the breaking-patterns cor-
responding to the super term

(
Sup (pair(A, x)), 01

)
goes

through the step [[
(
pair(A, x), 1

)
]] = {

(
pair(A, x), 1

)
}

and ends with the set [[
(
Sup (pair(A, x)), 01

)
]] = {(t, q.1) |

t|q = pair(A, x)}. This set contains, for instance, the
terms

(
pair(pair(A, x), B), 01

)
,
(
pair(B, pair(A, x)),

11
)
,
(
pair(A, x), 1

)
,
(
encr(pair(B,pair(A, x)), k), 111

)
.
�

Using the function [[·]] we can shift from super terms
to their equivalent representation of sets of terms. Based
on that remark, we present the algorithm on terms and we
explain how it extends to super terms. In the sequel, when
there is no need to distinguish between terms and super
terms, we use the generic word “pattern.”
Based on the symbolic representation, the infinite

set B of safe-breakers is represented by a finite set
of breaking-patterns BP. More formally, we have the
following:

Definition 6. A symbolic representation SR is a pair
(BP,S), where

– BP is a finite set of breaking-patterns that represents
the safe-breakers B and
– S is a finite set of terms that represents the secrets.

7 A symbolic verification algorithm

The symbolic algorithm is obtained from the algorithm
of Fig. 5 by replacing each operation by a corresponding
symbolic one that operates on (BP,S). For the sake of
presentation, first we explain the symbolic algorithm in
the particular case where the breaking-patterns consist
of pairs of terms and positions rather than super terms
and positions, i.e., Sup does not occur in any breaking-
patterns of BP. We will explain later how it extends to
super terms and what the difficulties to solve are.

7.1 The algorithm on terms

Before presenting the algorithm we need to introduce the
following definitions. As usual, a substitution is a map-
ping σ : X → T (X ,F). A ground substitution is a map-
ping σ : X → T (F). Let bp = (t, p) and bp′ = (t′, p′) be
two breaking-patterns. We say that they unify if the pos-
itions p and p′ are comparable and there is a substitution
σ : X → T (X ,F) such that σ(t) = σ(t′). We write also
σ(t, p) = σ(t′, p′).
The symbolic algorithm takes as input a set of rulesR,

a set of secrets S, a set of keys K, and an empty set of
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breaking-patternsBP = ∅. It computes a new well-formed
pair of breaking-patterns and secrets (BP,S) until it be-
comes stable w.r.t. all rules in R. Let us now sketch its
main steps:

1. The set S of secrets is augmented withK−1, the set of
keys of the form k−1 such that k is an element ofK.

2. For each rule tp→ tc inR, we have to consider all pos-
sible occurrences of a secret in the conclusion tc. So,
for each position p in tc that corresponds to a variable
or a secret, the algorithm computes:
a. The finite set of dangerous substitutions DS is as
follows. A substitution σ : X → T (X ,F) is dan-
gerous if for every position q ≺ p, for which ∃k ∈
K such that (tc)|q = {(tc)|q·0}k, the safe-breaker

((tc)|q , q
−1p) unifies by σ with a breaking-pattern of

BP. Then, DS := {σ : X → T (X ,F) | σ is danger-
ous}. We illustrate below the computation of dan-
gerous substitutions.
The set of dangerous premises is: DP = {σ(tp) | σ ∈
DS}.
b. If there exists q such that (tc)|p = (tp)|q , then for
every term t of DP we construct a set of new
breaking-patternsthat consist in pairs of subterms
of t that are terms encrypted by keys from K and
positions restricted to these subterms of q.
Formally,

newBP = {(t|r , r
−1q) | t ∈DP,∃k ∈K, t|r =

{t|r·0}k∧ (tc)|p = (tp)|q ∧ r ≺ q}.

Update the breaking-patterns BP := BP ∪newBP.
c. Otherwise, if such a q does not exist, then the set
of dangerous premises must be added to the set
of secrets. Formally, newS := {m |m ∈DP}. Up-
date and at the same time close the set of secrets
S = Closure(S ∪newS).

