

When it comes to generating an image, there are two schools of
thought in the computer graphics field:

- Realistic rendering: which aims at producing images
almost indistinguishable from real pictures.

- Expressive rendering: which focuses more on creating
stylized images, giving them the looks of sketches or
paintings, for example.

While there are countless different ways to engineer a stylized
picture procedurally, the method we worked on relies solely on the
reproduction of a 2D scene using an atomic building block – referred
to as a “splat” – which consists of a simple flat image.[11]

The way in which the algorithm will decide on the size, the shape, the
color, or the order of appearance of a splat is determined by a
collection of spatial data, gathered from a number of 2D images –
labeled G-Buffers – generated alongside the original picture.

Thus, it becomes possible to procedurally generate, on a 3D space,
an aggregate of anchor points. These points will later be used to
position the splats on the 2D screen.

As such, our method maintains the spatial coherency of the input
image, while giving enough control to reproduce a considerable
selection of different art styles, by variation of the parameters
previously cited.

The essence of the problem truly manifests when processing
animated scenes; moving objects in a 3D space requires to maintain
some degree of movement coherence.[12]

My contribution mainly focused on tackling the issue of movement
coherence for complex scenes, i.e. scenes composed of different
objects with distinct motions.

Since the anchor points are generated according to the absolute
position of the camera, an object moving relatively to the origin of
the scene will appear to be trembling: since the anchor points don’t
follow the object, they seem frozen in place, and simply appear and
disappear as the object moves around. This phenomenon was
dubbed “popping”.

Thus, the solution I proposed was to factor in the transformation
matrices of each object on the screen. These four by four matrices
are commonly used in computer graphics to store and process data
on the position, rotation and scale of a 3D coordinate.

By doing so, the aspect of the object remains visually the same. The
points will appear to be anchored on its surface as it moves and
deforms.

This minor improvement on the stylization process allowed us to
generate short animations with a more visually pleasing aesthetic.

SOURCES
[11] : Romain Vergne, David Vanderhaeghe, Jiazhou Chen, Pascal Barla, Xavier Granier, and Christophe Schlick. Im-plicit Brushes for Stylized Line-based
Rendering.Computer Graphics Forum, 30(2):513–522, April 2011.
[12] : Pierre Bénard, Adrien Bousseau, and Joëlle Thollot. State-of-the-Art Report on Temporal Coherence for StylizedAnimations.Computer Graphics Forum,
30(8):2367–2386, December 2011.

Procedural stylisation of 3D Animations
Amine FARHAT – L3 INFO Under the supervision of Romain VERGNE and Joelle THOLLOT
 Maverick Team - INRIA

Proof of retrievability based on linear algebra
Gaspard Anthoine under the supervision of Clément Pernet

Team CASC,Laboratoire Jean Kuntzmann, University of Grenoble-Alpes

Introduction. In the context of remote storage on insecure

resources, evidence of recoverability provides the user with

guarantees that the remote server owns the data. The intern-

ship focuses on a new protocol that effectively solves this

problem in practice by using probabilistic certification tech-

niques in linear algebra. We want to store a large amount of

data on a server and be able to ensure through audits that the

server keeps the data without the server having to send it all to

us to check. This will be called "Provable Data Possession"

(PDP) (1).

If the various audits make it possible to recover part of the

data and if multiplying the audits ultimately makes it possible

to recover the entire data, we will then speak of "Proof of

Retrievability" (PoR).

A new solution. It is possible to see the data as a large M

matrix with coefficients in a finite field. We can then use

probabilistic linear algebra methods such as the Freivalds al-

gorithm (2). We can initialize our challenge like in table 1.

Table 1. Matrix-form database probabilistic Initialisation

Server Communications Client

MΩ≠ u
$Ω S

n ™ Fn
q

v Ω Mu

As we can see in this version, the complexity on the client

side is about O(m). We can now perform the audit as in the

table 2.
Table 2. Matrix-form database probabilistic audit

Server Communications Client

xΩ≠ x
$Ω S

m ™ Fm
q

Fn
q – y

| Ω x
|
M

y≠æ
y
|
u

?== x
|
v

Optimization of the finite field size

The probability of success will depend on the size of the body

of the matrix elements, a larger body will have a greater prob-

ability of detecting a change in the matrix M but the cost of

multiplication x
|
M will be more important in practice. Part

of my internship is to find an optimal finite size for the cal-

culation of audits. We will take into account the fact that to

reduce the bandwidth cost of audits (sending the vector y),

we want to limit as much as possible the size in number of

columns of the matrix (ideally log2(N) with N the total size

of the data in bits).

The calculation of the optimal size is all the more compli-

cated because it avoids the client having to store the vec-

tor v which is the size of the number of lines in the matrix

(O(m)). We store it on the server and have the server cal-

culate the product x
|
v. Only to avoid the server to easily

forge a response that would pass the audit, the v vector must

be encrypted. We will therefore use a semi-homorphic en-

cryption that will allow algebraic operations to be performed

directly on the encrypted vector. Carrying out operations on

ciphertexts is much more expensive than operations on plain-

text, so it is interesting to try to limit them by reducing the

number of lines in the matrix. Indeed, either M œ m◊n
q

and “ = Âlog2(q)Ê the number of bits contained in a ma-

trix coefficient. We have N = “mn and therefore m = N
“n

with in the ideal case to reduce the cost of communications

n = log2(N). We see here the two parameters that will allow

to vary the number of columns of the matrix: “ the num-

ber of bits that a coefficient can contain and n the number of

columns of the matrix. It will therefore be necessary to find

an optimal combination of these two parameters in order to

optimize the audit in practice while keeping in mind that we

want n to be small. Keeping “ under 22 bits will allow to use

FFLAS-FFPACK (3).

Doing updates

The protocol must also allow to do updates. We can imagine

to simply update the vector w with a new value a, �wi Ω
E((a ≠ mi,j)uj). But this is leaking information at every

update : �w

1
a≠mi,j
i = E(uj), after �(n) updates we have

obtained E(u). This will permit to fake a ” when doing au-

dit. To avoid the attack we’ve seen above, we are using two

different encryptions and two new random values at each up-

date, ci = ci ·�ci.

• v = Mu+ t+ b, w = E1(v), c = E2(b)

• We take a random µ and a random u
Õ
j , we calculate

�wi = E1(au
Õ
j ≠mi,juj +µ), �uj = E1(uÕ

j ≠uj)

• — = x
| § c

• send also �ci = E2(µ) and store it in a new vector

When doing an audit the server will compute — = x
|§c. The

client will have to check D1(”)≠D2(—) ?== y
|
u+x

|
t.

Conclusion

The protype enables us to see the importance of different pa-

rameters for the speed of an update. Using FFLAS-FFPACK

(3) seems to be the fastest. The proofs of security are still to

be done.

Michael Perin
to … [unfinished sentence]�

Michael Perin
[avoid notation in abstract if you don’t have place to explain it]�

Michael Perin

Michael Perin

Bibliography

1. Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
N. J. Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted stores.
pages 598–609, 01 2007. doi: 10.1145/1315245.1315318.

2. Rūsin, š Freivalds. Fast probabilistic algorithms. In J. Bečvář, editor, Mathematical Founda-

tions of Computer Science 1979, volume 74 of LNCS, pages 57–69, Olomouc, Czechoslo-
vakia, September 1979. Springer-Verlag. doi: 10.1007/3-540-09526-8_5.

3. Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. Dense linear algebra over word-
size prime fields: the fflas and ffpack packages. ACM Trans. on Mathematical Software

(TOMS), 35(3):1–42, 2008. ISSN 0098-3500. doi: 10.1145/1391989.1391992.

Proof of retrievability based on linear algebra

Gaspard Anthoine under the supervision of Clément Pernet

Team CASC, Laboratoire Jean Kuntzmann, University of Grenoble-Alpes

Proof of retrievability based on linear algebra

Gaspard Anthoine under the supervision of Clément Pernet

Team CASC, Laboratoire Jean Kuntzmann, University of Grenoble-Alpes

Problem

While storing sensitive data on distant storage we want to be sure that the server

will keep the data without having to send them back entirely. First introduction

of this problem was in Ateniese and al. [1] and provides what is called a Proof of

Data possession protocol (PDP). The protocol consists of two phases, an initialisation

where you send the data at the end and an audit phase where you will challenge the

server to verify that it is storing the data.

Semi-homomorphic encryption

Homomorphic Encryption Let E(m) : E ! F be an encryption function m. Let

D(m) : F ! E be de decryption function associated.

• D(E(m1) +F E(m2)) = m1 +E m2

• D(E(m1)⇥F E(m2)) = m1 ⇥E m2

The most promising fully homomorphic encryption is based on lattice by Gentry et

al. [4] is too expensive to be used in practice.

Semi-homomorphic Encryption

• D(E(m1) +F E(m2)) = m1 +E m2

• D(E(m) · x) = m⇥ x avec x en clair

Di↵erent encryption respecting this operation exists for example Paillier [5].

A new protocol based on probabilistic

linear algebra

We made the arbitrary choice to see the data as a matrix M : M 2 m⇥n
q . Either

N the size of data in bits, N = �mn with � = blog2(q)c the number of bits in a

coe�cient. It is then possible to use some probabilistic algorithm like Freivald’s one

[3]. The idea will be to do the initialisation as in tab 1.

Server Communications Client

M � u
$ Sn ✓ Fnq
v Mu

Tab. 1: Simple initialisation

You can then do a simple audit with complexity O(m) client side.

Server Communications Client

x � x
$ Sm ✓ Fmq

Fnq 3 y| x|M
y�!

y|u ?
== x|v

Tab. 2: Simple audit

Storing v on the server

Because we want to limit complexity client side we are going to store the vector v server side we

will use semi-homorphic encryption to do operations on the server. As the server is doing both

� and y| and because we want to avoid replay attack we should use a ⌧ stored client side.

Server Communications Client

Setup

N = mn log2(q) ⌧
$ S ✓ F⇤q

u
$ Sn ✓ Fnq

form t = [⌧, ⌧2, . . . , ⌧m]
|

M,w � v = Mu + t, w = E(v)
discard M, v, w

Audit

form x = [r, r2, . . . , rm]
| r � r

$ S ✓ F⇤q
� = x| � w

��!
y| = x|M

y�! D(�)
?

== y|u + x|t
Tab. 3: audit with masked encryption

x|t will be fast because it’s simply a geometric progression, x|t =
1�(r⌧)m
1�r⌧ and complexity

O(log(m)).

Optimisation of finite field size

Size of the finite field will influence the speed of computation. Using field smaller than 22 bits

will allow to use FFLAS-FFPACK [2].

Fig. 1: Benchmark for 1 gigabit of data

Fig. 2: di↵erent values for k, between log(n) and log
3
(n), between log(n) and log

2
(n)

Simple updates is problematic

We can imagine to simply update the vector w at every update like in table 4. But

this is leaking information at every update : �w
1

a�mi,j
i = E(uj), after ⇥(n) updates

we have obtained E(u). This will permit to fake a � when doing audit.

Server Communications Client

i,j � 1  i  m, 1  j  n
block Nk 3 mi,j

b1 . . . , b�, each in {0, 1}� Nk;b1...,b��!
H(. . . H(i||j||Nk||b1) . . .)

?
== r0

Extract mi,j 2 Nk

update block Nk 3 a
a,�wi �wi E((a�mi,j)uj)

wi wi ·�wi
Tab. 4: Bad update

Use of two encryptions

To avoid the attack we’ve seen above, we are using two di↵erent encryptions and two

new random values at each update.

• v = Mu + t + b, w = E1(v), c = E2(b)

• We take a random µ and a random u0j, we calculate�wi = E1(au0j�mi,juj+µ),

�uj = E1(u0j � uj)

• � = x| � c

• send also w = E2(µ)

When doing an audit the server will compute � = x| � c. The client will have to

check D1(�)�D2(�)
?

== y|u + x|t.

References

[1] Giuseppe Ateniese et al. “Provable Data Possession at Untrusted Stores”. In: Jan. 2007, pp. 598–

609. doi: 10.1145/1315245.1315318.

[2] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. “Dense Linear Algebra over Word-

Size Prime Fields: the FFLAS and FFPACK Packages”. In: ACM Trans. on Mathematical Soft-
ware (TOMS) 35.3 (2008), pp. 1–42. issn: 0098-3500. doi: 10.1145/1391989.1391992.

[3] Rūsin, š Freivalds. “Fast Probabilistic Algorithms”. In: Mathematical Foundations of Computer
Science 1979. Ed. by J. Bečvář. Vol. 74. LNCS. Olomouc, Czechoslovakia: Springer-Verlag, Sept.

1979, pp. 57–69. doi: 10.1007/3-540-09526-8_5.

[4] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. Cryptology ePrint
Archive, Report 2013/340. https://eprint.iacr.org/2013/340. 2013.

[5] Pascal Paillier. “Public-key Cryptosystems Based on Composite Degree Residuosity Classes”. In:

Proceedings of the 17th International Conference on Theory and Application of Cryptographic
Techniques. EUROCRYPT’99. Prague, Czech Republic: Springer-Verlag, 1999, pp. 223–238. isbn:
3-540-65889-0. url: http://dl.acm.org/citation.cfm?id=1756123.1756146.

_mbi 7Q` T�`�HH2H T`Q;`�KKBM; , S�+F2/@K2KQ`v �``�v
BKTH2K2Mi�iBQM

GQmBb "QmH�M;2`

CmHv kyRN

R AMi`Q/m+iBQM
S�`�HH2H T`Q;`�KKBM; Bb +?�HH2M;BM; �M/ `2[mB`2b �

HQi Q7 T`2T�`�iBQM �M/ +�`2, � r?QH2 +H�bb Q7 T`Q#@
H2Kb �`Bb2 r?2M rQ`FBM; BM T�`�HH2HX h?Bb Bb r?v T`Q@
;`�KK2`b ?�p2 b2�`+?2/ r�vb iQ BKT`Qp2 i?2 [m�H@
Biv Q7 T�`�HH2H T`Q;`�KKBM; 7Q` /2+�/2bX 1bT2+B�HHv-
i?2v ?�p2 bi`Bp2/ iQ K�F2 T`Q;`�Kb KQ`2 7�mHi@T`QQ7-
r?BH2 F22TBM; i?2 �/p�Mi�;2b Q7 T�`�HH2HBbK- bm+? �b
BM+`2�b2/ bT22/ Q7 2t2+miBQMX

q?2M �/�TiBM; 2tBbiBM; T`Q;`�Kb Q` bi`m+im`2b BM
T�`�HH2H- QM2 Kmbi F22T BM KBM/ i?2b2 T`Q#H2Kb �M/
+?QQb2 i?2 +Q``2+i iQQHbX h?Bb Bb r?v r2 +?Qb2 iQ
mb2 i?2 _mbi T`Q;`�KKBM; H�M;m�;2 7Q` BKTH2K2Mi@
BM; i?2 S�+F2/@K2KQ`v �``�v (R) bi`m+im`2 BM T�`�HH2H
T`Q;`�KKBM;X

k S�+F2/@K2KQ`v �``�v
q2 BKTH2K2Mi2/ i?2 S�+F2/@K2KQ`v �``�v

USJ�V bi`m+im`2 /2b+`B#2/ BM (R)X h?2 S�+F2/@
K2KQ`v �``�v Bb /2bB;M2/ iQ F22T 2H2K2Mib bQ`i2/-
r?BH2 �HHQrBM; 2{+B2Mi BMb2`iBQMb #v F22TBM; ;�Tb BM
i?2 mM/2`HvBM; �``�v- �M/ mbBM; � i`22@HBF2 Q`;�MBb�@
iBQM iQ 2Mbm`2 /2MbBiv #QmM/b QM 2�+? b2;K2MiX

AM i?2 SJ�- i?2 �``�v Bb /BpB/2/ BMiQ b2;K2Mib Q7
}t2/ bBx2X a2;K2Mib �`2 ;`QmT2/ BMiQ rBM/Qrb- r?B+?
�+i HBF2 bm#i`22bX 6Q` 2�+? H2p2H Q7 i?2 BKTHB+Bi i`22
bi`m+im`2- r2 /2}M2 /2MbBiv #QmM/b- r?B+? /2i2`KBM2
?Qr K�Mv ;�Tb �`2 �HHQr2/ BM � rBM/QrX 6Q` KQbi
Q7 i?2 i2bib �M/ #2M+?K�`Fb r2 T2`7Q`K2/- r2 mb2/
ρ0 = 0.08, τ0 = 0.92, ρh = 0.3, τh = 0.7 Ui?2b2 p�Hm2b
�`2 ;Bp2M BM (R) �M/ vB2H/ i?2 #2bi T2`7Q`K�M+2bVX

j _mbi T�`�HH2H BKTH2K2Mi�iBQM
hQ BKTH2K2Mi i?2 SJ� BM _mbi rBi? T�`�HH2HBbK-

r2 mb2/ � KQ/B}2/ p2`bBQM Q7 i?2 T�`�HH2HBbK HB@
#`�`v Q7 `mbi- `�vQM- +�HH2/ `�vQM@�/�TiBp2 U+`2�i2/
�M/ K�BMi�BM2/ #v 6`û/û`B+ q�;M2`VX Ai mb2b �/�T@
iBp2 �H;Q`Bi?Kb 7Q` b+?2/mHBM;- vB2H/BM; #2ii2` T2`7Q`@
K�M+2bX

h?2 +m``2Mi BKTH2K2Mi�iBQM Q7 i?2 SJ� bmTTQ`ib
BMb2`iBQMb Q7 QM2- Q` K�Mv 2H2K2Mib U#mHF BMb2`iBQMbV
c i?2 H�ii2` Bb r?2`2 T�`�HH2HBbK Bb BKTQ`i�MiX h?2
�H;Q`Bi?K 7Q` BMb2`iBM; K�Mv 2H2K2Mib BMiQ i?2 SJ�
`2b2K#H2b i?2 7QHHQrBM; ,

B7 i?2 SJ� rQmH/ #2 iQQ 7mHH i?2M
/Qm#H2 i?2 SJ� bBx2 �M/ K2`;2 BMiQ i?2
2H2K2Mibc

2Hb2
B7 i?2 i�`;2i rBM/Qr rQmH/ #2 iQQ 7mHH i?2M

K2`;2 i?2 rBM/Qr �M/ i?2 BMTmic
2Hb2

/BpB/2 i?2 BMTmi BM irQ rBi? � TBpQic
`2+m`bBp2Hv BMb2`i BM i?2 H27i �M/ `B;?i
bm#rBM/Qrbc

2M/
2M/

�H;Q`Bi?K R, "mHF BMb2`iBQM �H;Q`Bi?K

h?2 K2`;2 QT2`�iBQM Bb i?2 i`m2 T�`�HH2H +QKTQM2Mi
Q7 i?2 SJ�, #v bT2+B7vBM; ?Qr � K2`;2 QT2`�iBQM
+QmH/ #2 /BpB/2/ BMiQ irQ- bK�HH2` K2`;2 QT2`�iBQMb-
r2 �HHQr i?2 b+?2/mH2` iQ 2{+B2MiHv b?�`2 i?2K �+`Qbb
KmHiBTH2 T`Q+2bbQ`b- rBi?Qmi HQbBM; i?2 bQ`i2/ �bT2+iX

9 *QM+HmbBQM
h?Bb BKTH2K2Mi�iBQM Bb b�/Hv MQi v2i +QKTH2i2, Bi

H�+Fb i?2 `2KQp2 QT2`�iBQM- �M/ +QmH/ #2M2}i 7`QK
KQ`2 QTiBKBb�iBQMX "mi BiǶb � T`QQ7 Q7 +QM+2Ti �M/
b?Qrb ?Qr mbBM; �M 2{+B2Mi H�M;m�;2 HBF2 _mbi 2M@
�#H2b T`Q;`�KK2`b iQ 2�bBHv r`Bi2 T�`�HH2H T`Q;`�Kb-
�M/ ?Qr Bi +QmH/ 7�+BHBi�i2 T�`�HH2HBbK BM ;2M2`�H �H@
;Q`Bi?KbX

_272`2M+2b
(R) J�`B2 .m`�M/- "`mMQ _�{M- �M/ 6`�MÏQBb 6�m`2X

� S�+F2/ J2KQ`v �``�v iQ E22T JQpBM; S�`iB@
+H2b aQ`i2/X AM C�M "2M/2`- �`D�M EmBDT2`- .B@

R

Michael Perin

Michael Perin
[which ones ?]

Michael Perin
[insufficient justification]

Michael Perin

Michael Perin

Michael Perin
[undefined notation]

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin
parts

Michael Perin
them

Michael Perin

2i2` qX 62HHM2`- �M/ 1`B+ :mû`BM- 2/BiQ`b- o_A@
S>ua @ LBMi? qQ`Fb?QT QM oB`im�H _2�HBiv AM@
i2`�+iBQMb �M/ S?vbB+�H aBKmH�iBQMb- LBMi? qQ`F@
b?QT QM oB`im�H _2�HBiv AMi2`�+iBQM �M/ S?vbB@
+�H aBKmH�iBQM Uo_AS>uaV- T�;2b eNĜdd- .�`K@
bi�/i- :2`K�Mv- .2+2K#2` kyRkX C�M "2M/2` �M/
�`D�M EmBDT2` �M/ .B2i2` qX 62HHM2` �M/ 1`B+
:mû`BM- h?2 1m`Q;`�T?B+b �bbQ+B�iBQMX

k

Tools for debugging lock-free programs

Ludovic Jozeau
Supervised by: David Monniaux and Michaël Périn.

1 Threads synchronization
Multithreaded programs can achieve better performance than
single threaded ones. The counterpart is that it is harder to
develop programs with multiple threads running at the same
time because we must take into account the possible different
executions and correctly synchronize threads to make them
communicate.

1.1 Locks
The Traditional way to synchronize threads is using locks
[mutex, 2019]. This is relatively simple to do, we lock be-
fore the critical section, then we unlock after and the mutual
exclusion is set up. Locks are expensive and counterproduc-
tive on high contention (when many threads lock and unlock
the same lock very often).

1.2 Lock-free program
Another way to synchronize threads exists with no locks. In
this case we use atomic[atomic, 2019] data and actions to
check the state of the system and make a decision: publish
to other threads or redo the action if other threads have made
updates. Taking advantage of atomic built-in processor primi-
tives can speed up multithreaded programs but it is even more
difficult to use correctly than locks.

2 Problems in lock-free programs
Lock-free methods brings specific problems such as:

• Data race: when two threads access a data and at least
one is a write.

• Memory reordering[Howells et al., 2018]: memory in-
struction (load/store) can be reordered leading to unex-
pected results.

• ABA’ problem[Dechev et al., 2010]: typical problem
when using lock-free technics.

• Race condition: when an operation result change de-
pending on threads interleaving.

• Live lock: when the state of two threads are changing
influencing each other but none progressing.

3 Methodology
The purpose was to see what tools are available to debug lock-
free programs then check what they cover to find out what is
missing or how we could improve lock-free problem detec-
tion.

First we took 5 tools to debug multithreaded programs. Dy-
namic ones, which work when executing the program: DRD,
Helgrind, ThreadSanitizer, Intel Inspector. And a static one,
working on the source code to inspect all the possible execu-
tions: CppMem.

We then tested all the tools on 21 simple examples with 3
identified problems: data races, memory reordering and the
ABA problem. These examples included correct code to see
if there was any false positive.

As dynamic tools can give different results on different
configuration or runs, the tests were launched several times
and with 3 different compiler: GCC, Clang and Clang with
libc++.

4 Results
Most tools have poor support of lock-free programming.
CppMem can shows us what is going on in lock-free pro-
grams but has serious limitations, it support a tiny subset
of C++ and process small programs. ThreadSanitizer can
work well in lock-free context but has not been seriously
tested[tsan, 2019]. The ABA problem is rarely and only de-
tected by ThreadSanitizer. Finally other tools does not sup-
port lock-free primitives.

All the work is available in 1200 lines of markdown
here: https://github.com/FederAndInk/lock_
free_debug_tools_comparison

References
[atomic, 2019] C++ reference for atomic. https://en.
cppreference.com/w/cpp/header/atomic,
2019.

[Dechev et al., 2010] Damian Dechev, Peter Pirkelbauer,
and Bjarne Stroustrup. Understanding and effectively pre-
venting the aba problem in descriptor-based lock-free de-
signs. In Proceedings of the 2010 13th IEEE International

Symposium on Object/Component/Service-Oriented Real-

Time Distributed Computing, ISORC ’10, pages 185–192,
Washington, DC, USA, 2010. IEEE Computer Society.

https://github.com/FederAndInk/lock_free_debug_tools_comparison
https://github.com/FederAndInk/lock_free_debug_tools_comparison
https://en.cppreference.com/w/cpp/header/atomic
https://en.cppreference.com/w/cpp/header/atomic
Michael Perin

Michael Perin
[atomic data =?]

Michael Perin

[Howells et al., 2018] David Howells, Paul E McKenney,
Will Deacon, and Peter Zijlstra. Linux kernel memory
barriers. https://www.mjmwired.net/kernel/
Documentation/memory-barriers.txt, 2018.

[mutex, 2019] C++ reference for mutex. https://en.
cppreference.com/w/cpp/thread/mutex,
2019.

[tsan, 2019] Threadsanitizer faq. https://
github.com/google/sanitizers/wiki/
ThreadSanitizerCppManual#faq, 2019.

https://www.mjmwired.net/kernel/Documentation/memory-barriers.txt
https://www.mjmwired.net/kernel/Documentation/memory-barriers.txt
https://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/mutex
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual#faq
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual#faq
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual#faq

Tools for debugging lock-free programs

What is lock-free programming ?

Conclusion

Methodology for evaluating tools

Ludovic Jozeau supervized by David Monniaux and Michaël Périn

Verimag – PACSS - UGA

Mutual exclusion with
locks

Multithreaded program

Mutual exclusion with lock-
free technics using atomic

Lock-free technics:
●Atomics
●Memory barriers
●Copy and swap

●Atomics are limited to certain
types and operations

●Lock-free is harder to use but
perform better than locks

5 tools tested
●DRD
●Helgrind
●ThreadSanitizer
●Intel Inspector
●CppMem

Over 21 in/correct programs

Covering 3 lock-free problems:
●Data race
●Memory reordering
●ABA’ problem

With 3 compilers

Under different conditions

With serveral runs for dynamic
tools

ThreadSanitizer result:

●ThreadSanitizer: not widely tested with
lock-free

●CppMem: only for a tiny subset of C++
on tiny programs

●Other tools are not meant for lock-free

https://github.com/FederAndInk/
lock_free_debug_tools_compari
son

Experiment report

●1200 lines of markdown report
●140 lines of code in 21
programs

All documented here:

Helgrind result:

✔: The tool has correctly detected the error

~: Out of scope, the tool report false positive

https://github.com/FederAndInk/lock_free_debug_tools_comparison
https://github.com/FederAndInk/lock_free_debug_tools_comparison
https://github.com/FederAndInk/lock_free_debug_tools_comparison

Action Model Learning with System Interaction

Maxence Grand

Supervised by : Damien Pellier and Humbert Fiorino
Université Grenoble Alpes

Laboratoire Informatique de Grenoble, Team MARVIN

Abstract

This paper presents the AMLSI (Action Model
Learning with System Interaction) algorithm.
This algorithm learn action model from posi-
tive and negative samples generated from in-
teraction with an oracle. This algorithm is di-
vided in three steps. At the first step, AMLSI
learn a finite state automata corresponding
to the regular grammar of samples. Then,
AMLSI use an inductive algorithm to learn the
first version of operators from the grammar
learned previously. Finally, AMLSI use a re-
finement algorithm and a tabu search to refine
operator’s preconditions and effects. This al-
gorithm deals with noisy and partial observa-
tions for intermediate and final states and it is
able to learn negative preconditiions and static
relations in preconditions.

Keywords PDDL, STRIPS, Automated Planning, Gram-
mar Induction, Informant Learning, Action Model
Learning

1 Introduction

In an automated planning systems, an autonomous
agent achieve goals by producing sequences of actions,
called plans, from a given action model [3]. Automated
planning systems can be used to automate existing sys-
tems or tasks, such as an industrial process. To auto-
mate these systems we have to build an action model.
These action models are symbolic representations of
the different actions necessary to solve tasks. A typi-
cal way to describe the action models is to use an ac-
tion languages such as the Planning Domain Definition
Language (PDDL) [8].
The traditional way to build an action model is to ask
a system expert to analyze the different tasks and man-
ually build the action model using a language such as
PDDL. However, it is very difficult and tedious to man-
ually create these action models, even for experts. The
problem is compounded if the system expert is not a
planning expert, because the system expert have to an-
alyze the domain and ask planning experts to build the

action model using its analysis.
That’s why, researchers have started to explore learn-
ing algorithm to reduce the human effort to build action
models by learning from observed examples or plan
traces. These algorithm take as input several example
plans and try to learn an action model. The general
way to collect example plans is to generate goal ori-
ented plan solution. Goal oriented plan solutions are
generally expensive because a planner is needed to gen-
erate a large number of correct plans to be used by the
leaner. To do this one must also have a pre-existing ac-
tion model and a planner.
In this paper we propose the algorithm AMLSI (Action
Model Learning with System Interaction), an algorithm
using informant learning to learn action model. Unlike
the majority of action model learning algorithms, the
AMLSI algorithm itself generates its learning data. The
AMLSI algorithm generates action sequences to learn
an action model that copies an existing system. Ac-
tion sequences are generated by querying an oracle and
interacting with the system to be copied. This algo-
rithm is based on informant learning described in [5]
and regular grammar induction. This algorithm is di-
vided in three steps. At the first step, AMLSI learns
a finite state automaton corresponding to the regular
grammar of training samples. Then, AMLSI use an in-
ductive algorithm to learn the first version of operators
from the grammar learned previously. Finally, AMLSI
use a refinement algorithm and a tabu search to refine
operator’s preconditions and effects. This algorithm
deals with noisy and partial observations for interme-
diate and final states.
The rest of the paper is organized as follows. We will
first discuss some related works in the field of action
model learning. Next, we will give the definition of our
problem. Then, we will discuss about informant learn-
ing and about our method to generate training samples.
Then we describe the detailed steps of our AMLSI algo-
rithm. We then evaluate our algorithm in four planning
domains to learn the action models and show some de-
sirable properties of these learned action models. Fi-
nally, we will conclude paper and discuss our future
works.

Michael Perin

Michael Perin
[A bit too specific for an abstract. Give informations on the context of usage of AMLSI. The aim of the abstract is too quickly checks if the paper worth a further reading.]

Michael Perin

Michael Perin
[no CR here]

Michael Perin

Michael Perin

Michael Perin
[How ?]

Michael Perin

1.1 Related Work

There exist various approaches for the acquisition of ac-
tion models. The early works such as EXPO [4] improve
action models incrementally after observing some prob-
lem during plan execution. Another approach, such
as Observer [15] learns from expert traces and subse-
quent simulations. Frequently, the acquisition problem
consists of finding the action model from examples of
plans. In other words, the problem is to learn a cor-
rect state transition function according to observed se-
quences of actions and states (see section 1.2). Some ap-
proach deals with incomplete information in interme-
diate states. ARMS algorithm [16] gathers knowledge
on the statistical distribution of frequent sets of actions
in the example plans. It then forms a weighted propo-
sitional satisfiability (weighted SAT) problem and re-
solves it using a weighted MAX-SAT solver. ARMS op-
erates in two phases, where it first applies a frequent set
mining algorithm to find the frequent subsets of plans
that share a common set of parameters. It then ap-
plies a SAT algorithm for finding a consistent assign-
ment of preconditions and effects. Then, Louga algo-
rithm [6] uses a genetic algorithm to learn action ef-
fects and an ad-hoc algorithm to learn action precon-
ditions. Then, some approach deals with noisy obser-
vations. For instance, in the IRALe approach [13], an
autonomous agent uses an online active algorithm to
explore an environment and learn incrementally the ac-
tion model with noisy observations. Finally, some ap-
proach deals with both partial information and noise in
observations. For instance, LSO-NIO approach [9] use
a classifier with the kernel tricks method to learn action
model. It decomposes the problem into first learning a
transition function between states in the form of a set
of classifiers, and then deriving explicit STRIPS rules
from the classifiers’ parameters. Finally, Plan-Milner al-
gorithm [14] uses a classification algorithm, based on
inductive rule learning techniques, to learn action mod-
els with discrete numerical values from incomplete and
noisy observations.

1.2 Problem Statement

We work with classical STRIPS [2] planning that deals
with sequences of actions transferring the world from a
given initial state to a state satisfying certain goal condi-
tion. World states are modeled as sets of predicates that
are true or false in those states and actions are changing
validity of certain predicates. For instance, take q a state
such as :

q = (at� robby r1) ^ ¬(at� robby r2) ^ (at b r1)^
¬(at b r2) ^ (f ree le f t) ^ (f ree right)^
¬(carry b right) ^ ¬(carry b le f t)

In natural language q means : ”Robby and the ball b

are in the room r1, and both grippers, right and le f t are
free”. And, if we perform the action pick(b r1 right) the

new state q
0 is :

q
0 = (at� robby r1) ^ ¬(at� robby r2) ^ ¬(at b r1)^

¬(at b r2) ^ (f ree le f t) ^ ¬(f ree right)^
(carry b right) ^ ¬(carry b le f t)

Formally, let P be a set of all predicates modeling prop-
erties of world states. Then a state q 2 P is a set of pred-
icates that are true or false in that state. Each action a

is described by four sets of predicates (r+a , r�a , e+a , e�a),
where r+a , r�a , e+a , e�a 2 P, r+a \ r�a = ∆ and e+a \ e�a =
∆. Let r+a , r�a describe positive and negative precondi-
tions of action a, these are, predicates that must be true
and false right before the action a. Action a is applicable
to state q iff r+a , r�a are checked in state q. For instance,
take action pick(b r1 right) :

r+
pick(b r1 right) = (at b r1) ^ (at� robby r1) ^ (f ree le f t)

r�
pick(b r1 right) = ¬(carry b right)

The state q check both r+
pick(b r1 right) and r�

pick(b r1 right)

so the action pick(b r1 right) is feasible in state q. Let
e+a , e�a describe positive (add list) and negative (del list)
effects of action a, that are, predicates that must be true
and false after the execution of the action a. We denote
q
0 = d(q, a) a transition function that returns q

0 the state
q where e+a , e�a have been applied : q

0 = d(q, a) = {q [
e+a } \ e�a . For instance, take action pick(b r1 right) :

e+
pick(b r1 right) = (carry b le f t)

e�
pick(b r1 right) = ¬(at b r1) ^ ¬(f ree right)

After execution of the action pick(b r1 right) in state q,
the state q

0 = d(q, a) is :
q
0 = (at� robby r1) ^ ¬(at� robby r2) ^ ¬(at b r1)^

¬(at b r2) ^ (f ree le f t) ^ ¬(f ree right)^
(carry b right) ^ ¬(carry b le f t)

d(q, a) is defined iff the action a is feasible in state q.
Our problem is to learn a planning domain consisting of
a set of operators and a set of predicates. Operators can
be seen as a parameterized action. Each operator has a
set of argument and specifies preconditions and effects
as predicates over these arguments. For instance, we
can describe the operator pick with the PDDL language
as follow :
(: a c t i o n pick
: parameters (? ob j � b a l l

?room � room
? gripper � gripper)

: precondi t ion (and
(a t ? ob j ?room)
(at�robby ?room)
(f r e e ? gripper)
(not (carry ? ob j ? gr ipper)))

: e f f e c t (and
(carry ? ob j ? gr ipper)
(not (a t ? ob j ?room))
(not (f r e e ? gripper))
))

Actions are obtained by substituting constant for the ar-
guments. The planning domain model is then specified
by the set of predicates and the set of operators. The
PDDL is the most used language for modeling planning
domains; we used syntax of this language in our exam-
ples.
As we see it in section 2, observations are kept directly
by the agent, so observations for intermediate state can
be partial and noisy. A partial intermediate state is
a state q, where some predicates are missing. For in-
stance, a partial state q could be :

q = (at� robby r1) ^missed[(at� robby r2)]^
(at b r1) ^ ¬(at b r2) ^missed[(f ree le f t)]^
(f ree right) ^ ¬(carry b right)^
¬(carry b le f t)

where missed[(f ree le f t)] and missed[(at � robby r2)]
indicates that information about predicates (f ree le f t)
and (at � robby r2) are missing. Finally, observations
can be noisy, i.e, there may be mistakes for some ob-
served predicates’ values. For instance, if we add noise
to the partial state q, we could have :

q = (at� robby r1) ^missed[(at� robby r2)]^
(at b r1) ^ ¬(at b r2) ^missed[(f ree le f t)]^
(f ree right) ^ (carry b right)^
(carry b left)

In our approach, we assume two types of input infor-
mation. First, there is a partial planning domain model
consisting of a set of predicates and a set of operators
with arguments type but without the description of pre-
conditions and effects. The second type of input is a set
of sequences of actions, where each sequences consists
of the initial state and a valid sequence of actions and
observations. All sequences share the same initial state.
We assume that the initial state is completely known,
i.e, the initial state is noiseless and not partial. As for
the ARMS algorithm, we assume that :

1. We can only remove information that are always
present : 8p 2 P,¬p 2 e�a =) p 2 r+a

2. We can’t add information that are always present :
8p 2 P, p 2 r+a =) p 62 e+a

As we learn negative precondition too, we assume that
we can’t remove information that are never present :
8p 2 P,¬p 2 r�a =) ¬p 62 e�a

2 Informant learning

2.1 Regular grammar Induction

The aim of regular grammar induction is to learn reg-
ular grammar. A regular grammar is a grammar that
can be represented as a deterministic finite automaton.
A deterministic finite automaton is a popular mathe-
matical abstraction used widely in computer science,
mostly to design digital logic or computer programs.

