
JEUDI 30 AOÛT VENDREDI 31 AOÛT

MAGISTÈRE 

 D'INFORMATIQUE - 2018
Le magistère est une option

pour les étudiants de L3 à M2
souhaitant avoir de l'expérience
dans le domaine de la recherche

Grand amphi IMAG

9h00
Paul Raynaud 

Towards the automatic translation from C

program to Horn clauses

9h40
Enzo Brignon 

Runtime verification of logico-temporal

properties for embedded C software

10h35
Florian Barrois 

Combining Path and Cache Analysis for

WCET estimation improvement

13h30
Maxime Calka 

Semi-automatic segmentation of surgical 

instruments in minimally invasive surgery 

videos

14h10
Maxence Grand 

Integrating lexical constraints to K-Means 

with Deep Learning

15h05
Christopher Ferreira 

A System-Wide study of performance

Issues in FaaS platforms

9h00
Alexandre Borthomieu 

Automatic grading

9h30
Nils Defauw 

Large scale traces analysis : multi-scale

patterns

10h15
Adelina Prokhorova 

Knowledge base mining using

compressed data structures

10h45
Fabien Lefebvre 

Natural language generation : 

Comparison of language models

11h30
Thomas Vandendorpe 

Certifying answers of boolean SAT-

solvers with C

15h45
Antoine Delise 

Deciding multivariate polynomials

inequalities by combining factorization,

Euclidian division and Handelman's

theorem





MIGA’2018

Proceedings du
Magistère d’Informatique 2018
de l’Université Grenoble-Alpes

Organized by Michaël Périn and Cyril Labbé

August, 30-31, 2018





Program

Thursday, August 30, 2018 1

Paul Raynaud 9:00 AM - 9:40 AM
Towards the automatic translation from C program to Horn clauses . . . . . . . . . . . . 1

Enzo Brignon 9:40 AM - 10:20 AM
Runtime verification of logico-temporal properties for embedded C software . . . . . . . 9

Florian Barrois 10:35 AM - 11:15 AM
Combining Path and Cache Analysis for WCET estimation improvement . . . . . . . . . 19

Maxime Calka 1:30 PM - 2:10 PM
Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery
Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Maxence Grand 2:10 PM - 2:50 PM
Integrating lexical constraints to K-Means with Deep Learning . . . . . . . . . . . . . . . . 38

Christopher Ferreira 3:05 PM - 3:45 PM
A System-Wide Study of Performance Issues in FaaS Platforms . . . . . . . . . . . . . . . 48

Antoine Delise 3:45 PM - 4:25
Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian
Division and Handelman’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Friday, August 31, 2017 87

Alexandre Borthomieu 9:00 AM - 9:30 AM
Automatic Grading based on Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Nils Defauw 9:30 AM - 10:00 AM
Large Scale Traces Analysis : Multi-Scale Patterns . . . . . . . . . . . . . . . . . . . . . . . . 91

Adelina Prokhorova 10:15 AM - 10:45 AM
Knowledge base mining using compressed data structures . . . . . . . . . . . . . . . . . . . 94

Fabien Lefebvre 10:45 AM - 11:15 AM
Natural language generation : comparison of language models . . . . . . . . . . . . . . . . 98

Thomas Vandendorpe 11:30 AM - 12:00 AM
Certifying Answers of Boolean SAT-Solvers with C OQ and OC AML . . . . . . . . . . . 102





Towards the automatic translation from C program to Horn clauses ∗

Paul Raynaud
VERIMAG

Grenoble, France
paul.raynaud66@hotmail.fr

Supervised by: Michaël Périn.

I understand what plagiarism entails and I declare that this report
is my own, original work.
Raynaud Paul, 24/08/2018 :

Abstract

Automatically checking if a program realizes its
specification allows us to prove something stronger
than the mere absence of certain errors ; we are ou-
tright capable of proving the correction of the pro-
gram. Therefore we are trying to prove, based on a
source program, whether it’s capable of satisfying
the properties that are attached to it or not with an
entirely automatic procedure.
We will rely on already known hypothesis such as
Hoare Logic, and control flow graph study to gene-
rate Horn clauses. Once those logical formulas are
generated, we resort to a SMT (Satisfiability mo-
dulo theories) solver to resolve the so-called for-
mulas.

1 Related work
1.1 The formal verification and CompCert

Tools capable of realizing programs verification have been
developed, like SeaHorn. However, as will be discussed la-
ter, those tools are not compatible with the ”recent” compiler
CompCert C. With the unique semantic of CompCert, being
capable of automatically verifying a program would be an in-
teresting feature to be added. Thereafter, on a code, the spe-
cification of which has been proven, we could have a proved
program during the compilation without integrating errors by
a compiler of a ”hazardous” semantic.

1.2 SeaHorn
A tool like SeaHorn ([Gurfinkel et al., 2015]) is practically

based on the same hypothesis that are used in this internship,
with the only difference that SeaHorn takes C and C++ pro-
grams and uses the bitecode generated by Clang [Fan, 2010].
Clang compiler is different than ComCert C. Therefore it
doesn’t have the same semantic. As a result, the generated

∗. These match the formatting instructions of IJCAI-07. The sup-
port of IJCAI, Inc. is acknowledged.

code is different. It is for this exact reason that we cannot use
SeaHorn.

The general reason why we cannot re-use the programs ve-
rification tools that already exist is not only that those tools
were not developed with the same semantic as C but also that
the in dependant development of a tool attached to CompCert
C is preferable if there are modifications to be made.

1.3 CompCert
Yang and al [Yang et al., 2011] realized a study with the

purpose of showing the miscompilation of the different C
compilers. All the compilers tested within their study gene-
rated incorrect codes for certain tests (including CompCert).
Let us note that CompCert was not entirely developed in
2011, but it was already reducing bugs in comparison with
the other compilers :

”The striking thing about our CompCert results is
that the middle- end bugs we found in all other
compilers are absent. As of early 2011, the under-
development version of CompCert is the only com-
piler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying :
we have devoted about six CPU-years to the task.
The apparent unbreakability of CompCert supports
a strong argument that developing compiler opti-
mizations within a proof framework, where safety
checks are explicit and machine-checked, has tan-
gible benefits for compiler users”.

CompCert is a project initiated in 2005 that aims to create
the first proven C compiler [Blazy and Leroy, 2005]. It is a
project with a complex structure that has been entirely pro-
ven. It is mainly developed in Coq. Using the Coq code, it is
possible to extract Ocaml code. It is precisely on this Ocaml
code that we are working.

2 The concept of Translation
2.1 Expected result

The global goal that is expected from our tool is specified
in the Figure 1. We will go through the detailed translation,
step by step.

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 1



  

Source code C

Z3

Compcert C 
+

tool

Logical formulas

FIGURE 1 – The goal of our tool

2.2 The description of our example
To illustrate our statements all along this paper, we will use

an example of C code ”middle.c”.
The algorithm shown in Figure 2 calculates the middle va-

lue of an interval simply by increasing x and decreasing y
while y is greater than x.

At the end of the algorithm we have the following properties

y ≥ (a+ b)/2 ≥ x ∧ 0 ≤ y − x ≤ 1

that frame the middle value.

FIGURE 2 – Our example program ”middle.c”

However, it is not trivial to ”manually” prove this algorithm
correction.

This algorithm is interesting because if any small change
is made to the loop

< by ≤

the properties stated previously are no longer valid since y-x
cannot be worth 2.

Therefore, making a small change in our logical formulas
is enough to judge whether our tool works correctly or not.

2.3 From a Control Flow Graph to Logical
Formulas

Let’s take a simple example, the C code and RTL transla-
tion of which are defined in Figure (...).

We will first recall the formulas of Hoare’s logic :
A triplet of Hoare is :

{ρ}program{γ}

where ρ represents the pre-condition, and γ the post-
condition of the program.

There are 2 methods for generating the logical formulas of
a program :

- Strongest Postcondition, that generates the formulas for-
ward.

- Weakest Precondition, that generates the formulas back-
ward. We will be using the Weakest Precondtion.

We will now explain the rules concerning Weakest Precon-
dition : A program to be verified must satisfy :

WP :
ρ =⇒WP (instr, γ)

{ρ} instr {γ}

γ is the preconditionandρ the postcondition.

The sequence :

{ρ}S1 {θ} {θ}S2 {γ}
{ρ}S1; S2 {γ}

where θ a descending property fromS1 andS2

The affection :

{ρ}x := e {γ[x/e]}

The condition :

{ρ ∧ C}S1{γ} ∧ {ρ ∧ ¬C}S2{γ}
{ρ}if C thenS1 else S2{γ}

Towards the automatic translation from C program to Horn clauses Paul Raynaud

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 2



The implication :

{ρ} ⇒ {ρ′} ∧ {γ′} ⇒ {γ} ∧ {ρ′}i{γ′}
{ρ}i{γ}

We must now apply these formulas to our graph from the
RTL representation Figure.

3 Contribution
Theoretical principle

We were integrated in CompCert as soon as it created the
first CFG. We were able to use the principles mentioned pre-
viously, along with an already defined Hoare Logic. To ap-
ply them in CompCert, we will need to re-write the rules and
adapt them following the intermediate language instructions
that we are tapping : RTL (Register Transfer Language). Af-
terwards, we will pass the obtained logical formulas to a SMT
solver to solve them Z3 [de Moura and Bjørner, 2007].

3.1 The work provided
CompCert C data recovery

First of all, we have to relate to CompCert, an industrial
compiler. We have to fully understand the global architec-
ture of the software of CompCert and the way the different
files are linked before working on it. Despite the fact that
we have had a relatively easy access to the needed data, it
was not enough for a smooth manipulation. In fact, to modify
something in the purpose of testing it, we had to recompile
CompCert. For this reason, we used a particular Caml library
(ppx deriving.show) to retrieve the data structure handled by
CompCert.

The principle of the library is to automatically generate
printers for all the types : sum, record or other. In order to
ensure this, we needed to modify not only the files where the
types that we wanted to display had been defined but also the
ones where we have defined all the basic types.

In Figure 3 we have the classic display of RTL by Comp-
Cert C. Below we detail an instruction and show the structure
of a RTL instruction.

9 : x4 = x2
Here is the 9th line in our program. This is the way
CompCert displays the following instruction, which is the
real structure that we get from the library ppxderiving.show.

(RTL.Iop (Op.Omove, [(BinNums.Coq xO Bin-
Nums.Coq xH)], (BinNums.Coq xO (BinNums.Coq xO
BinNums.Coq xH)), (BinNums.Coq xO (BinNums.Coq xO
(BinNums.Coq xO BinNums.Coq xH)))))

Now let’s see in details what it means :

(RTL.Iop −→ indicates that this is an operation
(Op.Omove, −→ same as a move in assembler code

(BinNums.Coq xO BinNums.Coq xH)
−→BinNums defined binear 1 and 0, here we have 102 = 210
, for x2

  

FIGURE 3 – Display of the representation RTL of ”middle.c”
during its compilation by CompCert C

(BinNums.Coq xO (BinNums.Coq xO Bin-
Nums.Coq xH))−→ we have 1002 = 410, for x4
(BinNums.Coq xO (BinNums.Coq xO (BinNums.Coq xO
BinNums.Coq xH))))) −→ we have 10002 = 810, 8 for the
next instruction

Implementation of a first structure of CFG
The compilation was a bit complicated but once the struc-

ture of the compiled code by CompCert was extracted, we
obtain a list of the Control Flow Graphs, each one represents
a function/procedure.

By sorting and modifying the tree instructions we have im-
plemented a first new structure that is better suited to the re-
presentation of a CFG, a structure by triplet.

Once our starting tree transformed into a CFG as a triplet
structure, we have developed a printer in the format .dot allo-
wing the display of a graph using the graphviz software [Ell-
son et al., 2003].