3. Repeat 2 until newS ⊆ S and newBP ⊆ BP.

Computation of dangerous substitutions

We present the algorithm that computes the dangerous
substitutions induced by a rule tp→ tc and a position p.
LetK be the fixed set of keys and BP the set of breaking-
patterns.
Let PP be the set of positions pi above p such that

for each pi ∈ PP there is k ∈ K such that (tc)|pi =
{(tc)|pi·0}k. We define below the function Φ, which com-
putes all the unifiers between breaking-patterns of BP
and (tc, p) that cancel each protecting position. Formally,
the dangerous substitutions are the unifiers σ that satisfy:∧

pi∈PP
σ((tc)|pi , p

−1
i p) = σ(bi, qi), where (bi, pi) ∈ BP.

Initially, Φ is called with the set PP of protecting
positions and a set of substitutions DS containing only
the empty substitution:DS = {[ ]}. Then, it takes in turn
each protecting position and, if possible, completes the
substitutions ofDS in order to cancel the current position

by a breaking-pattern of BP:

Φ(tc, BP, PP , DS) =⎧
⎪⎨

⎪⎩

{σ | σ ∈DS} if PP = ∅
Φ(tc, BP, PP \{pi},⋃

σj∈DS
{σj ∪σ

i,j

1 , · · · , σj ∪σ
i,j
ni,j
} ), pi ∈ PP

where the σi,jk in the fourth argument are the unifiers re-
sulting from the unification of (σj(tc)|pi , p

−1
i p) with some

breaking-patterns of BP.
The same algorithm is used in the case where breaking-

patterns are pairs of terms and positions and when
breaking-patterns are pairs of super terms and positions.
We only need to adapt the unification algorithm. In the
case of terms, we use the standard most general unifier,
and for super terms we define a unification algorithm pre-
sented in Sect. 7.2.

Example 13. We illustrate the computation of danger-
ous substitutions on the set of breaking-patternsBP =
{ ({(i, x)}KB , 01), ({((A, y), z)}KB , 01) }, the set of keys
K = {KA,KB}, and a rule tp→ tc given in Fig. 6.
We consider the conclusion of the rule. The first step

consists in looking for all the critical positions in the con-
clusion where a secret or a variable appears. We find x′

at position 01101, y′ at position 011000, and z′ at pos-
itions 00, 011001 in the term tc. Let us take the pos-
ition p = 01101 of x′; we look for the positions above
it that may protect it. We find exactly two protect-
ing positions: p1 = ε and p2 = 011. Then, the function
Φ looks for all substitutions that unify some breaking-
patterns of BP with the terms at the protecting pos-
itions p1 and p2 and the restricted respective positions
of p. Starting with position p1 = ε, it unifies ((tc)|ε , p)
with the breaking-pattern({(i, x)}KB , 01); thus we have
01≺ p and the unifier σ′ = [z′ = i, x= (tc)|01 ]. This can-
cels the topmost protection. Then, the function Φ at-
tempts to complete the substitution σ′ so that it also
cancels the protection at position p2 = 011. To do so,
it tries to unify (σ′(tc)|p2 = {((y

′, i), x′)}KB , p
−1
2 p = 01)

with some breaking-patterns of BP and succeeds with
the breaking-pattern({((A, y), z)}KB , 01). Thus we have
01 = 01 and the unifier σ′′ = [y′ = A, y = i, x′ = z]. The
two unifiers are then composed and restricted to the do-
main var (tc) resulting from the substitution σ = (σ

′ ∪
σ′′)/var(tc) = [y

′ = A, z′ = i]. Pursuing the computation
does not provide other substitutions, and finally Φ re-
turns for the position p of tc the set of dangerous substi-
tutions {σ}. We now look at the premise of the rule to
compute the new breaking-patterns induced by σ. The
variable x′ appears in tp at position q = 001, and it is pro-
tected by the key KB at position r1 = ε and by the key
KA at position r2 = 0. However, the dangerous substitu-
tion σ indicates that these protections will not work in
case y is A and z is i. Consequently, we increase the set of
breaking-patternsBP by adding these particular cases. In
our symbolic representation, this means adding
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Fig. 6. Illustration of computing dangerous substitutions