It is a behavioral model that consists of a finite num-
ber or states, transitions between those states, and ac-
tions, which execute the state transitions. Determinis-
tic finite automata can also produce some output, us-
ing the defined output alphabet, but for the purpose of
this paper we shall consider only the automata that pro-
duce binary output, true or false, based on whether the
state of the finite-state automaton after processing the
input is from the set of accepting states. We can de-
fine formally a deterministic finite automaton [7] as fol-
low : A deterministic finite automaton is a quintuple
< S, Q, q0, d, F >, where :

• S is the input alphabet (a finite nonempty set of
symbols)

• Q is a finite nonempty set of states,

• q0 is the initial state, an element of Q,

• d is the state transition function; d : Q⇥ S! Q,

• F is the set of final states, a subset of Q.

Among the regular grammar Induction algorithms, we
are interested in algorithms allowing to learn a deter-
ministic automaton using positive and negative sample
because they are able to identify the class of the regular
languages in the limit [5] in a polynomial time. And we
are particularly interested in the RPNI [10] algorithm
which has two advantages : (1) it has a polynomial
complexity, (2) it is optimal. The algorithm 1 describes
RPNI.
RPNI takes as input I+ and I�. I+ (resp I�) is the
positive (resp negative) sample, it is a set of positive
(resp negative) examples. RPNI returns the smallest
automaton A accepting all positive examples and
rejecting all negative examples.
RPNI starts by constructing the prefix acceptor tree
PTA(I+) (line 2). PTA(I+) is a deterministic finite
automaton that accepts only all positive examples. For
instance, suppose that I+ = {l1, a, bb, bba, baab, baaaba}
and I� = {b, ab, aba}, then PTA(I+) :

0
1a

2

b 4 6a

8

10

b

3
a

5a

7

a

b

9
b a

Then RPNI tries all states merges and retains only
merges compatible with I� (line 3-14). RPNI
begins with the merge between states 0 and 1 :

1l is the empty word, some literature can use e to desig-
nate the empty word

0

a

2b

4 6a

8

10

b

3
a

5a

7

a

b

9
b a

The new automaton is compatible with I�
(line 8-11), so RPNI retains this merge. Then
it tries the merge between states 0 and 2 :

0

a
b

4b

3
a

6a

8

10

5a

7

a

b

9
b a

The new automaton is non-deterministic, so RPNI
merges states responsible for the non-determinism (line

7).

0

a
b

This automaton is not compatible with I� so the
merge is not retained. Finally RPNI tries all other
states merges and found the following automaton :

0

a

2b
b

a

2.2 Action model learning and regular

grammar induction

To learn our domain we learn an intermediate represen-
tation of our planning domain. This intermediate rep-
resentation is a regular grammar. We use a grammar
induction algorithm (see section 2.1) to learn this gram-
mar.
As we have seen in section 1.2, an instantiated action
model can be represented by a state-transition system.
Indeed, an instantiated action model have a set of state
Q and a transition function d : Q ⇥ S ! Q, where S
is a set of possibles actions. To represent a domain as a
regular grammar we need an initial state, so the regular

Algorithm 1: RPNI
input : I+, I� : Negative and positive samples
output : A : automaton

1 p {{0}, {1}, . . . , {N � 1}};
2 A PTA(I+);
3 for i 1 : |p|� 1 do

4 for j 0 : i� 1 do

5 p
0 p/{Bj, Bi} [{Bi [Bj};

6 A/p
0 derive(A/p

0
);

7 A/p
00 deterministic merge(A/p

00
);

8 if compatible(A/p
00 , I�) then

9 A A/p
00 ;

10 p p
00 ;

11 break;
12 end

13 end

14 end

15 return A, p

grammar will be the language that accepts all action se-
quences starting by the given initial state.
For instance, figure 1 represents a regular grammar for
the domain Gripper where the initial state is :

(at� robby r1) ^ ¬(at� robby r2) ^ (at b r1)^
¬(at b r2) ^ (f ree grip) ^ ¬(carry b grip)

with q0 = 0, Q = {0, 1, 2, 3, 4, 5}, F = {0, 1, 2, 3, 4, 5}
and S = {move(r1 r2), move(r2 r1), pick(b r1 grip),
pick(b r2 grip), drop(b r1 grip), drop(b r2 grip)}.
There are many interests to such a method. Learning
regular grammars is a well-defined area where there
are several algorithms with good results. Moreover, this
method makes it possible to learn any type of domains
as long as it is possible for us to represent it in the form
of a regular grammar. Indeed, this method is based
on informant learning which is one of the approaches
to language learning formalized by [5]. In informant
learning, an informant introduces a learning system to
both positive and negative examples of the language to
be learned, and the learner system is also informed of
the validity of each example. It allows to identify com-
plex grammars in the limit. We are not in a linguistic
setting, but this property is something we can reuse. In-
deed, although a planning problem is not a language, it
is possible for us, from an initial state, to represent our
domain as a regular grammar, and this type of grammar
is identifiable in the limit with informant learning, so it
is possible for us to learn this automaton in the limit.

2.3 Samples generation

Figure 2 shows an overview of our method to gener-
ate positive and negative samples. From a given initial
state q and an empty action sequence s, the autonomous
agent will ask the oracle about the feasibility of an ac-
tion a, chosen randomly, in the state q. In the case where

0

1

move(r1 r2)

2

pick(b r1 grip)move(r2 r1) drop(b r1 grip)

3

move(r1 r2) move(r2 r1)

4

drop(b r2 grip) pick(b r2 grip)

5

move(r2 r1) move(r1 r2)

Figure 1: Regular grammar representing Gripper

Figure 2: Samples generation

the action a is feasible, the autonomous agent adds the
action a at the end of the sequence s. Then, the system
that the autonomous agent tries to copy executes the
action a, and the agent updates the state q by observing
the system. In the case where the action a is not fea-
sible, the agent adds the sequence s

0 = s [{a} to the
negative sample I�. The agent restart this step until the
size of the sequence s is N, where N is an integer ran-
domly selected between 10 and 20. Once the sequence
s built, the agent restart all the process since the begin-
ning. We can assume that the oracle does not make er-
ror about the feasibility of actions. Nevertheless, we can
not assume that observations are perfect. Indeed, since
it is the agent that retrieves the information on the states
directly using these observations through sensors, it is
possible that there are errors. These errors can be due to
a bad calibration of the sensors (noise) or to the fact that
some properties are no longer observable (partial infor-

mation). Nevertheless, we can assume that the static in-
formation are always completely observe without noise
because these information are never modified.

3 The AMLSI algorithm

The algorithm is divided into three steps. The first step
is the grammar induction step. The purpose of this
first step is to learn an intermediate representation of a
planning problem. We use a regular grammar as an in-
termediate representation and we use the RPNI-R (see
section 3.1) algorithm to learn this grammar. Then the
second step of our algorithm is the operators induction
step. At this stage we infer the operators’ precondi-
tions and effects from the regular grammar learned pre-
viously. Finally, the third and final step of the AMLSI
algorithm is a refinement step. This step is aimed at re-
fining the operators’ preconditions and effect using the
regular grammar learned and a tabu search.
Before to learn the regular grammar we perform a
pre-process step. We decompose each positive exam-
ples. Indeed, for each feasible sequences of actions,
each sub-sequences is feasible, so the correct grammar
have to accept all sub-sequences of each sequences.
So we add each sub-sequences to the positive sample
I+. For instance, suppose we have the positive exam-
ple move(r1 r2); move(r2 r1); pick(b r1 le f t) 2 I+, we
have to add sub-sequences move(r1 r2); move(r2 r1) and
move(r1 r2) to the positive sample I+.

3.1 Grammar Induction

We propose the algorithm RPNI-R to learn our gram-
mar. RPNI-R is an alternative version of the algorithm
RPNI taking into account pairwise constraints.
Pairwise constraints are a set of rules giving impossible
transition sequences. If a pair (a1, a2) is present in our
set of constraints, that indicates that there is no possible
sequence where action ai is followed by action aj. These
pairwise constraints make it possible to simulate nega-
tive examples and to ensure that in our automaton, all
the pairs of actions present, are pairs of actions actually
present in the domain. These constraints are based on
the fact that for an action to be feasible a certain number
of resources must be released (add list) and others must
be captured (del list). For instance, for the domain grip-
per, the action move(r1 r2) will never be followed by the
action pick(b r1 grip), because we need that the predi-
cate (at � robby r1) be evaluated to true to execute the
action pick(b r1 grip), and after the execution of the ac-
tion move(r1 r2), the predicate (at� robby r1) is always
evaluated to false, so the action pick(b r1 grip) can’t fol-
low the action move(r1 r2). Formally, we can describe
these pairwise constraints as follows :

(a1, a2) 2 R)
a1 2 S, a2 2 S 6 9q1 2 Q, q2 2 Q, q3 2 Q s.t.
d(q1, a1)! q2 ^ d(q2, a2)! q3

where R is the set of pairewise constraints.
To compute these constraints we use our positive sam-
ple I+. We consider that only the pairs present in our

positive examples are possible pairs. So all the pairs
that are not present in I+, belong to the set R :

8(ai, aj) 2 S2 :

8
<

:

(ai, aj) 62 R i f 9x 2 I+ s.t.
x = u; ai; aj; v

(ai, aj) 2 R Otherwise

The RPNI-R algorithm ensure that the automaton learn
is compatible with both I� and R. Let’s take the al-
gorithm 1 describing RPNI. After the merge between
state i and j, RPNI keeps p

00 iff compatible(A/p
00 , I�)

returns true, i.e, iff A/p
00 rejects all the negative exam-

ples. RPNI-R retains p
00 iff A/p

00 rejects all the negative
examples and rejects all pairs (al , ak) 2 R.

3.2 Operator induction

Mapping

Once the automaton has been learned, we need to know
which states of the automaton correspond to which
observation for each action. For that we play in the
learned automaton all positive examples and record the
pairs ”state of the automaton, action” with the pairs
”observation, action”. There are two different map-
ping : the mapping ante µA and the mapping post µP.
µA(q, a) (resp µP(q, a)) gives the set of observations ob-
served before (resp after) the execution of the action
a in state q. Once mappings computed, we compute
the reduced mapping. We denote the reduce mapping
µ0

A
=

T
µA (resp µ0

P
=

T
µP). The reduce mapping

contains the common pattern of all observations. For
instance, µ0

A
(0, pick(b r1 grip)) evaluates the predicate

(at b r1) to true (resp f alse) iff (at b r1) is always evalu-
ated to true (resp f alse) in µA(0, pick(b r1 grip)).

Preconditions induction

The algorithm 2 describes our method to learn op-
erators’ preconditions. To learn preconditions of an
operator o, we have to find the common pattern of
all states where an action a instantiating o is feasi-
ble. Suppose we wanted to learn the precondition of
pick(?obj ?room ?gripper). Take a = pick(b r1 grip), we
start by searching all states where a is feasible (line 5),
take q = 0. Let us assume that :

µ0
A
(q, pick(b r1 grip)) =

(at� robby r1) ^ ¬(at� robby r2) ^ (at b r1)^
¬(at b r2) ^ (f ree grip) ^ ¬(carry b grip)

At the line 6 we compute the observation q
0 that is the

observation µ0
A
(q, pick(b r1 grip)) without the useless

information, i.e, the observation where all predicates in-
compatible with pick(b r1 grip) have been removed :

q
0 = reduce(µ0

A
(q, pick(b r1 grip)), Fpick(b r1 grip))

where Fpick(b r1 grip) is the set of parameters of the ac-
tion pick(b r1 grip). In our example,

q
0 = (at� robby r1) ^ (at b r1) ^ (f ree grip)

^¬(carry b grip)

Algorithm 2: Preconditions induction
input : A : an automaton, µ0

A
: mapping o : an

operator
output : ro

1 X {};
2 for a 2 o do

3 t {};
4 for q 2 A.Q do

5 if a 2 actions(q) then

6 q
0 reduce(µA[q, a], Fa);

7 if q
0 6= ∆ then

8 t t [{q
0};

9 end

10 end

11 end

12 ra
T
(t);

13 X X [{generalize(ra)};
14 end

15 ro
T
(X);

16 return ro

We can remove incompatible predicates thanks to the
STRIPS scope assumption [2]. Then, we redo these
different steps to find all observations q

0 for all states
q where the action pick(b r1 grip) is feasible (line
5-11). We denote t the set of all observations q

0.
We can now compute rpick(b r1 grip) =

T
t the com-

mon pattern of all observations q
0 (line 12). Then,

we generalize rpick(b r1 grip) by replacing all constants
in the precondition by the arguments of the opera-
tor pick(?obj ?room ?gripper) (line 13). Once gener-
alized preconditions of all instances of the operator
pick(?obj ?room�?gripper) computed, we recover the
common pattern of all these generalized preconditions
to compute rpick(?obj ?room ?gripper)

2

Effects induction

Effects induction is analogous to preconditions induc-
tion, with the difference that, instead of recovering the
common pattern to all states where the operator is feasi-
ble, we recover the common pattern to all gap between
states before/after executions of the operator.

3.3 Refinement

The method previously seen is sufficient if and only if
three hypotheses are satisfied :

1. We learned the perfect automaton
2. We have complete observations
3. We have noiseless observations

In the general case, none of these assumptions are satis-
fied. That’s why we add a refinement step. The figure 3
gives an overview of the refinement step.

2rpick(?obj ?room ?gripper) contains both positive precondi-
tions r+ and negative preconditions r�

Figure 3: Refinement

Effect refinement

We begin by refining the effects. This step will en-
sure that the induced action model is able to regener-
ate the previously learned automaton. We use the map-
ping µ0

A
to verify that for each transition : d(q, a) !

q
0, d(q0, a

0) ! q
00,, the effects of the action a and

µ(q, a)0 generate the preconditions of action a
0, if it

is not the case, we add the effects ensuring that the
next preconditions are satisfied. Formally, we add ef-
fects to verify that the state q

00 = µ(q, a)0 [e+(a) \
e�(a) satisfies ra0 . For instance, suppose we have the
following transitions : d(q, move(r1 r2)) q

0 and
d(q0, pick(b r2 grip)) q

00. Now suppose we have
¬(at� robby r2) 2 µ0

A
(q, move(r1 r2)), (at� robby r2) 2

r+
pick(b r2 grip

and (at� robby r2) 62 e+
move(r1 r2)

. We need
to have (at� robby r2) 2 e+

move(r1 r2)
for that transitions

d(q, move(r1 r2)) and d(q0, pick(b r2 grip)) are feasible,
so we had (at� robby ?to) to e+

move(? f rom ?to).

Precondition refinement

Then we can refine preconditions. This step en-
sure the assumption seen in section 1.2 : we can
only remove information that are always present :
8p 2 P,¬p 2 e�a =) p 2 r+a . So for each negative
effects of each operators, we add the corresponding
positive precondition. For instance, suppose we have
¬(at� robby ? f rom) 2 e�

move(? f rom ?to) so we must have
(at� robby ? f rom) 2 r+

move(? f rom ?to) after refinement.

Since effects refinement depends on the precondi-
tions and preconditions refinement depends on the
effects, we repeat these two stages until convergence.

Tabu search

Then we perform a tabu search to improve our model
independently of our automaton. This search will allow
us to find the information lost by the mapping because
of the noise and the fact that the observations are par-
tial. To reduce the search space, we keep only the candi-
dates who respect the assumptions seen in section 1.2.
Once this research is done, we repeat all the stages of
refining until convergence.
The fitness function use to evaluate a candidate D is :

J(D|I+, I�) = Jr(D|I+) + Je(D|I+)+
J
+(D|I�) + J

�(D|I�)

where

• Jr(D|I+) = Â
x+2I+

Â
(q,a)2x+

Accept(ra, q) �

Reject(ra, q) compute the fitness score for pre-
conditions. Accept(ra, q) count the number of
positive and negative preconditions accepted by
the observed state q. And Reject(ra, q) count the
number of positive and negative preconditions
rejected by the observed state q.

• Je(D|I+) = Â
x+2I+

Â
(q,a,q0)2x+

Equal(q00, q
0) �

Di f f erent(q00, q
0) compute the fitness score for

effects. Where q
00 = {q [e+a } \ e�a . Equal(q00, q

0)
count the number of positive and negative
predicates present in both state q

00 and q
0. And

Di f f erent(q00, q
0) count the number of positive

(resp negative) predicates in q
00 which are negative

(resp positive) in the observed state q
0.

• J
+(D|I+) = Â

x+2I+
Accept(D,x+) where

Accept(D,x+) = 1 if and only if the candidate
domain D can generate the positive example x+.

• J
�(D|I�) = Â

x�2I�
Accept(D,x� [1:N�1])^Reject(D,x�)

where N is the size of the negative example x�
and Accept(D,x� [1:N�1])^Reject(D,x�) = 1 if and only
if the candidate domain D can’t generate the nega-
tive example x� but can generate the sub-sequence
x�[1 : N � 1]. This fitness score takes into account
how the negative sample is built (see section 2.3).

Fitness functions Jr(D|I+) and Je(D|I+) measure the
candidate’s ability to explain the observation states.
While fitness functions J

+(D|I�) and J
�(D|I�) mea-

sure the candidate’s ability to regenerate the grammar.
Finally, functions Jr(D|I+) and Je(D|I+) are not enough
to learn the domain because our observations are noisy.
It is therefore possible that the optimal domain D

⇤ is
not the domain maximizing functions Jr(D|I+) and
Je(D|I+).

4 Evaluation

4.1 Experimental setup

AMLSI was tested using a collection domains from the
International Planning Competition (IPC)3. The objec-
tive of these experiments is to demonstrate that AMLSI
is able to learn action models with high levels of missing
information in observations and some levels of noise.
These domains are Blocksworld, Hanoi, N-Puzzle, Peg
Solitaire and Gripper. The details of the domains used
can be seen in table 1. We test our algorithm with a
positive test sample E+ and a negative test sample E�.
We use also a set of 20 problems. Incomplete observa-
tions were simulated by randomly selecting a fraction
(0%, 25%, 50% or 100%) of fluent (including negations)

3Our implementation and the experimental setup can be
found at https://gitlab.com/grandmaxIm2ag/amlsi

Blocksworld Gripper Hanoi N-Puzzle Peg Solitaire
#Operators 4 3 4 1 3
#Predicates 5 4 7 3 5

|I+| 30 30 30 30 30
|I�| 2399 1169 2989 3330 3474
|x+| 14.89 15.10 14.58 15.20 6.77
|x�| 8.33 8.29 8.08 8.38 5.33
|E+| 100 100 100 100 100
|E�| 80508 39575 110693 112279 22742
|e+| 50.79 51.03 51.03 51.03 6.50
|e�| 33.39 33.71 33.71 33.72 4.6

Reference Acc 100.0 100.0 100.0 100.0 95.0

Table 1: Benchmark Domains Characteristics (from top
to bottom): domain’s number of operators, domain’s
number of predicates, average number of examples in
the positive sample, average number of examples in the
negative sample, average size of positive examples, av-
erage size of negative examples, average number of ex-
amples in the positive test sample, average number of
examples in the negative test sample, average size of
positive test examples, average size of negative test ex-
amples, accuracy of reference domain.

from the system to observe after each action. Sensor
noise was simulated similarly by flipping the value of
observed predicate in the state with probability 0%, 1%,
2%, 5%, 10% and 20%. We use an alternative version of
the method use to generate training samples (see sec-
tion 2.3) to generate positive and negative test samples.
In this version, we test each action at each step to keep
all negative information. The system to be copied and
the oracle are simulated by the java library pddl4j [11]
by encapsulating in a black-box the reference IPC do-
mains. To determine an error bound on our results, we
test each domain with three different initial states man-
ually built over five runs. To allow the reproducibility
of the experiment, we use five seeds randomly draw for
each run. Finally, the tabu search for the refinement is
computed over 200 iterations.

Metrics

We test our algorithm over three metrics. The first
metric is the error rate for preconditions : Er =

Â
e2E+

Â
(q,a)2e

error(ra ,q)

Â
a2e

|ra | where error(ra, q) = |{p 2 r+a ^

¬p 2 q}| + |{¬p 2 r�a ^ p 2 q}|. This met-
rics, proposed by [16], compute the rate of precon-
ditions that were not satisfied in the test sample
E+. Then we use the F-Score [12]. F-Score =
2.P.R
P+R

where R = |{s2E
+ | accept(D,e)}|

N+ , and P =
|{e2E

+ | accept(D,e)}|
|{e2E+ | accept(A,e)}[{e2E� | accept(D,e)} . F-Score is initially
a metric used for pattern recognition and binary clas-
sification. Nevertheless, it can be used to evaluate the
quality of a learned grammar. Indeed, a grammar is
equivalent to a binary classification system labeled with
{1, 0}. For grammars we can assume that the sequences
belonging to the grammar are data labeled with 1, and
non-grammar sequences are data labeled with 0. The
score will therefore be able to test the ability of the do-
main to regenerate the grammar of the reference do-

main. Finally we use the accuracy Acc = N

N⇤ . This met-
ric, proposed by [17], compute the ability of the learned
domain to resolve different planning problem, where N

is the number of solved problem, and N
⇤ the total num-

ber of problem.

Baseline

Comparisons with other approaches in the literature are
difficult due to differences in the learning settings. First
of all we use a type of input that is not used much in
the literature. Indeed, we use both feasible action se-
quences, and unfeasible action sequences, while most
algorithms use only feasible action sequences. In addi-
tion, we use a random walk with an oracle to generate
our positive examples (see section 2.3), whereas most of
the algorithms of the literature like ARMS, SLAF, Plan-
Milner etc use goal-directed plans or only one positive
sequence like LSO-NIO, IRALe or LOCM [1]. In addi-
tion, we are able to learn our domain with partial and
noisy observations. Several algorithms like LOUGA
and ARMS learn domains with partial observations but
they are not robust to noise. For ARMS, this is due to
the fact that the learning is done using logic induction,
and for LOUGA, this is due to the fact that LOUGA uses
the intermediate information to reduce the search space,
and the noise could remove from the search space the
optimal solution. The IRALe algorithm is able to learn
a domain with noisy observations, but it needs that
the observations are not partial. LSO-NIO and Plan-
Milner can deals with both noisy and partial observa-
tions, but the type of learned domain differs. AMLSI
learn negative preconditions and static relations. But
Plan-Milner and LSO-NIO learn only positive precon-
dition and can’t learn static relation. That’s why we do
not use baseline in this evaluation.

4.2 Results

We begin by focusing on three particular cases :

1. High level of intermediate information and low
level of noise (table 2).

2. Low level of intermediate information and high
level of noise (table 3).

3. No intermediate information (table 4).

First of all, the table 2 shows the results of our ex-
periment with a high level of intermediate information
(100% of observable fluent) and a low level of noise
(1%). We note that for all planning domains, each met-
rics reaches its optimal value (0% for Error Rate 100%
for F-Score and 100% or 95% for Accuracy). Then, the
table 3 shows the results of our experiment with a low
level of intermediate information (25% of observable
fluent) and a high level of noise (20%). We note that
for all planning domains, except for Blocksworld and
Peg Solitaire, Er and Accuracy reache their optimal val-
ues. Nevertheless, we also note that for some domain
the F-Score have bad value. For instance, for the do-
main Gripper, we have F-Score = 80.44%. This is due

Blocksworld Gripper Hanoi N-Puzzle Peg Solitaire
Er 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

F-Score 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Acc 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 95.0 ± 0.0

Table 2: Action model learning results on four domains
with a high level of intermediate information (100% of
observable fluent) and a low level of noise (1%). Perfor-
mance is measured in terms of error rates Er (lower is
better) and F-Score and accuracy Acc (higher is better).
We reported the average and standard deviation com-
puted over five runs and three different initial states.

Blocksworld Gripper Hanoi N-Puzzle Peg Solitaire
Er 0.61 ± 2.29 0.0 ± 0 0.0 ± 0.0 0.0 ± 0.0 0.83 ± 1.8

F-Score 93.21 ± 25.38 80.44 ± 40.48 100.0 ± 0.0 100.0 ± 0.0 89.64 ± 24.92
Acc 93.50 ± 24.28 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 70.66 ± 42.65

Table 3: Action model learning results on four domains
with a low level of intermediate information (25% of ob-
servable fluent) and a high level of noise (20%). Perfor-
mance is measured in terms of error rates Er (lower is
better) and F-Score and accuracy Acc (higher is better).
We reported the average and standard deviation com-
puted over five runs and three different initial states.

to errors for learning of the operator move. The learned
move operator is :

(: a c t i o n move
: parameters (? x1�room ?x2�room)
: precondi t ion (and)
: e f f e c t (and
(at�robby ? x1)
(at�robby ? x2))

)

while the reference operator is :

(: a c t i o n move
: parameters (? x1�room ?x2�room)
: precondi t ion (and
(at�robby ? x1)
(not (at�robby ? x2)))
: e f f e c t (and
(not (at�robby ? x1))
(at�robby ? x2))

)

We notice that there are errors for both preconditions
and effects. We can note that although the are errors in
preconditions, Er = 0%. This is because preconditions
are missing and no preconditions have been added. The
fact that preconditions are missing implies that unfeasi-
ble action sequences can be generated by the learned
domain, which explains that F-Score < 100%. In addi-
tion, a positive effect (at� robby r1) has been added and
a negative effect (not(at � robby r1)) is missing. This
also has the consequences of allowing the learned do-
main to generate unfeasible sequences of actions. Nev-
ertheless these errors do not prevent the resolution of
the problems. Indeed, we have a high level of resolution
Acc > 70% for all domains. This is because all feasible

action sequences can be generated from the learned do-
main. In addition, the goals of planning problems take
into account only the positive predicate, so the fact that
a negative effect is missing does not prevent finding a
state that satisfies the goal. Finally, the table 4 shows the

Blocksworld Gripper Hanoi N-Puzzle Peg Solitaire
Er(%) 10.05 ± 10.07 0.0 ± 0.0 0.41 ± 1.61 0.0 ± 0.0 0.3 ± 0.43

F-Score (%) 35.55 ± 48.49 100.0 ± 0.0 5.39 ± 3.95 100.0 ± 0.0 81.06 ± 26.84
Acc (%) 47.45 ± 47.39 80.00 ± 29.27 68.33 ± 36.33 100.0 ± 0.0 64.66 ± 45.88

Table 4: Action model learning results on four domains
with no intermediate information. Performance is mea-
sured in terms of error rates Er (lower is better) and F-
Score and accuracy Acc (higher is better). We reported
the average and standard deviation computed over five
runs and three different initial states.

results of learning when no intermediate information is
observable. We notice that only the N-Puzzle domain
has been learned. This comes from the fact that this do-
main has only one operator, so it is easier to learn this
domain than others. We also note that for some domain
Er > 0%. For instance, in the learned Hanoi domain,
the positive precondition (holding ?x1) has been added
for the pick up operator. Finally we notice nevertheless
that for some domain we keep a high resolution rate of
problems, Acc = 80% for the domain Gripper for in-
stance.

Initial State 1 Initial State 2 Initial State 3
Er(%) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

F-Score (%) 80.47 ± 43.2 100.0 ± 0.0 60.86 ± 53.59
Acc (%) 100 ± 0.0 100.00 ± 0.0 100.00 ± 0.0

Table 5: Comparison between initial states for domain
Gripper. Performance is measured in terms of error
rates Er (lower is better) and F-Score and accuracy Acc

(higher is better). We reported the average and standard
deviation computed over five runs.

Then, the table 5 gives a comparison between each ini-
tial states for the domain Gripper. We can observe that
there exists a high variability between initial states. For
example, with the initial state 2 we have F-Score =
100.0% while with the initial state 3 we have F-Score =
60.83%. This gap can be explained by the quality of the
learned automaton. Indeed, if initial states are different
then grammars are different. It is therefore possible that
the grammar generated from the initial state 3 is more
complex (greater number of states) or that the grammar
gives less information on the actions than the grammar
generated from the initial state 2.
Then, we can observe in all experiments that the stan-
dard deviation can be high. For instance, in the table 3
for the domain Gripper, the standard deviation is 40.48
for the F-Score metric. This high standard deviation is
due to the fact that we have ”extreme” values for the
F-Score. Indeed, we have F-Score = 100.0% 12 times
while we have F-Score < 2.4% three times. This means

Figure 4: Time to learn Hanoi

that in the majority of cases we learn the optimal plan-
ning domain, but in a few cases we learn very different
domains from the optimal domain.
Finally, we study the time to needed to learn planning
domain. First of all, we notice that the learning of a
planning domain is much faster when there is no noise,
whatever the level of observability. Also, we notice that
when the noise varies between 1% and 20%, the learn-
ing time is stable. Moreover, there is not a big differ-
ence between the different levels of observability, but
AMLSI is often the faster when 75% or 100% of fluent
are observable. Finally, we notice that the learning time
is globally high. For example, for the Hanoi domain
(see figure 4), when the noise level exceeds 0%, it al-
ways takes at least 1600 seconds to learn the domain.
This high time is due to the refinement of the operators,
and more particularly to the tabu research.

5 Conclusion and Future work

The results demonstrate that our approach successfully
learns operators from noisy and incomplete observa-
tions when we have a high level of observable fluent
whatever the noise level. Then our approach can’t learn
the optimal planning domain when there are no inter-
mediate information in the majority of case. However,
we are always able to resolve problem.
The quality of our learning will depend on the learned
regular grammar. The learned grammar must be suf-
ficiently expressive to be able to induce the operators.
The expressiveness of our grammar depends on our ini-
tial state, so to learn the optimal domain, we need an
initial state allowing a strong expressivity of the gram-
mar. Nevertheless, the more expressive the grammar,
the more difficult it is to learn. So to maximize the qual-
ity of learning the automaton we must use the least ex-
pressive initial state possible, and to maximize the qual-
ity of learning the domain of planning we must use an
initial state as expressive as possible. For our experi-

ment, the initial states have been built in such a way
that the grammars are sufficiently expressive for learn-
ing the planning domain, without it being too expres-
sive to allow an efficient learning of the automaton.
However this is not realistic for a real-world applica-
tion.
Then, our learning algorithm is passive, so we do not
take advantage of the fact that we ask an oracle. With
an active learner we will be able to benefit from the fact
that we ask an oracle, to bias the drawing of the dif-
ferent actions to have examples allowing to learn the
best automaton while minimizing the number of times
when we ask the oracle.
Moreover, as we have seen in the section 4.2, the tabu
search takes a lot of time to refine the operators, it might
be interesting to use another method, less time consum-
ing, to refine the operator without having a great loss of
efficiency.
Finally, we learn only the STRIPS part of the PDDL lan-
guage, it would be interesting to extend the PDDL part
that our algorithm is able to learn, as disjunctive pre-
condition, conditional effect, cost function etc.

Acknowledgements

This work was funded by the Circular project - IDEX.

Real Time Simulations with a Biomechanical Model of the Human

Tongue using a Machine-Learning-based Model Order Reduction

approach

Maxime Calkaa,b, Pascal Perrierb, Jacques Ohayona, Yohan Payana

aUniv. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France;
bUniv. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, F-38000 Grenoble, France

ARTICLE HISTORY

Compiled August 28, 2019

ABSTRACT
This paper focuses on real time simulations with a biomechanical model of the

human tongue in order to create a Digital Twin model that can be integrated in

the medical framework. As a long term application, this Digital Twin of the tongue

could be used to predict functional consequences of tongue surgery.

The method proposed uses an “a posteriori” Model Order Reduction method

that learns from a limited number of simulations (excitation/output) of the model

to estimate new simulations of the human tongue.

In the preliminary results presented in this paper, the Reduced Order Model is

shown to be able to estimate with a sub-millemetric accuracy the non-linear behavior

of this organ in response to muscle activations.

KEYWORDS
Model Order Reduction, Digital Twin, Real Time Simulation

1. Introduction

1.1. Medical context

Nowadays, tongue cancer are still present with 4200 new cases in France in 2017
(Jéhannin-Ligier et al. (2017)). This type of cancer particularly a↵ects people exposed
to tobacco and alcohol consumption (Sturgis and Cinciripini (2007)).

The most common techniques to treat the patient is the exeresis of a part of the
tongue. However such a surgery can have severe consequences on tongue mobility and
tongue deformation capabilities. It can generate impairments for masticating, swallow-
ing and speaking that are three basic biological functions in humans life. Impairments
can reduce drastically the quality of life of the patients. For now, quantitatively pre-
dicting the functional consequences of this surgery is very complex for the clinician.

This project has for final objective to develop a planning system “in silico” that
should predict the functional consequences in a quantitative way for real surgery. The
software should be able:

• to generate in an automatic way patient-specific 3D finite element (FE) models
of the tongue.

• to simulate in interactive time the anatomic changes induced by the surgery (e.g.

tumor resection with flap reconstruction). For this, we propose to use a Model
Order Reduction (MOR) technique.

• to quantitatively predict the consequences of these anatomical changes on mas-
tication, swallowing and speech.

Solving the first two phases of the planning system (namely the creation of a dig-
ital biophysical replica usable for the FE model analysis and the interactive time
simulations of such a model) without simplify the physics is a challenge in some com-
putational medicine applications.

A quasi-automatic generation of the patient-specific mesh for human tongue has
already been proposed and evaluated in our group (Bijar et al. (2016)). However,
because of the non-linear mechanical behavior of human tongue tissues, the simulations
using any patient-specific FE model in the tongue can take very long time (about one
hour to simulate a movement of some milliseconds) and is not usable in a clinical
context. Indeed, the tongue is a complex organ with incompressible tissues and a non-
linear visco-elastic behavior (large deformations and non-linear elasticity). In addition,
to study the functional outcome of the surgery in terms of speech production, a key
point of tongue simulation is to be able to model the tongue’s trajectory over time and
not just its final shape after muscles contractions. So, a transient analysis (solving the
Lagrange equations) is required to take into account this temporal notion in the FE
analysis. A di�culty during this FE analysis is that tongue gets a very fast movement
during speech production(tens of milliseconds of transition) increasing the viscous
e↵ect of the modeled organ. The challenge of any MOR technique is therefore to
account for this temporal evolution and to capture the non-linear and fast behavior
of the tongue.

1.2. Related Work

From many years model order reduction (MOR) methods have received a growing
interest to challenge the real time simulation problem in computational surgery (Cueto
and Chinesta (2014)). These methods allow to obtain real-time online simulations by
reducing the computational complexity in numerical simulations without simplifing
the physics of the model. Such methods require a computationally intensive o✏ine

phase.
For now, the projection-based and collocation-based MOR methods are the most

popular ones. The projection-based MOR are usually divided in two categories: the a

posteriori methods such as the Proper Orthogonal Decompositions (Chatterjee (2000))
that create the Reduced Order Model (ROM) from a large set of simulations called
“Snapshots” and the a priori methods such as the Proper Generalized Decomposition
(PGD) (Chinesta et al. (2013)) that reduce the model during the problem solving
process. Niroomandi et al. (2012) applied a POD MOR method for computational
medicine in the case of non-linear quasi-static problem to simulate the palpation of
the human cornea and solved tissues large deformations problems.