Generation of Logical Formulas
Once the CFG recovered, we can start to generate the lo-

gical formulas, each one independently, by following Hoare
rules. The formulas obtained for our program are the follo-
wing :

∀x1, x2, x3, x4, x5,
precond(x1, x2, x3, x4, x5)⇒ P9(x1, x2, x3, x2, x5)

∀x1, x2, x3, x4, x5,
P9(x1, x2, x3, x4, x5)⇒ P8(x1, x2, x3, x2, x5)

∀x1, x2, x3, x4, x5,
P8(x1, x2, x3, x4, x5)⇒ P7(x1, x2, x1, x4, x5)

∀x1, x2, x3, x4, x5,

Towards the automatic translation from C program to Horn clauses Paul Raynaud

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 3



FIGURE 4 – Control Flow Graph of the program ”middle.c”

P7(x1, x2, x3, x4, x5)⇒ P6(x1, x2, x3, x4, x5)
∀x1, x2, x3, x4, x5,

P6(x1, x2, x3, x4, x5)∧(x4<x7) ⇒ P5(x1, x2, x3, x4, x5)
∀x1, x2, x3, x4, x5,

P6(x1, x2, x3, x4, x5)∧¬(x4<x7)⇒ P2(x1, x2, x3, x4, x5)
∀x1, x2, x3, x4, x5,

P5(x1, x2, x3, x4, x5)⇒ P4(x1, x2, x3, x4 + 1, x5)
∀x1, x2, x3, x4, x5,

P4(x1, x2, x3, x4, x5)⇒ P3(x1, x2, x3 − 1, x4, x5)
∀x1, x2, x3, x4, x5,

P3(x1, x2, x3, x4, x5)⇒ P6(x1, x2, x3, x4, x5)
∀x1, x2, x3, x4, x5,

P2(x1, x2, x3, x4, x5)⇒ P1(x1, x2, x3, x4, 0)
∀x1, x2, x3, x4, x5,

P1(x1, x2, x3, x4, x5)⇒ postcond(x1, x2, x3, x2, x5)

These are the formulas (simplified) resulting of the CFG
ref. Figure 4 Pi ⇒ Pj indicates that the node i is pointing at
the node j and the transformation is done in the parameters
of Pj.

The choice of the SMT Solver

To resolve the formulas that we have generated, we can
choose between many SMT solvers to do that task. However,
since we are working on a project similar to Gurfinkel’s that
uses Z3 and works just fine, we naturally chose to simply use
the same SMT solver.

Adaption of the logical formulas to Z3

Once the formulas generated, we need to transform them
so that it suits Z3. A function definition (predicate) in Z3 is
defined as follows :

(declare-fun( (type var1) (type var2)... (type varN)) Bool )

Here we have a predicate declaration (Bool) with N va-
riables.

To declare Z3 predicates, we have to get the types of all the
variables of the program.

However, the language RTL is close to the Assembler lan-
guage and manipulates pseudo-registers. Therefore the va-
riables (or pseudo-registers) are not typed.

To find the types of the variables in RTL, we have to re-
build the types using the operations in which each variable
participated.

Towards the automatic translation from C program to Horn clauses Paul Raynaud

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 4



  

The code above show us a instruction « if » with two 
conditions.
Below we can see the RTL traduction

A new variable has been introduce: x2. It is the variable 
making the link between the two conditions. x2 is set to 0 
(false) if the first condition is'nt verify or set at the value of 
the second condition. This is a boolean.

FIGURE 5 –

x3 = x3 + -1 (int)
from this operation we can deduce

that x3 is an integer variable

This is possible thanks to the multitude of possible opera-
tions defined in the RTL representation of CompCert which
make it possible to find the types.

However to have a better use of Z3 we could decide to
use Booleans instead of the variables that only realize condi-
tions. Particularly useful on intermediate registers added by
the compiler making the link between 2 conditions (as defi-
ned in the figure 5.

It is nevertheless possible for an integer to be used as a
boolean temporarily (as defined in Figure 6)

We have done a hierarchy of types Min < Bool < Int <
Float. to proceed afterwards to a homogenization of the
types by creating a link between all the instructions of the
program. After that, the types of the arguments given to the
function must be compared. It’s crucial that everything re-
mains consistent. (as defined in Figure 7).

Thereby, we can find the types of all the program’s va-
riables.

In our example, it is simple because as it turns out there are
integers only. (voir Figure 8).

Give an example of 2 functions definitions and the logical
formula that makes the link between them. In our case, we
will write the formula that draws the link between the lines 9
and 8 :

  

In this case  :
- at the line 4 we could say than x1 is a boolean
- at the line 2 we can say the x1 is a boolean
- at the line 3 we can say x1 is an integer

FIGURE 6 –

  

In this case we have 4 indications for the type of x1,
 and to deduce the type we are looking for the max 
of thos 4 indications.

Max( int, bool, int, bool) = int
Our variable x1 is an integer.

x1 is a boolean

x1 is an integer

x1 is a boolean

x1 is an integer

FIGURE 7 –

Towards the automatic translation from C program to Horn clauses Paul Raynaud

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 5



  

(int, int) from 
the signature

 int 

 int 

 int 

Therefore x1,x2,x3,x4,x5 are integer variables
 

FIGURE 8 –

∀x1, x2, x3, x4, x5,
P9(x1, x2, x3, x4, x5) ⇒ P8(x1, x2, x3, x2, x5)

par
(declare-fun P 9 (Int Int Int Int Int ) Bool)
(declare-fun P 8 (Int Int Int Int Int ) Bool)

(forall ( (x1 Int ) (x2 Int ) (x3 Int ) (x4 Int ) (x5 Int )
)

(⇒
(P 9 x1 x2 x3 x4 x5)
(P 8 x1 x2 x3 x2 x5) ; from x4 = x2

)
)

Once the types are determined, we write the predicates as
well as the logical formulas associated to the program while
transcribing solely our formulas into the format Z3.

Adding of the pre/post condition
Whatever concerns the C code formulas is therefore written

automatically.
We need to define thereafter the true properties at the be-

ginning of the program (pre-condition) and the ones that we
wish to prove at the end of the program (post-condition).

The writing of the pre-condition and the post-condition is
left to the developer because the properties that he wishes to
show are the ones that should be written. The links between
the pre-condition od the program and the post-condition are
written automatically, only the bodies of the pre-condition
and the post-condition should be written.

Interpretation of Z3 results
When everything is written, it only remains to launch Z3

and wait for the result. With the way the formulas have been
written, if Z3 responds with sat then the program is proven.
It’s not proven if it responds with unsat.

We would have preferred having more information when
Z3 responds with unsat, unfortunately we couldn’t dig further

in the returns of Z3. Get-proof returns a proof that there is no
way to satisfy the formulas but it is illegible.

Z3 can also respond with unknown or timeout. And in
those cases, we don’t have further information.

We remain very dependent on the solver. If it can’t solve
our formulas, even if they are correct, we need another way
to proceed.

Observation on Z3
The pre-condition has a significant impact on the response

of Z3.
We fix the properties 0 ≤ x ≤ y ≤ parameter We

have to put the results into perspective since the tests
weren’t completely under control. Realized on Z3 online
(https ://rise4fun.com/Z3) , based on the formulas defined
earlier (written in Z3).

parameter time
3 2
5 3
7 7
8 7.7
9 timeout (12)
10 and + timeout

Given that the experiment was not quite normalised, I was
not able to go further in an estimation in function on the
size of the parameters, however it is obvious that the bigger
the space of the pre-condition, the longer the response will be.

If Z3 give us a time-out, we can restrain our pre-condition
space to do local verification. That can give us indication
about the program completeness but that don’t prove the com-
pleteness.

4 Conclusion
4.1 Prove a small program

It was possible to prove a small program. We have also
proven that if we did a small modification≤. the program was
no longer valid. Since the proof is annoying to do by hand, we
can consider that the internship mission is accomplished.

4.2 The representation RTL
The real goal of the internship was to check if the represen-

tation RTL had the necessary information to realize this veri-
fier. During this internship, I haven’t had time to get into the
details of all the RTL language instructions, however, based
on what i have done I estimate that there are enough infor-
mation to implement the program verifier from this represen-
tation. It will not be inevitably immediate but the necessary
information are there.

+ : . The CFG
. The functions have a lot of information
. Possibility of finding the unavailable information

- : . Not everything is straight forward, there is some work
that has to be done.

Towards the automatic translation from C program to Horn clauses Paul Raynaud

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 6



5 Possible and likely extensions
5.1 Addition of a property to test in the program

The idea is to replace the functions calls assume() and as-
sert() of the C source code by some properties to verify in the
program, exactly where there are functions calls.

Try to recover information of SMT solver when it returns
unsat to see which properties remain unverified.

Apply the ideas of other projects that are aiming to prove
code. Some of them are in the bibliography [Temesghen kah-
sai, 2015].

5.2 Mid-term objective
It is necessary to eventually complete this tool to treat all

the RTL language instructions. By doing so, my work will
be completed and a verdict on the relevance of the interme-
diary RTL representation for the realization of a verifier will
be reached.

If it is not possible to treat certain instructions from the
RTL representation then the tool will not be usable. It may
be necessary to transmit other information from the previous
steps into the compilation. If all this is done, the tool will be
the equivalent of Seahorn or Boogie, adapted to the Comp-
Cert C compiler.

5.3 To be synchronized with CompCert
To remain in the same logic as CompCert, we have to prove

this software, the same way as CompCert and develop this
checker (verifier) in Coq, which is, according to Mr. Périn,
would be the work of a thesis.

If the project came to an end, then a program compiled by
CompCert C (and our tool) would be able to have properties,
and maintain them throughout the compilation.

Références
[Blazy and Leroy, 2005] Sandrine Blazy and Xavier Leroy.

Formal verification of a memory model for C-like impera-
tive languages. In International Conference on Formal En-
gineering Methods (ICFEM 2005), volume 3785 of Lec-
ture Notes in Computer Science, pages 280–299. Springer,
2005.

[de Moura and Bjørner, 2007] Leonardo de Moura and Ni-
kolaj Bjørner. Efficient e-matching for smt solvers. 21st
International Conference on Automated Deduction, Bre-
men, Germany,, volume 4603 of Lecture Notes in Compu-
ter Science :183–198, July 2007.

[Ellson et al., 2003] John Ellson, Emden R. Gansner, Elef-
therios Koutsofios, Stephen C. North, and Gordon Wood-
hull. Graphviz and dynagraph – static and dynamic graph
drawing tools. In GRAPH DRAWING SOFTWARE, pages
127–148. Springer-Verlag, 2003.

[Fan, 2010] Clang/LLVM Maturity Report, Moltkestr.
30, 76133 Karlsruhe - Germany, June 2010. See
http://www.iwi.hs-karlsruhe.de.

[Gurfinkel et al., 2015] Arie Gurfinkel, Temesghen Kahsai,
Anvesh Komuravelli, and Jorge A. Navas. The seahorn
verification framework. 27th International Conference
on Computer Aided Verification (CAV 2015) ; 18-24 Jul.
2015 ; San Francisco, CA; United States, pages 1–17,
2015.

[Temesghen kahsai, 2015] Dejan Jovanovic Martin Schäf
Temesghen kahsai, Jorge A. Navas. finding inconsisten-
cies in programs with loops. pages 1–15, 2015.

[Yang et al., 2011] Xuejun Yang, Yang Chen, Eric Eide, and
John Regehr. Finding and understanding bugs in c compi-
lers. Proceedings of the 2011 ACM SIGPLAN Conference
PLDI, San Jose, pages 1–17, June 2011.