1. σ(tp) = {{((A, i), x′)}KA}KB), r1
−1q = 0001 and

2. σ(tp)|0 = {((A, i), x
′)}KA , r

−1
2 q = 001

to the set of breaking-patterns BP. �

7.2 Dealing with super terms

First of all, it is worth mentioning that super terms are
more expressive than terms, that is, there are sets of mes-
sages that can be described as super terms but not as
terms. This is the case, for instance, for the set of mes-
sages that contain the constant A as a submessage. In
fact, introducing the interpreted function symbol Sup
corresponds to adding the subterm relation to a logic on
terms. Moreover, it is not difficult to exhibit examples of
protocols where one needs the expressive power of super
terms to represent the safe-breakers.
Unification and matching are the key operations in

step 2a of the symbolic algorithm. The problem we need
to solve for obtaining our symbolic algorithm is, how-
ever, not the unification of super terms. The problem we
need to solve is the following: Given two super terms u
and t, we must determine the set U(u, t) of substitutions σ
such that there exist terms u′ ∈ [[u]] and t′ ∈ [[t]] such that
σ(u′) = σ(t′). More precisely, we want to characterize the
set of most general unifiers that unify some terms in [[u]]
and [[t]]. Actually, the problem we need to solve for our
symbolic algorithm is a simpler one, where at least one of
the super terms u and t is simply a term, that is, without
occurrence of Sup in it.3 We prefer, however, to present
a solution for the general case. We will do this in a general
setting.
Let us consider a finite set F of function symbols such

that Sup /∈ F , and let X be a countable set of variables
(see Sect. 2 for the notations). The set of super terms in-
duced by F and X , denoted by ST (F ,X ), is defined by

3 Indeed, we need to unify the conclusion of a rule, which is
a term, with a breaking-pattern, which can be a super term.

the following BNF:

t ::= x | f(t1, · · · , tn) | Sup (t) ,

where x is a variable in X and f ∈ F is a function sym-
bol of arity n ≥ 0. Let F (i) denote the function symbols
in F of arity i. As usual, function symbols of arity 0, i.e.,
elements of F (0), are called constants. The meaning [[t]] of
a super term t is a set of terms in T (X ,F); it has been
defined in Definition 4.

Definition 7. Given two super terms u and v, a sub-
stitution σ : X → ST (X ,F) is called a maximal general
unifier for u and v if the following conditions are satisfied:

1. It is a most general unifier for some terms t ∈ [[u]] and
t′ ∈ [[v]] and

2. For every substitution σ′ that unifies terms in [[u]] and
[[v]], σ′ is not more general than σ, that is, for no sub-
stitution ρ do we have σ = ρσ′.

We denote by U(u, v) the set of maximal general unifiers
for u and v. �

In general there will be more than one maximal general
unifier for u and v even modulo renaming. The definition
of U can be extended in the usual way – as for unification
– to sets {(ui, vi) | i ∈ Nn} of pairs of super terms. In the
sequel, we prefer to write ui = vi instead of (ui, vi) as our
algorithm essentially consists in manipulating some kind
of equations.
In this section, we want to develop an algorithm that,

given E = {ui = vi | i ∈ [1, n]}, determines U(E). Hence-
forth we will call such a set E a generalized equational
problem, written gepfor short. It turns out that an ex-
tension of the set of transformations that solve the usual
unification problem (cf. [6]) will give the solution.
We recall in Fig. 7 the usual six rules of [6] for solving

unification, and we add three rules to deal with the Sup
operator.
We only solve the unification problem in the case of

a signature F with at least a constructor of arity greater
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Fig. 7. Usual rules for solving unification extended to deal with superterms

than one; we do not present here the rules for the case of
a signature with only unary constructors, which are use-
less in the context of cryptography.We call to the reader’s
attention the fact that the Sup-Splitting rule transforms
a gepE into a set of geps. Indeed, it yields a new gepfor
each subterm of f(t1, · · · , tn). This is not the case for the
usual unification rules.

Example 14. Consider the following gep:
{
(1) Sup (x) = f(b, g(Sup (a)))
(2) f(b,Sup (g(x))) = f(b, g(b))

Equation (1) is eliminated by rule (Sup-Delete-2) of
Fig. 7. Indeed, it is equivalent to x � f(b, g(Sup (a))),
which puts no constraint on x as long as the term sig-
nature contains a contructor with arity greater than one
(e.g., pair). Indeed, whatever term we obtain for x it is
always possible, using binary contructors, to adjust the
Sup part in f(b, g(Sup (a))) in order to obtain a term that
contains x. As an example, f(b, g(pair(x, a)) contains x
and is an instance of f(b, g(Sup (a))).
TheDecompose rule removes Eq. (2) from this gepand

produces the constraints Sup (g(x)) = g(b) and b = b
(which is eliminated by the Delete rule). Then, by the
Sup-Splitting rule, the former equation yields two geps:
{g(x) = g(b)} and {g(x) = b}. Finally, we obtain the solu-
tion x= b. �

Termination of the algorithm can be proved using lex-
icographic ordering and the ranking function that maps a
gepE to (m1,m2,m3), where:

– m1 is the number of variables inE that are not solved.
As usual, a variable x is solved in E if it occurs ex-
actly once in E, namely, on the left-hand side of some
equation x= u with x /∈ var (u).
– m2 is themeasure ofE defined byM(E) =Σu=v∈E(|u|
+|v|) andM(⊥) = 0.
– m3 is the number of equations u= x in E with x ∈ X
and u /∈ X .

The application of a rule to a gep E leads to one or
more geps with a lower rank than E. Although the Sup-
Splitting rule of Fig. 7 increases the number of geps,
this number is bounded by the number of subterms of

the right-hand-side term. The ranking function and the
bounded number of deriveable geps ensure the termina-
tion of the algorithm.
To prove the soundness of the algorithm, we prove

for each rule E ⇒ E1, · · · , En that we have U(E) =⋃
1≤i≤n U(Ei).

7.3 On the termination of the symbolic algorithm

In this section, we present a technique that makes
a depth-first implementation of the symbolic verification
algorithm terminate more often, at the cost of a safe ap-
proximation of the results. In fact, our prototype imple-
mentation of our verification algorithm, named Hermes,
terminates with precise results on all practical examples
of protocols we tried. That is, the results did not show any
false attack (Fig. 8).
A sequence (ti, pi)i≥0 of breaking-patterns is called in-

creasing at a sequence (qi)i≥0 of positions if the following
conditions are satisfied for every i≥ 0:

1. qi ∈ dom(ti) and qi � qi+1.
2. ti[z/q0] = t0[z/q0], where z is fresh variable.
3. (ti|qi , q

−1
i pi) = (t0|q0 , q

−1
0 p0).

Let us consider an example to clarify these definitions.

Example 15. Consider the following rule from session
(A,A) of the Needham–Schroeder–Lowe protocol pre-
sented in Sect. 7.4:

r = {(A, (NAA1 , y))}KA →{y}KA .

Consider the sequence ({θi(i, x)}KA , pi)i≥0, where θ(z) =
(A, (NAA1 , z)) and pi = 01 · (11)

i. The first three terms
of the sequence are: ({θ0(i, x)}KA = {(i, x)}KA , 01),
({θ1(i, x)}KA = {(A, (N

AA
1 , (i, x)))}KA , 0111), and

({θ2(i, x)}KA = {(A, (N
AA
1 , (A, (N

AA
1 , (i, x)))))}KA ,

011111). The whole sequence can be obtained by itera-
tively computing the breaking-patternsinduced by rule
r starting from the breaking-pattern ({(i, x)}KA , 01).
Thus, a naive application of our symbolic algorithm will
not terminate. On the other hand, this sequence is in-
creasing at (qi = 0 · (11)i)i≥0. Indeed, {θi(i, x)}KA [z/q0] =
{z}KA and (

(
{θi(i, x)}KA

)
|qi
, q−1i pi = 1) = ((i, x), 1), for
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1 There is a known attack of the untyped version of the protocol. This attack relies on the mis-
use of a message as an encryption key. Discovering this type of attack automatically requires
one to deal with nonatomic keys. This has not yet been implemented in Hermes.

Fig. 8. The results provided by Hermes, our prototype for verifying secrecy properties,
running on a Pentium III 600-MHz PC under Linux 2.2.19

every i≥ 0.We will see now how this fact can be exploited
to force the algorithm to converge. �

The idea of our technique for enforcing termination of
the symbolic algorithm is expressed by the following
proposition:

Proposition 4. Let (ti, pi)i≥0 be increasing at (qi)i≥0.
Then:
⋃
i≥0[[(ti, pi)]] ⊆

⋃
i<j [[(ti, pi)]]

∪[[tj [Sup (tj |qj )/qj ], qj ·0 · q
−1
j pj ]],

for every j ≥ 0.

Example 16. Consider again our Example 15. Then, if we
choose j = 1, we obtain a set consisting of the two super
terms ({(i, x)}KA , 01) and ({(A, (N

AA
1 , Sup (i, x) ))}KA ,

01101), which approximates the whole sequence(
{θi(i, x)}KA , pi

)
i≥0
.