In Lauzeral et al. (2019) the ROM is created with a collocation-based MOR called
Space Subspace Learning (SSL) (Borzacchiello et al. (2019)). In the same idea as our
project, the problematic of this paper was to create a Digital Twin of the liver and to
consider large deformation but only linear elasticity of the model. As for Niroomandi
et al. (2012) the simulations were solved in a quasi-static way.

Contrary to the related work, our project has to model a non-linear mechanical
behavior, namely the one of the tongue, and to solve the Lagrangian equations (tran-

2

sient analysis). In addition, our ROM is created thanks to an a posteriori machine
learning-based technique (ML-based MOR). This method is evaluated to estimate the
specific case of the human tongue to solve real-time simulation problem. Below, the
MOR method and the biomechanical tongue model are detailed. Then, the experimen-
tal data are introduced to describe the learning and evaluation condition of the MOR
method. In a last part, the result of the MOR method to estimate the displacement
of the whole tongue are shown.

2. Materials & Methods

2.1. Model order reduction based on machine learning

In this paper, an ML-based MOR technique developed by ANSYS R� called “Dynami-
cROM” is used to estimate the non-linear behavior of the tongue in transient analysis.
It is a “non-intrusive” and “a posteriori” ML-based method with a large dataset of
snapshots generated o↵-line by the MAPDL R� full-order solver. The whole process is
describe in Fig. 1 and is made of two steps: the reduction of the number of output in
a smaller number of “modes” using a Singular Value Decomposition (SVD) and the
learning on the dataset to generate the ROM.

Figure 1. DynamicROM process

2.1.1. Learning phase

The DynamicROM algorithm predicts the output temporal matrixXn⇥nt of non-linear
dynamic system (our tongue model) for a certain temporal excitation Bm⇥nt . To realize
this prediction, the algorithm learns from a set of data called “scenario” S generated
with the full-order solver that encapsulates an excitation and the corresponding output
S = (B,X). The goal of the learning phase is to solve the di↵erential equation (eq.1)
by founding the optimal non-linear function f̂.

X 0(t) = f(X(t), B(t)) (1)

X(0) = X0 (2)

with,

• X(t): vector of n output at time t
• B(t): vector of m excitation at time t
• f : non-linear function correlating the output and the excitation

3

• X 0(t): velocity of each output at time t
• X0: initial condition of the system

2.1.2. Reduction of spatial dimensionality

In some cases the number of outputs can be huge and considerably increase the com-
putation time of the learning phase. A spatial dimension reduction allows to reduce
this computation time by decreasing the n output points to learn in a less number
of mode coe�cient r. In the DynamicROM method, the dimension reduction method
used is a Singular Value Decomposition (SVD) that factorizes the matrix X such that:

Xn⇥nt = Un⇥n · ⌃n⇥nt · Vnt⇥nt (3)

where, U and V are matrices respectively corresponding to left and right singular
value of X.

This decomposition allows to do an approximation of X using only the r first left
singular value.

X=̂Xr⇥nt = Un⇥r · ⌃r⇥r · Vr⇥nt (4)

where, Xr is the optimal approximation of X with r modes.

2.1.3. 3D biomechanical model of the human tongue

The tongue model used for the simulations is described in Hermant et al. (2017). It is
based on a Finite Element mesh including 7763 nodes and 8780 hexahedral elements.
The constitutive equation used to model the mechanical properties of the tongue soft
tissue is based on a Mooney-Rivelin formulation with two parameters C10 = 192Pa
and C20 = 90Pa. In addition, the viscoelasticity of the tongue is approximated with a
Rayleigh model (Rayleigh coe�cient ↵ = 20 and � = 0.0). The tongue being assumed
quasi-incompressible, a Poisson ratio is fixed to v = 0.4999 and “no-displacement
boundaries conditions” are defined on the external nodes in contact with the jaw and
the floor cavity. Fig. 2 shows the mesh of the tongue model with the two muscles
that will be activated in the simulation, namely the styloglossus and the genioglossus
(pathways of the muscle fibers represented in blue).

Figure 2. Tongue model used for simulations with muscles represented in blue.

4

Fig. 3 illustrates the complexity of estimating the non-linear behavior and kinematic
of the tongue, with the plot of the displacement in the 3 axis of a point at the tip of
the tongue during the genioglossus maximum activation. Except for the Y axis that
shows a quite straight displacement, the two other axis show a complex non-linear
kinematic.

Figure 3. Tongue displacement after activation of the genioglossus. X: red, Y: green, Z: blue.

2.2. Experimental data

As said above, a scenario is a set of two types of data called “excitation” and “output”.
In the case of the tongue, an excitation B(t) and an output X(t) represent respectively
a temporal muscular activation of the system and a temporal displacement of the
tongue surface.

2.2.1. Excitation

In this paper, two types of excitation of the model are studied: the separate activation
of the posterior genioglossus (GG-P) responsible for protrusion and elevation of the
tongue, and the separate activation of the styloglossus (SG) allowing the tongue to
be raised and retracted. For all excitation cases studied here the muscles activations
consist of a linearly increasing phase and a stabilization phase (Fig. 4).

In the muscle model, the activation is defined by a stress � which has a maximal
value �SG

max normalized by an activation ratio of ↵ varying between [0; 1] such that
� = �max ⇥ ↵Pa.

In our study, for each muscle the activation ratio ↵ varies in the interval [0.2, 1.0].
In addition, all the simulations have a total time ttotal = 0.35 s. with a first linearly
interpolated phase time of tactivation 2 [0.05, 0.11]. These durations have been defined
because they correspond to average times observed to generate a tongue movement
between two speech sounds (a few tens of milliseconds of transition and a few hundred
milliseconds of average movement duration). ↵ and tactivation are the two parameters
that varies in the excitation scenarios.

5

Figure 4. Range of variation of possible excitations in our scenarios. In red, the pattern corresponding to the
maximum stress with a minimum activation time, In green the pattern corresponding to the minimum stress
with a maximum activation time. he rectangle in grey corresponds to all possible range of values for parameters
for the simulations.

2.2.2. Output

Since we are interested in the functional behaviour of the tongue after surgery that
interests us, it was decided to observe the kinematics of the tongue surface at the exit;
3D movement of that whole tongue surface is therefore used to evaluate the ROM.

2.3. Learning scenarios

20 simulations were conducted to define the learning scenarios for the genioglossus and
styloglossus muscles. These simulations were performed with excitation data whose
parameters ↵ and tactivation have steps of 0.1 and 0.01s. respectively forming a grid
represented Fig. 5.

Figure 5. Set of learning scenarios for each activation cases (SG, GG and SG+GG)

6

2.4. Evaluation scenarios

Figure 6. Example of a set of possible excitation for evaluation scenarios

The evaluation scenarios are a set of simulations of the size of the learning data,
i.e. 20 evaluations simulations. These scenarios are used to evaluate the ROM in the
evaluation phase represented Fig. 1.

Then excitation data are randomly distributed between four areas cutting the grid
of Fig 5 to cover a wide spectrum of possibilities while not taking the results of a
simulation used for learning. This distribution is represented in Fig.. 6.

2.5. Metric

To quantitatively study the accuracy of the ROM, the metric used is the root mean
square error (RMS error) between the coordinates of any output point (Xx, Xy and
Xz), and the coordinates of this point estimated by the ROM (Xx

ROM
, Xy

ROM
and

Xz

ROM
). Equation 5 allows to evaluate this RMS error of the displacement field on all

scenarios and will be used to obtain the optimal learning and accuracy of the ROM
(N is the number of scenarios). For our reduced tongue model to be considered of
satisfactory quality it must have an RMS error of less than a few tenths of a millimeter.

RMSError =

p
(
P

N (X �XROM)2)

N
(5)

3. Result & Discussion

3.1. Results

Figure 7 shows typical examples of the horizontal displacement of a node located on
the blade of the tongue resulting from the separate activations of the genioglossus and
the styloglossus as generated with the original biomechanical model, and approximated
with the Reduced Order Model. Clearly the Reduced Order Model is able to provide a
very good approximation of the displacement computed with the biomechanical model.

7

Figure 7. Horizontal displacement of a node on the blade of the tongue in response to the separate activations
of the genioglossus (Top panel) and the styloglossus (Bottom panel). Red curves: displacement resulting from
the simulations with the biomechanical model. Green curves: displacement computed with the Reduced Order
Model

The mean RMS error of the displacement field computed on all the nodes of in-
terest and for all the scenarios are given in Fig. 8. With respective average errors of
3.7x10�6m and 1.9.x10�6m for the styloglossus and the genioglossus (standard devi-
ation 8.8x10�7m and 4.8x10�7m) the quality of the approximation with the reduced
mode is clearly excellent.

Figure 9 illustrates the spatial distribution of the RMS error over the di↵erent nodes
of the tongue for the simulations associated with the Styloglossus activation (results
are similar for the genioglossus). It can be observed again that the RMS error is quite
evenly distributed and in general very low, except in a specific region, namely the
one where the posterior fibers of the styloglossus, arising from the Stylo-hyoid process
enter the body of the tongue (in the posterior velar region). This result deserves further
investigation, since it can reveal a strong non-linearity in the mechanical behavior of
the element connecting the external part of the stylo-glossus with the tongue body.
However at this stage of the study, it is not a crucial issue since the error remains very
localized, and has a negligible impact on the global behavior of the tongue.

3.2. Discussion

The results obtained with the Reduced Order Model for the separate activations of
the genioglossus and the styloglossus are very encouraging. The Reduced Order Model
generates in real-time time-varying tongue deformations that are very close to those
generated with the original biomechanical model, with a mean RMS error that is
generally sub-millimetric. Slight di↵erences are observed in the approximation quality
between the results obtained for the genioglossus and those obtained with the sty-
loglossus. Figure 7 provides a possible explanation for that: the trajectory generated
with the biomechanical model is more noisy for the activation of the styloglossus,

8

Figure 8. mean RMS error of the displacement field commputed on all the nodes of interest and for all the
scenarios

Figure 9. RMS errors for four di↵erent tongue positions resulting from 4 activations of the styloglossus. The
heat map values are in meters.

9

due to inaccuracy in solving Lagrangian equations. Hence, this di↵erence originates in
limitations of the Finite Element computation, and not in the design of the Reduced
Order Model. This point should be further investigated, at the level of the algorithms
solving the Lagrangian equations in the FEM model.

Figure 7 shows that in the simulations that we have considered for this work, the
node trajectories are not very complex, and are quite similar to the indicial response
of a second order system with a subcritical damping factor. This could explain the
high quality of the approximation obtained in our results so far. Hence further work
will involve more complex scenarios in which potential non-linearities of the original
biomechanical model will have stronger consequences on the time variations of the
tongue shape. First of all we will consider cases in which several muscles are activated
at the same time, with di↵erent timings. Such activations patterns will generate node
trajectories that are more complex and di↵er more strongly from indicial responses
of second-order models. We will also consider scenarios with strong mechanical non-
linearities due to contacts between the tongue and the vocal tract boundaries (palate,
teeth, pharyngeal walls). These simulations will provide a more challenging context to
assess the approach used to design the Reduced Order Model.

Importantly, independently of the ability of the ROM to describe the time course
of the nodes toward the final configuration, Figure 9 shows that the final configura-
tions are predicted very accurately. This is crucial result in the context of a clinical
application that would aim at assessing the extent to which the tongue can cover the
whole range of speech articulation in a post-surgical state.

4. Conclusion & Future Work

In this paper, a ML-based MOR method has been used in the specific-case of the
tongue that own non-linear behavior and fast movement requiring transient analysis.

The ROMs have been constructed on two kinds of activation (SG and GG) in
learning a large set of o↵-line simulations. Then the ML algorithm found the best
non-linear functions to describe this simulations.

The results show that this method is able to estimated in real-time with a sub-
millimetric precision the displacement of the tongue when one muscle is activated.

Some aspects remain, however, open for future work. For instance, the possibility
to estimate the tongue movement for more than one muscle or in the longer term to
estimate the movement of the tongue after an exeresis and a reconstruction. However,
this second step need more knowledge on the behavior of resected muscles.

10

5. References

References

Bijar A, Rohan PY, Perrier P, Payan Y. 2016. Atlas-based automatic generation of subject-
specific finite element tongue meshes. Annals of biomedical engineering. 44(1):16–34.

Borzacchiello D, Aguado JV, Chinesta F. 2019. Non-intrusive Sparse Subspace Learning for
Parametrized Problems. Archives of Computational Methods in Engineering. 26(2):303–326.
Available from: https://doi.org/10.1007/s11831-017-9241-4.

Chatterjee A. 2000. An introduction to the proper orthogonal decomposition. Current
science:808–817.

Chinesta F, Keunings R, Leygue A. 2013. The proper generalized decomposition for advanced
numerical simulations: a primer. Springer Science & Business Media.

Cueto E, Chinesta F. 2014. Real time simulation for computational surgery: a review.
Advanced Modeling and Simulation in Engineering Sciences. 1(1):11. Available from:
https://doi.org/10.1186/2213-7467-1-11.

Hermant N, Perrier P, Yohan P. 2017. Human tongue biomechanical modeling. in biomechanics
of living organs: Hyperelastic constitutive laws for finite element modeling. Elsevier.

Jéhannin-Ligier K, Dantony E, Bossard N, Molinié F, Defossez G, Daubisse-Marliac L, De-
lafosse P, Remontet L, Uhry Z. 2017. Projection de lincidence et de la mortalité par cancer en
france métropolitaine en 2017. Rapport technique Saint-Maurice: Santé publique France:1–
80.

Lauzeral N, Borzacchiello D, Kugler M, George D, Rmond Y, Hostettler A, Chinesta F. 2019. A
model order reduction approach to create patient-specific mechanical models of human liver
in computational medicine applications. Computer Methods and Programs in Biomedicine.
170:95–106.

Niroomandi S, Alfaro I, Cueto E, Chinesta F. 2012. Accounting for large deformations in real-
time simulations of soft tissues based on reduced-order models. Computer Methods and
Programs in Biomedicine. 105(1):1–12.

Sturgis EM, Cinciripini PM. 2007. Trends in head and neck cancer incidence in relation
to smoking prevalence: an emerging epidemic of human papillomavirus-associated can-
cers? Cancer: Interdisciplinary International Journal of the American Cancer Society.
110(7):1429–1435.

11

References

[1] S. Cresswell, “Locm: A tool for acquiring plan-
ning domain models from action traces”, ICKEPS

2009, 2009.
[2] R. E. Fikes and N. J. Nilsson, “Strips: A new ap-

proach to the application of theorem proving to
problem solving”, Artificial intelligence, vol. 2, no.
3-4, pp. 189–208, 1971.

[3] M. Ghallab, D. Nau, and P. Traverso, Automated

Planning: Theory and practice. Elsevier, 2004.
[4] Y. Gil, “Learning by experimentation: Incremen-

tal refinement of incomplete planning domains”,
in Machine Learning Proceedings 1994, Elsevier,
1994, pp. 87–95.

[5] E. M. Gold, “Language identification in the limit”,
Information and control, vol. 10, no. 5, pp. 447–474,
1967.

[6] J. Kučera and R. Barták, “Louga: Learning
planning operators using genetic algorithms”,
in Pacific Rim Knowledge Acquisition Workshop,
Springer, 2018, pp. 124–138.

[7] D. Long et al., Theory of Finite Automata: With an In-

troduction to Formal Languages. Prentice Hall, 1989.
[8] D. McDermott, M. Ghallab, A. Howe, C.

Knoblock, A. Ram, M. Veloso, D. Weld, and
D. Wilkins, Pddl-the planning domain definition

language, 1998.
[9] K. Mourão, L. Zettlemoyer, R. P. A. Petrick, and

M. Steedman, “Learning strips operators from
noisy and incomplete observations”, in Proceed-

ings of the Twenty-Eighth Conference on Uncertainty

in Artificial Intelligence, AUAI Press, 2012, pp. 614–
623.

[10] J. Oncina and P. Garcia, “Inferring regular lan-
guages in polynomial updated time”, in Pat-

tern recognition and image analysis: Selected papers

from the IVth Spanish Symposium, World Scientific,
1992, pp. 49–61.

[11] D. Pellier and H. Fiorino, “Pddl4j: A planning do-
main description library for java”, Journal of Ex-

perimental & Theoretical Artificial Intelligence, vol.
30, no. 1, pp. 143–176, 2018.

[12] C. J. V. Rijsbergen, Information Retrieval, 2nd.
Newton, MA, USA: Butterworth-Heinemann,
1979, ISBN: 0408709294.

[13] C. Rodrigues, P. Gérard, C. Rouveirol, and H. Sol-
dano, “Active learning of relational action mod-
els”, in International Conference on Inductive Logic

Programming, Springer, 2011, pp. 302–316.
[14] J. Á. Segura-Muros, R. Pérez, and J. Fernández-

Olivares, “Learning numerical action models
from noisy and partially observable states by
means of inductive rule learning techniques”,
KEPS 2018, p. 46, 2018.

[15] X. Wang, “Learning by observation and practice:
An incremental approach for planning operator
acquisition”, in Machine Learning Proceedings 1995,
Elsevier, 1995, pp. 549–557.

[16] Q. Yang, K. Wu, and Y. Jiang, “Learning ac-
tion models from plan examples using weighted
max-sat”, Artificial Intelligence, vol. 171, no. 2-3,
pp. 107–143, 2007.

[17] H. H. Zhuo, T. Nguyen, and S. Kambhampati,
“Refining incomplete planning domain models
through plan traces”, in Twenty-Third International

Joint Conference on Artificial Intelligence, 2013.

Towards automated test generation and fault tolerance analysis

for programmable logic controllers

Enzo Brignon

Supervised by: Laurence Pierre

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature: Brignon Enzo, 23/08/19

Abstract

PLC’s (Programmable Logic Controllers) are
widely used to control industrial processes. How-
ever testing such device’s program is tedious, and
suffers from human errors. The work presented
in this article aims at automatically generating test
benches, and performing fault analysis for such
systems.

1 Introduction

Industrial processes such as assembly lines or weigh-
ing/packing solutions for food industry are systems that have
to be controlled and monitored by an electronic device, or
collaborating networked electronic devices. Programmable
Logic Controllers (PLC’s) are such devices that are widely
used in industry, even in critical systems [gbc, 2015]. They
are connected to the plant, taking inputs from it and sending
actions to it. This interaction involves control and operations
to compute the actions (commands) to be sent to the plant in
reaction to given inputs. This is implemented as a PLC pro-
gram downloaded to the controller [uni, 2016].

Grafcet (that stands for “Graphe fonctionnel de commande
des étapes et transitions”) [IEC, 1999] is a graphical model
to represent PLC programs in a sequential and parallel way.
It has been standardised (IEC 60848) and derived into a PLC
programming language, namely Sequential Function Chart
or SFC (IEC 61131–3) [IEC, 2001]. It is widely used to
specify the behaviour of PLC programs, more precisely as
the control operated on the outputs in response to the inputs.
From such a specification, an implementation is (manually)
developed in one of the programming languages available
for PLCs. Thus mistakes can easily be introduced in the
implementation of the system, tests are mandatory to detect
such errors.
The goal of this work is, given a Grafcet specification, to
propose a solution for generating executable tests which will
allow automatic black box testing of PLC programs that
should implement the given specification. Here a test bench
will be a program running on a PLC, that is connected to

the PLC under test and which emulates the plant, sending
inputs to the tested PLC, and receiving its outputs. This
plant emulation enables to check that the reaction of the PLC
under test is as expected.
In addition, forbidden states and fault scenarios will be con-
sidered. Forbidden states are states of the system that shall
never occur during execution, for example harmful situation
such as a press is activated while an alarm is triggered.
Fault scenarios are scenarios in which faults are injected
and that are used to check the error handling capacity of the
system. Faults can be for example perturbations of inputs or
abnormal behaviour of a component of the system.

Our approach for the automatic test generation for PLC
software from a Grafcet specification is composed of sev-
eral phases. First the Grafcet specification is translated into
a Petri Net-style intermediate model which is more formal
than the Grafcet one. Then safety and reachability are struc-
tural properties that are checked on this Petri Net model to
ensure that the specification does not entail uncontrollable
behaviours during execution. Checking those properties per-
mits to get rid of ill-formed Grafcet models and to give feed-
back to designers for further corrections. If the Grafcet fulfils
safety and reachability properties, tests can be generated and
composed with forbidden state checking or fault scenarios. A
test is generated as a Grafcet model that can afterwards be
translated into PLC source code (e.g., Schneider Electric/Itris
Glips language, which is a textual view of Grafcet). Once
translated, the test program can be used in a PLC to test the
system. This process is detailed all along this document.

2 Grafcet

Grafcet is a graphical model used to specify the control pro-
gram as sequential and parallel compositions of behaviours.
In this section we briefly describe the elements that compose
a Grafcet model and their meaning. Figure 1 gives an exam-
ple of Grafcet model in which every construct is represented.
It is composed of the following elements:
(1) Steps (square boxes), that can be active or inactive. The

set of active steps represents the state of the system.
(2) Transitions, that are enabled when all their input steps are

active. A transition can be associated with a condition
(called receptivity e.g., C1 in Figure 1) that permits it to

Michael Perin

Michael Perin
[is a model of the plant available?]

Michael Perin

Michael Perin
[How ?]

be fired if enabled. The receptivity t1/X5 below step 5 is
true when a time t1 has elapsed since the last activation
of step 5 (denoted X5).

(3) Actions can be associated with a step. There are several
kinds of actions, the three main kinds are:
• Pulse rising edge actions, that are executed when

the corresponding step becomes active (action A2).
• Continuous actions that are executed while the cor-

responding step is active (action A3).
• Pulse falling edge actions, that are executed when

the corresponding step becomes inactive (action
A4).

(4) Parallel sequences divergence (double horizontal line
with a transition above), permits, from a step, to activate
several steps simultaneously. It is used to define parallel
sequences.

(5) Parallel sequences convergence (double horizontal line
with a transition below), permits to have synchronisa-
tion between several steps being simultaneously active.
It permits to define the end of parallel sequences.

(6) Alternative sequences selection (simple horizontal line
with several transitions below), permits to select a se-
quence among several ones, depending on the values of
the receptivities associated with the outgoing transitions.

(7) Alternative sequence convergence (simple horizontal line
with several transitions above), permits to make alterna-
tive sequence to converge on a single step.

1

2

3

4

5

C1

C2

C3

C4

t1/X5

A1
A2 A3 A4

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 1: Grafcet example

3 Overview of the approach

In this section we summarise the successive steps of our ap-
proach.

• The first phase is the transformation of the Grafcet
model into a more formal model, equipped with a for-
mal semantics. We have chosen a variant of the Petri
Net model [Peterson, 1977]. For the sake of brevity, this
transformation is not presented here.

• The second phase consists in verifying the well-

formedness of this specification i.e., the fact that it re-
spects some properties known as “safety” and “reacha-

bility”. To that goal, we have developed a specific algo-
rithm presented in Section 5.

• If this verification succeeds, generating test programs

is worthwhile. Section 6 presents the methodology that
has been developed to that goal. The test program
generates inputs for the program under test and checks
whether the outputs are correctly produced in response.

• In general, and in the PLC context in particular, this is
not sufficient. Indeed the specification of the PLC be-
haviour also often requires that the outputs (commands)
behaviour is as expected, while not traversing some “for-
bidden states”. For example, a control valve is opened
at the right instant, while not managing another valve
in the same interval. Thus, after producing the first raw
test program, we can improve it in such a way that it
also verifies that some given “forbidden states” are

not traversed. Finally, those test programs enable to
debug the PLC program in nominal situations.

• Another goal of this work is to offer the possibility to
analyse the system behaviour when faults occur (for ex-
ample, a sensor becomes out of order and delivers values
which are out of an expected range). Thus the final phase
consists in composing fault scenarios (also expressed as
Grafcets) with nominal tests to produce “faulty tests”.
Section 7 describes how such fault injection is per-
formed within test cases.

4 Related Work

Clearly, our objective is twofold: first, the verification that the
specification of the PLC software is well-formed (“safety”,
“reachability”), then the automatic generation of test pro-
grams for the forthcoming application that should obey this
specification.
There has been intensive work on the application of for-
mal methods to reason about PLC programs. Surprisingly
most of them are related to the use of model-checking tech-
niques to verify general properties. Some approaches take
as input the industrial implementation of standard program-
ming languages to target specific applications such as [Fer-
nández Adiego et al., 2015] which applies model-checking
methods on Siemens’s SFC and ST implementations to ver-
ify CTL/LTL properties using nuXmv model checker. Al-
ternatively, a more general approach consists in directly ad-
dressing the languages provided by the IEC 61131–3 stan-
dard. In [De Smet et al., 2000] and [Lampérière-Couffin and
Lesage, 2000] discrete models such as finite state machines
to verify LTL properties, in [L’Her et al., 1999] the authors
use timed automata intermediate model to check Timed CTL
formulas within Kronos model checker. In [Nellen et al.,
2015] and [Nellen and Ábrahám, 2012] the authors present
an approach to translate “Hybrid SFC” into hybrid automata
and perform state space exploration using SpaceEx space
explorer. Finally [Mertke and Frey, 2001] uses Signal In-
terpreted Petri Net specifications, and uses in-house model
checkers to verify EF and AG CTL properties.
To the best of our knowledge, only one significant work has
addressed the well-formedness of SFC specification, and few
attention has been paid to automatic test generation.

Michael Perin

4.1 Dedicated solution for “safety” and

“reachability” of SFC

Only [Huuck et al., 2003] addresses the well-formedness of
SFC specifications i.e., the satisfaction of the “safety” (no
token proliferation) and “reachability” (no transition that is
never firable) properties.

Classically their solution exploits model checking using
CaSMV model checker. In particular each step is associated
with one Boolean variable which is true if the step is cur-
rently active. Actions are not considered in this model be-
cause they do not play a significant role for the satisfaction
of these properties. The authors give a formalisation of these
two properties as temporal assertions that are meant to be ver-
ified within SMV. In order to limit the model size, they refor-
mulate the assertions without guards expressions. Roughly
speaking, safety amounts to verifying that there is always at
most one token in every step, and reachability means that each
converging transition (i.e., following a parallel convergence)
must be firable. An example demonstrates that this method
may miss some property violations in some case e.g. when the
token proliferation “hides” unreachability. The state space of
such approach is exponential in terms of the number of steps
of the system. In addition the complexity of verifying invari-
ant on such system is known to be PSPACE-complete.

4.2 Test generation

Here we focus on automatic test generation methods for PLC
software, namely written in SFC language. Mainly Provost et
al. address this issue, the goal is to generate input sequences
for conformance testing.

Indeed in [Provost et al., 2009], the authors give an ap-
proach to extract input test sequences from Mealy machines
generated from SFC models. Targeted applications are SFC
programs with only Boolean input/output variables, and with-
out time dependent elements and pulse actions.
Roughly speaking, their method is composed of 4 steps. First,
a Reachable Situation Automaton (RSA) is generated from
the SFC specification. The second phase is the transforma-
tion of the RSA into a Mealy machine, performed by making
the self loop explicit and letting the outputs be on the tran-
sitions. Extracting the minimum length input test sequence
amounts to finding a minimum length closed walk that tra-
verses each edge of the graph. To that goal they compute the
minimum length Eulerian cycle. The third step is thus, if the
graph is not Eulerian, to transform it into an Eulerian one by
doubling some transitions. The final step is the generation of
the input sequence from the resulting minimum length Eule-
rian cycle.
A test sequence is a list of pairs (input, output) that is, the se-
ries of input that is given to the PLC program and the expected
resulting output. Performing such a test permits to detect two
types of errors: transfer and output errors. A transfer error is
an error in the step activity update (i.e., the next state is not
as expected). An output error is an error in the performed ac-
tion. To detect transfer errors, a distinguishing sequence may
have to be generated to determine, given two states with the
same output, which one is active.

An extension of this work is presented in [Provost et al.,
2014], in which the method is adapted to Single Input Change

(SIC) testing. SIC testing can be used to model that simulta-
neous external events never occur.

In these solutions input sequences are classically generated
from a finite state machine model. Since the model that is
originally used is a Moore-style machine, this prevents from
considering special actions such as pulse actions. Moreover
if parallel behaviours have to be processed by building the
product machine, this may lead to a huge state space size.
Note also that the authors do not take into account timing
constraints. In contrast, our solution supports parallel con-
structs. We also take into consideration all kinds of actions as
well as timing constraints.

4.3 Test generation from fault models

Fault injection can be classified into three different ap-
proaches: Hardware implemented FI (HWIFI), model imple-
mented FI (MIFI), and Software implemented FI (SWIFI).
HWIFI is performed by physically providing perturbations
to the system under test by inserting errors at pin level us-
ing for example electromagnetic interference or laser. MIFI
corresponds to fault injection within the model under test for
example by modifying the hardware description of the com-
ponent to insert co-called “saboteurs”. The approach that will
be addressed here is based on software implemented testing,
thus we will focus on this kind of FI. SWIFI is based on the
insertion of fault code into different architectural levels of
embedded systems. It can be implemented through mutants
used on the system under test, or modification of test cases
that inserts deviations that lead to fault. Different fault mod-
els exist, in [Avizienis et al., 2004] a classification of fault
models is given using several criteria such as: phenomeno-
logical cause, that is whether the fault is caused by natural
phenomena or by human actions. The dimension criterion
differentiates hardware and software faults. Moreover a fault
can be either permanent or transient, which means that it oc-
curs and remains permanent, or occurs only at certain time,
this is the persistence criterion.

Few results have been presented regarding fault injection
for PLC software, one of the groups which are particularly ac-
tive is the Institute Of Automation and Information systems
at the technical university of Munich. For example in the
SWIFI context of [Rösch and Vogel-Heuser, 2017], they de-
fine a methodology for the automatic generation of test cases
from fault models. Using the information of the fault model
(associated with a Fault Injection Operator) and of the state
in which fault injection should start, the method generates a
test case that tests a specific fault scenario. The perturbations
can be classified as follows: An unexpected state change or
interval violation when the value of a variable is not as ex-
pected, or a state change block (resp. force) occurs when an
event occurs too late (resp. too early). A test engine drives
the test execution: it waits for the state in which fault injec-
tion should start, activates the fault from the plant and waits
for the controller reaction.

In [Rösch et al., 2014] the authors propose an approach
to generate test cases with deviation from timing sequence
diagram (TSD) using FMEA (Failure Mode and Effect Anal-
ysis) analysis. The generated test sequence first checks that a
pre-condition is fulfilled before applying the deviation of the

test case. If the expected post-condition is true, then the test
verdict is pass. The paths that corresponds to pre and post-
conditions are extracted from the system specification (in IEC
61131–3 language).

In these solutions faults are defined as being either a change
in the timing of the event occurring or an unexpected state
change or absence of change. Checking the fault tolerance is
performed by waiting for an expected reaction for the former
one and the non-violation of a post condition for the latter.
For both works, the fault is injected as soon as a precondi-
tion is fulfilled. Similarly in our solution the fault model is a
permanent fault injected as soon as a precondition is fulfilled.
However the verdict is a combination of different factors tak-
ing into account whether the test has passed or not, and the
occurrence of a countermeasure. In addition, faulty scenarios
can be composed with forbidden state detection.

5 Safety and reachability

5.1 Properties

The standardisation document [IEC, 2001] states that the evo-
lution rules given to the SFC language cannot prevent the for-
mulation of “unsafe” and “unreachable” SFCs. The defini-
tions of “unsafety” and “unreachability” are as follows:

• An unsafe SFC is an SFC in which there is an uncon-
trolled proliferation of tokens. An example of such SFC
is given by Figure 2a. This is due to the fact that there is
no proper synchronisation between the two parallel se-
quences that start at S2 and S3. If there is a token in S3
and if t3 evaluates to true, the token will flow out the par-
allel construct and it can proliferate thanks to the loop to
S1.

• An unreachable SFC is an SFC in which an execution
may lead to deadlock. An example of such SFC is given
by Figure 2b. It is clear that if receptivities t2 and t3
are mutually exclusive, the execution of this SFC may
inevitably result into a deadlock. When S2 and S3 are
active, if t2 evaluates to true, then S4 becomes active and
t4 can be fired. However S7 will no become active and
t6 can never be fired. Symmetrically, if t3 is evaluated
to true, then S5 becomes active (but not S4) and t4 can
never be fired.

The two following definitions are used in [Huuck et al.,
2003]:
Definition 5.1 (Simple SFC). A Simple SFC is a triple S =
(S,s0,T) with:

• S is the set of steps,
• s0 is the initial step,
• T ⇢ (2S \{ /0})⇥G⇥ (2S \{ /0}) is the set of transitions,

each transition labeled with a guard g from a set G of
transition conditions.

Here (Ss,g,St) 2 T denotes a transition with Ss the set of
source steps and St the set of target steps.
Definition 5.2 (Safe SFC). A SFC is safe if and only if

1. for all possible executions there is at most one token in
a step,

S1

S2 S3

S4 S5

S7

S6

t1

t2 t3

t4

t5

t6

t7

(a) “Unsafe” SFC

S1

S2 S3

S4 S5

S7

S6

t1

t2 t3

t4

t5

t6

(b) “Unreachable” SFC

Figure 2: Ill formed SFC examples from the standard

2. for any converging transition, there exists an execution
such that the transition can be taken.

On this basis, the authors also define three “major viola-
tions” with respect to the structure of the SFC:
(1) The presence of a jump between different parallel se-

quences without synchronisation.
(2) The presence of a jump out of parallel branch.
(3) The presence of a synchronisation between multiple

branches of an alternative divergence.

The purpose of [Huuck et al., 2003] work is to use model
checking techniques to verify whether SFCs are safe and
reachable. To that goal, they formalise the problem of the
evolution of the state of synchronous system, as explained in
Section 4.1.

We can remark that rules (1) to (3) involve parallel
branches and synchronisation. Thus we propose a struc-

ture based solution that detects the corresponding misuses of
these constructs. The rough idea is to “colour” the branches
of the graph in order to detect “incompatibilities” between
“colours”.

5.2 Algorithm

Let us first define this “colour” encoding. A “colour” is in fact
a bit-vector, “black” is the vector in which every bit equals 1.

The algorithm will propagate “colours” in the graph in or-
der to verify that
(P1) All incoming branches of a selection convergence have

the same “colour”
(P2) All incoming branches of a parallel convergence have

“compatible colours”
(P3) Any loop to an already visited step propagates the same

colour.

1

2 3

C1

C1 C1

. . .

(a) Selection Divergence

1 2

j

. . .

C1 C01

C1
Test 1:
C1 and C01
should be equal

(b) Selection Convergence

1 2

j

. . .

C1 C2

Cj Cj =C1 | C2 | . . .

Test 2:
We should have
8Ci,Cj 2 incoming colours,Ci & Cj = 0

(c) Parallel Convergence

1

2 3

n

. . .

C1

C2 C3

1 1 0 1 0 1 0 1

k 1’s

1 1 0 1 0 0 0 0

k/n 1’s

0 0 0 0 0 1 0 1

k/n 1’s

C1

C2 C3

(d) Parallel Divergence

Figure 3: Colour propagation in Grafcet

More precisely the following rules are applied to the
Grafcet and its different constructions (these rules are rep-
resented by Figure 3):

1. First the initial step is coloured in black,
2. Then we repeat the following steps until the Grafcet is

fully coloured:
(a) For a transition having one coloured transition

above it, its outgoing step takes the colour of its
incoming step

(b) On a selection divergence having its incoming step
of colour C1, every outgoing step takes colour C1
(Figure 3a).

(c) On a selection convergence, provided that all in-
coming colours are identical, the outgoing step
takes this colour (Figure 3b).

(d) On a parallel divergence with incoming colour C1,
C1 is divided into as many colours as the number
of outgoing steps and each outgoing step takes one
of these new colours (Figure 3d). “Dividing” a
colour into n new colours corresponds to distribut-
ing the 1’s of the bit-vector to n new bit-vectors
while keeping their positions.