Towards the automatic translation from C program to Horn clauses Paul Raynaud

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 7





Runtime verification of logico-temporal properties
for embedded C software ∗

Enzo Brignon
TIMA Lab. (Univ. Grenoble Alpes, CNRS)

46 Av. Felix Viallet, Grenoble, France
Enzo.Brignon@univ-grenoble-alpes.fr

Supervised by: Laurence Pierre

I understand what plagiarism entails and I declare that
this report is my own, original work.
Name, date and signature:

Abstract

The reliability of C and C++ software is a main
concern in many application domains such as
embedded systems, in particular in critical sys-
tems. In this context, our team has developed
OSIRIS, a tool that automatically instruments
C programs with temporal property checkers
designed for runtime verification of properties
specified in PSL. The long term goal of this
project is to give the ability to express proper-
ties over software execution for debugging pur-
pose and fault tolerance analysis. The purpose
of the work presented here is to propose alter-
native instrumentation solutions that increase
portability and minimize the CPU time over-
head induced by the current observation model.

1 Introduction

The reliability of C or C++ software is a main concern
in many application domains, in particular embedded
and critical systems such as avionics, automotive and
aerospace. Indeed malfunction in firmware embedded in
critical systems can cause huge problems. Hence it is of
utmost importance to provide methods to prevent run-
time errors and to ensure that the behavior of programs
does not differ from their specification.

Verifying properties on firmware is a complex task be-
cause of the interactions between the software and the
hardware. Embedded software uses hardware mecha-
nisms, such as interrupts, that make debugging difficult
to perform. There is a need of methods for verification of
C firmware. One way to do that is to use logico-temporal
properties that facilitate debugging through assertions
and that can also ease fault tolerance analysis. A sim-
ple example is the following : “The variable v becomes

∗These match the formatting instructions of IJCAI-07.
The support of IJCAI, Inc. is acknowledged.

greater than 100 before the function f is called”. This
example takes into account temporal aspects as some-
thing happens before something else and has to observe
variable assignments with certain values, and function
calls.

Static analysis is a commonly used method for pro-
gram validation. It uses formal models of the system
under verification (finite state machines for example) in
order to automatically verify if these models satisfy the
specification. Model checking [7] has the advantage to
give an exhaustive view of the program behavior but has
difficulty to scale when the number of variables becomes
large. Others methods are proposed that do not face
the scalability limit by doing dynamic verification (i.e.,
runtime verification), yet they focus on instances of the
problem. There exists some tools that make such analy-
sis among them [8] [13] [16]. Our team has developed the
OSIRIS [5] tool (inspired by the ISIS tool [10]) that offers
automatized methods for instrumentation of C programs
(from source or binary) for assertion-based verification
of properties specified in PSL [2].

This paper presents the adaptation of the OSIRIS tool
to support two new instrumentation solutions that are
proposed for binary firmware compiled for ARM proces-
sors, for bare metal context (using software interrupts)
and for both contexts (OS and bare metal) using assem-
bly code insertion. It also reports some experimental
results for some significant properties dedicated to two
use cases.

2 Temporal properties for software
To monitor a program, properties have to be specified
in order to check if something wrong happens. These
properties involve events and values to get temporal and
quantitative aspects.

For example, a property can be expressed in natural
language as follows : “every time variable v1 is reset
then the value of the variable v2 becomes greater than
100 before the function f is called”. In this property we
can identify the quantitative and temporal aspects, the
reset of v1, the assignments to v2 and the calls to f are
events that are used to construct the execution trace
(see Fig. 1) on which we have evaluation points which
are where we have to evaluate the property. This is the

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 9



Figure 1: Example execution trace

temporal aspect. The quantitative part is denoted by
the “greater than 100” that means that, in addition to
event occurrence, we have to check the value contained
in the variable v2.

2.1 Brief overview of PSL

In order to specify such properties we use the standard
Property Specification Language (IEEE std. 1850) [2] for
multiple reasons. It is a standard with intuitive keywords
for temporal logic. In addition to that, PSL can be used
with any programming language because of the fact that
Boolean expressions use the syntax of the language on
which it is applied (here, Boolean expressions will borrow
the C syntax). All that makes it easy and intuitive to
employ.

Some commonly used operators for the specification
of temporal assertion are the following :

always ϕ is satisfied on the trace if ϕ remains satisfied
all along the trace.

next! ϕ is satisfied if ϕ is satisfied from the next eval-
uation point.

ϕ until! b is satisfied on the trace if there exists an eval-
uation point where b is satisfied, and ϕ is satisfied
until that point.

b1 before! b2 is satisfied in the trace if b1 is satisfied at
least once strictly before b2.

eventually! ϕ is satisfied on the trace if there exists an
evaluation point from which ϕ is satisfied.

b → ϕ is the logical implication.

In addition to this “Temporal layer”, the PSL “Mod-
eling layer” allows to declare and give behavior to aux-
iliary signals and variables. For a C flavor, it consists of
declarations and statements which would be legal within
a C function.

2.2 Specific observer events

To express events in PSL assertions, we extend the lan-
guage with 4 operators [5]. Given that v is a variable, f
is a function and f.v is a local variable or parameter of
the function f :

v#SET() is true when an assignment to the variable v
is being executed.

v#GET() is true when a reading of the variable v oc-
curs.

f#START() is true when the function f is called.

f#END() is true when the function f returns.

Given the natural language example stated earlier “ev-
ery time variable v1 is reset then the value of the vari-
able v2 becomes greater than 100 before the function f

is called”, we can specify a PSL assertion that charac-
terizes the property as follows :

always ((v1#SET() && v1 == 0) ->
( (v2#SET() && v2 > 100)

before! f #START ()) );

2.3 OSIRIS monitors

Once PSL formulae are written, OSIRIS automatically
generates monitors that will check these assertions along
the execution. A monitor is a software component able
to check a property, which observes the instrumented
program in order to evaluate this property.

Since our logic model uses temporal assertions, a mon-
itor has to resume any time an event that involves its
property occurs. These events are defined using the op-
erators of section 2.2. In our example, the generated
monitor has to be updated upon any occurrence of either
an assignment to the variable v1 or v2 (due to v1#SET()
and v2#SET() conditions) or the call of the function f
(due to the f#START() condition).

Events are the main element of the observation mech-
anism since the evaluation is performed only when they
occur. The work presented here focuses on the definition
and the implementation of solutions for this observation
process, in the context of embedded systems, in the pres-
ence of an operating system or not.

3 Existing solution for software
instrumentation (OSIRIS tool)

Once the monitors are generated, we still need to set
an observation mechanism in order to notify them at
the right time and with the right values. To do that,
the original OSIRIS solution implements two alternative
methods [5]. We recall them in this section after explain-
ing the use of the observer design pattern.

3.1 Observer design pattern

To monitor the program, OSIRIS uses an adaptation of
the Observer design pattern [11] that enables objects to
notify observers each time they are modified. Observers
are used to make the connection between a monitor and
a variable. There are four component used to imple-
ment this design pattern, the subject, the observer, the
wrapper and the monitor. The subject contains a list
of wrappers (that inherits from the observer) that con-
tains a list of monitors. Each variable or function that
is involved in a property is bound to a subject, that no-
tifies all its observers each time an event that relies on
the corresponding variable occurs, thus, it triggers the
evaluation of each property that relies on the variable
associated to it.

3.2 Method that instruments the source
code

A first solution consists in modifying the C source code
such that every observed event provokes the notification
of its observers. It means that the call to the notification

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 10



function is automatically inserted in the C code, close to
the corresponding statement.

To do that, OSIRIS automatically associates a subject
S with each observed variable V, and its observers are the
wrappers for the assertions that involve this variable. In
addition, a specific function obs write V is produced, it
enables the observation of the events that update V. Sim-
ilarly, a function obs read V is produced for read actions.
Source code instrumentation simply consists in calling
function obs write V or obs read V everywhere the vari-
able V is updated or read.

To observe that a function f starts or returns, OSIRIS
produces a function obs f START or obs f END. This func-
tion has the same parameters as f. It calls f, notifies the
subject associated with f, and returns the return value of
f. Source code instrumentation simply consists in calling
function obs f START or obs f END in place of f.

This method is simple but its disadvantage is that it
is intrusive in the source code. Another solution consists
in dynamically instrumenting the executable code.

3.3 Method with observing processes

The first method proposed for dynamic binary instru-
mentation used an additional UNIX process for observa-
tion [5]. The principle is to have two processes that are
executed in parallel, the first is the targeted application
on which we want to evaluate properties (the tracee),
and the second is the “observing process” (the tracer).
Using two processes permits to preserve the targeted ap-
plication in the same state that is given to OSIRIS. The
ptrace [4] libprary (originally used by gdb [3] for de-
bugging) provides systems calls to define the tracer and
tracee processes for instrumentation and memory inspec-
tion, it is used to enable the checkers to interact with the
targeted application.
To be able to recognize events, the tracer will dynami-
cally modify instructions in the tracee. These instruc-
tions are the reads and writes in variables, function calls
and return that we want to observe. They are replaced
by a special instruction called INT 3 which is a break-
point. When a breakpoint is reached during the execu-
tion, the execution of the tracee process is interrupted
and the tracer process is notified. This way the tracer
can execute the corresponding property checkers. The
breakpoints are differentiated by the value contained in
the program counter at breakpoint. The fact that in-
structions are replaced implies that they are not exe-
cuted by the tracee. Therefore, the tracer makes the
tracee execute the replaced instruction as a single step
when it reaches a breakpoint. The detail of the observa-
tion mechanism is the following (see fig. 2) :

1. When the tracee execution is interrupted due to INT
3, the tracer resumes.

2. The tracer replaces the breakpoint on which the
tracee has stopped by the replaced instruction.

3. The tracer makes the tracee do a single step (exe-
cuting only the instruction that was replaced at the
previous step).

4. The tracer evaluates the property that corresponds
to the event encountered.

5. The tracee replaces the breakpoint where it was pre-
viously (before the second step).

6. The tracee resumes its execution.

Figure 2: Mechanism using observing process

OSIRIS generates the source code of the tracer process
and a new “main” function that creates the two processes
of the instrumentation mechanism.
This method has the advantage of not being intrusive
because the binary file of the program has not been mod-
ified and is instrumented dynamically at runtime. Nev-
ertheless, the use of multiple processes and the ptrace
library implies the presence of an Operating System
(POSIX) on the system that is executing the instru-
mented program. We proposed two other instrumen-
tation strategies explained in the following section.

4 Alternative observation methods

To overcome the drawbacks of the methods of section 3,
we have designed to new observation techniques.

4.1 Method using software interrupt

This method aims at using software interrupts, in par-
ticular for ARM processors. The Software Interrupt
(SWI1) [1] is a special instruction that emits a signal
to the processor which has to change mode to supervisor
and to branch to the interrupt vector table. This ta-
ble is used for exception handling, it contains one word
instruction per exception type (usually a branch instruc-
tion to the corresponding handling function or “interrupt
handler”). SWI allows to program to request privileged
operations in supervisor mode, it is commonly used to
perform system calls.
The SWI instruction takes a parameter called interrupt
number, it can be used to specify the system call num-
ber (deprecated in recent ARM ABIs2). This number
is given as parameter to the interrupt handler (named
C SWI handler) which can define different behaviors ac-
cording to this number.

1Or SVC for supervisor call.
2Application Binary Interface

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 11



(a) Interrupt handling using C SWI handler (b) Representation of
the stack

Figure 3: C SWI handler mechanism

Similarly to the solution of section 3.3, we automatically
replace instructions in the binary file of the targeted ap-
plication. Here the instrumentation is done statically by
replacing the instructions by a software interrupt SWI
(see fig. 3(a)). When the interrupt is triggered, the ex-
ecution is rerouted to the interrupt handler (pointed by
the interrupt vector table) that will execute the replaced
instruction, and then call the checker evaluation.
The execution of the replaced instruction requires to save
on the stack the state of the program when the exception
occurs in order to retrieve it in the handler context (see
fig. 3(b)). To do that we have defined a wrapper for
the interrupt handler, which saves the content of all the
registers on the stack and calls the interrupt handler with
two arguments : the interrupt number and the addresses
of the copied context on the stack.
The instruction replacement is performed automatically
by OSIRIS after finding the events on which the property
must be evaluated. Given the replaced instructions, the
interrupt handler is also automatically generated.
The evaluation mechanism remains the same as the one
of solution of section 3.3 : once the subject is updated, it
notifies its observers that triggers the evaluation of the
properties by notifying the monitors.
This method has the advantage of not requiring an op-
erating system, that makes it more convenient for some
categories of embedded systems. On the other hand,
with an operating system, modifying the interrupt vec-
tor table and the interrupt handlers could enter into con-
flict with the system calls, which is not desirable. Hence
this solution is well adapted to bare metal contexts.