7.4 Needham–Schroeder–Lowe protocol

The corrected version of the Needham–Schroeder pro-
tocol is also called Needham–Schroeder–Lowe as it was
G. Lowe who found the attack and corrected the proto-
col. The difference with the initial version is in the second
transition of principal B:

A→B : {A,N1}KB
B→A : {B,N1, N2}KA
A→B : {N2}KB

In practice, we notice that if (pt, p) is a breaking-
pattern, then the pattern at position p in pt is a variable.
Therefore, for the sake of readability, henceforth we will
write only the pattern pt instead of the breaking-pattern
(pt, p). The position is indicated by the subscript s to the
variable that is at position p in pattern pt.

Fig. 9. The breaking-patterns for
the Needham–Schroeder–Lowe

protocol

We run our verification algorithmwith S = {N2,K
−1
A },

the empty set of breaking-patterns, and the set of keys
K = {KA}. The algorithm terminates with the set of se-
crets unchanged and the set PB of breaking-patterns
given in Fig. 9. As the initial constraints are E0 �	∈c

{N1, N2,K
−1
A }, that is, none of the messages in {N1, N2,

K−1A } is contained at a critical position in a message
derivable from E0, it is easy to prove that we have
E0〈PB〉KS. Hence, we can conclude that the Needham–
Schroeder–Lowe protocol preserves the secret N2. Con-
cerning the uncorrected version of Example 1, during
computation of new secrets and breaking-patterns, we ar-
rive at a situation where we have to add {A,NAi1 }Ki as
a secret. As this message contains neither a fresh nonce
nor a secret, we stop the computation and follow it back
to try to construct an attack. In this way we obtain the
attack known as “man in the middle.” �

8 Conclusion

In this paper, we presented a method based on abstract
interpretation for verifying secrecy properties of crypto-
graphic protocols in a general model. Our method deals
with an unbounded number of sessions, an unbounded
number of principals, unbounded message depth, and
unbounded creation of fresh nonces. However, in con-
trast to the work of [5, 30, 35], where the session num-
ber is bounded, our method is not complete. Indeed,
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the problem is in its most general form undecidable
even when pairing is not allowed, as shown in [4]. The
main contribution of the paper is a verification algo-
rithm that consists of computing an inductive invari-
ant using super as symbolic representation. Our method
can already deal with models in which we distinguish
between long-term and short-term keys and that con-
tain variables ranging over keys. The idea here is that
short-term keys can be revealed to the intruder when
a session has terminated. This is not the case for long-
term keys. This allows a more faithful modeling of some
protocols.
A version of our tool together with the examples

of Fig. 8 is available at: http://www-verimag.imag.fr/
∼lbozga/hermes/hermes.php.
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Appendices

A Definitions

Definition 8 (K-guards). Let K be a set of keys. The
K-guards are messages of the form {m}k for some m ∈
T (F) and k ∈K:

K-guards=
{
{m}k |m ∈ T (F), k ∈K

}
.

Definition 9 (Least protecting position). Let t be
any term and p be a position. The least p-protecting pos-
ition of p in t, denoted by lpp(t, p), is the position of the
highest K-guard protecting position p of t. Formally,

lpp(t, p) =min
(
{q | q ≺ p, t|q is aK-guard}

)
.

This definition is illustrated in Fig. 10.

Definition 10 (Sub-safe-breakers). Let (b, p) be a
safe-breaker. Then, ssb(b, p) denotes the sub-safe-breakers
of (b, p), that is, the set of all proper subterms of b that
are safe-breakers for position p. The sub-safe-breakers of
(b, p) are built from the K-guards of b that are above the
position p:

ssb(b, p) =
{
(b|q, p

′) | q ·p′ = p, b|q is a K-guard
}

−{(b, p)} .

B Proofs

B.1 Proof of Proposition 2

Proposition 2. Let E be a set of messages and (B,S)
a pair of safe-breakers and secrets. If (B,S) is well formed
and E〈B〉

K
S holds, then the secrets of S are insensi-

tive to B in any message m derivable from E, that is,
E 	m⇒m〈B〉

K
S.

Proof. Before tackling the proof, we introduce the fol-
lowing definition:

Fig. 10. Position q is the least p-protecting position in term t

We say that m is a derivation-minimal counter-
example if the following conditions are satisfied:

1. E 	m.
2. ¬m〈B〉

K
S.