(e) On a parallel convergence, provided that all incom-
ing colours are “compatible” (the bit-wise AND of
the bit-vectors returns 0), the outgoing step takes
the bit-wise OR of the incoming colours (Fig-
ure 3c).

This algorithm corresponds to function
Colour_Grafcet in Algorithm 1, its parameters V
and s are the set of vertices and the initial vertex respectively.
It is not applied directly on the Grafcet model but on a
simpler view of the graph (called NDC graph) that has three
types of vertices:
N nodes that are “normal” nodes, they correspond to steps of

the initial Grafcet model.

D nodes that are “parallel divergence” nodes, they corre-
spond to transitions associated with parallel sequence
divergences.

C nodes that are “parallel convergence” nodes, they corre-
spond to transitions associated with parallel sequence
convergences.

Every vertex has a colour, a parent node, and a list of child
nodes. The Colour_Grafcet function uses functions
Process_par_conv and Next_colours (not given
here). The Process_par_conv function is used for a
parallel sequences convergence, it computes the bit-wise OR
after having checked whether there is a violation or not.
The Next_colours function computes the “division” of
a colour into a vector of new colours in the case of a paral-
lel sequences divergence. Colour_Grafcet initialises the
colour of the source vertex to black and enqueues this ver-
tex. While the queue is not empty, it dequeues one vertex and
tries to propagate colours according to the rules given above.
Every new coloured vertex is en-queued.

The number of bits needed to colour the NDC graph is
computed on this graph by performing a depth first search.
When backtracking, the algorithm computes the number of
bits needed to encode the colour of each node. This value is
computed as follows depending on the type of the node:
N node The computed value is the maximum between the

values carried out by the successors of the current node
and 1. If the current node does not have any successor,
its value is 1.

D node The computed value is the sum of the values of the
successors of the current node.

C node The computed value is the value of the successor of
the current node (it can have only one successor). In
addition, the value that will be carried out to each of
its predecessors (i.e., the value that its predecessors will
use to compute their values) is computed, in such a way

function Colour_Grafcet(s, V):

Input : Vertex set: V ,
Initial vertex: s

Returns: 0 if there is no error, 1, 2, or 3 if there is one (this number is the
violation number).

begin

foreach v 2V \{s} do v.colour “0 . . . 0”;
s.colour “1 . . . 1”;
Enqueue(s,Q);
while Q 6=? do

current Dequeue(Q);
if D_node(current) then

expected_colours Next_colours(current.colour,current.weights);
for i 2 [1,current.nbchildren] do

child current.child[i];
if (child.colour = 0)^ (child.colour 6= expected_colours[i]) then

exit(error);

child.colour expect_colours[i];
child.nbparents��;
if child.nbparents = 0 then Enqueue(child,Q);

else if C_node(current) then

current.colour process_par_conv(current);
if child.colour 6= 0 then exit(error);
child current.child[1];
if (child.colour 6= 0)^ (child.colour 6= expected_colours[i]) then

exit(error);

child.colour current.colour;
child.nbparents��;
if child.nbparents = 0 then Enqueue(child,Q);

else // N node

for i 2 [1,current.nbchildren] do

child current.child[i];
if C_node(child) then

child.nbparents��;
if child.nbparents = 0 then Enqueue(child,Q);

else

if (child.colour 6= 0)^ (child.colour 6= expected_colours[i]) then

exit(error);

child.colour current.colour;
child.nbparents��;
if child.nbparents = 0 then Enqueue(child,Q);

exit(0);

Algorithm 1: Colouring algorithm

that the sum of the values carried out to all the predeces-
sors is equal to the current number of needed bits. This
means that the number of bits required by a C node is
divided into as many new values as the number of its
predecessors.

5.3 Examples

In this section we illustrate the algorithm on the examples
given in Figure 2. The two examples will be coloured the
same way however the final test will differ, for Figure 2a, the
convergence of steps S6 and S7 is a alternative sequence con-
vergence, thus the test that will be performed is a comparison
of the two carried colours to know whether they are equal or
not. For Figure 2b the convergence is a parallel sequences
convergence that implies to check whether the pairwise bit-
wise and of all the incoming colour is equal to zero or not.

Propagating color

Computing the number of bits needed to colour all the steps
of the graph returns 3. Thus the first step of the algorithm is
to colour the initial step S1 in black i.e. the vector 111. Then
the colours are propagated as follows:

• Dispatch the bits of S1.colour to the two steps S2 and S3,
S2.colour = 100 and S3.colour = 011.

• Propagate the colour of S3 to its two successors S4 and
S5.

• Propagate the colour of S5 to step S7.
• Check whether colours of steps S2 and S4 are compatible

i.e. the bit-wise and is equal to 0 (100 & 011 = 0) and
mix them to generate colour of step S6.

Table 1 gives the colours associated with each steps of the
Grafcet.

S1 S2 S3 S4 S5 S6 S7
111 100 011 011 011 111 011

Table 1: Colours given to steps of Grafcet Figure 2a

Unsafety checking

Checking the unsafety of the Grafcet Figure 2a corresponds to
checking whether colours of S6 and S7 are equal (111 6= 011)
and detect that there is a violation, namely unsafety.

Unreachability checking

Checking the unreachability of the Grafcet Figure 2b corre-
sponds to checking that colours of S6 and S7 are compatible
(111 & 011= 011) and detect that there is a violation, namely
unreachability.

6 Test generation and forbidden states

If the Grafcet specification is well-formed, test generation
can be performed. In this section we first define our char-
acterisation of test cases and the algorithm to generate them.
It is illustrated on the example of Figure 4a that models the
control program of a weighing-mixing machine [IEC, 1999]:
two products are poured in a weighing unit (the two parallel
branches), mixed, and the weighing unit is emptied.

6.1 Test generation

Test cases are defined using Grafcet, that is the same model
as the one which is used to specify the program under test.
A test case is designed in such a way that it can be composed
with the model under test in order to send it inputs and receive
its outputs. The rough idea is as follows:

• For each step S of the program specification that can be
activated when a condition c holds, the test program will
include a step associated with an action that produces
outputs (inputs to the program under test) such that c is
fulfilled. For example, on Figure 4 step C1 is associ-
ated with an action that triggers the firing of transition
labelled CS · z ·S0.

• To check that each action A associated with S is correctly
performed in response to those inputs, the test program
includes a transition the receptivity of which includes a
condition that checks the outcome of A. For example
if A is x value then the condition will be x = value.
On Figure 4 the action associated with step 11 (which
is MR) is awaited in the test sequence by the transition
labelled MR.

The goal of generated test sequence is to guide the execution
of the system under test in a way that it fires all its transi-
tions. If it is not possible within a single test case to have a
complete transition coverage, several test cases are generated.
The union of the covered transitions of all the generated test
cases is the set of transitions of the tested model.

1

2

3

4

5

6

7

8

10

11

12

13

VA

VB

VC

BM

BM

BM

MR

TM+

TM-

MR

CS · z ·S0

a

b

z

T D

T D

T D

1

S1

S0

t1/X11

(a) Grafcet model of the
weighing-mixing machine

C1

C2

C3

C4

C5

C6

C7

C8

Pass

CS

a

b

z

S1

S0

z S0

T D

T D

T D

VA^BM

V B^BM

VC^BM

1

MR

T M�

t1/XC6^T M+^MR

Fire transition
labelled CS · z ·S0

Wait for actions
VA and BM to occur
Fire transitions
labelled a and T D
Wait for actions
V B and BM to occur
Fire transitions
labelled b and T D
Wait for actions
VC and BM to occur
Fire transitions
labelled z and T D

Wait for action
MR to occur

Wait for actions
MR and T M+ to occur
after t1 time
since activation of C6
Fire transitions
labelled S1

Wait for action
T M� to occur
Fire transitions
labelled S0

(b) Corresponding test case

Figure 4: A Grafcet model and its corresponding test case

6.2 Algorithm

In this section we present the two main functions of the test
generation algorithm: Next_Firable and Gen_Test.

First the algorithm does not reason on the structure of the
Grafcet, instead it uses the interpretation of its behaviour.
More precisely it considers the evolution semantics of the
Petri Net model produced from the Grafcet. This semantics
enables to characterise the PN state evolution, the state is de-
fined as the set of the active places.
From this Petri Net model we generate a “next” function that
expresses, for each place, the condition under which it will
become active. Since we also consider actions, an “output”
function enables to compute the value of each output in the
next cycle.

The main function of the test generation algorithm
is Gen_Test presented in Algorithm 3. It mainly uses func-
tion Next_Firable given in Algorithm 2.

This function Next_Firable is used to get the list of
the possible next states. It takes as parameter a valuation of
“next” function st, the “next” function and the list of steps.

It returns a list of tuples (valuation of “next” function, con-
dition, timer). Each valuation of the “next” function repre-
sents the next state, condition is the condition under which
this next state is reached, and timer is the (shortest) timer as-
sociated with the transition(s). First Next_Firable gets
the set of reachable steps E, and the associated condition. If
there is only one future state in E, this future is returned. Oth-
erwise (we are inside parallel branches), the algorithm checks
whether the parallel branches can evolve simultaneously. To
that goal it generates the conjunction of all the conditions as-
sociated with these next states Con j and checks the satisfia-
bility of this conjunction using the z3 tool [Microsoft, 2019].
As explained earlier, depending on this satisfiability, one or
several tests are generated. To that goal, the set of reachable
states is split according to the clauses of the “unsat core”.
This uses function build_condition_with. The pa-
rameters of this function are a Boolean formula x and a list
of Boolean formulae u. It builds the conjunction of the all
negated elements of u except the formula x which is kept in
positive form.

In order to exclude timers from conditions in the generated
test program, function build_cond_transition takes
as parameters a timer c and a list of pairs (step, condition)
E and it returns a condition that is the conjunction of all the
conditions contained in E after removing the clause c in each
element of E.

The algorithm is defined by the function Gen_Test (Al-
gorithm 3). It takes as parameters the function “next” and
the function “output” as well as the initial valuation of the
“next” function, an accumulator (that is a Grafcet step), the
set of steps and the set of output variables. The function
Call_Rec is used to call recursively Gen_Test on each
of the possible reachable states given by the former call to
Gen_Test. From the initial valuation of the “next” func-
tion, the algorithm computes recursively the possible futures
using Next_Firable. Using the information given by
Next_Firable, a new step and an action are generated,
the action is meant to satisfy the condition, and it is associ-
ated with the generated step. The “output” function is called
to get the output that the program under test should return. It
is transformed into a condition Cond to label the transition of
the test program. If a timer t is returned by Next_Firable,
no action is generated, a timing condition is added on the
transition instead. If several future situations are computed,
function Call_Rec is used to call recursively Gen_Test

on each of the generated scenarios.

6.3 Decision about failure

As such, the test program can only check whether the output
reactions are as expected. If one of those conditions never oc-
cur, the program will remain stuck at one of these steps. It is
of utmost importance to get a relevant information about the
failure reason. Therefore it is necessary to complete this spec-
ification with exit branches upon failure such that a specific
error code is returned.

This is achieved using timeouts that will trigger if the ex-
pected reaction is not seen within a given period. An alter-
native sequence selection is inserted before each transition
of the generated test sequence to add a transition that will

Michael Perin

Michael Perin
[The test coverage criterion should be given before, eg. in the introdution]

function Next_Firable(st, Next, S):

Input : Next valuation: st // The current valuation of Next

function

Input : Function: Next // The next function

Input : Step set: S
Output: List of tuple (valuation, condition, timer)
begin

E /0;
foreach si 2 S do

// Simplification of the formula’s AST knowing state

st

A reduce(AST (Next(si)),st);
/* A contains the condition that has to be satisfied

for si to be active in the next cycle */

if A 6=? then E E [(si,A) ;

if Card(E) = 1 then

st 0
S

si2S{(si,c)|c = si 2 E|c};
condition cond(head(E));
t f irst_timer(E);
result List((st 0,condition, t));
return result;

else // Multiple steps are active or we are on a selection

divergence

t f irst_timer(E);
if t 6= Null then Con j build_cond_transition(t,E);
else Con j

V
e2E cond(E);

if SAT (Con j) then // If the conditions are compatible

st 0
S

si2S{(si,c)|c = si 2 E|c};
condition Con j;
result List(sr0,condition, t);
return result;

else

u unsat_core(Con j);
Con j0 remove(u,Con j);
/* Generate a transition for each clause of u */

result [];
foreach x 2 u do

condition Cond0 ^build_condition_with(x,u);
st 0 List(si,reduce(ai,SAT _instance(condition)));
result append((st 0,C, t),L);

return result;

Algorithm 2: Next_Firable function

be fired if the expected reaction is not seen before a time-
out (e.g., for transition labelled VA ^ BM after step C1 in
Figure 4b, an alternative transition labelled with condition
timeout/XC1^VA^BM will be added).

6.4 Forbidden states

In addition to checking that the model passes the test, it is
often mandatory to check whether forbidden states have been
encountered or not. In this section we define and explain how
the occurrence of forbidden states is checked.

The principle is to continuously check if the forbidden state
has been encountered until the end of the test sequence is
reached. To that goal, as shown on Figure 5 the test sequence
will be composed concurrently with forbidden state check-
ing. A Boolean variable Frb is initialised to false and is set to
true if the forbidden state has been encountered. A variable
named TestEnded becomes true whenever the test sequence
reaches its final state. In that case forbidden state checking
should stop.

Figure 5 shows the Grafcet model of a test sequence (hid-
den by the cloud) composed with a component that checks the
occurrence of a forbidden state, pictured here by the Boolean
formula T M+^ BM. The Grafcet component that is used to
check if a forbidden state represented as a Boolean formula
C has been encountered is composed of the three steps “E0”,

function Gen_Test(next,out put,v0,acc,S,O):
Input : Function: next
Input : Function: out put
Input : Next valuation: v0
Input : Grafcet node: acc
Input : Step set: S
Input : Output variable set: O
Output: A list of test cases (Grafcet)
begin

/* If a state (i.e. a set of step) has already been

visited, then we end the test generation */

if v0 2 Already_Visited_ terminal_step(v0) then

return concat(acc,box(?,?));
else // Otherwise we generate a new test step

Already_Visited Already_Visited[si ; // We mark the state as

being visited

L Next_Firable(v0,next,s) ; // We get the list of

possible next states

Lacc ();
foreach l 2 L do // For each possible next states

/* We generate the input and output corresponding to

the transition to this next state */

I_generated SAT _instance(cond(l));
out put

S
o2O out put(o, I_generated,v0);

Cond trans f orm_into_condition(out put);
// If there is a timer, we generate a suitable

condition

if timer_cond(l) 6= Null then

Cond Cond^ f ind(step(timer_cond(l)),acc);

Lacc
concat(acc,(box(string(v0), I_generatrd), transition(con f)),Lacc);

/* For each generated tests steps, iterate on the next

states */

Call_Rec(next,out put,L,Lacc,S,O);

function Call_Rec(next,out put,L,A,S,O):
Input : Function: next
Input : Function: out put
Input : Next valuation list: L
Input : Grafcet node list: A
Input : Step set: S
Input : Output variable set: O
Output: A list of test cases (Grafcet)
begin

if L = () then

()
else

concat(Gen_Test(next,out put,head(L),head(L),S,O),
Call_Rec(next,out put, tail(L), tail(A),S,O));

Algorithm 3: Gen_Test and Call_Rec functions

“E1” and “E2”. The variable Frb is set to false on the step
“E0” and set to true on step “E1”. Once step “E0” has been
activated, either the forbidden state is encountered (condition
C = T M +^ BM here) or the test sequence ends and Frb
remains false. This latter case corresponds to an execution
where the forbidden state is not observed before the end of
the test sequence. If the condition C evaluates to true before
TestEnded is set to true, the transition from “E0” to “E1” is
fired and then the step “E1” becomes active. Thus the value
true is assigned to variable Frb letting the test case know that
the forbidden state has been encountered. Then the transition
from “E1” to “E2” is fired. At the end, when the step “E2” is
active, either the test case is finished before seeing the forbid-
den state and the variable Frb is false, or the forbidden state
has been encountered and the value of Frb. In both cases
the value of Frb says whether the forbidden state has been
seen or not. On the other hand Ok is true when the test se-
quence terminates successfully, false otherwise. At the end
of the parallel composition of the test case and the forbidden
state detection component, an alternative sequence selection

In

C1 E0

E1

E2
Pass1Fail1

End

GlobalEnd

Pass Fail

CS

TestEnded 0

Frb 0

Frb 1

Ok 1

TestEnded 1

Ok 0

z S0

1

1 1

1

1

TestEnded T M+^ BM

Ok^Frb Ok_Frb

Figure 5: Test case with forbidden states

is added to give the final verdict: the test is pass if Ok is true
and Frb is false, otherwise it is fail.

The construction of this parallel composition has been au-
tomated on the principles presented above, both when the for-
bidden state is a Boolean condition and when it is a more
complex Grafcet.

7 Fault injection

In addition to test case generation and forbidden state detec-
tion, fault injection can be performed by composing a gener-
ated test case Grafcet model and fault injection Grafcet com-
ponent in a similar way than for forbidden state detection.

7.1 Principle

The fault model covers external and permanent faults, i.e.,
faults that come from outside the system boundary and that
propagate errors in the system. Permanent faults means that
they remain “active” as soon as they are injected.

Thus fault injection is defined as the perturbation of an in-
put or an output of the system that occurs when a given event
is observed. Such an event can be characterised either us-
ing a Boolean formula over the input/output variables of the
system, or a sequence of inputs/outputs of the system. It cor-
responds to a precondition C that has to be observed before
injecting the fault. The fault itself corresponds to an action A
executed after seeing C being true.

Two kinds of analyses can be performed, either correc-
tion analysis or detection. Correction is tested by check-
ing whether the system’s behaviour is still as expected af-
ter the fault has been injected. Detection is checked by test-
ing whether a detection mechanism has been executed or not.

These two types of analyses are specified by different Grafcet
components, with few differences.

Figure 6 gives the general form of detection analysis fault
injection component composed with a test case sequence.
The Boolean formula D corresponds to the observation of
the detection mechanism. It is true whenever this mechanism
is observed. Similarly to forbidden state detection analysis,
variable TestEnded is used to determine that the end of the
test sequence has been reached. It is used to bypass the fault
injection component if the precondition C for injecting fault
is not fulfilled before the end of the test. In addition vari-
ables In j and Detected are introduced. In j indicates that the
fault has been injected, i.e., that the action A has been exe-
cuted after meeting precondition C. Detected indicates that
the fault has been detected by the system under test, which
means that the Boolean formula D has been evaluated to true
after fault injection. If the fault has not been detected by the
system under test within a time interval t after action A has
been executed (i.e., after that step E1 has been activated) then
transition labelled t/XE1^D is fired and the fault injection
process is aborted without observing fault detection. t/XE1
is a Boolean variable that becomes true after a duration t from
the last activation of step E1.

We can notice that it is possible to compose a test case
both with some forbidden state detection components and a
fault injection component. That permits to have an even more
elaborated verdict.

7.2 Verdict

In this section we explain how a verdict is given in terms of
the variables set by the test case.

For correction checking we have two variables of inter-
est: In j and Ok. For detection those two variable as well
as Detected are used to determine the verdict.

To give the verdict at the end of the test sequence, a Grafcet
snippet has to be inserted after the last step of the sequence.
This snippet is an alternative sequences selection that leads to
steps corresponding to verdicts through transition labelled by
the condition checking the verdict. On Figure 6 we have this
alternative sequence selection after step “GlobalEnd”. The
possible verdicts are as follows:
PASStest SAFE The test has passed and the fault has been

injected and detected.
PASStest Unchecked The test has passed but the fault has

not been injected.
PASStest UNSAFE The test has passed but the fault has

been injected and not detected.
OnlySAFE The test has failed but the fault has been injected

and detected.
FAILtest Unckecked The test has failed but and the fault

has not been injected.
FAILtest UNSAFE The test has failed and the fault has been

injected but not detected.
The construction of this parallel composition has been au-

tomated on the principles presented above, and few experi-
ments have been performed, in particular on the example of
Figure 4a.

In

E0

E1

E2

E3

Pass1Fail1

End

GlobalEnd

PASStest

SAFE

PASStest

Unckecked

PASStest

UNSAFE
OnlySAFE

FAILtest

Unchecked

FAILtest

UNSAFE

TestEnded 0

Ok 1

TestEnded 1

Detected 1

In j 0 Detected 0

A In j 1

Ok 0

1

1 1

1

1

Ok^ In j^Detected Ok^ In j Ok^ In j^Detected Ok^ In j^Detected Ok^ In j Ok^ In j^Detected

TestEnded C

D t/XE1^D

Figure 6: Test case with fault injection

8 Conclusion

Our purpose in this work is the automatic test generation for
PLC programs from their Grafcet specification. Prior to pro-
ducing the test program, we verify the well formedness of the
specification. To that purpose, we have developed an original
structure based method which has a better complexity than
model-checking-based methods. Indeed this algorithm has a
linear complexity: it processes (i.e., colours) each node only
once, and each transition is traversed only once. Note that it
can be assimilated to a breadth first search algorithm since ev-
ery node that still has to propagate its color is enqueued. The
complexity of breadth first search as well as depth first search
algorithms is O(V +E) where V is the number of vertices and
E is the number of edges.

Test generation itself is made of several phases: the gen-
eration of raw test cases from the program specification, im-
provement of these test cases with explicit failure detection
and error code emission, and the detection of forbidden states
traversal. The generated test program is specified as a Grafcet
that sends inputs to the system under test and receives its out-
puts in order to check that they behave as expected. Test cases
are generated with coverage in mind, each transition of the
system under test is fired at least once. This test generation
solution has been specified and implemented, some experi-
ments have demonstrated the applicability of this approach.

Moreover test case generation has been enhanced by
adding support for fault tolerance analysis by defining a
method for composition of test cases and fault injection com-

ponents. These components are generated from a Boolean
formula C which is the precondition to fulfil before inject-
ing the fault which is represented by an action A (also given
as parameter). Fault tolerance analysis is performed either
by checking whether the system under test’s behaviour cor-
responds to the expected one or by verifying that a detection
mechanism (represented by a Boolean formula D) has been
triggered. The automatic generation of such a component has
been implemented. We have also investigated (but not yet
implemented) the specification of this fault injection process
when C and D are Grafcet components instead of Boolean
formulas. A definition of the verdict of the fault tolerance
analysis is given, several levels of gravity are translated by a
rich set of verdicts. The automatic generation of the Grafcet
component that gives the verdict at the end of the test case
execution has also been specified and implemented.

Ongoing work includes enhancing the implementation and
performing more experiments. Future work is related to
the improvement of the specification of C and D when they
should be more complex Grafcet components: the goal is to
give the possibility to specify those behaviours as regular ex-
pressions, automatically translated into Grafcet specifications
given as inputs to the fault tolerance Grafcet construction al-
gorithm.

References

[Avizienis et al., 2004] Algirdas Avizienis, J.-C Laprie,
Brian Randell, and Carl Landwehr. Basic concepts and

taxonomy of dependable and secure computing. Depend-
able and Secure Computing, IEEE Transactions on, 1:11 –
33, 02 2004.

[De Smet et al., 2000] Olivier De Smet, S Couffin, O Rossi,
Géraud Canet, Jean-Jacques Lesage, H Papini, Chaire
De Fabrications, and Ecole Normale Suprieure. Safe pro-
gramming of plc using formal verification methods. 11
2000.

[Fernández Adiego et al., 2015] B. Fernández Adiego,
D. Darvas, E. B. Viñuela, J. Tournier, S. Bliudze, J. O.
Blech, and V. M. González Suárez. Applying model
checking to industrial-sized plc programs. IEEE Trans-
actions on Industrial Informatics, 11(6):1400–1410, Dec
2015.

[gbc, 2015] The World of PLCs is Closer than You
Think: PLC Applications in our Everyday Lives.
https://www.gbctechtraining.com/blog/

PLC-Applications-in-our-Everyday-lives,
2015.

[Huuck et al., 2003] Ralf Huuck, Ben Lukoschus, and
Nanette Bauer. A model-checking approach to safe sfcs.
In IMACS Multiconference on Computational Engineering
in Systems Applications, 08 2003.

[IEC, 1999] IEC. IEC 60848 Ed.2 Specification language
GRAFCET for sequential function charts, 1999.

[IEC, 2001] Programmable Controllers - Programming Lan-
guage, IEC 61131-3, Final Draft. Technical report, Inter-
national Electrotechnical Commission, 2001.

[Lampérière-Couffin and Lesage, 2000] S. Lampérière-
Couffin and J.-J. Lesage. Formal Verification of the
Sequential Part of PLC Programs, pages 247–254.
Springer US, Boston, MA, 2000.

[L’Her et al., 1999] Dominique L’Her, Philippe Le Parc, and
Lionel Marcé. Proving sequential function chart programs
using automata. In Jean-Marc Champarnaud, Djelloul
Ziadi, and Denis Maurel, editors, Automata Implementa-
tion, pages 149–163, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[Mertke and Frey, 2001] T. Mertke and G. Frey. Formal ver-
ification of plc programs generated from signal interpreted
petri nets. In 2001 IEEE International Conference on Sys-
tems, Man and Cybernetics. e-Systems and e-Man for Cy-
bernetics in Cyberspace (Cat.No.01CH37236), volume 4,
pages 2700–2705 vol.4, Oct 2001.

[Microsoft, 2019] Microsoft. Z3 Theorem Prover. https:
//rise4fun.com/Z3/tutorial/guide, 2019.

[Nellen and Ábrahám, 2012] Johanna Nellen and Erika
Ábrahám. Hybrid sequential function charts. In MBMV,
2012.

[Nellen et al., 2015] Johanna Nellen, Erika Ábrahám, and
Benedikt Wolters. A cegar tool for the reachability analy-
sis of plc-controlled plants using hybrid automata. 346:55–
78, 01 2015.

[Peterson, 1977] James L. Peterson. Petri nets. ACM Com-
put. Surv., 9(3):223–252, September 1977.

[Provost et al., 2009] J. Provost, J.-M. Roussel, and J.-M.
Faure. Test sequence construction from sfc specification*.
IFAC Proceedings Volumes, 42(5):299 – 304, 2009. 2nd
IFAC Workshop on Dependable Control of Discrete Sys-
tems.

[Provost et al., 2014] Julien Provost, Jean-Marc Roussel,
and Jean-Marc Faure. Generation of Single Input Change
Test Sequences for Conformance Test of Programmable
Logic Controllers. IEEE Transactions on Industrial Infor-
matics, page 1, April 2014.

[Rösch and Vogel-Heuser, 2017] Susanne Rösch and Birgit
Vogel-Heuser. A light-weight fault injection approach to
test automated production system plc software in indus-
trial practice. Control Engineering Practice, 58:12 – 23,
2017.

[Rösch et al., 2014] Susanne Rösch, Dmitry Tikhonov,
Daniel Schütz, and Birgit Vogel-Heuser. Model-based
testing of plc software: test of plants’ reliability by using
fault injection on component level. IFAC Proceedings
Volumes, 47(3):3509 – 3515, 2014. 19th IFAC World
Congress.

[uni, 2016] https://unitronicsplc.com/

what-is-plc-programmable-logic-controller,
2016.

Blockchain versus PKI : setting up and analysis of
two architectures for securing an industrial system

Florian Barrois
Université Grenoble Alpes

Grenoble, France

Supervised by: Christine Hennebert
Laboratory LSOSP, CEA Grenoble, France

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract

The security of information systems is essential in
our society. The constant improvement of comput-
ers capacities brings the need to permanently elab-
orate new security solutions and the use of innova-
tive technologies is relevant for this purpose. Even
though these technologies are usually developed for
a precise purpose, their underlying functioning may
sometimes by exploited for different usages. In this
article, we consider a requirement of end-to-end se-
curity of an activity involving embedded systems
and conducted by an industrial company. We pro-
pose two solutions of security architecture. The
first one involves the use of a blockchain multi-
users wallet whereas the second one is based on
digital certificates. We detail the functioning of
each of these designs as well as their realization
before comparing them according to many security
features and performance parameters. Although
both of these solutions are interesting candidates
likely to be chosen to secure a system, it appears
that one of them is particularly relevant for the us-
age we focus on.

Key words : Blockchain, wallet, asymmetric cryptography, digital
certificates, embedded systems.

1 Introduction

As the technology evolves, computer facilities become ubiquitous
and the need of assurance on the systems security gets stronger.
Indeed, while modern computers become faster and more powerful,
the number of cyber-attacks keeps growing and these new capac-
ities bring the need to permanently reevaluate and push forward
detection and protection systems. The lucrative aspect of successful
attacks make some sectors of activity like industry particularly
susceptible to be targeted by such a threat. Even though the risk
is known, many professionals consider this risk as theoretical and
their infrastructures unlikely to be aimed, and thus choose to ignore

it, which opens the door to malicious attacks, as the recent history
has shown with intrusions like Stuxnet and Black Energy.

Securing a system implies the consideration of all its aspects,
notably securing the data related to the company’s activity and
controlling the access to all devices and networks, but also studying
the consequences of setting up a security architecture to protect the
potential additional components and communication channels it
involves. To this end, many security fixtures and technologies may
be employed and combined together to provide a security level in
line with the goods to protect. One may cite firewalls, biometric
systems, or even blockchains or PKIs.

A blockchain is a distributed ledger recording a list of events.
The legitimacy of these events, called transactions, is verified by
some users contributing to the proper functioning of the blockchain,
called miners, who place validated transactions in blocks, which,
tied together, form the blockchain. These transactions, in addition
to an event to record, notably include an identifier of their issuer,
which allows to trace the activity of users on the chain. Because
blocks are produced and linked cryptographically, it is not possible
for a malicious user to alter the content of the ledger. Moreover,
since this content can be seen by all users, anomalies can easily be
detected and reported, so as long as a majority of users are reliable,
the safe functioning of the blockchain is ensured. Such characteris-
tics make of this technology a good candidate to guarantee security
features like authentication, non-repudiation and traceability.

Public key infrastructures, or PKIs, handle keys employed in
asymmetric cryptography and usually involve the use of digital
certificates. These certificates are emitted by a certification authority
and allow to associate a key to a user’s identity, thus providing
authentication of the operations performed with this key. Such
infrastructures involve many actors and processes related to the
management of keys and to the administration of certificates, and
are commonly used as security architecture of modern information
systems and in secure communications.

The choice of a particular security architecture remains more or
less relevant depending on the usage. In this article, we focus on
a complex industrial system notably involving artificial intelligence
and Internet of Things, and requiring the compliance with numerous
security features. We describe the elaboration and the development
of two solutions entailing, for the first one the use of a blockchain
wallet, and for the other one, the adoption of digital certificates. The
benefits and drawbacks of these designs are then discussed by con-
sidering many security and performance parameters and synthesized
to determine the best structure to adopt for this particular usage.

Michael Perin
[avoid generalities]

Michael Perin

2 Case study

Our survey deals with a concrete need of an industrial company to
secure its industrial park. This park is populated with robotic ma-
chines that involve many technologies. Each system is equipped
with sensors that retrieve the indicative values required to ensure
that the system is working properly, such as position or speed. Then
this data is processed by an artificial intelligence (AI) unit that es-
timates whether the functioning is normal or not and records the
adjustments to perform. The robotic system is also provided with a
human-machine interface that allows operators to supervise the au-
tomated work and to take decisions in case of uncertainty from the
AI. In order to guarantee both security and safety properties, the op-
erators have to be physically present at the human-machine interface
workstation of the robot they are in charge of.

In addition to the protection of the system against external attack-
ers, the infrastructure must allow to record and trace the proofs of
the behaviour of the artificial intelligence inference engine, which
functioning is sum up by the Figure 1. During the system execution,
both the operations ordered by the AI and the operators interventions
must be recorded. Moreover, in order to start the system execution,
the users must authenticate. Thus, in case of malfunction or con-
trol of the actions history, the archives can be analyzed and have the
value of proofs in jurisprudence to impute responsibilities to the su-
pervisor of the actions performed.

Figure 1: AI functioning

However, depending on the storage location of the traces
recorded, both data and proofs may be negligently or intentionally
tampered or erased. Consequently an adequate security architecture
for this system must consider the securing of the data processed and
the means put in place for this purpose.

In order to protect the company’s activity, the following security
needs have been listed out :

• The generation of proofs of the integrity of records

• The authentication of these proofs by the user present at the
execution of the action recorded

• The time stamping of these proofs

• The ordering of recording of the proofs

• The ensurance of non-tampering of these proofs

• The non-repudiation of these proofs

• The traceability of these proofs over time

• The compliance with the users’ privacy rights

• The resilience of the architecture.

Furthermore, in the aim of making the systems supervision more
convenient and efficient, the said industrial company wished to have
the possibility to monitor the machines at a distance, by using a mo-
bile connected object.

In response to these needs, two security architectures have been
studied : one involves the use of a blockchain wallet, while the other
one is based on digital certificates. To be as close as possible to the
real working environment, both of these solutions have been devel-
oped and tested in an ecosystem of devices simulating the function-
ing in an embedded system. However, because the final platform
was not precisely defined in the project requirements conducted by
the company, the setting up of the two proposed designs were done
using a Raspberry Pi 3B+ as an intermediary test equipment.

3 Background and state of the art

We present three examples of usages of asymmetric cryptography as
well as their global functioning. Each one involves many actors and
different means to deal with the processes related to key manage-
ment.

3.1 Digital wallets

An electronic wallet, or digital wallet, is a secure vault that contains
one or many currency accounts. It may take many forms, like a web
platform, a smartphone application or a physical component such
as a USB key. Such wallets are generally used for the management
of currencies. They notably allow to perform monetary transactions
without needing a credit card while reducing the use of cash.

The usage of a digital wallet requires to create an account in an
monetary organism (bank, service provider...). The user provides his
personal details, his banking information and chooses a password.
Depending on the account type chosen, the payments may either
process a withdrawal directly from a bank account or withdraw
the money placed on an electronic wallet account which must be
alimented. When a wallet owner wishes to perform a payment
(on a platform accepting this payment mode), he must pass an
authentication step to access its wallet. Then, the banking details
are no longer necessary since they have been filled at the account
creation, so the password is enough to execute the transaction.
Cryptocurrencies, like the famous bitcoin [1], can also be managed
and exchanged via this tool.

Obviously, the monetary organism providing the electronic wallet
solution must be trusted. The data should be encrypted and stored
securely, and the service must respect regulations related to the pro-
tection of the users privacy. Because of these security requirements,
the wallet must include all the elements, in particular cryptographic
primitives, necessary to a secure and user-transparent execution.

Wallet accounts are associated to a couple of asymmetric keys
that are used in the context of digital signatures operated via the
Elliptic Curve Digital Signature Algorithm (ECDSA), proved cryp-
tographically secure [5], employed by the blockchain technology to
ensure the signature of all transactions and thus provide traceability
of the actions initiated from each account.

There exists many types of internal wallet structure. For our
usage, we focus on the one proposed in the Bitcoin Improvement
Proposal (BIP) 32 [6] which describes Hierarchical Deterministic
wallets. In such kind of wallet, a master seed works as a password
giving access to the blockchain accounts hosted by the wallet.
This master seed, which can also be more easily memorized as a
sequence of words called mnemonic, must be generated randomly
and known only from the owner of the wallet, and is used to
generate a master account from which all other accounts are derived
according to a certain path, as shown on Figure 2. This latter takes
the form of a sequence of integer indices used in the calculations
of the child accounts address and keys. The successive account
derivations executed from the master account thus form a n-ary tree
of accounts. All accounts are always generated in one and unique
way, namely by following the same derivation path from a same
precise seed.

Figure 2: BIP32 Hierachical Deterministic Wallets

Other improvements from the Bitcoin Improvement Proposals
themselves can be considered. BIP43, proposed by M. Palatinus
and P. Rusnak [4], and based on the BIP32 standard introduces the
“purpose” field in the derivation path. This intends to specify pre-
cisely the standard used for a specific HD wallet implementation
among the numberless implementations claimed to be BIP32 com-
pliant. The proposal consists in exploiting the first level of BIP32
based derivation (i.e. the second field of the key derivation path,
the master node being omitted) to indicate the reference to the stan-
dard used. For instance, implementations based on BIP44 should

attribute the keys a derivation path of the form m/44’/../..., which
would match the index value 0x8000002C in the current hexadeci-
mal representation.