4.2 Method using jump

This second solution has been proposed to be indepen-
dent from the presence of an Operating System or not.
Instead of using special instructions to trigger the prop-
erty evaluation we use branch instructions to jump di-
rectly to a handling function (called jump handler) used
to trigger the property evaluation (see fig 4).

1. When the execution reaches an event that must trig-
ger a property evaluation after its instruction, the
program jumps to the jump handler.

2. The properties that involve this event are evaluated.

3. The program resumes after the event.

Figure 4: Observation mechanism using jumps

In order to use branch instructions we have to insert
instructions in the binary file without modifying all the
addresses. To do that we work on binary relocatable file,
that is the object file before linking. The three main
elements that we have to modify in the file (in addition
to the instruction insertions) are the section header table,
the symbol table and the relocation table.

Figure 5: Relocation phase during linking

The section header table (.symtab) contains the ad-
dresses, size, name and type of every section headers
in the file. The symbol table contains identifiers that
are visible from external files as function and variables
name and addresses (see fig 5). The relocation table
(.rel.text) contains pointers that have to be resolved
during the loading phase, such that it will point to the
correct locations.

To insert instruction blocks at a given point in the pro-
gram, OSIRIS proceeds as follows:

1. Replace the instruction that we want to observe
with a branch instruction to a “handler wrapper”

2. Insert the symbol that corresponds to the targeted

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 12



Bare metal (A9) Linux (A7) Numbers
CPU time = 522 ms

source (3.2) binary (4.2) source (3.2) binary (4.2) activations evaluations
Property (P1) - - 685 ms 692 ms 597 326 47 929
Property (P2) - - 717 ms 735 ms 597 326 127 326
Property (P3) - - 764 ms 788 ms 1 017 558 77 551
Property (P4) - - 890 ms 911 ms 1 017 558 392 449

Table 1: Experimental results for the simulated annealing application

functions of the inserted branch instruction (foo in
fig 5) with address 0 in the symbol table, and mod-
ify the relocation table in order to add the inserted
instruction to the pointers that have to be resolved
(addr1 in .rel.text)

3. Generate the corresponding “handler wrapper”, in
assembly code, that will first execute the replaced
instruction and then backup the current state of the
program in order to call the jump handler (see Fig.
4).

Moreover, OSIRIS must recognize the replaced instruc-
tions. These are data processing and load/store instruc-
tions. The parameters that are given to the jump han-
dler are: an integer that specifies the observed event, the
current frame pointer, and the value of the R0 register
(the register that contains function return values).

This method has the advantage that it does not re-
quire to be in an operating system or bare metal context.
Nevertheless it is more invasive for the targeted program
because of the modifications done in the program.

5 Experimental results

We now present the results of some experiments on two
use cases that are freely available C applications. The
first one is an implementation of simulated annealing
that comes from the GSL (GNU Scientific Library) [12],
and the second one is a path following lateral controller
implemented on an autonomous car [15]. Experiments
are realized in two contexts: bare metal execution on
a Zybo board (ARM Cortex A9 processor), and Linux
context on a Raspberry Pi 2 (ARM Cortex A7 proces-
sor).

Since the solution of section 4.2 is more general than
the one of section 4.1, we only perform experiments with
this method, as well as with the source code instrumen-
tation described in section 3.2.

5.1 Simulated annealing

The first use case is a package dedicated to solving op-
timization problems using simulated annealing. It also
provides a test program that uses a simulated anneal-
ing algorithm to solve the Travelling Salesman Problem
(TSP). Let us briefly recall the principles of simulated
annealing. It is based on the computation of an “energy
function” E(s) on the system state space. The algorithm
first selects a solution s0 from the state space, then it
iterates by visiting neighbouring solutions. When the

selected solution new E is worse than the previous one E,
a probabilistic function decides whether the algorithm
shall choose another neighbour or accept the solution
and step forward. The final solution is at least a local
minimum of the energy function.

We have considered properties that were already spec-
ified in [5] (note that all the variables are local variables
of a function called gsl siman solve):

• (P1) everytime the algorithm finds a new solution
with an energy new E lower than the energy of the
best solution best E, then best E will be updated
with this new E

• (P2) in addition to the first property, if best E is up-
dated, it will not be modified again (no alteration)
until new E is recomputed

• (P3) everytime the algorithm finds a better solution
than the previous one (i.e., new E< E), this solution
will unconditionnaly get accepted (i.e., the “boltz-
mann” function will not be called until new E is re-
computed)

• (P4) everytime the algorithm finds a worse solution
than the previous one, the “boltzmann” function
must be called before determining the next solution.

As an example, we give below the PSL formalization of
property (P4). It means that everytime the local variable
new E is updated with a value that is greater than the one
of E, then the function boltzmann will be called before the
next assignment to new E:

always((gsl_siman_solve.new_E#SET() &&
(gsl_siman_solve.new_E > gsl_siman_solve.E))

=> next(boltzmann#START()
before gsl_siman_solve.new_E#SET())));

Table 1 summarizes the CPU times without and with
instrumentation, for the execution of the TSP for a dozen
of towns. For this use case, experiments have not been
performed in the bare metal context due to the fact that
the GNU Scientific Library cannot be compiled (depen-
dencies to some specific functions are missing). For the
Linux context (on the Raspberry Pi), the table first gives
the raw CPU time for this application (i.e., without any
instrumentation). Then it summarizes the CPU times
for the execution with each property, for the source in-
strumentation and for the binary instrumentation using
jumps. The last column gives the number of activations
(notifications on events) and of actual evaluations (the

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 13



Bare metal (A9) Linux (A7) Numbers
CPU time = 21.93 s CPU time = 4.17 s

source (3.2) binary (4.2) source (3.2) binary (4.2) activations evaluations
Property (P1) 21.98 s 21.97 s 4.28 s 5.09 s

7920 1164
Property (P2) 7920 1266
Property (P3) 21.97 s 21.97 s 7.1 s 7.96 s

9901 486
Property (P4) 9901 510
Property (P5) 21.97 s 21.96 s 4.92 s 5.68 s

13861 1981
Property (P6) 5941 1981

Table 2: Experimental results for the path controller

checker is notified and the premise of the implication
holds i.e., an evaluation actually starts) of each prop-
erty. We can remark that the CPU time overhead is
rather comparable for the source code instrumentation
and for the binary instrumentation, and that it is roughly
around 40%.

5.2 Path following lateral controller

This use case has also already been described in [5]. It
is a path following lateral controller implemented on an
autonomous car [15]. The idea is that the car has some
desired path to follow, and sensors below the car detect
the location of this path (see Figure 6).

Figure 6: Sensors on the autonomous car [15]

First, the values captured by the sensors are analyzed
by a DSP (Digital Signal Processor) which ultimately
sends an angle to the controller, such that the controller
can determine how to turn the steering wheels in or-
der to follow the correct path. The DSP first computes
the error between the desired path and the car, then
it computes the expected angle, copies it to a variable
output that is used to communicate with the controller.
To send the value of this variable to the controller, the
DSP uses a fonction putMem. In some other phases of its
algorithm, it computes and sends a new velocity, instead
of an angle.

The following correctness properties have been consid-
ered:

• (P1) if the front sensors detect the path on the left,
then the next assignment to output will be such that
a correction is applied i.e., the difference between

the previous value of output and the current one is
greater than 0,

• (P2) symmetrically, if the front sensors detect the
path on the right, then the next assignment to
output will be such that a correction is applied i.e.,
the difference between the previous value of output

and the current one is lesser than 0,

• (P3) if the front sensors detect the path on the left
and then do not detect the path, then the next as-
signments to output will be such that a correction is
applied until the front sensors detect the path again,

• (P4) symmetrically, if the front sensors detect the
path on the right and then do not detect the path,
then the next assignments to output will be such
that a correction is applied until the front sensors
detect the path again.

Property (P1) for instance is formalized as follows, it
uses the PSL “Modeling layer”.

// Modeling layer:
bool back_blackout;
bool front_left=false;
long zero_angle=32;
long delta = 0;
long prev_angle = 32;
if(front_array#SET()){ // path on
if ((front_array & 0xF80) != 0xF80) // the left

front_left=true;
else

front_left=false;
}
if (back_array#SET()){

back_blackout = back_array == 0xFFF;
}
if (output#SET() && ((output & 0x40) == 0)){
// i.e., if output receives a new angle

delta = prev_angle - (output & 0x3f);
prev_angle = output & 0x3f;

}
// Assertion:

assert
always((!back_blackout && front_left)

=>next_event!(output#SET())(delta >= 0));

Property (P3) expresses that the correction is applied
until the path is detected again, it has the following PSL
formalization:

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 14



// Modeling layer:
bool front_to_left;
bool front_blackout;
bool back_blackout;
long delta = 0;
long prev_angle = 32;
if (front_array#SET()) {

if ((front_array & 0xF80) != 0xF80){ // path on
front_to_left = true; // the left
front_blackout = false;

}
else if (front_array == 0xFFF){ // no path

front_blackout = true;
front_to_left = false;
}
else {

front_to_left = false;
front_blackout = false;

}
}

if (output#SET() && ((output & 0x40) == 0)){
delta = prev_angle - (output & 0x3f);
prev_angle = output & 0x3f;

}
if (back_array#SET()){

back_blackout = back_array == 0xFFF;
}

// Assertion:
assert

always
((front_array#SET() &&

front_to_left && !back_blackout) =>
(next (next_event!

(front_array#SET())
((front_blackout &&
!back_blackout) =>

(next ((angle#SET() -> (delta >= 0))
until! (front_array#SET()

&& !front_blackout)))));

Regarding fault tolerance (e.g. w.r.t. electromagnetic
perturbations), it is also important to check that, once
an appropriate value is computed for the angle, it re-
mains unchanged until it is sent to the microcontroller.
To that goal we have introduced the complementary
properties (P5) and (P6) below:

• (P5) every last assignment to angle before an assign-
ment to output actually corresponds to the value
that is put into output,

• (P6) when the algorithm is computing a new angle,
then the value assigned to output indicates that it
corresponds to an angle, and the next call to putMem

actually receives this value as parameter.

To check the relevance of these properties, we have
performed various fault injections. They inject faults
(bit flips or stuck-at) either in least significant bits which
take part in the value of the angle, or in most significant
bits which represents some flags. One of these flags indi-
cates whether the value is an angle or a velocity. Another
flag should always be true to indicate that the car is en-
abled. Here is the summary of the results of these fault
injections:

• Fault injection in the value of angle:

– (P5) is violated (because it deals with angle)

– (P6) is not violated (because it only deals with
output)

• Fault injection in the angle/velocity flag of angle:

– (P5) is violated (because it deals with angle)

– (P6) is violated (because the value seems to be
a velocity)

• Fault injection in the enabled flag of angle:

– (P5) is not violated (because this bit is ignored)

– (P6) is not violated (because this bit is over-
written when output is assigned)

Table 2 summarizes the CPU times without and with
instrumentation, for the execution of this application.
For the bare metal and the Linux contexts, the table
first gives the raw CPU time (i.e., without any instru-
mentation). Then it summarizes the CPU times for the
execution with each property, for the source instrumen-
tation and for the binary instrumentation using jumps.
The last column gives the number of activations and of
actual evaluations of each property. We can remark that
the CPU time overhead is comparable for the source code
instrumentation and for the binary instrumentation, and
that it is generally negligible in the bare metal context.