3. There is a derivation for E 	m that does not contain
any strict subderivation E 	m′ of a message m′ with
¬m′〈B〉

K
S.

Assume that E 	 s for an s ∈ S. Then, there ex-
ists a derivation-minimal counterexample m such that
¬m〈B〉

K
S. The existence of m can be proved as fol-

lows. Take a derivation of E 	m and let N0 be its size.
If m is not a derivation-minimal counterexample, then
there must exist a subderivation E 	m′ with ¬m′〈B〉

K
S.

Clearly, the size N1 of the derivation tree of m
′ is strictly

smaller than N0. Repeated application of the same argu-
ment must lead to a derivation-minimal counterexample
as there are no strictly decreasing chains in N.
We come back to the proof of Proposition 2. Let us as-

sume that the pair (B,S) is well formed and that E〈B〉
K
S

holds. Moreover, assume that there exists a message m
derivable from E, which is a derivation-minimal coun-
terexample, meaning that ¬

(
m〈B〉

K
s
)
for a secret s ∈ S.

Then, we derive a contradiction by case analysis on the
last derivation step in E 	m.

1. If the last step is an application of the rule m ∈ E⇒
E 	m. This contradicts the assumptionE〈B〉

K
S since

m ∈E and ¬m〈B〉
K
s.

2. Consider the case of encryption with a key k from
K, that is, m = {m′}k and the last step is an appli-
cation of the rule E 	m′ ∧E 	 k⇒ E 	 {m′}k. We
know that m′〈B〉

K
s (1) and k 〈B〉

K
s (2) from the fact

that m is a derivation-minimal counterexample. Our
hypothesis that should lead to contradiction becomes
¬{m′}k〈B〉Ks. According to Definition 1, in the case
where k ∈ K, two rules can lead to the conclusion
¬{m′}k〈B〉Ks.
The first rule corresponds to the case where s =
{m′}k. Then, m′ or k belongs to S since the set of se-
crets S is closed against composition. So, m′ or k is
a derivation-minimal counterexample smaller thanm,
the minimal one: contradiction.
The conclusion ¬{m′}k〈B〉Ks can also result from an
application of the last rule of Definition 1 for a pos-
ition p in {m′}k:

k ∈K, ¬({m′}k)|p〈B〉Ks, ({m
′}k, p) ∈ B

¬{m′}k〈B〉Ks
.

Then, the important facts for the discussion are
(3) ({m′}k, p) ∈ B and (4) ¬({m′}k)|p〈B〉Ks. Again, we
have to consider two cases:
– If ssb({m′}k, p) = ∅, then the onlyK-guard protect-
ing position p is {m′}k. So the secret at position p in
{m′}k is protected neither inm′ nor in k. This con-
tradicts the facts (1) m′〈B〉

K
s and (2) k 〈B〉

K
s given

by the minimality ofm.
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– In the case ssb({m′}k, p) �= ∅, we come to the same
contradiction. Let (b′, p′) be the greatest element of
ssb({m′}k, p), meaning that (5) there is noK-guard
above b′ in {m′}k. By definition of ssb({m′}k, p), we
know that b′ is a proper subterm of {m′}k; it is aK-
guard and b′|p′

=
(
{m′}k

)
|p
. So, (3) ¬({m′}k)|p〈B〉Ks

entails (6) ¬b′|p′
〈B〉

K
s. Additionally, we know that

(7) (b′, p′) ∈ B since (3) ({m′}k, p) ∈ B, (B,S) is well
formed and b′ ≺ {m′}k. Then, an application of the
last rule of Definition 1 (forK-guards) to (6) and (7)
yields ¬b′〈B〉

K
s.

We can assume that b′ is a subterm ofm′ (the same
reasoning works for the case b′ � k; we then obtain
a contradiction between ¬k〈B〉

K
s and (2)). By (5),

the maximality of b′, there is no K-guard protect-
ing b′ in m′. Then, we can deduce ¬m′〈B〉

K
s from

¬b′〈B〉
K
s using rules of Definition 1: this contra-

dicts fact (1)m′〈B〉
K
s.

3. If the last step is an encryption with a key k that is
not in K, then m= {m′}k and E 	m′∧E 	 k⇒ E 	
{m′}k. The argumentation is similar to the one used
for the previous item. In particular, the fact (1) holds.
Since m is a derivation-minimal counterexample, the
judgment ¬m〈B〉

K
S holds and comes as a conclusion

of the first or second rule of Definition 1. The case
of the first rule is treated as in the previous item.