BIP44 [3] is a particular application of BIP43, as it defines a role
for the first derivation path level, but also for the next four levels. In
addition to the purpose field from BIP43, this proposal includes in
the path the coin type of the account used, an account field that dif-
ferentiates the usages of a same coin type, a boolean change field to
define whether the account address should be exploited for external
exchanges or used internally as a transaction change address, and
finally the index, which is the number of the child derived from this
parent key. This scheme permits to order all the accounts generated
by a wallet.

The usage of electronic wallets keeps growing. We distinguish
many companies releasing their wallet version among which two
main ones, Trezor and Ledger. These companies compete for the
market of hardware wallets, which are the most secure type of wallet
since they do not expose the private key to the internet when signing
transactions.

The Trezor One is a hardware wallet that takes the form of a USB
component. It was the first electronic wallet of this type, namely
providing a secure physical storage space and limiting the exposi-
tion of sensitive data, compared to other types of wallet that store
it either online or on a local but not necessarily protected com-
puter. It offers the possibility to manage more than 500 different
cryptocurrencies and relies on a PIN code chosen by the user and
a mnemonic, namely a series of 24 words that allow the recovery
of the master seed. Moreover, the dual authentication and an ad-
ditional passphrase are optional features and act as supplementary
security parameters. At a lower level, the security of the component
is ensured by the bootloader that verifies the integrity of the loaded
firmware and the firmware itself, which is subject to regular updates
and is implemented to trigger a memory erasure of the data on the
component in case of threat detection. As for the random seed gen-
eration, it is made by coupling the entropy of its internal physical
random number generator (RNG) and the entropy of the computer
it is wired to, what minimizes the risk related to the presence of a
backdoor in RNGs.

The Ledger Nano S is another example of hardware wallet and
presents the particularity to be the only certified (CC EAL5+)
hardware wallet on the market. This wallet supports more than 1100
of the existing cryptocurrencies and offers a security via physical
touch. Each transaction must be confirmed by pressing two buttons
on the device, which makes useless the compromising of keys at a
distance without owning the physical component. Like in the Trezor
One wallet, the Ledger wallet bases its security on the use of a PIN
code and a 24-word mnemonic and offers the dual authentication
feature for transactions. But it is also composed a secured chip
that contains a True Random Number Generator (TRNG) used to
generate the seed.

The Ethereum blockchain

Ethereum[2] is a blockchain that introduces a new kind of usage. Its
main characteristic is that it offers the possibility to manage other
goods than money. Strictly speaking, the Ether (the Ethereum coin),
is a cryptoasset that owns a monetary value as well. But although
ether transfers are possible, the finality of Ethereum is the use of
its specificity : the execution of code coming from decentralized
applications called “dApps” that allow the deployment of smart-
contracts. Smart-contracts are programs available on the blockchain.
The Ethereum users have the possibility to execute the functionali-
ties offered by this piece of code in exchange for Ether. Moreover,
token contracts are a particular type of smart-contract that introduce
a token representing a goods that can be exchanged like a cryptocur-
rency but which use is dedicated to the context of a particular appli-
cation.

Smart-contracts present the advantage of being contracts which
content cannot be modified, thanks to the underlying blockchain
technology. They can thus turn out to be particularly interesting
when applied to legal usages due to their high availability, auditabil-
ity, transparency and neutrality.

Ethereum transactions are processed by the Ethereum Virtual Ma-
chine (EVM), a stack-based virtual machine that executes bytecode.
The programs executed by this machine, the smart contracts, are
implemented in a high-level language, for instance in Solidity, and
are compiled to bytecode to be executed on the EVM. Since smart-
contracts are computer programs, they are subject to the problem
of termination unpredictability stated by A. Turing. However, the
execution of smart-contracts on the Ethereum Virtual Machine is
costly : in addition to the computing resources common to all com-
puter system, it requires Ether. This limitation introduces the case
of loss of Ether due to the execution of programs that never end. To
overcome this complication, Ethereum establishes the mechanism
of gas. The gas represents the resource spent during the execution
of a transaction. By determining an amount of gas to each one of
the instructions executed by the EVM, when users come to execute
a functionality offered by a smart-contract, they fix a limit of the
amount of gas they are ready to pay, which solve the undesirable ef-
fects of never-ending functions.

Every computation realized as a result of the execution of a smart-
contract in a transaction incurs a fee. The transaction fee is paid to
the miner who validates the transaction and includes the gas required
to execute the functionality requested as well as a supplementary fee
that can be seen as a tip for the miner and thus incites the miner to
choose this transaction to validate in order to receive more Ether.
The gas is thus one of the mandatory fields of Ethereum transactions
and contributes to the calculus of this fee, just like the gas price.
The gas price is the amount of Ether the transaction issuer accepts
to spend on every unit of gas, and is measured in Wei, which is a
fraction of Ether. The gas limit previously mentioned corresponds
to the product of the gas price and the gas. In case the transaction
sender does not provide the gas necessary to the execution of the
transaction, this latter is considered as invalid and the amount of gas
specified by the sender gets lost.

3.2 PKIX

PKIX is a public key infrastructure based on the use of X509 digital
certificates. The data gathered in such certificates include varied
indications among which :

• The subject name refers to the identity of the person associated
to the public key in this certificate

• The public key, which associated key stays secret and known
only by its owner

• The address of the person

• The city where resides the person

• The company or organization if needed

• The validity period of this certificate

• The signature of this certificate by its delivering organization,
which attests the correspondence of the person with this public
key, and thus needs to be reliable.

The PKIX architecture introduces two roles. The Registration
Authority (RA) is in charge of the verification of the user’s identity
when one requests for the creation of a certificate. The approval is
then sent to another entity called the Certification Authority.

The Certification Authority (CA) is responsible for the creation
of the certificates as well as the mechanisms put in place for their
update or their cancellation, notably the Certificate Revocation Lists
(CRLs) which indicate the certificates that should not be used any-
more for reasons of private key loss or theft, renewal or expiration
of the couple of keys, or even expiration of the certificate itself.

As the security of public key infrastructures comes from the trust
in a third party from the entity wishing to make sure of the belong-
ing of a key to a certain other entity, and because actual network
of relationships are complex, many Certification Authorities may be
involved during an identity check process. In particular, the authen-
ticity of a CA may be ensured by another CA. PKIX works with a
hierarchical internal organization, as shown by the Figure 3, where
the root CA is recognized valid thanks to an auto-signed certificate,
and thus needs to be trusted anyway.

Once a user has retrieved, in a secure way, the public key of a
CA, he can ask for the creation of a certificate that binds his identity
to a public key. The CA then proceeds to the type of certificate
creation needed. Either the user generated his couple of asymmetric
keys prior to the certification request, in which eventuality the CA
fills the certificate with the public key it received from him, or the
user needs keys in order to get identified and the CA then generates
them, communicates them to the user and fills the certificate with
the public key of this couple.

The CA is in charge of the renewal of certificates, which is neces-
sary when a certificate or the key it refers to comes to expiration. It
must also deal with its own CA migration, that is to say the change
of its own keys. For this purpose, it must create its new pair of keys
and three certificates, which dependencies are represented on Figure
4 :

Figure 3: Certification hierarchy

1. A self-signed certificate for the new public key and signed with
the new private key

2. A certificate for the new public key signed with the old private
key

3. A certificate for the old public key signed with the new private
key.

Figure 4: Certification Authority migration

This process actually consists in a particular case of peer-to-peer
cross-certification, that is to say the mutual certification of two CAs,
which remains another role of the CA.

Finally, the Certification Authority must support the Online Cer-
tificate Status Protocol (OCSP) if the hierarchy of CAs it belongs to
employs it. OCSP requests remain an alternative to the Certificate
Revocation Lists for the cancellation of certificates. They allow to
directly ask a CA whether a precise certificate is valid or not, which
avoids the request sender to proceed to the cascading verifications
of the certificates and CRLs of the CAs of the architecture and to
download and analyze the possibly long CRLs. Consequently, there
is less much overhead on the client and the network. However with
this mechanism the CA must deal with a significant number of re-
quests.

3.3 PGP

Pretty Good Privacy (PGP) is another example of architecture in-
volving asymmetric cryptography. Unlike PKIX, in PGP, the data
relating to the users identity and to the functioning of the infrastruc-
ture is divided in packets, that are concatenated to form PGP files.
There exists about 20 packet types that all contain a different infor-
mation, among which the public key packet, the user ID packet and
the signature packet, constituting the main data of digital certificates.

The content of PGP certificates is similar to the one of X509 cer-
tificates. Still, there exists a few subtleties that discern them. No-
tably, while in PKIX the unicity of certificates is ensured by the
couple (certificate serial number, CA identifier), PGP employs the
fingerprint of public keys, produced via a hash function. But the
main difference between X509 and PGP certificates remains in their
usage. Indeed, PGP certificates can include many signatures. The
reason for this is that in this infrastructure, there is no Certification
Authority. The trust comes from the number of users, spread out in
a peer-to-peer network, that may have used another user’s key and
can thus attest that it belongs to the right person by signing the cor-
responding certificate. This functioning is commonly called Web of
Trust.

PGP introduces several levels of trust :

• No trust, when the concerned key has never been used by the
checking user and that none of the his trusted keys trusts this
key.

• Partial trust, when at least m partially trusted keys applied their
signature to this key. m is chosen at the model creation and
must be equal to or higher than 2.

• Complete trust, when at least n (1 ≤ n ≤ m) completely trusted
keys trust this key, with n chosen at the model creation.

• Ultimate trust, when the private key is known. This should
only concern owned keys.

Likewise, one lists out many verification levels for signatures :

• Level 0, when no origin is provided.

• Level 1, when no verification of the identity was made.

• Level 2, when some basic verifications were made.

• Level 3, when a complete verification process was performed.

Like in PKIX, the revocation of certificates is possible with PGP.
This is done via the sending of revocation packets, that must be
signed by the certificate subject, to all the users who signed it and
thus trusted it.

In practice, the PGP application is considered as a hybrid crypto-
graphic system, since it uses both symmetric and asymmetric cryp-
tographies. When a user encrypts a message with PGP, the data first
goes through a step of compression. This one allows to reduce the
transmission delay, to save disk storage space and to reenforce the
cryptographic security. Then this encryption step is performed via
many operations. First, PGP randomly creates an IDEA (Interna-
tional Data Encryption Algorithm) symmetric secret key. The data
is then encrypted with this key. Afterwards, this secret key is itself

encrypted and transmitted to the receiver by the means of asymmet-
ric keys. The receiver realizes the reverse process to retrieve the
data. The association of symmetric and asymmetric cryptographies
allows to keep the performance of symmetric encryption without de-
creasing the security level provided by the use of asymmetric keys.

In addition to encryption, PGP offers most of the expected func-
tionalities of a secure messaging application, such as digital signa-
tures and message integrity check, based on the use of MD5 and
RSA, key transport, or even key exchange using the Diffie-Hellman
algorithm.

4 Development of a security solution involving
a blockchain wallet

The first security solution introduces the use of a digital wallet. The
HD wallet implemented, compatible with the Ethereum blockchain,
is inspired from an open-source implementation based on the BIP44
standard. Its development and test phases involved the use of two
tools : Ganache and Pyeth.

Ganache is a simulator of the Ethereum Virtual Machine. As
transactions sent to a blockchain are costly, this tool is interesting by
virtue of the virtual blockchain it runs. It notably offers a graphical
interface and permits to manage many predefined accounts owning
ether that allow to proceed to transactions and observe the internal
behaviour of the blockchain.

Pyeth is a Python library introducing functionalities to connect
to the Ethereum blockchain and interact with it, both for reading
blockchain information like an account balance and for updating it
by sending new transactions. It was thus exploited in the scope of
this work to connect to the virtual blockchain offered by Ganache
and exploit it with the accounts of our wallet.

The security of this architecture is guaranteed by many factors.
For the use case we focus on, the wallet application is embedded
on a Raspberry Pi, as can be seen on Figure 5, which represents the
personal mobile physical device required to access the system and
allowing the operators to remotely interact with it. The exchanges
between the device and the host system are detailed in Appendix A
and can be sum up as follows.

Figure 5: Ecosystem of the blockchain security solution

When a wallet connects to the host system, the user must enter
on the industrial system interface its login, the password of the host
application providing the access to the system and a PIN code, that
is checked before unlocking its wallet account. The PIN code is sent
to the device which hosts a database of credentials and unlocks the
corresponding wallet account in case the PIN code provided effec-
tively matches the user login. The wallet is then ready to use and
sends the unlocked account address back to the host. The account
of the wallet is generated dynamically when the PIN is recognized
valid. This confers a security protection to the potential reverse en-
gineering attacks on the wallet. Only the seed must be stored, in a
secure place. Once the account available, the password provided to
access the system is verified by consulting a local database, and if
correct, permits the start of the system activity.

During the system activity, all actions it does are traced in a local
log file. Periodically, the data recorded is used as input of a hash
function to produce a digest that plays the role of proof of integrity
of this data. A blockchain transaction is then formed and the proof
is placed inside it. This transaction is sent to the wallet so that the
private key of the current user signs it. The wallet then sends the
signed transaction back to the host, which possesses a connection to
the blockchain and can submit the transaction. The proof of integrity
of the data recently produced is thus stored on the chain by the means
of a smart-contract, implemented in Solidity, previously deployed
for this purpose. Finally, the block identifier is retrieved from the
chain and placed in the log file to ease auditors to exploit the proof.

The compatibility of the wallet with the Ethereum blockchain
was studied and implemented on the base of the Python library eth-
account1. This one was notably used to implement the generation of
the Ethereum account address and Ethereum signatures.

Ethereum account addresses are generated from the public key of
this account. The generation process is made of many steps. The
public key is first serialized to bytes. The value obtained is then
passed to a keccak256 hash function. The resulting account address
is composed with the 20 less significant bytes of this hash, usually
written as 40 hexadecimal characters. Account addresses also have
a checksum form. It is used as a verification of the validity of an
Ethereum address. This checksum address is similar to the normal
one but some of its hexadecimal values are in uppercase. The posi-
tion of the uppercase letters is defined by the raw binary keccak256
hash value of the address bytes.

Signatures in Ethereum are ECDSA signatures using the pa-
rameters given by the curve secp256k1 and are composed of three
parameters. In Solidity, the function ECrecover returns an account
address given these three parameters. The returned address can
then be compared to the sender’s address to determine whether the
signature is valid or not. This verification process is notably used
throughout the sending of transactions.

1https://github.com/ethereum/eth-account

Ethereum transactions are encoded with the RLP (Recursive
Length Prefix) serialization library, and are composed of several
fields :

• The nonce relates to the number of transactions already sent
from this account

• The gasPrice is the amount of ether the user chooses to pay per
gas used to execute the transaction. The gas can be considered
as the computing resource consumed to proceed transactions.
And like Bitcoin users may set higher transaction fees for their
transactions to be mined faster, on Ethereum the gas can be
used to incent the miners

• The gasLimit designates the maximum amount of gas the
transaction sender accepts to pay for this transaction to be
mined

• The field to contains the receiver’s checksum address. This ad-
dress may be either a user address or a smart-contract address

• The field from is optional, as it can be derived from the signa-
ture after signing the transaction with the private key

• The value is the amount of ether to send

• The data is specific to the transactions dedicated to smart-
contracts and may contain a request for a function call or a
contract creation.

The wallet developed is adapted to the usage : contrary to the
classical use of an electronic wallet that must be specific to one par-
ticular user, our wallet is dedicated to be multi-users. Indeed, in our
usage, the physical devices hosting a wallet application are the prop-
erty of a legal entity, the client company. However, the numerous
operators involved in the industrial process each have a dedicated
wallet account, derived automatically from their identity at the con-
nection to the industrial system. Thus all actions performed during
their working time are electronically signed using this personal wal-
let account, which provides the authentication property. In case of
legal procedures concerning the activity of this company, the events
are traced and can be provided to the legal organization in the name
of the company. But internally, the company managers are also ca-
pable of assigning responsibilities to the employees.

5 Development of a security solution involving
digital certificates

The other version of the application developed involves digital cer-
tificates. These certificates are of the form of the X509 standard and
constitute the element employed to guarantee the authentication of
the events recorded by the system.

The global functioning is the same as in the blockchain version.
The user must authenticate on the system via a PIN code associated
to his login and the password of the application running the sys-
tem activity. However, the personal mobile device does not contain
a wallet, but a set of digital certificates belonging to the users au-
thorized to operate on the robotic machine. When a user logs in,
the global access to its physical device is provided and a certificate
which subject name corresponds to the user’s login is searched in the
file tree of the device. The personal object then sends the digital cer-
tificate back to the host machine. The password of the application
located on the system is verified and the activity starts. The sys-
tem data is stored in a log file like in the blockchain wallet version

and the proofs generated are sent to the device which signs them by
means of the private key located on it that corresponds to the certifi-
cate used. Once the signed proof received from the physical device,
the host forms a message containing the proof, the signature and the
user certificate and transmits it to a remote database. All the verifica-
tions related to the proof and the user certificate are then performed
on this remote database, which finally store both the proof and the
signature and associates a timestamp to their registration. This time,
in addition to the data and the proofs, the log file located on the
robotic system contains an identifier of the user certificate.

This solution distinguishes from the first one presented by the
exchange of messages instead of blockchain transactions. Further-
more, the association between a user and a key is clearly established.
But also, the use of digital certificates implies the presence of other
actors in the process environment and their functioning requires to
be secure in the same way as the main components. Indeed, the re-
mote server storing the proofs and their signatures must deal with
the problems of access right management, data tampering and con-
fidentiality, and denials of service, since its availability is imperative
for the functioning of the industrial park. In addition to that, the
users certificates must be previously generated by a certification au-
thority. This implies that the company must endorse this role or
that a list of trustable authorities has to be established. The usual
mechanisms related to public key infrastructures is also to take into
account. The keys and the certificates handled beg the questions of
the key renewal, and of the validity period and the correctness of
the signatures of all certificates and certificate revocation lists that
needs to be considered during the process. These involve numerous
verifications to perform, which considerably complexifies the archi-
tecture, as illustrated on the Appendix B.

In order to obtain a first relevant comparison of the two solutions
implemented, the version involving digital certificates has been sim-
plified by only considering auto-signed certificates, what reduces the
number of operations to carry out during the procedure, as can be
seen on Appendix C.

6 Performance study

In order to compare optimized implementations of each version,
notably concerning the time and resource performance, the digital
certificates employed during the tests are filled with the minimum
information required, namely a subject name, a validity period, a
public key and the signature of the certificate performed by the
certification authority, which in our case remains the private key
associated to the public key of the said certificate.

We face the two versions together along some performance indica-
tors and the security features expected :

Integrity The integrity of the data generated is ensured in both
versions. However, this is not the case concerning the integrity of
the proofs. Indeed, in the variant involving digital certificates, the
proofs are store in a database, which, contrary to a blockchain, may
be subject to data tampering, reordering or erasure.

Time-stamping In the blockchain version, the time-stamping
and the ordering of the proofs are guaranteed while, in the certificate
version, the time-stamp is stored in the database and is thus subject
to the risks aforementioned. Furthermore, a modification of the
internal clock of the server would also skew the time-stamping of
the proofs.

Authentication The need for authentication is fulfilled, whether
with the signature of blockchain transactions from a wallet account
or with the signature using the private key associated to the public
key of a user certificate.

Privacy Because wallet account addresses provide authentica-
tion without user identification (only the account address is visible
on the chain and in the log file), the use of accounts allows to
respect restrictions about users privacy. On the other hand, digital
certificates may contain personal data. In our implementation, these
fields are left unfilled, but the user login is used as the certificate
subject name. Thus, additional measures must be taken to comply
with the users rights about privacy.

Identity trust The backside of the good management of the
users privacy provided by the blockchain is a lack of trust in the
users identity. Indeed, in the blockchain technology, the users own
account numbers that are visible in all the transactions submitted,
providing traceability, and that are the only public information about
the transactions issuer. But consequently, this can be considered in
the best case as pseudonymization and finally hides the users real
identity, what makes this technology particularly popular for illegal
activities. In contrast, the digital certificates handled in public key
infrastructures are specifically dedicated to the association of users
identity to the public keys they employ. Their identity can thus
be surely established, although the trust in the issuing certification
authority is still necessary.

Key management Since the wallet account addresses result
from a hash digest, there is no key management to handle when
exploiting the blockchain implementation. The one involving cer-
tificates, however, has a duty to keep the confidentiality of identities
included in the certificates transiting through the communication
channels. Consequently, a key exchange, like Diffie-Hellman, is in
order. This might also imply key renewals.

Availability The functioning of both designs is limited by the
availability of the remote entities the host system must communicate
with. Whether a blockchain or a remote server hosting a database of
proofs, this entity is necessary to permit the execution of the system
tasks. Thus the company’s activity remains directly dependent of
the availability of this actor, which may be affected by the quality
of the network communication channel for instance.

Bandwidth The amount of data transiting between the actors
of the application during its execution has been measured for both
versions via a network packet sniffer. By omitting the packets
transmissions due to the network protocol and focusing on the
ones related to the usage of the application, it has been established
that, in average, 3.426 KB of data were sent using the blockchain

version versus 3.180 KB with minimal certificates. Nevertheless,
the second variant does not provide any cryptographic confirmation
of the operations done like blockchain does thanks to transaction
receipts. In addition, the receipts recorded during the tests of the
blockchain version are close to 1.460 KB, due to the supplementary
information specific to the blockchain included in the packets. So
the blockchain version causes a greater volume of data to travel
over the network, but provides an additional guarantee compared to
the other implementation.

Storage memory The certificate variant requires to store the
users certificates employed for the authentication, what is rather
inefficient in terms of occupied storage space. As for the ledger,
it offers much more storage space than a database by virtue of its
distributed nature, but a significant part of this space is employed
for information related to the chain.

Resilience In public key infrastructures, the trust is delegated
between entities that share their knowledge network. Consequently,
the leakage of a private key or the presence of a rogue certification
authority may propagate through the whole hierarchy of trust.
The time required for the identification of vulnerability in the
architecture and its remediation via the key renewal process or
the update of reliable entities may be significant and the activity
of the company hosting this infrastructure might remain seriously
impacted. On the other hand, a blockchain wallet embedded in a
personal object manages the eventually of a key leakage in the best
possible way since the possession of the physical device would be
necessary for a malicious user to access to the wallet, take advantage
of the leaked account and affect the company’s activity. Moreover,
because a blockchain is distributed, the resilience is ensured by
design by the replication of the ledger between independent actors,
which is not the case of a local database.

The efficiency of the solutions set up is sum up by the table below :

Figure 6: Synthesis of the comparison between the
blockchain and the PKI versions set up

Globally, the use of blockchain in the security architecture is a
relevant choice for this usage, as the other version implemented re-
quires additional technical means that bring a higher level of com-
plexity in the ecosystem.

7 Conclusion

It appears that both of the architectures put in place may be em-
ployed in the real industrial environment targeted. Still, to confer
the same security level as the one provided by the use of a wal-
let, the version based on a PKI introduces a greater degree of com-
plexity due to the presence of more actors and the necessity of an
increased number operations. Indeed, the certification authorities
providing the users certificates must be trusted and, contrary to a
blockchain, the database in charge of the storage of the proofs is not
distributed and thus may be tampered, which also gives the possi-
bility to the intruder to fake the order of the operations recorded.
A solution could be to introduce a mechanism of data redundancy,
but this also involves more equipment and increases the attack sur-
face. Furthermore, the number of security verifications about the
certificates and the electronic signatures is significant and may slow
down the system execution speed. In the case of the use of non
auto-signed certificates, this number is even greater and a connec-
tion to public repositories hosting namely certificate revocation lists
is required and involves again network exchanges that need to be se-
cured. The PKI also works thanks to a key management scheme that
would oblige the company to a costly continuous maintenance.

The use of a hardware wallet, on the other hand, provides a phys-
ical security that adds to the numerous security features provided
by design by the blockchain technology. The notions such as non-
tampering, non-repudiation and traceability are thus guaranteed with
no need of supplementary measures to be taken by the company.
Moreover, the principle of a blockchain itself reenforces the security
compared to a PKI that requires the trust in a third-party. This solu-
tion is also ideal as for the respect of the users privacy and, although
this advantage is counterbalanced by the lack of absolute identifica-
tion of the operators, it remains a relevant choice for this usage.

This survey led to the development of a Proof of Concept of a
security architecture involving the use of a multi-users blockchain
wallet applied to the secure management of proprietary industrial
data. This implementation is a first draft example of how this inno-
vative concept can be exploited and it may then be subject to further
investigations to provide a better security level of a better perfor-
mance. In particular, hardware security measures may be studied in
order to provide a secure software execution and storage of the sen-
sitive data like the wallet master seed and the accounts private keys.
The performance tests conducted may also be run on different plat-
forms to obtain a better range of results and a preview of the effect
of the hardware architecture on the software. Although this study
was dedicated to a precise usage, it may turn out to be a relevant
start point for more global surveys.

References
[1] A.M. Antonopoulos. Mastering Bitcoin: Programming the

Open Blockchain. O’Reilly Media, Inc., 2nd edition, 2017.

[2] A.M. Antonopoulos and G. Wood. Mastering Ethereum: Build-
ing Smart Contracts and Dapps. O’Reilly Media, Incorporated,
2018.

[3] M. Palatinus and P. Rusnak. Multi-account hierarchy for deter-
ministic wallets. April 2014.

[4] M. Palatinus and P. Rusnak. Purpose field for deterministic wal-
lets. April 2014.

[5] D. R.L.Brown. The exact security of ecdsa. 12 2001.

[6] P. Wuille. Hierarchical deterministic wallets. February 2012.

AMi2`Mb?BT _2TQ`i, CQBMi �M�HvbBb BM 7`2[m2M+v �M/ BM T�ii2`M Q7 H�`;2
T�`�HH2H �TTHB+�iBQM i`�+2b

LBHb .27�mr Uaim/2MiV- C2�M@J�`+ oBM+2Mi UamT2`pBbQ`V

�#bi`�+i
� bim/v Q7 � M2r BM7Q`K�iBQM K2�bm`2 Bb T`2@
b2Mi2/ �HQM; rBi? Bib TQbbB#H2 �TTHB+�iBQMb iQ
H�`;2 T�`�HH2H �TTHB+�iBQM i`�+2b mbBM; `2;mH�`@
Biv BM T�ii2`MX h?2 T`QTQb2/ K2�bm`2 Bb #�b2/
QM G2KT2H@wBpǶb 2B;2Mp�Hm2 r?B+? Bb /2}M2/ �b
i?2 `�i2 Q7 ;`Qri? Q7 i?2 MmK#2` Q7 /Bz2`2Mi
bm#bi`BM;b 7QmM/ BM � ;Bp2M bi`BM;X � ?vTQi?2@
bBb Qp2` i?2 #2?�pBQ` Q7 i?2 2B;2Mp�Hm2 �TTHB2/
iQ bi`BM;b ;2M2`�i2/ mMB7Q`KHv �i `�M/QK Bb
7Q`KmH�i2/ �HQM; rBi? QM;QBM; rQ`F iQ T`Qp2
i?�i ?vTQi?2bBbX

R AMi`Q/m+iBQM
AM >B;?@S2`7Q`K�M+2 *QKTmiBM;- i?2 bim/v Q7 �TTHB+�@
iBQM i`�+2b Bb +`m+B�H BM Q`/2` iQ mM/2`bi�M/ i?2 Qp2`�HH
#2?�pBQ` Q7 i?2 bvbi2K #2BM; /2bB;M2/X >Qr2p2`- i`�+2b
�`2 Q7i2M +QKTQb2/ Q7 #BHHBQMb Q7 KB+`Qb+QTB+ 2p2Mib
i?�i ?�TT2M2/ BM i?2 bvbi2K /m`BM; i?2 `2+Q`/BM; Q7
i?2 i`�+2b- K�FBM; �Mv �M�HvbBb � `2�H bi`m;;H2X �b
�M 2t�KTH2- r2 rQ`F2/ /m`BM; i?Bb bim/v QM � i`�+2
Q7 � T�`�HH2HBx2/ K2`;2bQ`i �H;Q`Bi?K BKTH2K2Mi2/ mb@
BM; PT2MJSX AM i?Bb i`�+2- 2�+? PT2MJS 2p2Mi bm+? �b
i?2 +`2�iBQM Q` /2bi`m+iBQM Q7 � i?`2�/ Q7 2t2+miBQM r�b
`2+Q`/2/ �M/ r2 +QmH/ 2�bBHv #v xQQKBM; �i i?2 i`�+2
bTQi H�`;2 b2+iBQMb Q7 Bi +QMbBbiBM; Q7 � T2`72+iHv `2;mH�`
�Hi2`M�iBQM Q7 irQ 2p2Mib- bm+? �b i?2 b+?2/mHBM; Q7 � i�bF
�M/ i?2 i2`KBM�iBQM Q7 � i�bF Ui�bFb �`2 �M PT2MJS +QM@
+2Ti- b22 i?2 /Q+mK2Mi�iBQM 7Q` 7m`i?2` 2tTH�M�iBQMbVX
>Qr2p2`- /m2 iQ i?2 H�`;2 MmK#2` Q7 bm+? 2p2Mib BM i?2
i`�+2- Bi rQmH/ ?�p2 #22M `2�HHv ?�`/ iQ bTQi � #`2�F Q7
`2;mH�`Biv BM i?2b2 b2+iBQMb bm+? �b irQ +QMb2+miBp2b i2`@
KBM�iBQMb Q7 PT2MJS i�bFb rBi?Qmi i?2 b+?2/mHBM; Q7
�M Qi?2` QM2 BM@#2ir22MX J2i?Q/b 7Q` T�`iBiBQMBM; i?2
i`�+2b BMiQ `2;mH�` b2+iBQMb b2T�`�i2/ #v #`2�Fb Q7 `2;@
mH�`Biv rQmH/ i?mb �HHQr � Km+? bBKTH2` �M�HvbBb Q7 i?2
i`�+2b �b Bi rQmH/ [mB+FHv H2�/ i?2 b+B2MiBbi HQQFBM; �i
i?2 i`�+2 iQ i?2 BMi2`2biBM; T�`ib, i?2 `2;mH�`Biv #`2�FbX

S`2pBQmb rQ`F (G�K�`+?2@S2``BM- kyRjc .QbBKQMi-
kyR8) /2p2HQTb i?Bb B/2� #v T`QpB/BM; � K2i?Q/ 7Q` `2@
/m+BM; ?m;2 i`�+2b +QKTQb2/ Q7 KB+`Qb+QTB+ 2p2Mib iQ
K�+`Qb+QTB+ `2T`2b2Mi�iBQMb #v �TTHvBM; � irQ@bi2T T`Q@
+2bb iQ i?2 i`�+2bX h?2 }`bi bi2T Q7 i?Bb K2i?Q/ T�`iB@

iBQMb i?2 i`�+2 BMiQ b2+iBQMb `2+Q;MBx2/ �b `2;mH�`X h?2
b2+QM/ bi2T Bb iQ `2T`2b2Mi 2�+? b2+iBQM Q7 i?2 M2rHv@
7Q`K2/ T�`iBiBQM #v � bK�HH K�+`Qb+QTB+ `2T`2b2Mi�iBQM
BMi2M/2/ iQ bmKK�`Bx2 i?2 b2+iBQM- � T`Q+2bb M�K2/ Ǵ�;@
;`2;�iBQMǴX q?2`2�b i?Bb K2i?Q/ T`QpB/2/ BKTQ`i�Mi `2@
bmHib- �M/ b22Kb iQ #2 r?�i r2Ƕ`2 HQQFBM; 7Q` �b i?2 }`bi
bi2T T�`iBiBQMb i?2 i`�+2 BMiQ `2;mH�` b2+iBQMb- Bi Bb 7�BH@
BM; �i +�Tim`BM; i?2 `2;mH�`Biv Q7 Qm` T`2pBQmb 2t�KTH2
rBi? PT2MJS r?2`2 � T2`72+i �Hi2`M�iBQM Q7 irQ KB+`Q@
b+QTB+ 2p2Mib r�b Q++m`BM; QM � H�`;2 b2+iBQM Q7 i?2 i`�+2X
AM/22/- �HH i?2 �K#B;mBiv `2bB/2b BM i?2 rQ`/ Ǵ`2;mH�`Ǵ
r?B+? /Q2bMǶi ?�p2 � T`2+Bb2 K2�MBM;X

_2;mH�`Biv BM BM7Q`K�iBQM i?2Q`v Bb i?2 QTTQbBi2 Q7
+QKTH2tBiv �b K2�bm`2/ #v +QKTH2tBiv K2�bm`2b U�HbQ
FMQrM �b BM7Q`K�iBQM K2�bm`2b- BM i?2 b2Mb2 i?�i � ?B;?@
+QKTH2tBiv Q#D2+i Bb /B{+mHi iQ +QKT`2bb �M/ i?mb +QM@
i�BMb KQ`2 BM7Q`K�iBQM i?�M � `2;mH�`- HQr@+QKTH2tBiv-
2�bv iQ +QKT`2bb Q#D2+iVX �b i?2 `2�/2` ?�b T`Q#�#Hv
bTQii2/- r2Ƕ`2 i�HFBM; �#Qmi +QKTH2tBiv K2�bm`2b �i THm@
`�H 7Q`K- #2+�mb2 i?2`2 2tBbib � HQi Q7 bm+? K2�bm`2bX h?2
K2i?Q/ T`QpB/2/ #v G�K�`+?2@S2``BM �M/ H�i2` .QbB@
KQMi (G�K�`+?2@S2``BM- kyRjc .QbBKQMi- kyR8) Bb mbBM;
i?2 ?QKQ;2M2Biv Q7 KB+`Qb+QTB+ 2p2Mib BM � b2+iBQM iQ
/2+B/2 B7 Bi b?QmH/ #2 +QMbB/2`2/ `2;mH�` �M/ b?QmH/ #2
� T�`i Q7 i?2 T�`iBiBQMX h?Bb K2i?Q/ Q7 +QMbB/2`BM; ?Q@
KQ;2M2Qmb Q#D2+ib �b `2;mH�` +�M #2 b22M �b � 7Q`K Q7
a?�MMQMǶb 2Mi`QTv (a?�MMQM- RN93) r?B+? Bb BM/22/ �
+QKTH2tBiv K2�bm`2X q2ǶHH 2tTH�BM BM 7m`i?2` b2+iBQMb Q7
i?Bb �`iB+H2 i?2 +QM+2Ti Q7 2Mi`QTv #mi MQi2 i?�i Bi +�MǶi
i2HH i?2 /Bz2`2M+2 #2ir22M � b2[m2M+2 Q7 mMB7Q`K `�M/QK
+QBM iQbb2b �M/ � T2`72+iHv `2;mH�` �Hi2`M�iBQM Q7 ?2�/b
�M/ i�BHb �M/ Bb i?mb mb2H2bb �i T�`iBiBQMBM; i?2 T�`�HH2H
PT2MJS i`�+2b r2 �H`2�/v i�HF2/ �#QmiX

>QT27mHHv- i?2`2 2tBbib QM2 BM7Q`K�iBQM K2�bm`2 i?�i
+�M i2HH �T�`i `�M/QK b2[m2M+2b Q7 2p2Mib �M/ b2[m2M+2b
K�/2 Q7 i?2 `2T2iBiBQM Q7 � T�ii2`M �b i?Bb Bb i?2 +�b2
rBi? Qm` PT2MJS 2t�KTH2- i?Bb K2�bm`2 Bb FMQrM �b i?2
G2KT2H@wBpǶb +QKTH2tBiv (G2KT2H �M/ wBp- RNde) �M/ ?�b
#22M 2ti2MbBp2Hv bim/B2/ �M/ �TTHB2/ BM +QKT`2bbBQM �H@
;Q`Bi?Kb (wBp �M/ G2KT2H- RNddc wBp �M/ G2KT2H- RNd3c
q2H+?- RN39)X �b i?Bb K2�bm`2 Bb /2}M2/ QM bi`BM;b Qp2`
}MBi2 �HT?�#2ib r2 }`bi M22/ iQ i`�Mb7Q`K BM � K2�MBM;@
7mH r�v Qm` i`�+2b BMiQ bi`BM;b- i?Bb Bb r?�i Bb /QM2 �M/
DmbiB}2/ BM i?2 7QHHQrBM; b2+iBQM Q7 i?Bb �`iB+H2X q2 i?2M

https://www.openmp.org/
Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin
. Note …�

Michael Perin

Michael Perin

7Q+mb QM i?2 T`QT2`iB2b Q7 �M �Hi2`M�i2 K2�bm`2 �HbQ /2@
}M2/ #v G2KT2H �M/ wBp �b i?2 Ǵ2B;2Mp�Hm2Ǵ i?�i Bb Km+?
2�bB2` iQ rQ`F rBi? �M/ 7Q`Kb i?2 7QmM/�iBQM Q7 i?2 `2�H
G2KT2H@wBpǶb +QKTH2tBivX

AM i?2 7QHHQrBM; Q7 i?Bb T�T2`- r2 bim/v i?2 T`QT2`@
iB2b Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 U� MQ`K�HBx�iBQM Q7 i?2
2B;2Mp�Hm2 �HHQrb iQ ?�p2 � K2�bm`2 BM [0, 1] �M/ i?mb
iQ +QKT�`2 i?2 `2;mH�`Biv Q7 bi`BM;b Q7 /Bz2`2Mi bBx2b- �b
r?�i r�b /QM2 rBi? i?2 MQ`K�HBx2/ 2Mi`QTvV `2;�`/BM;
�M �/�Ti�iBQM Q7 G�K�`+?2@S2``BMǶb B/2�b iQ i?2 T�`iB@
iBQMK2Mi Q7 T�`�HH2H �TTHB+�iBQM i`�+2b HBF2 i?2 QM2 mb2/
BM Qm` T`2pBQmb 2t�KTH2bX q2 i?2M T`Qp2 i?�i QM bi`BM;b
K�/2 Q7 i?2 `2T2iBiBQM Q7 � T�ii2`M- i?2 MQ`K�HBx2/ 2B;2M@
p�Hm2 /`QTb iQr�`/b 0- i?mb +�Tim`BM; i?2 `2;mH�`Biv Q7
bm+? bi`BM;b �M/ DmbiB7vBM; Qm` bim/v Q7 i?Bb K2�bm`2X q2
?B;?HB;?i � #2?�pBQ` Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 r?2M
mb2/ iQ /2i2+i #`2�Fb Q7 `2;mH�`Biv BM bi`BM;b i?�i +�M
BM/m+2 Ǵ7�Hb2 TQbBiBp2bǴ- �M/ i?mb b?QmH/ #2 i�F2M +�`2
Q7X

h?2 H�`;2bi }M�H T�`i Q7 i?Bb �`iB+H2 Bb �#Qmi i?2 bim/v
Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 QM mMB7Q`K `�M/QK bi`BM;bX
q2Ƕp2 `mM bBKmH�iBQMb i?�i b?Qr i?�i QM mMB7Q`K `�M@
/QK bi`BM;b- i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 [mB+FHv `2�+?2b
1 #mi r2 ?�p2 #22M mM�#H2 iQ T`Qp2 Bi 7Q`K�HHv bQ 7�`X
>Qr2p2`- r2 bim/v i?2 #2?�pBQ` Q7 i?Bb K2�bm`2 QM /2
"`mBDM bi`BM;b (/2 "`mBDM- RNd8) r?B+? +�M #2 b22M �b
T2`72+i `�M/QK@HQQFBM; bi`BM;b `2;�`/BM; G2KT2H@wBpǶb
2B;2Mp�Hm2 �M/ �/�Ti i?2 `2bmHib QM i?2b2 bi`BM;b iQ 7Q`@
KmH�i2 �M ?vTQi?2bBb Qp2` i?2 #2?�pBQ` Q7 i?2 MQ`K�HBx2/
2B;2Mp�Hm2 QM `2�H mMB7Q`K `�M/QK bi`BM;bX q2 i?2M `2@
7Q`KmH�i2 i?2 2tT2+i�iBQM Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2
QM mMB7Q`K `�M/QK bi`BM;b �b i?2 bmK Qp2` �HH rQ`/b
Q7 i?2 T`Q#�#BHBiv i?�i i?Qb2 rQ`/b �TT2�` BM � mMB7Q`K
`�M/QK bi`BM; �M/ T`2b2Mi Qm` mMbm++2bb7mH `2bmHib �i
+QKTmiBM; i?2b2 T`Q#�#BHBiB2b mbBM; J�`FQp +?�BMbX 6B@
M�HHv- r2 T`Qp2 i?�i i?2 T`Q#�#BHBiv i?�i � ;Bp2M rQ`/
�TT2�`b BM � mMB7Q`K `�M/QK bi`BM; bQH2Hv /2T2M/b QM
Bib �miQ+Q``2H�iBQM b2i �b /2}M2/ #v :mB#�b �M/ P/HvxFQ
(:mB#�b �M/ P/HvxFQ- RN3R) �M/ �b bm+? i?�i i?2 MmK#2`
Q7 TQbbB#H2 /Bz2`2Mi T`Q#�#BHBiB2b i?�i � rQ`/ Q7 H2M;i?
n �TT2�`b BM � mMB7Q`K `�M/QK bi`BM; Bb i?2 b�K2 �b
i?2 MmK#2` Q7 TQbbB#H2 �miQ+Q``2H�iBQM b2ib 7Q` � rQ`/ Q7
H2M;i? n r?B+? Bb /2}M2/ BM h?2 PM@GBM2 1M+v+HQT2/B�
Q7 AMi2;2` a2[m2M+2b �b b2[m2M+2 �yy89j9X

k _2T`2b2MiBM; i?2 i`�+2b �b bi`BM;b
Qp2` � }MBi2 �HT?�#2i

h?2`2 �`2 � HQi Q7 /Bz2`2Mi �M/ +QKTH2t 7Q`K�ib �p�BH@
�#H2 7Q` i?2 `2T`2b2Mi�iBQM Q7 �TTHB+�iBQM i`�+2b �M/ �b
bm+?- r2 M22/ � r�v iQ `2T`2b2Mi i?2K rBi? � mMB}2/
7Q`K�HBx�iBQM BM Q`/2` iQ #2 �#H2 iQ rQ`F rBi? i?2KX
J�Mv Q7 i?2b2 i`�+2b �i H2�bi `2+Q`/ i?2 /Bz2`2Mi 2p2Mib
i?�i ?�TT2M2/ BM i?2 bvbi2K �HQM; rBi? � iBK2bi�KT 7Q`
2�+? Q7 i?2b2 2p2MibX q2 /2+B/2/ iQ `2T`2b2Mi i?2K �b
bi`BM;b Qp2` }MBi2 �HT?�#2ib �b bi`BM;b �`2 bBKTH2 �M/
7mM/�K2Mi�H Q#D2+ib BM +QKTmi2` b+B2M+2 7Q` r?B+? � HQi
Q7 BM7Q`K�iBQM K2�bm`2b 2tBbiX

P#pBQmbHv- MQi �HH i`�+2b +�M #2 `2T`2b2Mi2/ 2�bBHv �b

bi`BM;bX 6Q` 2t�KTH2- r?2M rQ`FBM; rBi? i`�+2b QM �
/Bbi`B#mi2/ bvbi2K- 2�+? 2p2Mi +�M #2 `2+Q`/2/ �HQM;
rBi? i?2 MQ/2 r?2`2 Bi Q++m`2/X h?Bb FBM/ Q7 KmHiB@
/BK2MbBQM�H BM/2tBM; Q7 i`�+2b ?�b MQi #22M bim/B2/-
i?Qm;?- �b Bi rQmH/ ?�p2 /22THv +QKTHB+�i2/ Qm` bim/v
�M/ Bb MQi Qm` T`BK�`v ;Q�H Q7 bim/vBM; G2KT2H@wBpǶb
K2�bm`2b �TTHB+�iBQM iQ i`�+2 T�`iBiBQMBM;X �b bm+?- r2
7Q+mb BM i?2 `2K�BMBM; Q7 i?Bb �`iB+H2 QM i`�+2b i?�i +�M
2�bBHv #2 +QMp2`i2/ BMiQ � QM2@/BK2MbBQM�H bi`BM; Qp2` �
}MBi2 �HT?�#2i- bm+? �b iBK2@BM/2t2/ i`�+2bX

q2Ƕ`2 MQr 7�+BM; irQ /Bz2`2Mi +�b2b 7Q` `2/m+BM; i?2b2
i`�+2b iQ bi`BM;b Qp2` � }MBi2 �HT?�#2iX AM i?2 }`bi +�b2-
H2iǶb bmTTQb2 i?�i i?2 +HQ+F Q7 i?2 bvbi2K mb2/ iQ T`QpB/2
i?2 iBK2bi�KT `2H�i2/ iQ 2�+? 2p2Mi ?�b � HQr `2bQHmiBQMX
AM bm+? � +�b2- � HQi Q7 2p2Mib ?�TT2M QM i?2 b�K2 iBK2b@
i�KT- r2 +�M i?2M mb2 i?2 TQr2` b2i P(E) Q7 i?2 b2i Q7
�HH TQbbB#H2 2p2Mib E �b Qm` }MBi2 �HT?�#2i �M/ `2T`2@
b2Mi i?2 i`�+2b �b bi`BM;b Q7 bvK#QHb- 2�+? bvK#QH +Q`@
`2bTQM/BM; iQ QM2 iBK2bi�KT #2BM; i?2 bm#b2i Q7 2p2Mib
i?�i Q++m`2/ �i i?�i iBK2bi�KT- rBi? i?2 2KTiv b2i �b
i?2 bvK#QH 7Q` iBK2bi�KTb r?2`2 MQi?BM; ?�TT2M2/X AM
i?2 b2+QM/ +�b2- �bbmKBM; i?�i i?2 +HQ+F Q7 i?2 bvbi2K Bb
� ?B;?@`2bQHmiBQM +HQ+F- i?2 T`Q#�#BHBiv i?�i irQ /Bz2`@
2Mi 2p2Mib ?�TT2M rBi? i?2 b�K2 2t�+i iBK2bi�KT #2BM;
`2�HHv HQr- r2 +�M `2T`2b2Mi i?2 i`�+2b �b bi`BM;b #v i�F@
BM; i?2 b2i Q7 �HH TQbbB#H2 2p2Mib E �b bvK#QHb �M/ #v
+QMbB/2`BM; i?2 bi`BM; Q7 �HH i?2 2p2Mib i?�i ?�TT2M2/ BM
i?2 bvbi2K BM i?2 Q`/2` BM r?B+? i?2v ?�TT2M2/X _2@
K�`F i?�i i?2b2 irQ /Bz2`2Mi r�vb Q7 i`�Mb7Q`KBM; i?2
i`�+2b BMiQ bi`BM;b �`2 MQi 2[mBp�H2Mi �b i?2 b2+QM/ QM2
/Q2bMǶi i�F2 BMiQ �++QmMi i?2 �KQmMi Q7 iBK2 2H�Tb2/ #2@
ir22M irQ +QMb2+miBp2 2p2MibX h?2 #2bi K2i?Q/ iQ mb2
Bb �TTHB+�iBQM /2T2M/2Mi �M/ ?�b MQi #22M BMp2biB;�i2/
BM i?Bb bim/vX

LQr i?�i r2 ?�p2 � +QMp2MB2Mi r�v Q7 `2T`2b2MiBM;
i?2 i`�+2b �b bi`BM;b- Qm` Q#D2+iBp2 Bb iQ �M�Hvx2 i?2K `2@
;�`/BM; i?2B` `2;mH�`Biv �M/ i�F2 �T�`i `�M/QK@HQQFBM;
b2+iBQMb Q7 i?2 i`�+2b �M/ `2;mH�` b2+iBQMbX h?Bb Bb i?2
Tm`TQb2 Q7 BM7Q`K�iBQM K2�bm`2b �b bim/B2/ #v BM7Q`K�@
iBQM i?2Q`v- r?B+? �`2 7mM+iBQMb �bbQ+B�iBM; bi`BM;b rBi?
� TQbBiBp2 MmK#2`- �BK2/ �i `2T`2b2MiBM; i?2 �KQmMi Q7
BM7Q`K�iBQM +QMi�BM2/ BM i?2 bi`BM;X

j ai�i2 Q7 i?2 �`i Q7 BM7Q`K�iBQM
K2�bm`2b QM bi`BM;b

:QBM; #�+F iQ i?2 2t�KTH2 ;Bp2M BM BMi`Q/m+iBQM- r2
?�p2 � i`�+2 i`�Mb7Q`K2/ iQ i?2 bi`BM; Q7 �HH i?2
2p2Mib i?�i Q++m`2/ /m`BM; � KmHiB@i?`2�/2/ K2`;2@
bQ`i- �M/ i?Bb bi`BM; Bb +QKTQb2/ Q7 H�`;2 b2+iBQMb
r?2`2 irQ /Bz2`2Mi 2p2Mib A �M/ B �`2 �Hi2`M�iBM;
· · ·ABABABABABA · · ·X q2 r�Mi �M BM7Q`K�iBQM
K2�bm`2 �#H2 iQ +�Tim`2 i?Bb FBM/ Q7 `2;mH�`Biv- FMQrM
�b T�ii2`M@`2;mH�`Biv #2+�mb2 � ;Bp2M T�ii2`M AB Bb `2@
T2�i2/ �HQM; i?2 i`�+2X JQ`2 7Q`K�HHv- b�vBM; i?�i �M
BM7Q`K�iBQM K2�bm`2 f +�Tim`2b QM2 FBM/ Q7 `2;mH�`Biv
K2�Mb i?�i QM bi`BM;b S `2;mH�` `2;�`/BM; i?Bb +`Bi2@
`BQM Q7 `2;mH�`Biv- f(S) = 0 r?2`2�b BM Q`/2` iQ #2 �
`2�H BM7Q`K�iBQM K2�bm`2- QM mMB7Q`K `�M/QK bi`BM;b R-

https://oeis.org/
https://oeis.org/
https://oeis.org/A005434
Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin
. A

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin
. We

Michael Perin
(over all possible words)

Michael Perin
.

Michael Perin
.

Michael Perin

f(R) = 1X
S`2pBQmb rQ`F QM i?2 T�`iBiBQMK2Mi Q7 i`�+2b

(G�K�`+?2@S2``BM- kyRjc .QbBKQMi- kyR8) +QMbB/2`2/
?QKQ;2M2Qmb b2+iBQMb �b `2;mH�`X JQ`2 7Q`K�HHv-
G�K�`+?2@S2``BM �M/ .QbBKQMi bim/B2/ i`�+2b r?2`2
2�+? KB+`Qb+QTB+ 2p2Mi Bb � /Bbi`B#miBQM Q7 bi�i2b �M/ MQi
� ;Bp2M 2p2Mi BM � }MBi2 b2i U7Q` 2t�KTH2- r?2M +QMbB/@
2`BM; � i`�+2 Q7 � /Bbi`B#mi2/ bvbi2K- 7Q` 2�+? MQ/2- i?2
/Bbi`B#miBQM #2ir22M i?2 bi�i2b r?2M i?2 MQ/2 Bb �+im@
�HHv +QKTmiBM; bQK2i?BM; mb27mH- �M/ r?2M Bi Bb r�BiBM;
7Q` � i�bF iQ #2 ;Bp2M iQ BiVX AM Q`/2` iQ #2 �#H2 iQ K2�@
bm`2 i?2 BM7Q`K�iBQM +QMi�BM2/ BM � b2+iBQM Q7 i?2 i`�+2-
i?2v mb2/ i?2 EmHH#�+F@G2B#H2` /Bp2`;2M+2 (EmHH#�+F �M/
G2B#H2`- RN8R) #2ir22M i?2 KB+`Qb+QTB+ /Bbi`B#miBQMb �M/
i?2 �p2`�;2 /Bbi`B#miBQM Qp2` i?2 r?QH2 b2+iBQMX h?Bb
K2�bm`2 +�M #2 +QMbB/2`2/ �b � 7Q`K Q7 a?�MMQMǶb 2M@
i`QTv (a?�MMQM- RN93) �M/ Bb mMbmBi�#H2 7Q` `2+Q;MBxBM;
T�ii2`M@`2T2�iBM; bi`BM;b �b `2;mH�` �b Bi /Q2bMǶi i�F2
BMiQ �++QmMi i?2 Q`/2`BM; Q7 i?2 KB+`Qb+QTB+ 2p2MibX

AM/22/- i?2 2Mi`QTv Q7 � bi`BM; S = s1 · · · sl Q7 H2M;i?
l Qp2` � }MBi2 �HT?�#2i {xi} Q7 n bvK#QHb Bb /2}M2/ �b
�
Pn

i=1 P(xi) log2 P(xi) r?2`2 P(xi) Bb 2biBK�i2/ �b i?2
MmK#2` Q7 iBK2b i?2 bvK#QH xi �TT2�`b BM S Qp2` lX h?Bb
/2}MBiBQM QMHv i�F2 BMiQ �++QmMi i?2 /Bbi`B#miBQM Q7 2�+?
bvK#QH Qp2` i?2 bi`BM; �M/ �b bm+? +�MǶi i2HH i?2 /Bz2`@
2M+2 #2ir22M � mMB7Q`K `�M/QK bi`BM; Q7 ?2�/b �M/ i�BHb
�M/ � T2`72+i �Hi2`M�iBQM Q7 ?2�/b �M/ i�BHb �b BM i?2 irQ
+�b2b- i?2 /Bbi`B#miBQM Q7 ?2�/b �M/ i�BHb rBHH #2 0.5/0.5X
q2 i?mb M22/ � /Bz2`2Mi BM7Q`K�iBQM K2�bm`2 BM Q`/2`
iQ `2+Q;MBx2 Qm` T�ii2`M@`2T2�iBM; b2+iBQMb Q7 i`�+2b �b
`2;mH�`X

�MQi?2` 2t�KTH2 Q7 bm+? K2�bm`2b Bb EQHKQ;Q`QpǶb
+QKTH2tBiv (EQHKQ;Q`Qp- RNej) r?B+? K2�bm`2b i?2 +QK@
TH2tBiv Q7 � bi`BM; �b i?2 bBx2 Q7 i?2 bK�HH2bi �H;Q`Bi?K
QmiTmiiBM; i?2 ;Bp2M bi`BM;X �b r2 T`2pBQmbHv b�B/- a?�M@
MQMǶb 2Mi`QTv +�MǶi +�Tim`2 i?2 `2;mH�`Biv BM T�ii2`M Q7
� bi`BM;- #mi EQHKQ;Q`Qp rQmH/X lM7Q`imM�i2Hv- EQH@
KQ;Q`QpǶb +QKTH2tBiv ?�b �HbQ #22M T`Qp2/ iQ #2 mM@
+QKTmi�#H2 �M/ �b bm+? +�MǶi ?2HT mb #mBH/BM; � T`�+iB+�H
K2�bm`2 Q7 BM7Q`K�iBQMX

h?2`2 biBHH 2tBbib QM2 K2�bm`2 Q7 BM7Q`K�iBQM i?�i +�M
B/2MiB7v T�ii2`Mb BM bi`BM;b �M/ biBHH Bb +QKTmi�#H2- i?Bb
Bb i?2 G2KT2H@wBpǶb +QKTH2tBiv (G2KT2H �M/ wBp- RNdec
wBp �M/ G2KT2H- RNddc wBp �M/ G2KT2H- RNd3)X h?Bb K2�@
bm`2 +`2�i2/ #v �X G2KT2H �M/ CX wBp ?�b #22M bim/@
B2/ �b i?2 7QmM/�iBQM Q7 b2p2`�H +QKT`2bbBQM �H;Q`Bi?Kb
BM mb2 iQ/�v U.16G�h1- Gwq (q2H+?- RN39)- GwJ�V
�M/ �b bm+? Qz2`b � mb27mH �M/ /22THv bim/B2/ i?2Q`2iB+�H
7`�K2rQ`F 7Q` bim/vBM; i?2 T�`iBiBQMK2Mi Q7 i`�+2bX AM
i?Bb bim/v- r2 7Q+mb2/ T�`iB+mH�`Hv QM i?2 2B;2Mp�Hm2 Q7
� bi`BM; S = s1 · · · sl �i BM/2t i- kS(i)- r?B+? Bb i?2 MmK@
#2` Q7 M2r bm#bi`BM;b BM s1 · · · si +QKT�`2/ iQ s1 · · · si�1-
�b /2}M2/ #v G2KT2H �M/ wBp (G2KT2H �M/ wBp- RNde)X
h?2 `2�bQM 7Q` i?Bb +?QB+2 Bb i?�i QM � T�ii2`M@`2T2�iBM;
bi`BM;- KQbi Q7 i?2 bm#bi`BM;b U+�HH2/ rQ`/bV Q7 i?2 bi`BM;
b?QmH/ #2 T`2b2Mi �i KmHiBTH2 TH�+2b bQ i?2 Qp2`�HH MmK@
#2` Q7 bm#bi`BM;b b?QmH/ bi�v HQr 7Q` T�ii2`M@`2T2�iBM;
bi`BM;bX �b r2Ƕ`2 BMi2`2bi2/ BM }M/BM; i?2 #`2�Fb Q7 `2;@
mH�`Biv BM i?2 i`�+2b- r2Ƕ`2 BMi2`2bi2/ BM i?2 /vM�KB+

Q7 i?Bb MmK#2` Q7 bm#bi`BM;b- i?Bb Bb r?v r2Ƕ`2 HQQF@
BM; �i i?2 MmK#2` Q7 M2r bm#bi`BM;b �i 2�+? bvK#QH
�//2/ iQ i?2 bi`BM; SX JQ`2Qp2`- BM Q`/2` iQ #2 �#H2
iQ +QKT�`2 i?2 `2;mH�`Biv Q7 bi`BM;b Q7 /Bz2`2Mi bBx2b- r2
+?QQb2 iQ /2}M2 � MQ`K�HBx2/ p2`bBQM Q7 i?2 2B;2Mp�Hm2
k̄S(i) = kS(i)

i �b kS(i)  iX h?Bb MQ`K�HBx2/ 2B;2Mp�Hm2
i?mb #2HQM;b iQ [0, 1]X

AM i?Bb �`iB+H2- r2 K�F2 i?2 ?vTQi?2bBb i?�i i?2 2B;2M@
p�Hm2 +�M #2 mb2/ iQ K2�bm`2 i?2 `2;mH�`Biv Q7 bi`BM;b
�++Q`/BM; iQ i?2 `2T2iBiBQM Q` MQi Q7 T�ii2`Mb- r2 7m`@
i?2` K�F2 i?2 ?vTQi?2bBb i?�i k̄S(i) ?�b �M �bvKTiQiB+
BM 1� log2 i

i �M/ ;Bp2 � 72r BMbB;?ib �HHQrBM; mb iQ i?BMF
i?Bb �bvKTiQiB+ #2?�pBQ` ?QH/bX

9 1B;2Mp�Hm2 Q7 � bi`BM;, /2}MBiBQMb �M/
}`bi T`QT2`iB2b

G2i S = s1 · · · sl /2MQi2 � bi`BM; Q7 H2M;i? l Qp2` � }MBi2
�HT?�#2i ⌃X G2i VS(i) /2MQi2 i?2 b2i Q7 �HH bm#bi`BM;b
+QMi�BM2/ BM s1 · · · si- VS(i) = {sj · · · sk | 1  j  k 
i}- Bi Bb i?2 pQ+�#mH�`v Q7 s1 · · · si- �b /2}M2/ T`2pBQmbHv
(G2KT2H �M/ wBp- RNde)X LQi2 i?�i r2 /QMǶi BM+Hm/2 i?2
2KTiv rQ`/ BM i?2 pQ+�#mH�`v BM i?Bb /2}MBiBQMX �b r2
rBHH HQQF �i /Bz2`2M+2b #2ir22M pQ+�#mH�`B2b- i?2 +?QB+2
Q7 BM+Hm/BM; Bi Q` MQi BM i?Bb /2}MBiBQM /Q2bMǶi K�ii2`X

q2Ƕ`2 BMi2`2bi2/ BM i?2 `�i2 Q7 ;`Qri? Q7 i?2 pQ@
+�#mH�`v Q7 i?2 bi`BM; �i 2�+? bvK#QH �//2/ �M/ �b
bm+?- r2 /2}M2 i?2 2B;2Mp�Hm2 Q7 S �7i2` i bvK#QHb �b
kS(i) = |VS(i) \ VS(i � 1)|X �b T`2pBQmbHv T`Qp2/ (G2K@
T2H �M/ wBp- RNde)- 1  kS(i)  i bQ r2 �HbQ /2}M2 �
MQ`K�HBx2/ 7Q`K Q7 i?2 2B;2Mp�Hm2 k̄S(i) = kS(i)

i - r?B+?
�HHQrb Qm` K2�bm`2 iQ #2 BM [0, 1]X

�b G2KT2H �M/ wBp T`Qp2/ (G2KT2H �M/ wBp- RNde)-
i?2 M2r rQ`/b �//2/ iQ i?2 bi`BM; #v i?2 �//BiBQM Q7
i?2 bvK#QH i �`2 i?2 kS(i) HQM;m2bi bm{t2b Q7 s1 · · · siX
h?Bb rBHH �HHQr mb iQ T`Qp2 i?�i B7 � rQ`/ sj · · · si 62
VS(i) \ VS(i� 1) i?2M kS(i) < j �M/ +QMp2`b2Hv i?�i B7 �
rQ`/ sj · · · si 2 VS(i) \ VS(i� 1) i?2M kS(i) � jX

h?2Q`2K RX VS(i) \ VS(i � 1) = {si · · · sl | 1  i 
kS(i)}X

AM �HH i?2 7QHHQrBM;- r2 rBHH bmTTQb2 ⌃ = {0, 1} �b Qm`
bim/v Bb #�b2/ QM #BM�`v �HT?�#2ib 7Q` bBKTHB+Biv `2�bQMbX

9XR 6B`bi Q#b2`p�iBQMb

� T`2HBKBM�`v THQi Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2
QM � T�ii2`M@`2T2�iBM; bi`BM; Q7 bBx2 250- S =
p1 · · · ppp1 · · · pp · · · rBi? p = 20 b22Kb iQ b?Qr � 7�bi
/2+`2�b2 Q7 k̄S(i) iQr�`/b 0 �7i2` i?2 }`bi 20 bvK#QHb
?�p2 #22M 2M+QmMi2`2/X

h?2Q`2K kX G2i S = s1 · · · sl � bi`BM; Q7 bBx2 l �M/
P = p1 · · · pp � T�ii2`M bm+? i?�i 8i, 1  i  l- si =
p(i mod p)+1X 8i > p- k̄S(i)  p

i X

S`QQ7X G2i i > p- sp+1 · · · si = s1 · · · si�p 2 VS(i � 1)X
h?Bb BKTHB2b sp+1 · · · si 62 VS(i) \ VS(i � 1)X lbBM; R-
kS(i)  p- bQ k̄S(i)  p

i X

q2 i?mb ?�p2 #22M �#H2 iQ T`Qp2 i?�i QM � T�ii2`M@
`2T2�iBM; bi`BM;- limi!1 k̄S(i) = 0X

h?2 b�K2 THQi �;�BMbi � bi`BM; Q7 bBx2 250 ;2M2`�i2/
mMB7Q`KHv �i `�M/QK Qp2` � #BM�`v �HT?�#2i H2ib �TT2�`
� bi2�/v BM+`2�b2 iQr�`/b 1X

h?2 bim/v Q7 i?Bb #2?�pBQ` #2BM; Km+? KQ`2 +QKTHB@
+�i2/- r2 H2i Bi iQ i?2 b2+QM/ T�`i Q7 i?Bb �`iB+H2X

h?2b2 irQ #2?�pBQ`b Qp2` T�ii2`M@`2T2�iBM; �M/ mMB@
7Q`K `�M/QK bi`BM;b �`2 `2[mB`2/ BM Q`/2` 7Q` i?2 MQ`K�H@

Bx2/ 2B;2Mp�Hm2 iQ #2 �M BMi2`2biBM; K2�bm`2 `2;�`/BM;
i?2 T�`iBiBQMK2Mi Q7 i?2 i`�+2b r2Ƕ`2 HQQFBM; iQ �+?B2p2X

9Xk _�M/QK T�ii2`M BMb2`i2/ BMiQ �
+QMbi�Mi bi`BM;, _2#QmM/ 2z2+i

�b � T`2HBKBM�`v bim/v Q7 i?2 #2?�pBQ` Q7 i?2 MQ`K�H@
Bx2/ 2B;2Mp�Hm2 QM � `2;mH�` bi`BM; rBi? � HBiiH2 T2`im`@
#�iBQM BMb2`i2/ BM Bi- r2 bim/B2/ � bi`BM; Q7 i?2 7Q`K
p1 · · · pp0 · · · 0p1 · · · pp0 · · ·X

AM i?2 7QHHQrBM; THQi- p1 · · · pp Bb � mMB7Q`K `�M/QK
T�ii2`M Q7 bBx2 20 BMb2`i2/ �i i?2 #2;BMMBM; �M/ �i TQbB@
iBQM 50 BM � +QMbi�Mi bi`BM; Q7 0X

q2 +�M Q#b2`p2 irQ T2�Fb �TT2�`BM; �7i2` BM/2t 25
U�b rBi? �HH T�ii2`M `2T2�iBM; bi`BM;b- i?2 MQ`K�HBx2/
2B;2Mp�Hm2 Bb MQBbv mMiBH i?2 T�ii2`M ?�b #22M 2MiB`2Hv
b22MV- i?2 }`bi QM2 �i 50- r?2`2 i?2 T�ii2`M BM 2M+QmM@
i2`2/ 7Q` i?2 b2+QM/ iBK2 �M/ �MQi?2` �`QmM/ 100- �i �
TQbBiBQM r?2`2 i?2 bi`BM; Bb T2`72+iHv +QMbi�Mi- r2 +�HH Bi
i?2 Ǵ`2#QmM/ 2z2+iǴ �M/ ?�p2 #22M �#H2 iQ 2tTH�BM BiX
h?2Q`2K jX G2i P = p1 · · · pp #2 � T�ii2`M
Q7 H2M;i? p �M/ +QMbB/2`BM; i?2 bi`BM; S =
p1 · · · pp 0 · · · 0| {z }

n iBK2b

p1 · · · pp0 · · · X q2 i?mb ?�p2 kS(2p+2n) 

p+ n r?2`2�b kS(2p+ 2n+ 1)  2p+ n+ 1X
S`QQ7X sp+n+1 · · · s2p+2n = p1 · · · pp 0 · · · 0| {z }

n iBK2b

2 VS(2p +

2n� 1) bQ kS(2p+ 2n)  p+ nX s2p+n+2 · · · s2p+2n+1 =
0 · · · 0| {z }
n iBK2b

2 VS(2p+2n) bQ kS(2p+2n+1)  2p+n+1X

h?2b2 BM2[m�HBiB2b �HHQr mb iQ b22 i?2 BM+`2�b2 Q7 p BM
i?2 2B;2Mp�Hm2 r?2M T�bbBM; 7`QK 2p+2n iQ 2p+2n+1X

h?Bb #2?�pBQ` Kmbi #2 i�F2M +�`2 Q7 r?2M i`vBM; iQ mb2
i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 iQ /2i2+i #`2�Fb BM `2;mH�`Biv
BM i?2 bi`BM;- BM/22/- i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 b?Qrb
T2�Fb 2p2M �i TH�+2b r?2`2 i?2 bi`BM; Bb HQ+�HHv T2`72+iHv
`2;mH�`X >Qr2p2`- i?Bb `2bmHi ;Bp2b mb i?2 T`2+Bb2 HQ+�iBQM

r?2`2 i?2b2 Ǵ7�Hb2 TQbBiBp2bǴ +�M ?�TT2M i?mb �HHQrBM;
mb iQ bmTT`2bb i?Bb 2z2+iX

9Xj amKK�`v

lbBM; i?Bb T`2HBKBM�`v rQ`F- r2 K�F2 i?2 ?vTQi?2bBb
i?�i i?2 2B;2Mp�Hm2 +�M #2 mb2/ �b � r�v Q7 K2�bm`BM;
i?2 BM7Q`K�iBQM +QMi�BM2/ BM � i`�+2 �M/ rQmH/ i?mb �H@
HQr mb iQ T�`iBiBQM i?2 i`�+2b #�b2/ QM i?Bb K2�bm`2 Q7
BM7Q`K�iBQMX

8 aim/v Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2
QM bi`BM;b ;2M2`�i2/ mMB7Q`KHv �i
`�M/QK

�b r2Ƕ`2 i`vBM; iQ mb2 Qm` K2�bm`2 BM Q`/2` iQ B/2MiB7v
i?2 BM7Q`K�iBQM +QMi�BM2/ BM i`�+2b- r2 M22/ iQ FMQr
T`2+Bb2Hv i?2 #2?�pBQ` Q7 i?2 2B;2Mp�Hm2 QM bi`BM;b ;2M2`@
�i2/ mMB7Q`KHv �i `�M/QK QM ⌃ BM Q`/2` iQ +QKT�`2 i?Bb
`272`2M+2 p�Hm2 iQ i?2 K2�bm`2/ MQ`K�HBx2/ 2B;2Mp�Hm2 Q7
� bi`BM; �M/ i?mb i2HH �T�`i `�M/QK@HQQFBM; bi`BM;b �M/
`2;mH�` bi`BM;bX

8XR /2 "`mBDM bi`BM;b, i?2 KQbi +QKTH2t
bi`BM;b `2;�`/BM; i?2 2B;2Mp�Hm2

� /2 "`mBDM bi`BM; Q7 Q`/2` k Qp2` � #BM�`v �HT?�#2i ⌃ Bb
� bi`BM; Q7 H2M;i? 2k + k� 1 +QMi�BMBM; 2�+? rQ`/ Q7 ⌃k

QM+2 �M/ QMHv QM+2 (/2 "`mBDM- RNd8)X h?2b2 bi`BM;b �`2
mb27mH iQ bim/v BM i?�i i?2v `2T`2b2Mi i?2 KQbi +QKTH2t
bi`BM;b r2Ƕ`2 �#H2 iQ +`2�i2 `2;�`/BM; i?2 2B;2Mp�Hm2- �M/
BM i?�i r2 FMQr � HQr2` #QmM/ QM i?2B` 2B;2Mp�Hm2X

h?2Q`2K 9X G2i Bk = b1 · · · b2k+k�1 #2 � /2 "`mBDM
bi`BM; Q7 Q`/2` kX 8i � 1, k̄Bk(i) � 1� k�1

i X

S`QQ7X A7 i < k, h?2M i�(k�1) < 1X �b 7Q` � bi`BM; S =
s1 · · · si- s1 · · · si 2 VS(i) \ VS(i � 1) #2+�mb2 s1 · · · si 62
VS(i � 1)- i?2M 8i � 1, kS(i) � 1- i?2M kBk(i) � 1 >
i� (k � 1)- i?2M k̄Bk(i) � 1� k�1

i X
A7 i � k, bi�(k�1) · · · bi 62 VBk(i � 1) #v /2}MBiBQM Q7

� /2 "`mBDM bi`BM; Q7 Q`/2` k bBM+2 bi�(k�1) · · · bi Bb Q7
H2M;i? k- i?2M #v R- kBk(i) � i � (k � 1)- i?Bb BKTHB2b
i?�i k̄Bk(i) � 1� k�1

i X

q2 i?mb ?�p2 � HQr2` #QmM/ QM i?2 MQ`K�HBx2/ 2B;2M@
p�Hm2 Q7 � /2 "`mBDM bi`BM; i?�i #2+QK2 Q#pBQmb #v THQi@
iBM; i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 Qp2` � /2 "`mBDM bi`BM; Q7
Q`/2` 8X