6 Related Work

C. Watterson and D. Heffernan present in their paper
[18] different approaches for monitoring embedded sys-
tems. The first approach is to use hardware monitoring
that minimize intrusion in the target software. There is
also software monitoring that can be source code instru-
mentation, modifications of the operating system, or sep-
arate process monitor. The later approach may have the
disadvantage to slow down the target application. Then
there is the combination of the two first approaches to get
hybrid monitors that could minimize the disadvantages
of the two first methods. In addition the observation
could be performed by a remote hybrid monitor called
an on-chip monitors. For our project we decided to use
software monitors to be able to automatize the monitor
generation for embedded software.

6.1 Event-triggered monitoring

Thaker [17] proposed an assertion-based verification so-
lution for Java programs that uses aspect oriented pro-
gramming for instrumenting the source code of the tar-
get application. They used Linear Temporal Logic (LTL)
[14] that involves events (that they called interest points)
and values of variables to specify properties that will
be translated into assertions. These interest points are
global variables reads and writes and method begins and
ends. The observation mechanism of OSIRIS also con-
sider this kind of events but they are extended to the use
of the local variables and parameters of functions.

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 15



Most solutions suffer from the lack of quantitative ori-
ented verification. This is the point of view of Drusin-
sky [8, 9] with the Temporal Rover that uses a Linear-
time Temporal Logic (LTL) extended with Metric Tem-
poral Logic (MTL) assertion-based verification. In addi-
tion to that it enables to use specification of time-series
constraints. This means that the properties are speci-
fied over constraints on modifications of variables over
time. This tool takes as input source code of C, C++,
Java, VHDL or Verilog program/model with properties
written within comments, and returns the instrumented
source code. The instrumentation works using an exter-
nal software that runs on a host machine and gets the
instrumentation information sent by the target program
through HTTP, socket or serial port. The logic model
is quite close to our PSL logic model by the fact that
properties involve changes of values and event triggered
over the whole execution. Nevertheless the observation
mechanism is dependant to an external machine and is
not well-suited for embedded software.

The RMOR framework developed by the Jet Propulsion
Laboratory [13] is also an event-triggered verification
tool, but it does not use temporal properties as input.
It generates monitors for properties specified as Finite
State Machines (FSM). These FSM have to be defined in
such a way that they correspond the expected behavior
of the targeted application. The inputs of the FSMs are
temporal events declared with the FSMs. These mon-
itors are translated to CIL (C Intermediate Language)
an aspect oriented programming language that is used
to instrument the source code.

6.2 Some other approaches

The RiTHM tool [16] takes another direction than
Event-Triggered Runtime Verification (ETRV) and
takes the Time-Triggered Runtime Verification (TTRV)
model. In this model, the monitors are invoked period-
ically based on a predefined frequency. The tool uses
LTL properties to instrument C program source code
that will be evaluated in between polling time. Polling
is the mechanism where the process waits for a device to
be available, here the process waits for the timer (that
defines the period) to trigger. The property verifica-
tion is handled either by the GPU, or by another CPU
core. It is then not very adapted for embedded systems
that does not support multiprocessing. This solution
has fixed time overhead (because of the fact that the
monitors are called periodically), and it is more time-
consuming than with ETRV. Either the polling time is
short and the precision over property evaluation is good
but the latency is big or, the polling time is longer and
the evaluation quality decreases.

Cheung and Forin [6] give a C-Language Binding for PSL
that enables to do simulation based verification of prop-
erties specified in PSL. It uses a hardware/software sim-
ulator to perform analysis of the events involved in the
properties that are specified. A verification unit (vunit)
must be defined to set where and when the property has

to be verified. Vunit is also used to set the block in which
the variables and events can be found. In OSIRIS, prop-
erty specification is not limited to blocks and the scope
is the whole program. We can define a property that will
be verified on the entire application including the use of
local variables and function parameters (using the f.v
notation).

7 Conclusions

The four proposed observation methods are complemen-
tary. The source code instrumentation is simple and
efficient, but it is intrusive. The “observing process”
method is less invasive because it does not require any
modification in the binary file but it is only suitable in an
Operating System context. The version that uses soft-
ware interrupts is not much invasive and is designed only
for bare metal systems. And the fourth solution works
whatever the context is (OS or bare metal) but is more
intrusive than the one that uses software interrupts.
The methods described in section 4 have been imple-
mented in OSIRIS, and checked on few examples. It re-
quired to mechanize static binary instrumentation, gen-
eration of C source code (for the interrupt and jump
handlers), and generation of assembly code (for the jump
handler solution, in order to mimic a kind of interrupt
mechanism).

References

[1] SWI, ARM Developer Suite, Assember guide, 2000
- 2001.

[2] IEEE Standard for Property Specification Language
(PSL). IEEE Std 1850-2010 (Revision of IEEE Std
1850-2005), pages 1–182, April 2010.

[3] gdb, http://www.man7.org/linux/man-
pages/man1/gdb.1.html, 2018.

[4] ptrace, http://man7.org/linux/man-
pages/man2/ptrace.2.html, 2018.

[5] Martial Chabot, Kevin Mazet, and Laurence Pierre.
Automatic and Configurable Instrumentation of C
Programs with Temporal Assertion Checkers. In
Proc. MEMOCODE, September 2015.

[6] Cheung, Ping Hang and Forin, Alessandro. A C-
Language Binding for PSL. In Lee, Yann-Hang and
Kim, Heung-Nam and Kim, Jong and Park, Yong-
wan and Yang, Laurence T. and Kim, Sung Won,
editor, Embedded Software and Systems, pages 584–
591, Berlin, Heidelberg, 2007. Springer Berlin Hei-
delberg.

[7] Clarke, Edmund and Grumberg, Orna and Peled,
Doron. Model Checking. MIT Press, Cambridge,
MA, USA, 1999.

[8] Doron Drusinsky. The Temporal Rover and the
ATG Rover. In Proc. International SPIN Work-
shop. Springer-Verlag (LNCS 1885), 2000.

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 16



[9] Doron Drusinsky and Man-Tak Shing. Monitoring
temporal logic specifications combined with time se-
ries constraints. 2003.

[10] L. Ferro and L. Pierre. ISIS: Runtime verification
of TLM platforms. In 2009 Forum on Specification
Design Languages (FDL), pages 1–6, Sept 2009.

[11] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Abstraction
and Reuse of Object-Oriented Design, pages 701–
717. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002.

[12] GNU Scientific Library.
http://www.gnu.org/software/gsl/.

[13] Klaus Havelund. Runtime Verification of C Pro-
grams. In Proc. TestCom’2008. Springer-Verlag
(LNCS 5047), 2008.

[14] Zohar Manna and Amir Pnueli. The temporal logic
of reactive and concurrent systems: Specification.
Springer Science & Business Media, 2012.

[15] Patricia Mellodge. Feedback control for a path fol-
lowing robotic car. Master’s thesis, Virginia Tech,
2002.

[16] Samaneh Navabpour, Yogi Joshi, Chun Wah
Wallace, Shay Berkovich, Ramy Medhat, Bor-
zoo Bonakdarpour, and Sebastian Fischmeister.
RiTHM: A Tool for Enabling Time-triggered Run-
time Verification for C Programs. In Proc. FSE, St.
Petersburg, Russia, 2013.

[17] Sahil Thaker. Runtime monitoring temporal prop-
erty specification through code assertions. Depart-
ment of Computer Science, University of Texas at
Austin, 2005.

[18] C. Watterson and D. Heffernan. Runtime verifi-
cation and monitoring of embedded systems. IET
Software, 1(5):172–179, October 2007.

Runtime verification of logico-temporal properties for embedded C software Enzo Brignon

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 17





Combining Path and Cache Analysis for WCET estimation improvement

Florian Barrois
Université Grenoble Alpes

Grenoble, France
florian.barrois@etu.univ-grenoble-alpes.fr

Supervised by : Valentin Touzeau, Catherine Parent-Vigouroux, Claire Maïza
Laboratory VERIMAG, Grenoble, France

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
The Worst Case Execution Time (WCET) of a pro-
gram is an important parameter in the field of hard
real-time systems. A static path analysis shows that
its estimation can be improved by using Linear Re-
lation Analysis to consider programs semantics in
addition to programs structure. Furthermore, some
static survey about cache memory was conducted
in the scope of determining whether cache memory
accesses of a program would result in a cache hit or
a cache miss. The idea is to add a model checking
step to the use of abstract interpretation to refine
more block accesses as hit/miss.
Our proposal consists in exploiting programs se-
mantics, and more precisely infeasible paths, to re-
fine the state of the art about the cache memory
accesses of programs. By injecting the infeasible
paths found into a model checker analysis, we may
find out that some undefined block accesses are al-
ways a cache hit/miss. We propose two methods for
incorporating infeasible paths into the study: mod-
ifying the program Control Flow Graph or express-
ing these paths as constraints using temporal logic.
The knowledge newly acquired on the cache mem-
ory accesses then allows to enhance the WCET
static estimation either by obtaining a better value
for it, or by gaining confidence on its actual value.

Key words: WCET, infeasible path, cache memory,
control flow graph

1 Introduction
As the technology expands, technical devices become ubiq-
uitous and the need of assurance on the systems behaviour
gets stronger. In particular, the safety aspect requires a
specific attention in the case of critical and hard real-time
systems. For instance, in critical devices such as an aircraft
landing gear or a car airbag, it is essential to ascertain that
the mechanism deploys on time.

The Worst Case Execution Time (WCET) refers to the
greatest amount of time needed for a task to execute on a
specific physical platform. Therefore, finding an upper bound
of the WCET allows to guarantee the safety requirements of
a system. Estimating it is not a simple task since it depends
on the hardware platform and the executed program. Usually,
measuring the program’s execution time on representative
inputs and adding a safety margin may suffice, but in
safety-critical systems, one may wish for a higher degree of
assurance and use static analysis to cover all cases.

The programs meaning is generally not considered when
estimating the WCET. A study conducted at the laboratory
VERIMAG of Grenoble [7] presents a way of statically
obtaining a WCET estimation by taking into account both
the program structure and semantics. From this information,
the WCET value is found considering operations cost but
also the memory access cost. This last factor thus leads to
the question of knowing whether the desired information
remains in the cache memory.

Cache memories are small memories very close to the
processor which allow faster accesses than the main memory.
Caches store a copy of each accessed memory block. Thus,
when accessing a block, the cache is examined to determine
whether the block is present in the cache (cache hit) or not
(cache miss). Memory blocks are placed in cache parts called
cache lines. In order to guarantee an efficient look-up, each
block can be only stored in a certain number of different
cache lines called a cache set. The number of blocks in a
cache set is named the cache associativity. As the cache is
much smaller than the main memory, a replacement policy
must be chosen to decide which cache block is to be evicted
when the cache has no more space to store the last accessed
block. In this paper, we focus on instruction caches using the
commonly used Least Recently Used (LRU) policy.

Ideally, in the scope of precising the WCET estimation of
a program, one could proceed to a static cache analysis that
would determine whether each block access of the program
will result in a cache hit or a cache miss. Unfortunately no
analysis can perfectly give such information. Thus, most
cache analyses use a sound but incomplete technique of
analysis called abstract interpretation [4] to evaluate the

Florian Barrois

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 19



classification of block accesses. It has been shown that
some memory block accesses left unclassified by abstract
interpretation could be refined as hit or miss by model
checking [10]. However, this survey ignores the semantic
aspect of the program.

Our aim, in this article, is to supply this refined cache anal-
ysis with the programs semantics by highlighting some infea-
sible execution paths found from the mentioned study about
the WCET estimation and exploiting them to categorize as
cache hit or cache miss some cache accesses of kind still un-
known. Depending on the input program, the benefit of this
survey may vary from reducing the uncertainty of the original
WCET estimation to obtaining a better one.

2 Background and related work
2.1 Input data representation: Control Flow

Graphs

Programs are exploited in their control flow graph (CFG)
form, where vertices correspond to the instructions blocks
and edges model transitions of the program (conditions,
loops, jumps...). Throughout the survey, we base findings
upon many kinds of control flow graphs detailed below.