The case of the second rule,
¬m′〈B〉

K
s, k �∈K

¬{m′}k〈B〉K s
, requires

¬m′〈B〉
K
s, which contradicts fact (1)m′〈B〉

K
s.

4. The case of pairing is very similar to the previous case.
5. The case of projection also contradicts the derivation-
minimality assumption.

6. If the last step is a decryption with a key k−1, then
E 	 {m}k ∧E 	 k−1⇒ E 	m, and we assumed that
¬m〈B〉

K
s. We condiser two cases: If k /∈ K, then

we obtain ¬{m}k〈B〉Ks by the second rule of Defin-
ition 1. So {m}k is a derivation-minimum counterex-
ample smaller thanm: this contradicts the derivation-
minimality of m. On the other hand, if k ∈K, then
k−1 belongs to S as a consequence of the well-
formedness of (B,S) w.r.t. K. So k−1 is a derivation-
minimum counterexample smaller than m: contradic-
tion.

B.2 Proof of Theorem 1

Theorem 1 Let S be a set of secrets and B a set of safe-
breakers. If (B,S) is well formed and stable w.r.t. all rules
in R, and if, additionally, E0〈B〉KS holds for every set

Fig. 12. Yahalom protocol transitions

of messages E0 that satisfies C, then �	P S, i.e.,the se-
crets in S are preserved in any execution of the protocol
P = (C,R).

Proof. We prove by induction that for any run E0
r1→

E1 · · ·En−1
rn→ En, where for each i = 1, · · ·n, there is

a substitution ρi : X → T (F) such that Ei−1 	 ρ(t1) and
Ei =Ei−1∪{ρ(t2)}, where t1→ t2 = ri, we have En �	 S.
First, we have E0〈B〉KS; then E0 �	 S.
Second, we prove that, if for any run we have

Ei−1〈B〉KS, then we have Ei〈B〉KS, for all rules r =
t1 → t2 in R and for all ρ such that Ei−1 	 ρ(t1) and
Ei =Ei−1∪{ρ(t2)}.
We haveEi−1〈B〉KS and Ei−1 	 ρ(t1), so we are in the

hypothesis of Proposition 2, then ρ(t1)〈B〉KS. If (B,S) is
stable w.r.t. all rules in R, then ρ(t2)〈B〉KS. So we have
Ei〈B〉KS.

C Example: The Yahalom protocol

The aim of the Yahalom protocol (cf. [12] and see Fig. 11)
is to establish a secret symmetric shared key kAB between
two participants A and B using a trusted server S. The
protocol assumes that A and B already share secure keys
kAS , respectively kBS , with the server S. The Yahalom
protocol can be represented in our setting as follows:
P = {p1, p2, p3} with fresh(p1) = {n1}, fresh(p2) = {n2},
and fresh(p3) = {n3}. The transitions are described in
Fig. 12.
The abstraction defined in Sect. 4 yields the following

abstract sets:

P � = {A, I},
K� = {KI , smk(A,A),KAB ,KAAAAB },
N � = {N1, NAAA1 , NAIA1 , N2, N

AAA
2 , N IAA2 , NI}.

For the sake of conciseness we write KAB instead of
smk(N3, A,A) respectively K

AAA
AB instead of smk(NAA3 ,

A,A). Figure 13 presents only some abstract rules of
the protocol. We run our verification algorithm on the

Fig. 11. Yahalom protocol
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Fig. 13. Examples of abstract rules of Yahalom protocol

whole set of abstract rules R, the set of secrets S = {N2,
KAB, smk(A,A)}, the empty set of breaking-patterns,
and the set of keysK = {smk(A,A),KAB}.
The algorithm terminates with the set of secrets un-

changed and a set of breaking-patterns B, which, for lack
of space, is not presented here. We assume that none of
the secrets appears at a critical position in a message
derivable from the initial knowledge E0 of the intruder.

Formally,

E0 	m⇒N2 /∈c m∧KAB /∈c m∧smk(A,A) /∈c m.

Then, it is easy to prove that the initial knowledge of the
intruder, E0, has the property E0〈B〉KS. This is a suffi-
cient condition to ensure that the Yahalom protocol pre-
serves the set of secrets S.
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