8Xk >vTQi?2bBb QM i?2 #2?�pBQ` Q7 i?2
MQ`K�HBx2/ 2B;2Mp�Hm2 Qp2` mMB7Q`K
`�M/QK bi`BM;b

lbBM; i?2 HQr2` #QmM/ Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 Qp2`
/2 "`mBDM bi`BM;b- r2 +�M �ii2KTi iQ }i i?2 2tT2+i�iBQM
Q7 i?2 MQ`K�HBx2/ 2B;2Mp�Hm2 QM bi`BM;b ;2M2`�i2/ mMB@
7Q`KHv �i `�M/QK mbBM; � bBKBH�` KQ/2HX

G2i ⌦ = {0, 1} #2 � b�KTH2 bT�+2 2[mBTT2/
rBi? i?2 /Bb+`2i2 mMB7Q`K /Bbi`B#miBQMX G2i ⌦i =
⌦⇥ ⌦⇥ · · ·⇥ ⌦| {z }

i iBK2b

= ⌃i 2[mBTT2/ rBi? i?2 T`Q/m+i K2�@

bm`2X G2i S = S1 · S2 · · ·Si #2 � `�M/QK p�`B�#H2 BM
⌦iX q2 i?mb ?�p2 8j, 1  j  i,P(Sj = 0) = P(Sj =
1) = 1

2 �M/ P(S1 · S2 · · ·Si = s1 · s2 · · · si) = 1
2i 7Q` 2�+?

s1 ·s2 · · · si 2 ⌦iX G2i Ki #2 � `�M/QK p�`B�#H2 bm+? i?�i
Ki(s1 · · · si) = ks1···si(i) QM i?2 b�KTH2 bT�+2 ⌦iX

q2 r�Mi iQ +QKTmi2 E[Ki] 7Q` 2�+? i � 1X

"2HQr r2 THQii2/ Qm` ?vTQi?2bBb- r?B+? Bb i?�i
E[Ki]

i ⇠i!1 1 � log2 i
i X AM `2/ Bb `2T`2b2Mi2/ i?2 bBK@

mH�i2/ 2tT2+i�iBQM Q7 E[Ki]
i Q#i�BM2/ #v �p2`�;BM; i?2

2B;2Mp�Hm2b Q7 10000 mMB7Q`K `�M/QK bi`BM;b �M/ BM #Hm2
i?2 7mM+iBQM 1� log2 i

i X

AM i?2 7QHHQrBM; r2 BMi`Q/m+2 Qm` H�i2bi rQ`F BM Qm`
r�v iQ T`Qp2 i?Bb ?vTQi?2bBbX

q2 rBHH mb2 i?2 MQi�iBQM s1 · · · sl 2 t1 · · · tl0 iQ K2�M
i?�i 9i, 1  i  l0 � l + 1 bm+? i?�i 8j, 1  j  l, sj =
ti+j�1X
G2KK� RX kS(i) = |VS(i)|� |VS(i� 1)|X

S`QQ7X kS(i) = |VS(i) \ VS(i � 1)|X VS(i � 1) ✓ VS(i)X
h?Bb BKTHB2b i?�i kS(i) = |VS(i)|� |VS(i� 1)|X

h?Bb H2KK� i2HHb mb i?�i BMbi2�/ Q7 bim/vBM; Ki r2
+�M bim/v Vi r?B+? Bb � `�M/QK p�`B�#H2 Qp2` ⌦i bm+?
i?�i Vi(S) = |VS(i)|X q2 +�M 7m`i?2` `2K�`F i?�i
Vi(S) =

P
w2⌃⇤ 1VS(i)(w)- r?B+? BKTHB2b i?�i E[Vi] =P

w2⌃⇤ E[1Vi(w)]- r?2`2 1Vi(w) Bb Bib2H7 � `�M/QK p�`B@
�#H2 bm+? i?�i 1Vi(w)(S) = 1VS(i)(w)X _2K�`FBM; i?�i
E[1Vi(w)] = P(S 3 w)- r2 +�M i?2M i`v iQ +QKTmi2
i?Bb T`Q#�#BHBiv BM Q`/2` iQ +QKTmi2 i?2 /2bB`2/ 2tT2+i2/
p�Hm2X

8Xj *QKTmiBM; P(S 3 w) mbBM; J�`FQp
+?�BMb

:Bp2M � rQ`/ w = w1 · · ·wn- ?Qr iQ +QKTmi2 P(S 3 w)
rBi? S 2 ⌦l �M/ P(S) = 1

2l UBX2X S Bb � #BM�`v bi`BM;
Q7 H2M;i? l i�F2M mMB7Q`KHv �i `�M/QKV \ Pm` +m``2Mi
�TT`Q�+? Bb iQ KQ/2H i?Bb T`Q#H2K #v +QMbB/2`BM; S =
S1 · S2 · · ·Sl- rBi? Si BM ⌦ = {0, 1}- �M/ P(Si = 0) =
P(Si = 1) = 1

2 X
lbBM; i?2 }MBi2 bi�i2 �miQK�iQM i?�i `2+Q;MBx2b w BM

� bi`BM;- �M/ `2H�#2HHBM; i?2 i`�MbBiBQMb 0 �M/ 1 iQ 1
2

2�+?- r2 Q#i�BM � J�`FQp +?�BMX h?Bb J�`FQp +?�BM Bb
+QKTQb2/ Q7 n+1 bi�i2b- H�#2HH2/ 7`QK 0 iQ n- �M/ �i 2�+?
bi2T k BM i?2 T`Q+2bb- r2Ƕ`2 BM bi�i2 Xk = i B7 i?2 i H�bi
bvK#QHb b22M +Q``2bTQM/ iQ i?2 T`2}t Q7 w, w1 · · ·wiX
h?2 H�bi bi�i2 n Bb i?2 bm++2bb bi�i2- i?�i Bb- P(Xk+1 =
n | Xk = n) = 1X LQr- P(S 3 w) = P(Xl = n)X h?2
/`�rBM; #2HQr `2T`2b2Mib i?2 `2+Q;MBxBM; �miQK�iQM 7Q`
i?2 rQ`/ 0100X

q2 +�M `2K�`F i?�i ;Bp2M � rQ`/ w �M/ Bib /m�H w
Q#i�BM2/ #v br�TTBM; i?2 0Ƕb �M/ i?2 1Ƕb BM w- i?2v ?�p2
#Qi? i?2 b�K2 `2+Q;MBxBM; �miQK�iQM �T�`i 7`QK i?2 H�@
#2Hb Q7 i?2 i`�MbBiBQMb �M/ i?mb ?�p2 i?2 b�K2 /2`Bp2/
J�`FQp +?�BM �M/ i?mb P(S 3 w) = P(S 3 w)X q2
+�M i?mb �bF ?Qr K�Mv /Bz2`2Mi r�vb 2tBbi Q7 H�#2HHBM;
� p�HB/ `2+Q;MBxBM; �miQK�iQM 7Q` r?B+? i?2 i`�MbBiBQM
H�#2Hb ?�p2 #22M 2`�b2/ �b �M �ii2KTi iQ +`2�i2 +H�bb2b
Q7 rQ`/b 7Q` r?B+? i?2 T`Q#�#BHBiv Q7 }M/BM; i?2K BM �
mMB7Q`K `�M/QK bi`BM; Bb i?2 b�K2X lM7Q`imM�i2Hv- r2
T`Qp2 BM i?2 7QHHQrBM; i?�i i?2`2 2tBbib QMHv irQ /Bz2`@
2Mi r�vb Q7 H�#2HHBM; � p�HB/ �miQK�iQMX h?2 }`bi rBHH
`2+Q;MBx2 w �M/ i?2 b2+QM/ rBHH `2+Q;MBx2 Bib /m�H wX

AM i?2 7QHHQrBM;- r2 /2MQi2 #v si!j i?2 H�#2H Q7 i?2
i`�MbBiBQM ;QBM; 7`QK i iQ jX

G2iǶb ;Bp2 i?2 Qp2`�HH b?�T2 Q7 � `2+Q;MBxBM; �miQK�@
iQM- r2 rBHH M22/ Bi 7Q` i?2 7QHHQrBM; T`QQ7X A7 r2Ƕ`2 BM i?2
bi�i2 i- i?2 H�bi i bvK#QHb `2�/ +Q``2bTQM/ iQ w1 · · ·wi

�M/ i?2 bi�i2 ?�b irQ H2�pBM; i`�MbBiBQMb- QM2 r?B+? Bb
i ! i + 1 H�#2HH2/ #v wi+1 �M/ �MQi?2` QM2 BM +�b2 Q7
7�BHm`2 i ! j rBi? j  i H�#2HH2/ wi+1 r?2`2 w +Q``2@
bTQM/b iQ 0 B7 w = 1 �M/ iQ 1 B7 w = 0X h?2 H�bi bi�i2 n
#2BM; i?2 bm++2bb bi�i2- Bi ?�b QMHv QM2 i`�MbBiBQM n ! n
H�#2HH2/ #v ⌃X

q2ǶHH M22/ irQ T`QT2`iB2b Q7 `2+Q;MBxBM; �miQK�i� BM
Q`/2` iQ T`Qp2 i?2 `2bmHiX
G2KK� kX 8i, j, j0 rBi? j 6= j0 bm+? i?�i i?2`2 2tBbib
irQ i`�MbBiBQMb i ! j �M/ i ! j0 BM i?2 �miQK�iQM-
si!j = si!j0 X

S`QQ7X A7 i?2`2 2tBbib irQ /Bz2`2Mi i`�MbBiBQMb i ! j �M/
i ! j0 H�#2HH2/ rBi? i?2 b�K2 bvK#QH- i?2M i?2 �miQK�@
iQM BbMǶi /2i2`KBMBbiB+X h?Bb +QMi`�/B+ib i?2 +H�bbB+�H
/2}MBiBQM Q7 `2+Q;MBxBM; �miQK�i�X

_2K�`F i?�i i?�i i?2 /2i2`KBMBbK Q7 i?2 �miQK�iQM
Dmbi ;Bp2b mb i?2 7�+i i?�i si!j 6= si!j0 �M/ r2Ƕ`2 mbBM;
i?2 7�+i i?�i BM i?Bb bim/v- i?2 �HT?�#2i Bb #BM�`vX h?Bb
Bb � r2�FM2bb BM Qm` KQ/2H i?�i b?QmH/ #2 ?�M/H2/ BM
7mim`2 rQ`FX
G2KK� jX 8i, i0, j bm+? i?�i i?2`2 2tBbib irQ i`�MbBiBQMb
i ! j �M/ i0 ! j BM i?2 �miQK�iQM- si!j = si0!jX

S`QQ7X A7 j 6= 0, "v i?2 /2}MBiBQM Q7 i?2 `2+Q;MBxBM;
�miQK�iQM- r2 �`2 BM bi�i2 j B7 i?2 H�bi j bvK#QHb `2�/ �`2
w1 · · ·wj X AM T�`iB+mH�`- i?2 H�bi bvK#QH `2�/ Kmbi #2 wj X
h?�i K2�Mb i?�i �HH i?2 i`�MbBiBQMb H2�/BM; iQ i?2 bi�i2
j Kmbi #2 H�#2HH2/ #v wj X A7 j = 0, A7 si!0 6= si0!0- i?2M
si!0 = si0!0X h?mb s0!1 = si!0 Q` s0!1 = si0!0X LQr
B7 s0!1 = si!0 i?2M �7i2` i�FBM; i?2 i`�MbBiBQM i ! 0 i?2
H�bi bvK#QH b22M Bb s0!1 r?B+? Bb w1 �M/ �b bm+?- i?2
i`�MbBiBQM b?QmH/ #2 7`QK i iQ 1 �M/ MQi 7`QK i iQ 0 �M/

i?2 �miQK�iQM BbMǶi p�HB/X A7 s0!1 = si0!0- i?2 b�K2
`2�bQMBM; H2�/b iQ i?2 b�K2 +QM+HmbBQMX AM �HH +�b2b- i?2
�miQK�iQM BbMǶi p�HB/ r?B+? Bb �#bm`/X

h?2Q`2K 8X :Bp2M �M mMH�#2HH2/ �miQK�iQM 7Q` r?B+?
i?2`2 2tBbib � r�v Q7 H�#2HHBM; i?2 i`�MbBiBQMb BM Q`/2`
iQ Q#i�BM � }MBi2 bi�i2 �miQK�iQM `2+Q;MBxBM; � rQ`/ w-
i?2`2 �`2 QMHv irQ r�vb iQ H�#2H Bi T`QT2`Hv i?�i rQmH/
;Bp2 irQ `2+Q;MBxBM; �miQK�i�- i?2 }`bi QM2 `2+Q;MBxBM;
w- i?2 b2+QM/ QM2 `2+Q;MBxBM; wX

S`QQ7X G2iǶb +?QQb2 s0!1 2 {0, 1}X 6Q` 1  m  n � 1-
H2i Pm, 8i, 1  i  m- 7Q` �HH i`�MbBiBQMb i ! j- r2
FMQr si!j X lbBM; i?2 /2}MBiBQM- i?2`2 2tBbib �M Qi?2`
i`�MbBiBQM 0 ! j bm+? i?�i j  0X h?mb- j = 0X lbBM;
k- s0!0 = s0!1X q2 i?mb ?�p2 P0X amTTQb2 Pm 7Q`
m < n� 1X G2iǶb +QMbB/2` i?2 i`�MbBiBQM m+1 ! j rBi?
j  m + 1X A7 j = 0- i?2M mbBM; j- sm+1!0 = s0!0X A7
j 6= 0- i?2M i?2`2 2tBbib � i`�MbBiBQM j � 1 ! j �M/ #v
bmTTQbBiBQM r2 FMQr sj�1!j - mbBM; j- r2 ;2i sm+1!j =
sj�1!j X q2 i?mb FMQr sm+1!j - �M/ mbBM; k r2 ;2i
sm+1!m+2 = sm+1!j X q2 i?2M ?�p2 Pm+1X lbBM; i?2
/2}MBiBQM �;�BM- i?2`2 2tBbib QMHv QM2 i`�MbBiBQM n ! n
H�#2HH2/ #v ⌃ �M/ i?mb i?2 r?QH2 �miQK�iQM Bb T`QT2`Hv
H�#2HH2/X q2 ?�p2 i?mb T`Qp2/ i?�i i?2 H�#2HHBM; Q7 i?2
�miQK�iQM /2T2M/b QMHv QM s0!1X �b r2 ?�p2 QMHv irQ
+?QB+2b 7Q` s0!1- r2 +�M /2/m+2 i?�i i?2`2 �`2 QMHv irQ
r�vb iQ H�#2H i?2 �miQK�iQM- i?2 }`bi QM2 `2+Q;MBxBM; �
rQ`/ w- i?2 Qi?2` QM2 `2+Q;MBxBM; wX

�b r2Ƕ`2 i`vBM; iQ B/2MiB7v i?2 /Bz2`2Mi +H�bb2b Q7
rQ`/b Q7 � ;Bp2M H2M;i? ?�pBM; i?2 b�K2 T`Q#�#BHBiv Q7
�TT2�`BM; BM � mMB7Q`K `�M/QK b2[m2M+2- i?Bb i?2Q`2K
i2HHb mb i?�i i?Bb BbMǶi �b bBKTH2 �b � ;Bp2M �miQK�iQM
b?�T2 7Q` 2�+? +H�bb- �b 2�+? �miQK�iQM b?�T2 QMHv `2+@
Q;MBx2b irQ rQ`/bX

q2 i?mb i`B2/ iQ B/2MiB7v i?2 MmK#2` Q7 bm+? +H�bb2b 7Q`
2�+? rQ`/Ƕb H2M;i? #v bBKmH�iBQMX AM i?2 THQi #2HQr- r2
THQii2/ 7Q` 2�+? Q7 i?2 32 rQ`/b BM ⌃5 i?2B` T`Q#�#BHBiv
Q7 �TT2�`BM; BM � mMB7Q`K `�M/QK bi`BM; S �;�BMbi i?2
H2M;i? Q7 SX �b 2tT2+i2/- �HH Q7 i?2b2 T`Q#�#BHBiB2b ?�p2
�M �bvKTiQiB+ BM 1X 6m`i?2`KQ`2- r2 +�M Q#b2`p2 ?2`2 6
+H�bb2b Q7 T`Q#�#BHBiB2bX

lbBM; i?2b2 bBKmH�iBQM `2bmHib- r2 i`B2/ iQ B/2MiB7v i?2
b2[m2M+2 Q7 i?2 MmK#2` Q7 +H�bb2b Q7 T`Q#�#BHBiv 7Q` rQ`/b
BM ⌃iX

qQ`/Ƕb H2M;i? LmK#2` Q7 +H�bb2b
R R
k k
j j
9 9
8 e
e 3
d Ry
3 Rj
N Rd

� [mB+F b2�`+? QM i?2 P1Aa ;�p2 mb i?2 /2bB`2/ b2@
[m2M+2 r?B+? Bb FMQrM �b i?2 MmK#2` Q7 +Q``2H�iBQMb Q7
H2M;i? n Ua2[m2M+2 �yy89j9VX

8X9 �miQ+Q``2H�iBQMb Q7 bi`BM;b
h?2 b2[m2M+2 �yy89j9 Q7 i?2 P1Aa Uh?2 PM@GBM2 1M+v@
+HQT2/B� Q7 AMi2;2` a2[m2M+2bV Q7 +Q``2H�iBQMb Q7 H2M;i?
n ?�b #22M bim/B2/ #v G2Q CX :mB#�b �M/ �M/`2r JX
P/HvxFQ (:mB#�b �M/ P/HvxFQ- RN3R)X

AM Q`/2` iQ T`QT2`Hv /2}M2 i?Bb b2[m2M+2- � 72r /2}@
MBiBQMb �`2 M2+2bb�`vX G2iǶb +QMbB/2` � rQ`/ w1 · · ·wn Q7
H2M;i? n Qp2` �M �HT?�#2i ⌃X 6Q` p 2 {0, · · · , n � 1}-
r2 b�v i?�i p Bb � T2`BQ/ Q7 w1 · · ·wn B7 8i 2 {1, · · · , n�
p}, wi+p = wiX JQ`2 BMimBiBp2Hv- � T2`BQ/ p Q7 w1 · · ·wn

Bb � MQM@M2;�iBp2 BMi2;2` bm+? i?�i- r?2M TH�+BM; � +QTv
Q7 w1 · · ·wn b?B7i2/ #v p TQbBiBQMb iQ i?2 `B;?i �#Qp2
i?2 Q`B;BM�H rQ`/- i?2 bvK#QHb K�i+? BM i?2 Qp2`H�TTBM;
T�`iX �b +�M #2 b22M #2HQr �b �M 2t�KTH2- 3 Bb � T2`BQ/
Q7 i?2 rQ`/ 010010X

y R y y R y
y R y y R y

y R y y R y
y R y y R y

q2 +�M MQr /2}M2 i?2 �miQ+Q``2H�iBQM Q7 � rQ`/
w1 · · ·wn �b i?2 b2i Q7 Bib T2`BQ/bX *QMbB/2`BM; Qm`

https://oeis.org/
https://oeis.org/A005434
https://oeis.org/A005434
https://oeis.org/
https://oeis.org/

T`2pBQmb 2t�KTH2 010010- Bib �miQ+Q``2H�iBQM Bb i?2 b2i
{0, 3, 5}X Ai Bb `�i?2` Q#pBQmb i?�i 0 Bb �Hr�vb BM i?2 �miQ@
+Q``2H�iBQM Q7 �Mv ;Bp2M rQ`/X q2 +�M �HbQ `2K�`F i?�i B7
1 Bb � T2`BQ/ Q7 w1 · · ·wn- i?2M 8i 2 {1, · · · , n� 1}, wi =
wi+1 �M/ w1 · · ·wn Bb +QMbi�Mi �M/ �b bm+? Bib �miQ+Q`@
`2H�iBQM Bb {0, · · · , n� 1}X

�+im�HHv- i?2 b2i Q7 TQbbB#H2 �miQ+Q``2H�iBQMb 7Q` �
rQ`/ w1 · · ·wn Bb ?B;?Hv +QMbi`�BM2/ �M/ :mB#�b �M/
P/HvxFQ ?�p2 #22M �#H2 iQ 7mHHv bT2+B7v � KBMBK�H b2i Q7
+QMbi`�BMib � bm#b2i Q7 {0, · · · , n�1} Kmbi 7QHHQr BM Q`/2`
iQ #2 � p�HB/ �miQ+Q``2H�iBQM b2i (:mB#�b �M/ P/HvxFQ-
RN3R)X JQ`2Qp2`- i?2v T`Qp2/ i?�i i?2 MmK#2` Q7 TQb@
bB#H2 �miQ+Q``2H�iBQM b2ib 7Q` rQ`/b Q7 H2M;i? n /Q2bMǶi
/2T2M/ QM i?2 bBx2 Q7 i?2 �HT?�#2iX h?Bb T`QT2`iv �HHQrb
mb iQ /2}M2 i?2 b2[m2M+2 �yy89j9 a(n) �b i?2 MmK#2`
Q7 TQbbB#H2 �miQ+Q``2H�iBQM b2ib 7Q` rQ`/b Q7 H2M;i? nX

G2iǶb MQr T`Qp2 r?v i?2 MmK#2` Q7 +H�bb2b Q7 rQ`/b
w 2 ⌃n ?�pBM; i?2 b�K2 P(S 3 w) rBi? S i�F2M mMB@
7Q`KHv �i `�M/QK BM ⌃l Bb i?2 b�K2 �b i?2 MmK#2` Q7
TQbbB#H2 �miQ+Q``2H�iBQM b2ibX q2 }`bi /2}M2 i?2 �miQ@
+Q``2H�iBQM b2[m2M+2 Q7 i?2 rQ`/ w- ci 7Q` i � 0 #v ci = 1
B7 i � n- ci = 1 B7 i < n �M/ i Bb � T2`BQ/ Q7 w �M/ ci = 0
Qi?2`rBb2X
h?2Q`2K eX :Bp2M i?2 �miQ+Q``2H�iBQM b2[m2M+2 ci Q7
� rQ`/ w- #v /2}MBM; i?2 b2[m2M+2 bl,i = 2l�n �Pi�1

j=1 ci�j
bl,j

2min(i�j,n) - i?2 MmK#2` Q7 bi`BM;b Q7 H2M;i? l

+QMi�BMBM; i?2 rQ`/ w Bb
Pl�n+1

i=1 bl,iX

S`QQ7X 6Q` i  l � n + 1- H2i Sl,i /2MQi2 i?2 b2i Q7 �HH
bi`BM;b Q7 H2M;i? l i?�i +QMi�BM i?2 rQ`/ w1 · · ·wn �i
TQbBiBQM i- BX2X 8k, 1  k  n- wk = si+k�1X G2i
S+
l,i /2MQi2 i?2 b2i Q7 �HH bi`BM;b Q7 H2M;i? l BM r?B+?

i?2 rQ`/ w1 · · ·wn �TT2�`b 7Q` i?2 }`bi iBK2 �i TQbB@
iBQM i- BX2X S+

l,i = Sl,i \ ([i�1
j=1Sl,j)X G2iǶb MQr `2K�`F

i?�i S⇤
l r?B+? Bb i?2 b2i Q7 bi`BM;b Q7 H2M;i? l +QM@

i�BMBM; i?2 rQ`/ w1 · · ·wn Bb tl�n+1
i=1 S+

l,iX h?Bb BKTHB2b
|S⇤

l | =
Pl�n+1

i=1 |S+
l,i| =

Pl�n+1
i=1 bl,i #v /2}MBM; bl,i #v

|S+
l,i|X
LQr H2iǶb +QKTmi2 bl,i = |S+

l,i|X q2Ƕp2 b22M S+
l,i =

Sl,i \ ([i�1
j=1Sl,j)- i?Bb BKTHB2b S+

l,i = Sl,i \ (([i�1
j=1Sl,j) \

Sl,i) ;BpBM; mb bl,i = |Sl,i| � |([i�1
j=1Sl,j) \ Sl,i|X LQr #v

`2K�`FBM; i?�i [i�1
j=1Sl,j = ti�1

j=1S
+
l,j - r2 ;2i ([i�1

j=1Sl,j)\
Sl,i = (ti�1

j=1S
+
l,j) \ Sl,i = ti�1

j=1(S
+
l,j \ Sl,i)X h?Bb ;Bp2b mb

|([i�1
j=1Sl,j) \ Sl,i| =

Pi�1
j=1|S

+
l,j \ Sl,i|X

G2iǶb MQr +QKTmi2 |S+
l,j \ Sl,i| 7Q` 1  j  i � 1X

6B`bi- B7 i < j + n �M/ i � j BbMǶi � T2`BQ/ Q7 w- i?2M
i?Bb b2i Bb 2KTivX a2+QM/- B7 i � j + n- i?2M n bvK#QHb
BM S �`2 +QMbi`�BM2/ �M/ |S+

l,j \ Sl,i| =
|S+

l,j |
2n X h?B`/- B7

i < j+n �M/ i�j Bb � T2`BQ/ Q7 w- i?2M QMHv i�j bvK#QHb
�`2 +QMbi`�BM2/ �M/ |S+

l,j \ Sl,i| =
|S+

l,j |
2i�j X h?2b2 i?`22

+�b2b +�M #2 Tmi iQ;2i?2` rBi? i?2 7Q`KmH� |S+
l,j \Sl,i| =

ci�j
|S+

l,j |
2min(i�j,n) = ci�j

bl,j
2min(i�j,n) X G�biHv- |Sl,i| = 2l�n- �M/

�b bm+?- bl,i = 2l�n �
Pi�1

j=1 ci�j
bl,j

2min(i�j,n) �M/ |S⇤
l | =

Pl�n+1
i=1 bl,iX

h?Bb i?2Q`2K ;Bp2b mb �M 2tTHB+Bi 7Q`KmH� iQ +QKTmi2
i?2 MmK#2` Q7 bi`BM;b BM ⌃l +QMi�BMBM; � rQ`/ w �M/ �b
bm+?- B7 r2 i�F2 � bi`BM; S BM ⌃l mMB7Q`KHv �i `�M/QK-
i?2 T`Q#�#BHBiv i?�i i?2 rQ`/ w �TT2�`b BM S Bb 2t�+iHv
|S⇤

l |
2l X JQ`2Qp2`- i?Bb 7Q`KmH� QMHv mb2b i?2 �miQ+Q``2H�@

iBQM b2[m2M+2 Q7 i?2 rQ`/ w- i?mb- �HH rQ`/b b?�`BM; i?2
b�K2 �miQ+Q``2H�iBQM b2[m2M+2 ?�p2 i?2 b�K2 T`Q#�#BH@
Biv iQ �TT2�` BM � ;Bp2M bi`BM; �M/ �b bm+?- i?2`2 Bb �i
KQbi �b K�Mv +H�bb2b Q7 T`Q#�#BHBiv 7Q` rQ`/b �b i?2`2 �`2
TQbbB#H2 �miQ+Q``2H�iBQM b2ib 7Q` i?2 ;Bp2M rQ`/b- i?mb 2b@
i�#HBb?BM; i?2 HBMF #2ir22M i?2b2 T`Q#�#BHBiv +H�bb2b �M/
i?2 b2[m2M+2 �yy89j9 Q7 i?2 P1AaX

e *QM+HmbBQM

h?`Qm;? i?Bb rQ`F- r2 /2}M2 �M BM7Q`K�iBQM K2�bm`2
�M/ bim/v Bib T`QT2`iB2b QM `2;mH�` �M/ mMB7Q`K `�M/QK
bi`BM;bX �b `2[mB`2/- QM T�ii2`M@`2T2�iBM; bi`BM;b- i?Bb
K2�bm`2b /`QTb iQ 0 �M/- �b r2 +QMD2+im`2/- i?2 K2�@
bm`2 b22Kb iQ `2�+? 1 QM mMB7Q`K `�M/QK bi`BM;bX q2
2tTH�BM i?2 Ǵ`2#QmM/ 2z2+iǴ rBi? `2;mH�` bi`BM;b T2`@
im`#�i2/ #v i?2 BMb2`iBQM Q7 � mMB7Q`K `�M/QK T�ii2`M
�i bT2+B}+ HQ+�iBQMbX q2 7Q`KmH�i2 � ?vTQi?2bBb QM i?2
�bvKTiQiB+ #2?�pBQ` Q7 E[Ki]

i �M/ ;Bp2 � bi`�i2;v iQ T`Qp2
Bi- T`QpB/BM; � `27Q`KmH�iBQM Q7 i?2 T`Q#H2K Q7 +QKTmi@
BM; P(S 3 w) #v mbBM; }MBi2 bi�i2 �miQK�i� 7Q` `2+Q;@
MBiBQM Q7 w �M/ J�`FQp +?�BMb Q#i�BM2/ #v 2`�bBM; i?2
H�#2Hb Q7 i?2b2 �miQK�i�X q2 �HbQ 2bi�#HBb? � HBMF #2@
ir22M i?2 T`Q#�#BHBiv i?�i � rQ`/ �TT2�`b BM � mMB7Q`K
`�M/QK bi`BM; �M/ i?2 �miQ+Q``2H�iBQM b2ib /2}M2/ #v
:mB#�b �M/ P/HvxFQ- r?B+? �TT2�` iQ #2 � +QKTH2t bm#@
D2+i r?2`2 � HQi Q7 mMFQrMb `2K�BMX

h?2 M2ti bi2Tb BM Qm` bim/v Q7 i?Bb BM7Q`K�iBQM K2�@
bm`2 �`2 iQ 2M/ i?2 T`QQ7 Q7 i?2 �bvKTiQiB+ #2?�pBQ` Q7
E[Ki]

i iQ #2 �#H2 iQ +H2�`Hv /2}M2 Qm` K2�bm`2 Q7 BM7Q`K�@
iBQM #v +QKT�`BM; k̄S(i) QM � ;Bp2M bi`BM; S rBi? E[Ki]

i X
lbBM; i?Bb FMQrH2/;2- r2 +QmH/ i?mb 2tT2`BK2Mi QM B/2�H
i`�+2b T`QpB/BM; i?�i r2 +�M ;2M2`�HBx2 i?Bb rQ`F Qp2`
#B;;2` �HT?�#2ib rBi? |⌃| � 3X � #2ii2` mM/2`bi�M/BM;
Q7 i?2 HBMFb #2ir22M i?2 2B;2Mp�Hm2 �M/ i?2 G2KT2H@wBpǶb
+QKTH2tBiv Bb �HbQ /2bB`�#H2 #2+�mb2 i?�i rQmH/ �HHQr mb
iQ mb2 T`2pBQmb rQ`F BM i?Bb r2HH@bim/B2/ }2H/X hQ #2
�#H2 iQ �TTHv i?Bb i2+?MB[m2 iQ `2�H@rQ`H/ i`�+2b- r2 TH�M
iQ bim/v i?2 #2?�pBQ` Q7 i?Bb K2�bm`2 QM MQBbv bi`BM;b
#v bim/vBM; i?2 #2?�pBQ` Q7 MQ`K�HBx2/ 2B;2Mp�Hm2 Qp2`
/Bz2`2Mi KQ/2Hb Q7 MQBb2 �M/ �/�TiBM; Bi B7 M2+2bb�`vX
6BM�HHv- �M 2tTHQ`�iBQM Q7 i?2 /Bz2`2Mi r�vb Q7 i`�Mb@
7Q`KBM; i`�+2b iQ bi`BM;b- Q` K�v#2 iQ � /Bz2`2Mi Q#D2+i
BM i?2 +�b2 Q7 KmHiB@/BK2MbBQM�H i`�+2b �M/ i?2 r�vb Q7
2ti2M/BM; Qm` K2�bm`2 QM bi`BM;b iQ i?2b2 M2r Q#D2+ib
rQmH/ ;Bp2 mb � `2�H- T`�+iB+�H i2+?MB[m2 iQ T�`iBiBQM ?m;2
i`�+2b BMiQ K2�MBM;7mH bBKTHB}2/ `2T`2b2Mi�iBQMbX

https://oeis.org/A005434
https://oeis.org/A005434

_272`2M+2b
(/2 "`mBDM- RNd8) LB+QH��b :Qp2`i /2 "`mBDMX �+FMQrH@

2/;2K2Mi Q7 T`BQ`Biv iQ +X ~v2 b�BMi2@K�`B2 QM i?2
+QmMiBM; Q7 +B`+mH�` �``�M;2K2Mib Q7 2ˆn x2`Qb �M/
QM2b i?�i b?Qr 2�+? M@H2ii2` rQ`/ 2t�+iHv QM+2X h2+?@
MBb+?2 >Q;2b+?QQH 1BM/?Qp2M- RNd8X

(.QbBKQMi- kyR8) .�KB2M .QbBKQMiX �;`û;�iBQM bT�@
iBQi2KTQ`2HH2 TQm` H� pBbm�HBb�iBQM /2 i`�+2b /Ƕ2tû+m@
iBQMX S?. i?2bBb- ú+QH2 .Q+iQ`�H2 J�i?ûK�iB[m2b-
a+B2M+2b 2i h2+?MQHQ;B2b /2 HǶAM7Q`K�iBQM- AM7Q`K�@
iB[m2- DmM kyR8X

(:mB#�b �M/ P/HvxFQ- RN3R) G2Q CX :mB#�b �M/ �M@
/`2r JX P/HvxFQX S2`BQ/b BM bi`BM;bX CQm`M�H Q7 *QK@
#BM�iQ`B�H h?2Q`v- RN3RX

(EQHKQ;Q`Qp- RNej) �X LX EQHKQ;Q`QpX PM i�#H2b Q7 `�M@
/QK MmK#2`bX a�MF?v�, h?2 AM/B�M CQm`M�H Q7 ai�iBb@
iB+b- k8- RNejX

(EmHH#�+F �M/ G2B#H2`- RN8R) aQHQKQM EmHH#�+F �M/
_B+?�`/ �X G2B#H2`X PM BM7Q`K�iBQM �M/ bm{+B2M+vX
h?2 �MM�Hb Q7 J�i?2K�iB+�H ai�iBbiB+b- kkURV,dNĜ3e-
RN8RX

(G�K�`+?2@S2``BM- kyRj) _Q#BM G�K�`+?2@S2``BMX �M�H@
vb2 K�+`Qb+QTB[m2 /2b ;`�M/b bvbiĕK2bX S?. i?2bBb-
G�#Q`�iQB`2 /ǶAM7Q`K�iB[m2 /2 :`2MQ#H2- Q+i kyRjX

(G2KT2H �M/ wBp- RNde) �#`�?�K G2KT2H �M/ C�+Q#
wBpX PM i?2 +QKTH2tBiv Q7 }MBi2 b2[m2M+2bX A111
h`�Mb�+iBQMb QM AM7Q`K�iBQM h?2Q`v- kkURV,d8Ĝ3R- D�M
RNdeX

(a?�MMQM- RN93) *X 1X a?�MMQMX � K�i?2K�iB+�H i?2Q`v
Q7 +QKKmMB+�iBQMX h?2 "2HH avbi2K h2+?MB+�H CQm`M�H-
kd,jdNĜ9kj- RN93X

(q2H+?- RN39) h2``v q2H+?X � i2+?MB[m2 7Q` ?B;?@
T2`7Q`K�M+2 /�i� +QKT`2bbBQMX *QKTmi2`- RdUeV,3ĜRN-
DmM RN39X

(wBp �M/ G2KT2H- RNdd) C�+Q# wBp �M/ �#`�?�K G2K@
T2HX � mMBp2`b�H �H;Q`Bi?K 7Q` b2[m2MiB�H /�i� +QK@
T`2bbBQMX A111 h`�Mb�+iBQMb QM AM7Q`K�iBQM h?2Q`v-
kjUjV,jjdĜj9j- K�v RNddX

(wBp �M/ G2KT2H- RNd3) C�+Q# wBp �M/ �#`�?�K G2K@
T2HX *QKT`2bbBQM Q7 BM/BpB/m�H b2[m2M+2b pB� p�`B�#H2@
`�i2 +Q/BM;X A111 h`�Mb�+iBQMb QM AM7Q`K�iBQM h?2@
Q`v- k9U8V,8jyĜ8je- b2T RNd3X

Développement d’outils de traçage et d’analyse de traces

pour OpenMP

Manal BENAISSA

Master 1 Informatique

Université Grenoble Alpes

Encadré par :

Vincent DANJEAN

Equipe POLARIS

1. INTRODUCTION

Les simulations en recherche scientifique, technologique et
industrielle nécessitent très régulièrement de passer par des
algorithmes complexes et chronophages. Le Calcul Haute
Performance (HPC) a su répondre aux besoins de ces ap-
plications nécessitant de résoudre de lourds traitements. Ce
large domaine fait entre autres intervenir la parallélisation
des calculs, afin d’en accélérer la résolution. Lorsque la puis-
sance séquentielle devient insu�sante, notamment en phy-
sique et en modélisation, le parallélisme o↵re une alterna-
tive de choix. Il se présente sous plusieurs formes, à tous les
niveaux et pour toutes granularités, aussi bien du coté ma-
tériel (avec les processeurs super-scalaires, les processeurs
multi-coeurs ou les clusters), que logiciel (avec les threads,
les co-routines, les tâches ou les processus communiquants).
Cependant, l’implémentation de programmes usant ces mé-
thodes peut être pénible et délicat. C’est pourquoi il existe
encore beaucoup d’études proposant des frameworks ou des
environnements facilitant la parallélisation de ces logiciels.
Parmi eux, une stratégie a su gagner en popularité : la pa-
rallélisation par tâches.