Binary CFG This scheme (like in Figure 1a) represents the
program structure obtained after the compilation step. Basic
blocks (BB) correspond to sets of binary instructions that are
executed. The binary CFG remains very close to the CFG of
the original C program besides some reorganizations due to
compiler optimizations (traceability [7]).

Cache CFG Accesses to cache memory blocks are displayed
in all possible execution paths and labeled with a letter repre-
senting the block they refer to, as shown in Figure 1b. Mem-
ory blocks may be accessed several times.

Memory CFG In our approach we need to consider basic
blocks (BB) as well as cache block accesses. Memory CFGs
gather both information and reveal which cache blocks are
accessed in each basic block. We associate one memory CFG
node per unique couple basic block/cache block. Basic and
cache blocks can be identified respectively by numbers and
letters so that the memory representation of the program ap-
pears clearer, as can be seen in Figure 1c.

2.2 Path analysis
The existing path analysis we rely on is based upon the use of
the following tools and techniques.

WCET estimation with OTAWA
OTAWA [1] is an academic framework dedicated to gathering
and comparing many methods related to WCET analysis. The
implicit path enumeration technique (IPET [2]) is the most
common approach to estimate the WCET. By applying this
method to the binary CFG of a program, OTAWA is able to

(a) Binary CFG (b) Cache CFG

(c) Memory CFG

Figure 1: Graph examples on if-then-else structure

establish what is called flow constraints, i.e. invariant struc-
tural properties about the program execution, expressed in the
form of equations and inequalities involving the basic blocks
and the edges of the CFG. We then solve the system of equa-
tions using a Linear Programming solver in order to obtain an
overestimation of the WCET.

The initial C program (Figure 2a) is first pictured as its
binary CFG (Figure 2b) before being analyzed by OTAWA.
In Figure 2c, a variable x<nb> corresponds to the number of
times the basic block of the binary CFG identified by nb is
traveled.

Program instrumentation with counters
The idea for injecting programs semantics into the WCET
analysis is to instrument C programs with counters covering
all the possible execution paths. Variables are initialized to
zero and each of them is incremented in a different CFG
block. This code arrangement can then be used for a static
inspection with program analyzers like PAGAI [6]. This tool
is a static analyzer that aims to generate numerical invariants
of a program using abstract interpretation techniques such
that Linear Relation Analysis (LRA) [5].

In our case, this technique is employed in order to predict
the value of the variables throughout the program. Since each
variable equals the number of times a path would be taken
during the execution, this process highlights the infeasible
paths which are the semantic element exploited in the WCET
estimation refinement.

Combining Path and Cache Analysis for WCET estimation improvement Florian Barrois

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 20



1 i f ( a > 0) {
2 a = −2 ∗ a ;
3 b = a + b ;
4 }
5 e l s e
6 a = a + 4 ;
7

8 i f ( a < 0)
9 a = 6 0 ;

10 e l s e {
11 b = b ∗ a ;
12 a = a + 3 ;
13 }

(a) C program (b) Binary CFG

x0 = 1
x0 = x1
x1 = x2 + x3
x4 = x2 + x3
x4 = x5 + x6
x7 = x5 + x6

(c) Flow constraints

Figure 2: Establishing flow constraints with OTAWA

1 i n t c p t r 1 = 0 ;
2 i n t c p t r 2 = 0 ;
3 i n t c p t r 3 = 0 ;
4 i n t c p t r 4 = 0 ;
5 i n t c p t r 5 = 0 ;
6 i n t c p t r 6 = 0 ;
7 c p t r 1 ++;
8 i f ( a > 0) {
9 c p t r 2 ++;

10 a = −2 ∗ a ;
11 b = a + b ;
12 }
13 e l s e
14 c p t r 3 ++;
15 a = a + 4 ;
16

17 i f ( a < 0)
18 c p t r 4 ++;
19 a = 6 0 ;
20 e l s e {
21 c p t r 5 ++;
22 b = b ∗ a ;
23 a = a + 3 ;
24 c p t r 6 ++;
25 }

(a) instrumented C program

c p t r 2 + c p t r 5 <= 1 ;
c p t r 4 + c p t r 5 = 1 ;
c p t r 3 + c p t r 2 = 1 ;
c p t r 3 <= 1 ;
c p t r 4 <= 1 ;

(b) counter constraints

Figure 3: Finding counter constraints from instrumented C
program

In Figure 3b, many constraints correspond to structural
constraints found by OTAWA and thus do not bring any ad-
ditional information. However, the first invariant implies that
no execution can pass both through the block that increments
cptr2 and the one where cptr5 is incremented since this case
would give a result higher than one for the sum of both coun-
ters. This invariant is semantically equivalent to stating that
the path composed of the if branch of the first condition and
the else branch of the second one is an infeasible path (Figure
3a)1.

1Here the infeasible path is trivially visible to illustrate our

Taking advantage of infeasible paths in WCET
computation
The structural formulas of OTAWA associated to the numeri-
cal constraints found by PAGAI may result in a tighter overes-
timation i.e. a better estimation of the WCET. In the previous
example (Figure 2a), the first if and the second else branches
are more costly in terms of execution time due to operation
types (multiplication). Consequently, they form the longest
execution path of the program. Knowing the unreachability
of this path thus leads to estimate the WCET with paths re-
questing cheaper operations which reduces the final value ob-
tained as can be seen on Figure 4.

E s t i m a t i o n o f WCET w i t h o u t PAGAI : 118 c y c l e s
E s t i m a t i o n o f WCET wi th PAGAI : 100 c y c l e s
Gain : 15.25%

Figure 4: WCET improvement with PAGAI on Figure 2a ex-
ample

2.3 Cache analysis
May and Must analyses
Most static cache analyses are realized using abstract inter-
pretation [4] to categorize memory blocks as cache hit or
cache miss. By this means, one may find that, independently
from the program input, some accesses always result in the
same cache classification. The so-called may and must anal-
yses [8] respectively establish that a memory access is an Al-
ways Miss (AM) or an Always Hit (AH). The analysis also
shows if a block access is a miss in some cases and a hit in
some others. Hence these accesses are classified Definitely
Unknown (DU). Finally, there remains blocks that cannot be
placed in any of the three mentioned classes after running
may and must analyses and that are left Unknown2.

words. The benefit of this study appears more clearly on more real-
istic programs.

2In some cases, we can find out that there exists cache hits (resp.
misses) but we have a lack of information about the other possible
executions.

Combining Path and Cache Analysis for WCET estimation improvement Florian Barrois

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 21



Adding model checking to abstract interpretation
The model checking method consists in giving logical propo-
sitions to a model checker, together with program and cache
models, that will respond true if and only if the proposition
is always true, and false otherwise. While this method allows
refining block accesses more precisely, it remains more costly
in time than abstract interpretation. For this reason, the latter
is first employed and the use of the model checker is kept for
the blocks left Unknown. One can then choose an expression
semantically equivalent to an Always Hit or to an Always
Miss to give to the model checker and deduce the belonging
of the target block to one of the three classes.

3 Exploiting infeasible paths knowledge for
cache accesses refinement

Finding infeasible paths brings us information about the pro-
gram that reduces the domain of the possibilities as for the
cache accesses classification. Indeed, since infeasible paths
avoid some memory blocks from being accessed; the blocks
used in the program that were found Definitely Unknown may
be refined either as Always Hit or Always Miss.

For instance, in Figure 5a, the left execution path is found
infeasible, thus the right branch is always taken and the block
d is accessed and cached. Consequently, when reaching the
second access to the block d, it is necessarily in the cache.
This access can now be classified as Always Hit instead of
Definitely Unknown.

Similarly the Figure 5b shows the refinement of the last
memory block access from Definitely Unknown to Always
Miss.

(a) DU-to-AH refinement (b) DU-to-AM refinement

Figure 5: Graph structures for memory block refinement

In our study, we thus wish to obtain such cache configura-
tions to improve our classification of accesses. Once reached,
the memory CFG corresponding to this cache disposition can
be transmitted to the model checker. The objective then con-
sists in incorporating someway the infeasible paths into the
model checker analysis in order to find out some block ac-
cesses refinements. Thereafter the logical proposition ex-
pressing an AH/AM may be passed as input and become cor-
rect, what can be translated into the assurance that the target

access has turned from Definitely Unknown into AH/AM.
Note that there also exists cases where the infeasible paths
found do not change any memory access categorization.

3.1 Playing on the input memory CFG
An idea for simulating infeasible paths is to modify the
CFG structure given to the model checker. Instead of the
whole memory CFG, we can provide only the subgraphs
corresponding to each realizable path.

By this means, the analysis is able to conclude on the
expected results, i.e. the change of classification of the
studied memory block access. However, the number of paths
is exponential in the number of conditions in the program,
what involves a massive input model. Moreover, since these
subgraphs are analyzed separately, all the memory blocks
common to all the possible paths are re-examined in each
subgraph although some of them are guaranteed not to be
refined differently with the infeasible paths found, due to the
program structure and the cache associativity.

The costly use of the model checker to analyze partly re-
dundant data thus makes this approach relatively inefficient.

3.2 Working with temporal logic
Another solution is to express infeasible paths directly
as constraints for the model checker. This is possible by
using an extended logic form called temporal logic [3], that
includes temporal operators in addition to the ones existing in
the classical logic. Let us consider an example to understand
how this is used.

Figure 6 shows the memory CFG of a C program contain-
ing two if/then/else conditions with its infeasible path colored
in red.

Figure 6: Example of memory CFG with infeasible path

Combining Path and Cache Analysis for WCET estimation improvement Florian Barrois

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 22



Let us assume that we want to check if the block 6c can be
refined as Always Miss. The logical proposition to give to the
model checker is

6c => cache miss

and means that when reaching the block 6c, the memory
block accessed is not in the cache. Without regard to the
infeasible paths, the block 6c is categorized as Definitely
Unknown since there exists an execution path for which the
memory block c is previously cached and another one where
it is not3. Consequently, the model checker would evaluate
the previous logical proposition to false.

Modeling infeasible paths with temporal operators
Temporal operators allow to express properties involving
some of the blocks traveled along the possible paths during
the execution. We focus on four temporal operators to
establish these properties:
- X(p): the property p is true at all the states following the
current state;
- F(p): the property p will be true at some future state of the
current state (i.e. any of the states accessible from the current
state in one or several steps);
- G(p): the property p is true at all future states of the current
state;
- p U q : the property q will be true at some future state, and
the property p is true in the current state and will be true at
least until q becomes true.

The infeasible path of our example can be incorporated to
the study thanks to the temporal logic, by modeling it with
the blocks it is composed of, what gives a formula of the form

((state = 6c) => cache miss) OR (the execution passes
through the state 2c).

The associated temporal formula is

G((state = 6c) => cache miss) OR F(state = 2c).4

The objective is to assess the following statement:
"Either the access to the block 6c causes a cache miss, or the
execution path taken is infeasible".

In this example, the model checker would evaluate this
assertion to true, which entails that the block 6c can be
classified as Always Miss.

This method presents the advantage of avoiding an inten-
sive use of the model checker while keeping the memory
CFG we give it in its complete form. Furthermore, the above
formula can easily be generalized. Indeed, employing several

3We consider that the memory block c has not yet been evicted
from the cache when reaching the block 6c, i.e. the cache associa-
tivity is higher than 1.

4Note that the current state is the initial state of the graph.

logical ORs allows to cover programs that comprise many
infeasible paths, while the unrealizable paths involving more
than two blocks can be treated using logical conjunctions in
the dedicated part of the formula.

It can be noticed that this memory CFG of Figure 6
has many non-adjacent blocks accessing the cache block
c. Given that cache blocks gather contiguous memory ad-
dresses, the corresponding C program necessarily contains
memory jumps. In order to consider a larger panel of pro-
grams in our survey, we have examined the case of function
calls.