2. PARALLÉLISME

L’approche la plus intuitive lors de la résolution d’un pro-
blème est la méthode dite ”séquentielle” : Elle consiste à
traiter les instructions une par une et repose principalement
sur les principes d’une architecture SISD (Single Instruction,
Single Data). Malheureusement, malgré les avancées techno-
logiques et la rapidité croissante des processeurs, cette stra-
tégie atteint ses limites en termes de temps d’exécution. Le
parallélisme répond à cette limite en permettant de traiter
des informations ou d’e↵ectuer des calculs de manière simul-
tanée. Ce procédé implique entre autre d’exploiter au mieux
toutes les unités de calcul (CPU) présentes dans le système,
ce qui reste un compromis à faire entre le gain de temps et
la consommation d’énergie. Malgré tout, cette approche a

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

su répondre à beaucoup de limitations temporelles, et a su
convaincre de plus en plus de programmeurs au point d’être
devenu le paradigme dominant des ordinateurs actuels. Elle
pose toutefois de nombreux problèmes d’optimisation ou de
synchronisation que nous verrons par la suite. Nous distin-
guerons notamment deux types de parallélisme : Le paral-
lélisme à mémoire distribuée, très largement utilisée et per-
mettant de diviser le travail à travers plusieurs machines,
mais qui ne sera pas traité dans ce document, et le parallé-
lisme à mémoire partagée, permettant de diviser le travail
au sein d’une même machine.

2.1 Parallélisme à mémoire partagée

La gestion de la mémoire prend une place très particu-
lière en parallélisation, si bien qu’elle a donnée naissance à
plusieurs stratégies bien distinctes, dont une en particulier :
le parallélisme à mémoire partagée. Elle fonctionne comme
suit : Toutes les unités de calcul ont accès à une même zone
mémoire. Elles possèdent également leur propre mémoire
afin d’y stocker les informations qui ne nécessitent pas d’être
partagées. Cette approche a l’avantage de réduire drasti-
quement le surcoût de communication au détriment d’une
synchronisation plus délicate et d’un risque de conflit plus
grand. Il existe plusieurs APIs gérant cette approche, dont
une qui sera le sujet principal de ce document : OpenMP.

Figure 1: Parallélisme à mémoire partagée

Dans le cas de la mémoire partagée, le travail est réparti
à travers plusieurs threads, qui gèrent alors une partie du
code. Le thread ”mâıtre”se charge de créer les autres threads
”esclaves” et de gérer l’ensemble de la section parallèle du
code. Chaque thread esclave se voit attribuer un bloc de code
à exécuter. Ainsi, l’ensemble des threads esclaves (ainsi que
le thread mâıtre) gère une section du code simultanément.

10.1145/1235
Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

Michael Perin

L’attribution des blocs aux di↵érents threads est déterminée
à la compilation.

2.2 Parallélisation par tâches

Le système de tâches, largement repris en parallélisme à
mémoire partagée, apporte bon nombre d’avantages dans
la gestion de la charge de travail de chaque thread. Le
programme est découpé en plusieurs blocs de code appelés
”tâches”. Le thread mâıtre se charge de créer lesdites tâches
et les place dans une file d’attente (taskpool). Chaque thread
(esclave ou mâıtre) prend une tâche dans la file et l’exécute.
Dès que cette tâche est terminée, il peut reprendre une tâche
dans la file, ou voler une tâche à un autre thread.

Figure 2: Gestion des tâches

Les tâches en cours d’exécution peuvent être suspendues.
Le thread associé peut alors prendre une autre tâche, la ter-
miner, puis reprendre une tâche qui a été mise en pause.
Chaque thread a donc sa propre pile de tâches où il place
toutes les tâches mises en attente. De même, il peut exister
des dépendances entre tâches : Lorsque qu’une tâche dépend
d’une autre pour être terminée, le thread peut mettre celle-
ci en suspens, attendre que la tâche dont elle dépend soit
terminée, puis reprendre la tâche suspendue. Pour finir, une
tâche n’est pas nécessairement gérée par le même thread du
début à la fin. En e↵et, cette tâche peut être ”liée” (tied)
au thread, auquel cas celui-ci gère la tâche intégralement.
Sinon, elle peut être ”non liée” (untied), et lorsque qu’elle a
été suspendue, elle peut être reprise par un autre thread.

2.3 Implémentation et traçage de pro-

grammes parallèles

L’implémentation d’un tel système peut passer par di↵é-
rents modèles de programmation. Parmi eux, il en existe un
qui gagne régulièrement en popularité : OpenMP.

2.3.1 OpenMP

OpenMP est une API spécialisée dans le parallélisme à
mémoire partagée, destinée aux langages C/C++ et For-
tran. Apparue pour la première fois en 1997, cette interface
s’est développée jusqu’à sa version 5.0, sortie en novembre
2018. Elle tourne principalement autour d’un système de
directives, et permet d’intégrer des sections parallèles dans
un code initialement séquentiel de façon simple et intuitive.
OpenMP a connu un grand tournant après sa version 3.0,
grâce à l’intégration du système de tâches, en 2008. Ces nou-
velles fonctionnalités se sont améliorées par la suite dans la

version 4.0, permettant ainsi une plus grande stabilité dans
la gestion des tâches. Les directives reprennent le modèle
Fork and Join, et permettent de délimiter les sections pa-
rallèles tout en indiquant certains paramètres au moment
de la compilation, tels que le nombre de threads à créer, la
répartition du travail ou les dépendances. Dans le contexte
des tâches, un thread mâıtre se charge de créer autant de
threads que nécessaire. Puis l’un d’eux se charge de créer
les tâches dites explicites 1, et de les placer dans le taskpool.
A la création des threads, ceux-ci se voient assignés d’une
tâche implicite 2. Lorsqu’un thread prend une tâche, il passe
par une étape d’ordonnancement (scheduling) où la tâche
implicite est suspendue puis mise dans une pile d’attente.
Le thread peut alors passer à la tâche explicite précédem-
ment choisie, puis revenir sur la tâche suspendue lorsque la
tâche explicite est terminée.

#pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{

//TACHE 1
#pragma omp task
{

x1 = a⇤b ;
}
//TACHE 2
#pragma omp task
{

x2 = c⇤d ;
}

#pragma omp taskwai t
S = x1 + x2 ;

}
}
return S ;

Figure 3: Exemple de code C parallélisant l’opéra-

tion S = a*b + c*d

2.3.2 OMPT

Le besoin d’e↵ectuer une trace d’exécution se fait très
souvent sentir lors de la parallélisation de code. Des outils
existent déjà, notamment pour MPI, une API permettant la
parallélisation sur des systèmes distribués, mais peu d’outils
proposent une trace pour une parallélisation à mémoire par-
tagée, et encore moins pour le traçage des tâches. OpenMP a
également su répondre à ce besoin avec sa version 4.0, qui in-
tègre la possibilité de tracer et de débugger les programmes
usant cette API, notamment grâce à OMPT et OMPD 3.
OMPT est une interface permettant de créer soi-même son
outil de traçage. Elle fonctionne sur un système de callbacks,
où chaque directive envoie un évènement qui est traitée par

1. Les tâches explicites sont signalées dans le code source
par la directive ”pragma omp task”

2. Contrairement aux tâches explicites, les tâches impli-
cites sont créées par le système, durant le runtime

3. OMPD permet le débug, et ne sera pas abordé dans ce
rapport.

l’outil ensuite. L’outil et le programme à tracer s’exécutent
dans le même processus. Celui-ci met à disposition 32 call-
backs, et 19 points d’entrée pour récupérer des informations
divers durant le runtime. L’implémentation de ces callbacks,
qui est une part importante du traçage dans ce système, est
nécessaire afin que l’outil fonctionne, et permet entre autre
de personnaliser et d’adapter la trace au programme étu-
dié. Pour finir, il su�t d’activer le mode ”trace” d’OMPT en
indiquant le chemin de l’outil nouvellement crée. 4

3. PROBLÉMATIQUE

Un outil de traçage a déjà été crée dans un stage pré-
cédent 5, lorsque OpenMP n’en était qu’à sa version 4.0.
OMPT était alors en cours de développement, et seule une
version de test était proposée. La version 5.0 propose une
version aboutie d’OMPT, avec quelques modifications. Il est
donc nécessaire, dans un premier temps, de mettre à jour
le précédent outil et d’y intégrer les nouvelles fonctionnali-
tés, puis d’explorer toutes les informations qu’il est possible
d’avoir par ce nouveau système. Ce rapport fera suite au pré-
cédent stage, en y apportant des analyses et des informations
supplémentaires, puis en proposant des modèles de visualisa-
tion possibles de ces analyses. Un tel outil permettra par la
suite de déceler un quelconque problème d’ordonnancement
pouvant justifier une baisse de performance.

4. CRÉATION DE L’OUTIL DE TRAÇAGE

La conception de l’outil de traçage repose principalement
sur l’implémentation des callbacks fournis par OMPT. En
e↵et, l’interface propose un lot de fonctions qui s’exécute-
ront après réception de l’evènement associé. Ainsi, l’évè-
nement EVENT TASK CREATE (lancé lorsque la direc-
tive pragma omp task est rencontré) déclenchera le call-
back ompt callback task create(). L’ensemble des callbacks
(cf Table 1) permettra de construire une trace d’exécution du
programme suivi, en mettant à jour à chaque évènement un
fichier log contenant les données brutes. Chaque ligne de ce
fichier donnera les informations propres à l’évènement ren-
contré, qu’il sera possible de retraiter ensuite pour obtenir
un diagramme. Il est tout à fait possible de créer plusieurs
traces simultanément, en générant plusieurs fichiers logs qui
permettront de créer ensuite plusieurs diagrammes di↵érents
(cf Figure 4). La conversion de ces fichiers log (au format
CSV) en fichier permettant la création d’un diagramme est
à la charge de l’utilisateur également.

4.1 Callbacks

L’élaboration de l’outil de trace débute avec l’implémen-
tation de la fonction ompt start tool(). Elle permet de ré-
cupérer les callbacks et les points d’entrée voulus (notam-
ment avec la fonction lookup()) et d’amorcer le traçage,
avec ompt initialize(). Le traçage se terminera ensuite en
même temps que le programme analysé. L’outil recevra alors
un évènement qui déclanchera le callback ompt finalize().
L’étape suivante consiste à implémenter les autres callbacks
choisis. Chacuns d’entre eux possèdent un certain nombre de

4. La variable d’environnement
OMP TOOL LIBRAIRIES doit indiquer le chemin
de l’outil, qui doit se trouver dans /usr/local/lib/ pour
Linux.

5. Se référer aux travaux de Maxime MILLET, durant son
stage en 2017

Figure 4: Étapes de construction de traces avec

OMPT

paramètres : Des variables et des structures contenant un
certain nombre d’informations propre à l’évènement reçu.
Ces variables sont mises à jour dès la réception de l’évène-
ment, et l’utilisateur n’a qu’à réécrire les informations de son
choix dans le fichier log. Il est important de noter que cer-
tains callbacks gèrent plusieurs évènements en même temps.
C’est notamment le cas de ompt callback task schedule() par
exemple. Un paramètre permettra alors de distinguer ces
évènements au sein d’un même callback.

Table 1: Liste (non-exaustive) des callbacks utiles

au traçage d’un programme utilisant le système de

tâches

Callbacks

ompt start tool()
ompt initialize()
ompt finalize()
ompt callback thread begin()
ompt callback thread end()
ompt callback parallel begin()
ompt callback parallel end()
ompt callback task create()
ompt callback task schedule()
ompt callback implicit task()
ompt callback dependences()
ompt callback task dependence()
ompt callback work()
ompt callback master()

4.2 Points d’entrée

En plus des callbacks, OMPT permet de récupérer cer-
taines informations grâce aux di↵érents points d’entrée four-
nis. Là encore, ces points d’entrée doivent être récupérés
dans ompt start tool() mais à la di↵érence des callbacks, au-
cune implémentation n’est nécessaire. Ces fonctions permet-

Table 2: Liste (non-exaustive) des points d’entrée

utiles au traçage d’un programme utilisant le sys-

tème de tâches

Points d’entrée

ompt set callback()
ompt get thread data()
ompt get num places()
ompt get place proc ids()
ompt get proc id()
ompt get state()
ompt get parallel info()
ompt get task info()
ompt get unique id()

tront notamment de compléter les informations déjà dispo-
nibles depuis les callbacks (cf Table 2). Pour permettre la
construction d’un diagramme par la suite, il est donc im-
portant que le fichier log réunisse toutes les informations
nécessaires, et ce pour chaque évènement. Les informations
importantes et communes à tous les évènements sont les sui-
vantes :

— timesamps : Heure (en seconde) durant lequel l’évène-
ment est survenu.

— type : Type de l’évènement
— proc_id : ID du processeur où l’évènement a été enre-

gistré.
— current_thread_id : ID du thread où l’évènement a

été enregistré.
— current_task_id : ID de la tâche actuellement gérée

par le thread spécifié.
— parent_task_id : ID de la tâche précédemment gérée

par le thread spécifié.
A cela, il est nécessaire d’ajouter d’autres informations

supplémentaires spécifiques à l’évènement traité. (cf An-
nexe). Le manuel d’OpenMP permet de consulter les infor-
mations disponibles et les callbacks/points d’entrée permet-
tant d’y accéder.

4.3 Enregistrement efficace des traces

Les informations capturées lors des callbacks et des points
d’entrée doivent être écrites dans un fichier de trace. Pour
cela, il est possible d’écrire le dit fichier grâce aux biblio-
thèques standards en C, notamment avec la fonction fprintf
de stdio.h. Cette méthode, bien que commode, peut néan-
moins être intrusive, et ralentir le traçage du programme.
En e↵et, derrière de telles fonctions se cachent des appels
systèmes coûteux qui sont appelés à chaque évènement. Le
coût provient principalement de la synchronisation entre les
divers threads lors de l’écriture du fichier, notamment dû à
l’utilisation des verrous. Afin d’éviter ce problème, il est pos-
sible d’utiliser une bibliothèque spécialisée dans la création
fichiers de trace, tel que fxt.h. Développé par l’équipe RUN-
TIME à Bordeaux, le format FXT est un format de fichier
binaire, pris en charge par fxt.h, et particulièrement adapté à
ce type de traçage. Le fichier n’est pas édité à chaque évène-
ment : Un tampon est peu à peu rempli avec les informations
capturées. Lorsque le tampon est plein, le contenu de celui-
ci est écrit dans le fichier, limitant ainsi l’usage des appels
systèmes. La synchronisation, directement gérée en assem-
bleur, permet une gestion plus fluide des accès en écriture du
fichier. Une fois le fichier généré, il su�t de le convertir en

un fichier lisible. Le programme fxt2csv (déjà fournit) per-
met une telle conversion : Son code source peut être modifié
pour personnaliser le format du fichier CSV.

5. ÉVALUATION DES PERFORMANCES

DE L’OUTIL DE TRACE

Le passage au format FXT a pour but de réduire au
mieux l’impact du traçage sur l’exécution du programme.
Deux métriques ont été utilisés pour mesurer ce phénomène :
Le temps d’exécution avec trace, et la taille des fichiers de
trace obtenus. Afin de valider une telle transition, une com-
paraison a été e↵ectuée entre le format classique (utilisant
donc des printf) et ce nouveau format, pour un même pro-
gramme de test. Dans cette expérience, trois types de pro-
grammes ont été testés : Des programmes légers, dont le
temps d’exécution ne dépasse pas la dizaine de secondes,
des programmes intermédiaires, et des programmes lourds
dont l’exécution est volontairement longue, et dont le fichier
de trace est de l’ordre de plusieurs gigaoctets.

La figure 4 montre une réelle amélioration en terme de
temps d’exécution et de taille de fichier, suite au passage
du format classique au format FXT. Sur des programmes
de tests de taille moyenne (de l’ordre d’une à deux mi-
nutes), les résultats obtenus montrent une performance plus
ou moins équivalente. La di↵érence de taille peut être expli-
quée par l’ajout de méta-données dans le fichier au format
FXT comme l’en-tête, qui ne compense pas la taille des in-
formations capturées. En revanche, il est étonnant de consta-
ter qu’il existe peu de di↵érences entre le format classique
et le format FXT, en terme de temps d’exécution. L’écart
est d’autant plus flagrant, et ce en faveur du format clas-
sique, lorsque la comparaison est e↵ectuée sur de petits pro-
grammes de test. FXT semble donc o↵rir une réelle optimi-
sation que lorsque les programmes à tracer sont particuliè-
rement lourds.

6. ANALYSE DU COMPORTEMENT DES

APPLICATIONS OPENMP

Le fichier de trace construit par l’outil a la forme d’une
liste brute et illisible de données. La dernière étape consiste
donc à traiter ces données afin d’obtenir un diagramme
lisible qui mettra en valeur les informations souhaitées.
Seuls les modèles de visualisation principaux et régulière-
ment utilisés dans un programme utilisant le système de
tâches d’OpenMP ont été étudiés. Quelques uns peuvent
être construits avec les données accessibles via OMPT, no-
tamment les diagrammes de Gantt et les graphes de dépen-
dances.

6.1 Diagramme de Gantt

Un diagramme de Gantt permet de visualiser dans le
temps les diverses tâches composant le programme, et per-
met de représenter graphiquement l’ordonnancement de
celles-ci. Un tel format est commode pour simplement vi-
sualiser dans quel ordre et par quel thread les tâches ont
été exécutées. Il est donc nécessaire d’avoir au minimum les
informations suivantes dans le fichier log :

— A quel moment une tâche a été crée, et par quel thread.
— A quel moment celle-ci a été prise (ou reprise), et par

quel thread.
— A quel moment une tâche a été terminée ou suspendue.
— L’ID de la tâche en question.

Table 3: Exemple d’informations obtenues suite à l’évènement EVENT TASK CREATE

timestamp type proc id current thread id parent task id current task id param1 param2 param3
0.000937 105 1 1 1001 1002 1003 EXPLICIT DEPENDANT

Table 4: Performance des systèmes de traçage

Programme Outil de trace Temps d’exécution Nombre de points de traces Taille de fichier

GSL 6 (lourd) Sans trace 254.86 sec / /
Printf 4996.32 sec 3875229 46.3 Go
FXT 1229.01 sec 3867351 42.1 Go

GSL (moyen) Sans trace 35.25 sec / /
Printf 59.87 sec 1940 6.9 ko
FXT 59.01 sec 1479 118.1 ko

Mergesort (léger) Sans trace 0.06 sec / /
Printf 0.04 sec 128 5.17 ko
FXT 0.07 sec 133 22.6 ko

D’autres informations peuvent être ajoutés pour enrichir
le diagramme, mais elles ne sont pas forcément nécessaire
pour visualiser l’ordonnancement. Ces informations, obte-
nables via l’outil, permettent d’obtenir les diagrammes de
Gantt des Figures 5 et 6.

Figure 5: Diagramme de Gantt obtenu pour le pro-

gramme Time.c

Figure 6: Diagramme de Gantt obtenu pour le pro-

gramme Mergesort.c

Ces diagrammes ont été obtenus avec deux programmes :
Time.c et Mergesort.c. Le premier crée de façon très ba-
sique plusieurs tâches e↵ectuant des sleep(). Certaines tâches
comportent également des dépendances. Le deuxième pro-
gramme trie un tableau d’entier en utilisant le Mergsort. Les
tâches en rose représentent des tâches explicites, celles en
vert sont implicites. Il est utile de noter que certaines tâches

s’exécutent trop rapidement pour être visibles. Pour finir, il
est tout à fait possible de visualiser l’ordonnancement, non
plus par rapport aux threads, mais par rapport aux proces-
seurs, puisque cette information est également disponible.

Nota Bene : Le logiciel Vite, disponible sur Linux, permet
de visualiser de tels diagrammes. Cela nécessite de convertir
au préalable le fichier log (au format CSV) au format Pajé.

6.2 Graphe de dépendances

6.2.1 Dépendances explicites

Les données obtenues grâce à l’outil permettent également
de construire un graphe de dépendances entre les di↵érentes
tâches. Pour cela, il est nécessaire d’avoir au minimum les
informations suivantes :

— L’ID de la tâche dépendante (cf param2, de l’évène-
ment de type 115 de la Table 5)

— L’ID de la tâche dont elle dépend (cf param1, l’évène-
ment de type 115 de la Table 5)

— Eventuellement les valeurs/variables en jeu (cf param3,
l’évènements de type 114 de la Table 5)

Ces données sont visibles grâce aux call-
backs ompt_callback _dependences() et
ompt_callback_task_dependence(). En revanche, si
OMPT permet de connaitre les dépendances entre tâches,
les informations liées aux variables intervenant dans les
dépendances (indiqués par les évènements de type 114 de la
Table 5) restent floues. En e↵et, pour le programme de la
figure 7, il est possible d’obtenir les informations suivantes
(cf Table 5) :

— Les valeurs [IN], soit les valeur entrantes (et donc at-
tendues)

— Les valeurs [OUT], soit les valeur sortantes (et donc
fournies)

— Les valeurs [INOUT], la combinaison de [IN] et [OUT]
Il est impossible, si ce n’est par déduction, et en ayant le

code sous les yeux, de savoir quel tâche (dépendante) attend
quelle valeur venant de quel tâche (source). Par exemple,
il est di�cile de savoir si la tâche 1005 attend la variable
x = 42 de la tâche 1004 ou de la tâche 1003. En e↵et, la
tâche 1004, qui fournit la valeur de y, ne fournit pas en
revanche la valeur de x. De plus, il est impossible d’obtenir
les nouvelles valeurs de x et y à chaque fin de tâche.

Table 5: Informations obtenues à propos des dépendances entre tâches

timestamp type proc id current thread id parent task id current task id param1 param2 param3
0.000954 114 1 1 1001 1002 1003 1 [42,INOUT]
0.000984 114 1 1 1001 1002 1004 2 [42,IN][66,INOUT]
0.000990 115 1 1 1001 1002 1003 1004
0.000998 114 1 1 1001 1002 1005 1 [42,INOUT]
0.001003 115 1 1 1001 1002 1004 1005
0.001015 114 1 1 1001 1002 1006 2 [42,IN][66,IN]
0.001020 115 1 1 1001 1002 1005 1006
0.001024 115 1 1 1001 1002 1004 1006

i n t x=42,y=66;

#pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{

//TACHE 1
#pragma omp task depend (

out : x)
{

x=1;

}
//TACHE 2
#pragma omp task depend (in :

x) depend (out : y)
{

y=10;
}
//TACHE 3
#pragma omp task depend (

inout : x)
{

x++;
}

//TACHE 4
#pragma omp task depend (in

: x , y)
{

z=x+y ;
}

}
}

Figure 7: Exemple de dépendances entre tâches

6.2.2 Dépendances implicites

La création d’un thread ou d’une section parallèle en-
gendre nécessairement la création d’une tâche implicite qui
lui est associé. Cette tâche, qui joue le rôle de tâche ini-
tiale (associé au thread/section parallèle en question), per-
met d’e↵ectuer toutes les autres actions : créer des tâches
explicites, des sous-sections parallèles etc... Cette tâche ne
se termine que lorsque les actions qui lui sont associés sont
terminées. Ainsi, si une tâche implicite crée une tâche expli-
cite, celle-ci ne s’achèvera que lorsque la tâche explicite sera

Figure 8: Graphe de dépendances obtenu avec les

données de la Table 5

terminée. Ceci implique que la tâche implicite dépend de la
tâche explicite.

Il est possible d’observer les dépendances implicites grâce
à un modèle de visualisation sous la forme d’un arbre, repre-
nant ainsi le modèle du graphe fork and join. La racine de
l’arbre représente alors la tâche initiale. Lorsque deux tâches
sont exécutées en même temps par deux threads di↵érents,
l’arbre se divise en deux branches (cf Figure 9). A la fin de
ces deux tâches, l’exécution de la tâche initiale est reprise,
terminant ainsi le programme. Il est important de noter que
ce modèle de visualisation permet de représenter les dépen-
dances implicites entre tâches. En e↵et, le nœud père dépend
des nœuds fils. Dans l’exemple présenté à la figure 9, la tâche
initiale ne peut pas se terminer si les tâches 2 et 3 ne sont
pas terminées avant.

6.2.3 Rayon-log

Il existe des outils permettant de représenter en même
temps le graphe de dépendance d’exécution et l’ordonnance-
ment des tâches : c’est notamment le cas de Rayon-logs. 7 Cet
outil, destiné à l’origine au traçage de programmes parallèles
écrits en RUST, permet de présenter l’ordonnancement des
tâches sous forme d’un arbre binaire dont les noeuds sont les
tâches exécutées. Cet outil comporte néanmoins deux subti-
lités :

— Les tâches ne peuvent être préemptés. Elles doivent
donc être coupées en sous-tâches non préemptés. Dans
l’exemple de la figure 9, la tâche initiale sera considérée
comme deux sous-tâches : la tâche 1 qui sera la racine

7. Voir les travaux de Frederic Wagner

http://www-id.imag.fr/Laboratoire/Membres/Wagner_Frederic/rayon-logs.html

Figure 9: Graphe Fork&Join d’un programme com-

portant deux tâches explicites exécutées de façon

parallèle par le thread vert et le thread rouge.

de l’arbre, et la tâche 4 qui terminera le programme.
— L’arbre étant toujours binaire dans le cas du Rayon-

logs, il sera parfois nécessaire des créer des tâches
implicites pour gérer la création de threads. Ainsi,
le graphe résultant de l’exécution d’un programme à
quatre threads exécutant quatre tâches explicites don-
nera la figure 10. 8

Rayon-logs permet également d’ajouter divers e↵ets pour
plus de lisibilités, comme des infos-bulles à chaque tâche
survolée, afin d’avoir des détails de celle-ci (temps d’exécu-
tion, ID, etc...), ou des animations permettant de visualiser
le temps et l’ordre d’exécution des tâches. C’est particuliè-
rement ce dernier point qui permettra de connaitre l’ordon-
nancement des tâches.

Les données requises pour construire des graphes
Fork&Join sont les mêmes que celles demandées pour les
diagrammes de Gantt. Néanmoins, une première étape de
conversion sera nécessaire pour adapter les données à l’outil
de construction de graphe, en prenant notamment en compte
les deux subtilités décrites ci-dessus. En e↵et, l’outil attend
un fichier au format JSON, récapitulant les tâches existantes
(il faudra s’assurer de la non-préemption de celles-ci à ce mo-
ment là), les sous-graphes de dépendances, et éventuellement
d’autres informations complémentaires sous forme de tag. Le
développement de l’outil de conversion CSV vers JSON a été
commencé au cours de ce stage mais n’a pas pu être achevé
à temps.

6.3 Suivi des choix d’ordonnancement

Pour finir, si OMPT permet de suivre l’ordonnancement
des tâches, il ne permet pas en revanche de prédire celui-ci.
En e↵et, même si les expériences menés tendent à montrer
que les tâches sont organisées dans le taskpool sous forme
de file d’attente (Les threads prennent alors les premières
tâches de la file jusqu’à que celle-ci soit vide), ni les callbacks,
ni les points d’entrées ne permettent de le confirmer. Il est
alors impossible de connâıtre exactement l’état du taskpool.
En revanche, lorsqu’une tâche est suspendue, celle-ci semble
être placée dans une pile réservée aux tâches en attentes. Il
est possible, mais délicat de connâıtre l’état de la pile, grâce
notamment au point d’entrée ompt_get_task_info(). C’est
notamment grâce à celui-ci qu’il est possible de déterminer
l’ID de la tâche parente et celle de la tâche courante (cf

8. La remarque à propos de préemption des tâches a été
prise en compte dans ce graphe, mais sans changement de
la numérotation des tâches, afin de gagner en clarté.

Figure 10: Graphe Fork&Join d’un programme com-

portant quatre tâches explicites exécutées de façon

parallèle par le thread vert, rouge, bleu et jaune.

Dans cette figure, seules les tâches 2, 4, 6 et 8 sont

explicites.

tables 3 et 5). Il est nécessaire de connâıtre le niveau de la
tâche voulue dans la pile pour accéder ses informations. La
tâche courante est de niveau 0, sa tâche parente (directe)
est de niveau 1. Il est donc possible de remonter jusqu’à la
tâche d’origine, pour peu que nous connaissons son niveau.

Nota Bene : Pour prédire l’ordonnancement des proces-
sus/threads, d’autres outils existent. En e↵et, OMPT ne
permet pas de tels traces pour l’instant.

7. CONCLUSION ET TRAVAUX FUTURS

OMPT est une API très riche, destinée aux programmes
utilisant OpenMP, et permettant d’e↵ectuer des traces pré-
cises. Elle est particulièrement intéressante pour les pro-
grammes utilisant le système de tâches, et présente le princi-
pal avantage de pouvoir amplement personnaliser l’outil de
traçage. L’interface propose un large panel de callbacks et
de points d’entrée accordant l’accès à bon nombre de don-
nées, qui pourront servir par la suite à la construction de
graphes et de diagrammes. Elle o↵re notamment assez d’in-
formations pour générer des diagrammes de Gantt ou des
graphes de dépendances. En revanche, elle ne permet pas

de prédire les choix d’ordonnancement, ni des tâches, ni des
threads ou des processus. Par ailleurs, seul les modèles de vi-
sualisation les plus populaires ont été étudiés, mais il existe
d’autres modèles, dont l’étude pourrait constituer une exten-
sion de ce stage. Au cours de ces travaux, des alternatives
au diagramme de Gantt ont été recherchées. Parmi elles, une
a su se démarquer : les traces utilisant Rayon-logs. Il peut
être intéressant de voir si d’autres représentations sont en-
visageables avec les informations qu’o↵re OMPT. L’équipe
d’OpenMP travaillant toujours sur ce projet, il n’est pas
impossible de voir une nouvelle mise à jour permettant de
prédire le choix d’ordonnancement des tâches, ou d’autres
fonctionnalités qui pourraient ouvrir la porte à d’autres mo-
dèles de visualisation. Le besoin de connâıtre la trace d’exé-
cution des programmes parallèles est toujours très présent,
et nécessite toujours plus d’études pour faciliter les utilisa-
teurs dans cette démarche. D’autres recherches peuvent être
menés pour permettre la génération de traces pour d’autres
systèmes, notamment avec d’autres API, ou pour d’autres
architectures.

8. REMERCIEMENTS

Tout d’abord, je souhaite adresser mes remerciements à
mon mâıtre de stage, Mr Vincent DANJEAN, sans qui
je n’aurais probablement pas pu découvrir le domaine du
HPC. Il a su me transmettre de façon très pédagogue les
connaissances nécessaires pour comprendre mon sujet, et a
su m’orienter dans mes recherches avec beaucoup de gen-
tillesse et de prévenance.

Je tiens également à remercier Mr Frederic WAGNER, qui
a pu me présenter de nouvelles méthodes de visualisation,
tout en écoutant mes besoins.

Pour finir, Je souhaite remercier toutes les personnes qui
ont contribué au succès de mon stage et qui m’ont aidé lors
de la rédaction de ce rapport, ainsi que POLARIS, pour
m’avoir admis dans leur équipe et pour m’avoir permis de
faire ce stage.

Références

[1] OpenMP Architecture Review Board. OpenMP Techni-
cal Report : Version 5.0. Complete Specifications, No-
vember 2018.

[2] Maxime MILLET. Internship report 2017. (French)
[TER : Développement d’outils de traçage et d’analyse
de traces pour OpenMP].

[3] Edouard MARGUERITE. Internship report 2017.
(French) [Développement d’algorithmes parallèles pour
laphysique numérique du QGP].

[4] Frederic WAGNER, Rayon-logs.
http://www-id.imag.fr/Laboratoire/Membres/
Wagner_Frederic/rayon-logs.html

[5] OpenMP : API for parallel programming,
https://www.openmp.org

[6] FXT, Fast User/Kernel Tracing.
https://savannah.nongnu.org/projects/fkt
Article associé :
http://moais.imag.fr/membres
/vincent.danjean/publis/DanWac05TSI.pdf

APPENDIX

A. TABLEAU DES ÉVÈNEMENTS

Evenement Code Callback associé Informations données

EVENT OMPT START 101 ompt initialize() - Temps
- Code de l’évènement

EVENT OMPT END 102 ompt finalize() - Temps
- Code de l’évènement

EVENT THREAD BEGIN 103 on ompt callback thread begin() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread crée
- ID de la tâche parente
- ID de la tâche courante
- Type du thread crée (Initial, worker...)

EVENT THREAD END 104 on ompt callback thread end() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread supprimé
- ID de la tâche parente
- ID de la tâche courante

EVENT TASK CREATE 105 on ompt callback task create() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la nouvelle tâche
- Type de la nouvelle tâche (explicite ou
initial)
- Présence (ou non) de dépendances

EVENT TASK END 106 on ompt callback task schedule() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche terminée

EVENT IMPLICIT TASK CREATE 107 on ompt callback implicit task() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la nouvelle tâche implicite
- ID de la section parallèle associée
- Type de la tâche (implicite)
- Nombre de threads alloués à la section
parallèle associée
- ID du thread appelant (index)

EVENT IMPLICIT TASK END 108 on ompt callback implicit task() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche implicite terminée
- ID de la section parallèle associée
- Type de la tâche (implicite)
- Nombre de threads alloués à la section
parallèle associée
- ID du thread appelant (index)

...
...

...
...

Evenement Code Callback associé Informations données

...
...

...
...

EVENT TASK SCHEDULE 109 on ompt callback task schedule() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche source
- ID de la tâche destination

EVENT PARALLEL BEGIN 110 on ompt callback parallel begin() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche associée à la section paral-
lèle
- ID de la nouvelle section parallèle
- Type de la section parallèle
- Nombre de threads alloués à la section
parallèle

EVENT PARALLEL END 111 on ompt callback parallel end() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la section parallèle terminée

EVENT SINGLE OTHER BEGIN 112 on ompt callback work() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche associée au thread
- ID de la section parallèle associée

EVENT SINGLE OTHER END 113 on ompt callback work() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche associée au thread
- ID de la section parallèle associée

EVENT TASK DEPENDENCES 114 on ompt callback dependences() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- Nombre de dépendances
- Liste des dépendances

EVENT TASK DEPENDENCES PAIR 115 on ompt callback task - Temps
dependence() - Code de l’évènement

- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche source
- ID de la tâche dépendante de la source

...
...

...
...

Evenement Code Callback associé Informations données

...
...

...
...

EVENT SINGLE EXECUTOR BEGIN 116 on ompt callback work() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche associée au thread
- ID de la section parallèle associée

EVENT SINGLE EXECUTOR END 117 on ompt callback work() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche associée au thread
- ID de la section parallèle associée

EVENT MASTER BEGIN 118 on ompt callback master() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche associée au thread
- ID de la section parallèle associée

EVENT MASTER END 119 on ompt callback master() - Temps
- Code de l’évènement
- ID du processus courant
- ID du thread courant
- ID de la tâche parente
- ID de la tâche courante
- ID de la tâche associée au thread
- ID de la section parallèle associée

Michael Perin
[comments]

Michael Perin
EXPLAINATION OF REVIEW NOTATIONS

Michael Perin
typos or incorrect english or improper formulation

Michael Perin
not clearly explained or undefined or not enough precision

Michael Perin
Good point that discards a previous remark