Single calls to many functions
Function calls slightly modify memory CFGs. Indeed, the
block containing the call is divided in two blocks that we will
call the calling block and the return block. Function calls
are then represented simply by adding two edges: one from
the calling block to the first block of the function called, and
the other one from the last block of the function to the return
block of the calling function.

Figure 7: Memory CFG with single calls to many functions
stored in a same cache block

Combining Path and Cache Analysis for WCET estimation improvement Florian Barrois

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 23



In the case of single calls to many functions all stored
in different cache blocks, all the accesses to the functions
remain Always Misses. The benefit of our study is thus more
visible on programs gathering many functions located in a
same cache block. Figure 7 shows the memory CFG of the C
program joined in Appendix I.

The main function makes calls to three other functions,
all composed of a single memory block accessing the
cache block i. Let the block 30i the one we wish to refine.
Although the memory CFG looks a little different from the
ones showing a unique function, the same form of logical
formula is able to express the infeasible executions: the
proposition

G((state = 30i) => cache miss) OR F(state = 20i)

proves to be correct and the block 30i may be refined as
Always Miss.

The block 40i, however, cannot be refined as AH nor as
AM since reaching the call of one of the two other functions
remains possible and makes the last function call capable of
inducing either a cache hit or a cache miss.

Many calls to a same function
The programs containing many calls to a same function
are harder to study. Indeed, the first block of the function
possesses as many input edges as the function is called, and
similarly as for the last block of the function. This creates
loop structures that are considered feasible by the model
checker, which might skew the analysis results.

For example on Figure 8, the different calls make the
following loop structure: 8f, 20k, 21k, 4c, 7e, 8f. As a
result, if we consider a cache memory of size four, this path
leads to a cache hit when accessing the block 20k, which
makes the model checker classify it as Definitely Unknown,
while the actual program semantics would lead to refine it
as Always Miss. The logical formula to analyze via model
checking thus needs to prevent these "fake loops" from being
considered realizable.

Our solution to do this is to force the right calling block-
return block associations by following this reasoning: when
calling a function, after the first block of this function has
been traveled, it will not be traveled again until the proper
return block has been reached.

For instance, the logical proposition modeling the loop
created by the first function call is as follows:

G((state = 3c) => X(X(not(state = 20k) U (state = 4c)))).

This means that if the current block is 3c, then once the
execution arrived to the block located two steps ahead, that is
to say the block following the block 20k, this block 20k will
not be attained until the return block has been executed.

This forces the right path to be followed since the Until
temporal operator states that the condition must be reached
at some point during the execution.

Figure 8: Memory CFG with many calls to a single function
corresponding to the C program in Appendix II

Since the formula to give to the model checker is the
disjunction of the refinement expression with all the paths
that are infeasible, the previous logical proposition must
be included in its negative form. As regards example of
Figure 8, the formula to be assessed to refine the block 20k
must include the three loops created by the function calls in
addition to the infeasible path, what gives

G(state = 20k => cache miss)
OR

F(state = 3c) AND F(state = 8f)
OR

not(G((state = 3c) => X(X(not(state = 20k) U (state = 4c)))
OR

not(G((state = 8f) => X(X(not(state = 20k) U (state = 9f)))
OR

not(G((state = 14j) => X(X(not(state = 20k) U (state = 15j))).

Combining Path and Cache Analysis for WCET estimation improvement Florian Barrois

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 24



Nevertheless, if this formula generally solves the loop
problem coming from the function calls, it does not allow
to cover to case of the calls to recursive functions, due to the
Until condition.

3.3 Application to the WCET computation
The memory accesses that we have been able to refine may
lead to enhance the original WCET static analysis. Indeed,
since this one considers all worst possible values for memory
accesses, any Definitely Unknown-to-Always Hit transforma-
tion of a block access located on the longest execution path
is likely5 to result in a reduction of the WCET because some
accesses to the main memory are avoided.

On the other hand, finding Always Misses means that we
need to access the main memory so Definitely Unknown-to-
Always Miss refinements usually do not help to lower the
WCET computed. However, some accesses that were con-
sidered by default as misses to keep a sound estimation are
now proved to be misses. In that way, our study makes the
WCET analysis gain in precision.

4 Analysis of an existing program
The method to incorporate infeasible paths into the model
checking phase found along this survey have been tested on
a realistic program taken from an available benchmark6.

The C code analyzed is a fourty-line long function com-
posed of nested if/then/else and switch/case structures. Un-
fortunately, although this function contains many infeasible
paths, it is not sufficient to refine any of the memory accesses.
However, this analysis has showed that, despite its shortness,
its nested conditions make it hard to analyze.

5 Conclusion and future work
Our survey shows that the semantic aspect of programs can
be used to refine our knowledge of the access type to the
cache memory. This provides a significant impact in particu-
lar on WCET static analysis as long as at least one memory
access can benefit from it. The first technique employed
to simulate infeasible paths was sufficient to establish that
access refinement was possible, but it appears hardly adapted
to realistic programs since it is very program-size-dependent.

The temporal logic allows further researches, however
we still have not found any way to work on some main
programming statements like loops and recursive functions.
Furthermore, the tests realized on an existing program
suggest to make our analysis automatized in order to be
capable of considering more complex programs.

A possible perspective of work from this survey, in partic-
ular in the case of loops, is the study of the persistence of
memory accesses, that is to say the ability for a memory ac-
cess to always cause the same kind of cache access after the
first access to this cache block.

5except for timing anomalies [9]
6https://github.com/tacle/tacle-bench/blob/master/bench/sequential/statemate/statemate.c

References
[1] Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.:

OTAWA: An open toolbox for adaptive WCET analy-
sis. In: SEUS (2010)

[2] Ballabriga, C., Cassé, H.: Improving the WCET com-
putation time by IPET using control flow graph parti-
tioning. In: WCET (2008)

[3] Banieqbal, B., Barringer, H., Pnueli, A. (eds.): Tem-
poral Logic in Specification, Altrincham, UK, April
8-10, 1987, Proceedings, Lecture Notes in Computer
Science, vol. 398. Springer (1989). DOI 10.1007/
3-540-51803-7. URL https://doi.org/10.
1007/3-540-51803-7

[4] Cousot, P., Cousot, R.: Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In: 4th ACM
Symposium on Principles of Programming Languages,
POPL’77. Los Angeles (1977)

[5] Halbwachs, N., Proy, Y., Roumanoff, P.: Verification of
real-time systems using linear relation analysis. Formal
Methods in System Design 11(2), 157–185 (1997)

[6] Henry, J., Monniaux, D., Moy, M.: Pagai: A path sen-
sitive static analyser. Electr. Notes Theor. Comput. Sci.
289, 15–25 (2012)

[7] Raymond, P., Maiza, C., Parent-Vigouroux, C., Jahier,
E., Nicolas, H., Carrier, F., Asavoae, M., Boutonnet, R.:
Improving wcet evualuation using linear relation analy-
sis. To be published (2018)

[8] Reineke, J.: Caches in WCET analysis: Predictability
- competitiveness - sensitivity. Ph.D. thesis, Saarland
University (2009)

[9] Reineke, J., Sen, R.: Sound and efficient WCET
analysis in the presence of timing anomalies. In:
N. Holsti (ed.) 9th Intl. Workshop on Worst-Case Ex-
ecution Time Analysis, WCET 2009, Dublin, Ire-
land, July 1-3, 2009, OASICS, vol. 10. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany
(2009). URL http://drops.dagstuhl.de/
opus/volltexte/2009/2289

[10] Touzeau, V., Maïza, C., Monniaux, D., Reineke, J.:
Ascertaining uncertainty for efficient exact cache anal-
ysis. In: R. Majumdar, V. Kuncak (eds.) Com-
puter Aided Verification - 29th International Confer-
ence, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II, Lecture Notes in Com-
puter Science, vol. 10427, pp. 22–40. Springer (2017).
DOI 10.1007/978-3-319-63390-9_2. URL https://
doi.org/10.1007/978-3-319-63390-9_2

Combining Path and Cache Analysis for WCET estimation improvement Florian Barrois

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 25



Appendices
Appendix I

1 vo id f1 ( ) ;
2 vo id f2 ( ) ;
3 vo id f3 ( ) ;
4

5 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] ) {
6 i n t a = 3 ;
7 i n t b = 5 ;
8 i n t c ;
9

10 a = a + 2 ;
11

12

13 i f ( c != 3 ) {
14 f1 ( ) ;
15 a = a + 1 ;
16 b = b + 1 ;
17 c = c + 1 ;
18 }
19

20 e l s e {
21 c = c − 3 ;
22 a = a + 4 ;
23 a = 1651768716∗ a ;
24 b = 5∗ ( b ∗8) ;
25 }
26

27 a = ∗ a rg v [ 1 ] ;
28 b = 1 0 ;
29 b = b + 5 ;
30 a = a + 1 ;
31

32

33 i f ( c == 0) {
34 a = a + 1 ;
35 b = b + 1 ;
36 c = c + 1 ;
37 f2 ( ) ;
38 a = ∗ a rgv [ 1 ] ;
39 }
40

41 e l s e {
42 a = a ∗ 1487+(96874+ a∗b ) ;
43 b = b + 654∗ ( a+c ∗8576) ;
44 c = 1 ;
45 }
46

47 f3 ( ) ;
48 a = a + 3 ;
49 b = b + 3 ;
50 b = 1 ;
51 c = c + 1 ;
52 r e t u r n 0 ;
53

54 }
55

56

57

58 vo id f1 ( ) {}
59 vo id f2 ( ) {}
60 vo id f3 ( ) {}

Appendix II

1

2

3

4 vo id f1 ( i n t x ) ;
5 vo id f2 ( ) ;
6

7 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] ) {
8 i n t a = 3 ;
9 i n t b ;

10 i n t c ;
11

12 a = a + 2 ;
13

14 i f ( c == 3) {
15 c = b + c ;
16 b = b + 2 ;
17 a = a + 1 ;
18 }
19

20 e l s e {
21 f2 ( ) ;
22 b = c − b ;
23 a = a + 4 ;
24 b = b + 1 ;
25 b = b + 1 ;
26 c = 0 ;
27 }
28

29 a = ∗ a rgv [ 1 ] ;
30 b = 1 0 ;
31 b = b + 5 ;
32 a = a + 1 ;
33

34 i f ( c != 0 ) {
35 a = a + 1 ;
36 b = b + 1 ;
37 c = c + 1 ;
38 f2 ( ) ;
39 a = ∗ a rgv [ 1 ] ;
40 }
41

42 e l s e {
43 a = a ∗ 3 ;
44 b = a + b ;
45 b = b∗b ;
46 c = a + 3 ;
47 }
48

49 a = a + b ;
50 a = a + c ;
51 b = b + c ;
52 b = b ∗ ( a∗3+ c ) ;
53 c = 6 5∗ ( ( a−b ) ∗b−5) ;
54 c = 8 ;
55 f2 ( ) ;
56 a = b + c ;
57 b = a + 2 ;
58 c = 5 ;
59

60 r e t u r n 0 ;
61 }
62

63 vo id f2 ( ) {}

Combining Path and Cache Analysis for WCET estimation improvement Florian Barrois

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 26





Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive
Surgery Videos
Maxime CALKA

University Grenoble-Alpes, France
Maxime.Calka@etu.univ-grenoble-alpes.fr

Supervised by: Sandrine VOROS, Katia CHARRIERE, Arthur DERATHE.

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature: CALKA, 05/06/2018

Abstract
In the past 30 years, surgical practices have evolved
a lot with the appearance of Minimally Invasive
Surgery (MIS). These techniques offer a lot of ben-
efits to the patient, but are complex for the sur-
geon, and the learning curve is important com-
pared to open surgery. The automatic analysis
of surgical endoscopic videos can help to under-
stand and analyze surgical gestures, and in term it
can help to develop tools to assist surgeons dur-
ing laparoscopy (Fig. 1(a)), especially during the
learning period. For instance, surgical tool detec-
tion, localization or segmentation in the surgical
scene provide precious information about the sur-
geon’s gestures. This project proposes to develop
a semi-automatic method based on tracking, color
and shape methods to segment the instruments in-
side sleeve surgery videos. This semi-automatic
approach allows to accelerate the constitution of a
database to investigate deep learning detection ap-
proaches. We propose a method that searches a ROI
in the whole image, then segment the tool inside of
the ROI. The results demonstrate that the template
matching algorithm allow to find a relevant ROI in
' 1/4 of the image that we wish to segment. In
addition, our segmentation method gives a correct
result compared to our ground-truth of the image
where a relevant ROI is found.

Index terms — Image Processing, Segmentation, Track-
ing, Template Matching, Surgical Tools

1 Introduction
1.1 Minimally invasive surgery

Minimally invasive surgery (MIS) knows a large success
in many application domains: digestive, urological, bariatric
surgery [1]. This modern surgical technique reduces the op-
erative trauma to the patient compared to open surgery, but is
more complex for the clinician.

However, a problem with this kind of surgery is the diffi-
culty to operate in a restricted field of vision, the loss of depth
and haptic notion due to the use of a video feedback with lim-
ited access to the surgical scene. For all those reasons, MIS
requires a long learning curve to the beginner.

That is why, analysis of the video flow can be helpful to
the clinician in order to reduce the learning curve and im-
prove quality of the surgical practice. Indeed, it helps to better
understand the surgical skills or provide new intra-operative
assistance tools.

1.2 Video analysis
In this context, the scientific community is interested by

video analysis because it provides a large amount of rele-
vant information which can be extracted to characterize MIS
among which it finds the automatic tool detection.

Some example, like workflow analysis [2], evaluation of
surgical skill ([3], [4]) or control surgery robot, use tool de-
tection to characterize the surgery.

Workflow Analysis
A first interesting video analysis application is the work-

flow analysis. This process decomposes a surgery or surgical
step into phases, step and actions based on manual annota-
tion. In this domain, the detection and recognition of surgical
instruments can provide a precious information for surgical
phase recognition and can enable some automatization of the
annotations [2].

Quality evaluation
Another example is surgical skills analysis and quality

evaluation of the surgical practice [3]. Various techniques
are used for surgical skill assessment. This kind of evalua-
tion is critical to ensure a high quality of care. That is why
more and more objective computer aided technical skill eval-
uation (OCASE-T) emerge to help to evaluate skill quality
[4]. A previous work, developed at TIMC-IMAG, proposes a
method for the quantification of the surgical gesture quality.
The approach uses an automatic tool tracking (in a test bench
setup) to automatically compute a validated ”quality” score
called GOALS [5].

More recently, the review [3] showed that the tool track-
ing is used in a lot of benchtop simulation. Moreover, the
growing availability of quantitative data documenting surgi-
cal performance and recent developments in machine learn-

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 28



ing methods, has allowed to quickly increase the development
of OCASE-T methods.

Finally, he difficulties encountered in tool segmentation
from laparoscopic images are caused by blur, smoke, oc-
clusion or specular reflections on the tools, as illustrated by
Fig. 1.

(a) Image with 2 tools (b) Image with blur

(c) Image wih smoke (d) Image with reflect

Figure 1: Set of frame in laparoscopic video

2 Related Work

2.1 Machine Learning
Recently, machine learning and particularly deep learn-

ing approaches shown great success to extract the informa-
tion from the surgical video flow for a better analysis of the
surgery, such as surgical tool detection and tracking ([2], [6],
[7], [8], [9]). To this, two main processes are lots of used to
this kind of work.

Random Forest
One of the most used is the random forest (RF) clas-

sification. For example, [10] measures the variable impor-
tance and detect four different colors features while [11] uses
the RF classification to separate instruments pixels and back-
ground pixels. In [12], tools are tracked by building random
forests and addressing the task of modelling the instruments
as an articulated object.

Convolutional Neural Network
In recent approaches, Convolutional Neural Networks

(CNNs) are used for the segmentation task. Some approaches
based on CNNs search to localize the tools by detecting in-
terest points ([7], [6]) or a bounding box [8].

Deep learning methods require a large number of annotated
videos serving as ground-truth which are difficult to collect in
the medical community.

Machine Learning Drawback
As of now, the databases are complex to create because

the laparoscopic surgery videos are rare and can have lim-
ited relevance caused by none realistic setups, and a manual
segmentation which is time consuming. This is illustrated by
the annotated videos available in the MICCAI challenges 1

(a reference conference in the field), where the instruments
are slowly moving in front of a static liver which is not very
representative of the surgical reality.

2.2 Tracking & color and shape based methods
Today, the color and shape based techniques are less

used than machine learning techniques. Nevertheless, they
could be useful in the context of a semi-automatic segmenta-
tion tool, with the aim of help building the databases.

The approach [13] developed at the TIMC-IMAG is based
on a color and shape method and the research of regions of
interest (ROI). It proposes to use Lab color space to split color
(a,b) and brightness and compute a grayscale image based on
this both channels. This is followed by a binarization with the
Otsu threshold and a morphological filter erosion to extract
candidate regions corresponding possibly to the tool, then one
region is selected as corresponding to the tool and become a
ROI in which a Hough method is used to find the edges of the
tool. Finally, a Kalman filter is applied to track the tools all
along of the video. One advantage of this approach is its low
computational load, leading to real-time performance.

Many other methods have been compared in the review
[14], and exhibit a set of methods to detect surgical tools like
feature representation, color, gradient, texture, shape, tempo-
ral tracking, tools constraint, etc.

3 Semi-Automatic Segmentation Method
As of now, TIMC-IMAG has constituted a database

composed of 30 videos of laparoscopic surgery videos weakly
annotated to investigate machine learning approaches for tool
detection. Annotate this database manually takes a large
amount of time. This paper proposes to expand and improve
the method [13] to develop a semi-automatic surgical instru-
ment segmentation method to support the database building.
The goal of the project is to develop a tool which, based on a
manual segmentation of a key frame, is able to automatically
segmented a few subsequent frames.

4 Method
This work is based on a semi-automatic method such

that the user provides a segmentation at time t that help to
segment the tool at time t + n with n ∈ [1, ni]n where ni is
the number of frames automatically segmented between two
manually segmented frames. The first step of our work is to
track the tool all along of the video. Approaches evaluated in
this paper are based on template matching in order to find a
ROI fitted around the tool. The second step is the segmenta-
tion of the tool inside the ROI. One constraint is to segment
the tool faster than a manual segmentation. Our method is
described in the Fig. 2.

1https://endovissub201-roboticinstrumentsegmentation.grand-
challenge.org/results/

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 29



Figure 2: Semi-automatic method for surgical tool tracking and segmentation

4.1 Tracking
The first step of our method is a tracking system that de-

fines a ROI that fit around of the tool all along of the video. A
refinement of the segmentation space from the total image to
a ROI that around around the tool is really important, because
it allows to suppress a huge number of pixels belonging to the
background.

We proposed a semi-automatic methodology, so the user
provided an already segmented image at time t. This seg-
mented image allows us to define automatically a ROI that
fit around the tool. A method [13] previously developed at
TIMC-IMAG try to find a ROI containing the tool, but it fails
in some of difficult cases illustrated Fig. 1. However, this
method works well on an already segmented mask (the mask
of Fig. 3(b)), so we use these techniques to find a relevant
ROI in time t. These two information (Fig.3(a) and Fig.3(b))
given by a manual user segmentation provides relevant infor-
mation to track the tool.

(a) ROI (b) Mask of a tool

Figure 3: Data provided by the user

The tracking process is initialized with a user manual seg-
mentation at time t containing a relevant ROI. This ROI
provides the template tracked in the following frames. The
tracker is defined with a warping function, a similarity func-
tion, an acceptability function and some parameters. The
warping function defines the type of transformation of the
ROI between t and t + n, the similarity function is a score
that give a quantitative result on the ROI detected, the ac-
ceptability condition decides if a ROI detected is a success
(positive ROI) or a fail (negative ROI). If the ROI is positive
the tracker is relaunched at t + n else if the ROI is negative
a new manual segmentation is asked to the user. This process

Figure 4: Tracking Process

is described Fig. 4.
This paper compares two methods proposed in the litera-

ture to track the ROI from the user data along with the video
and find a precise ROI.

The first investigated method [15] is a template matching
approach (Fig. 5) where the computation time is reduced,
compared to complete space exploration methods, thanks to a
sampling of the tested points within the template and a branch
and bounds scheme. The warping function is an affine trans-
formation where the shearing is removed because a tool can
not undergo this kind of transformation. The best transfor-
mation is acquired by minimizing the similarity function de-
fined as the Sum-Of-Absolute-Distance (SAD) between the
template sampled points and the original image. An accept-
ability condition is defined as a threshold on the SAD score to
detect incorrect ROI. The tracking of the tools with this tech-
nique is realized once every 25 frames as our objective is to
segment one image every second.. Parameters of the method
are the size of the points sample ε ∈ ]0, 1], the step between
the different transformations δ ∈ [0, 1], the consideration of
the photometric appearance p ∈ true, false, the rotation and
scaling range respectively r, s. If the tracker found a positive
ROI, the ROI use for the next frame is, yet again, the manual
ROI obtain at t.

The second method is a template tracker provided in the
VISP library, that track a template by using an image registra-
tion algorithm [16]. The warping function is an homographic
transformation and the tracking is realized on each frame.
Here, the similarity function used is the Sum of Square Differ-
ences (SSD) with the inverse compositional algorithm [17].
Parameters to be assessed for this method are the following :
the sampling that consider only one pixel from n×m pixel in

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 30



Figure 5: Example of template matching method

the reference image, so change this value increase/decrease
the efficiency and the running time of the tracking phase, the
number of iteration maximum to reduce the time necessary to
minimizing the cost function, the number of level that allows
to speed up the algorithm, and a parameter that forces the
tracker to only consider the pixels with a high gradient value
in the reference template. Here, our acceptability condition is
only when an exception is catchy. Here, if the tracker found
a positive ROI, this ROI is now use as template by the tracker
for the next frame.

4.2 Segmentation
Once a ROI is detected at time t+n, we can restrain the

segmentation space. This segmentation step consists to de-
fine an automatic method to binarize the image in two classes
(background and tool) using the ROI previously found.

In this paper, we compare two segmentation processes that
are an automatic thresholding method based on the study of
color spaces, binarization processes and an homographic reg-
istration method.

Automatic Clustering-based segmentation Method
We compare various color spaces and two automatic
clustering-based approaches for the binarization step. The
binarization is applied to the entire image, but only positive
pixels inside the ROI are considered as representing a tool.
While pixels outside are automatically considered as repre-
senting the background as shown in Fig. 6.

Figure 6: Only pixels inside the ROI are considered as
positive. Green pixels represent the final result of the
segmentation while red pixels are detected as tools but
represent the background as the black pixels

Color Space and Channel Choice The goal of this step
is to choose the channel which has the histogram with the

best discriminant division between pixels representing tools
or background to improve the binarization process. Two color
spaces, frequently used in the State-of-Art, are compared :
color space that mix brightness and color such that RGB, and
color space that unmix them such that Lab or Opponent. The
main difference between Lab and Opponent is their represen-
tations. Lab is represented like a sphere compared to Op-
ponent that represent a cube and can be deduced by a linear
combination between the different channels of RGB. These
two color spaces are interesting because they unmixed bright-
ness and color and will be allowed to avoid specular reflect by
removing the brightness information. These both color spaces
are represented in Fig. 7.

(a) Lab (b) Opponent

Figure 7: Two color space that split brightness and color

We choose, for each of these color space, the most valuable
channel (grayscale image) among the three channels of each
color space. In Lab and Opponent the channel representing
brightness is not used to avoid the problem of specular re-
flect. In addition, we choose the channels representing the
red component such as RGB Red, Opponent 1 and Lab a be-
cause this color is most represented in the organs and less on
the tools.

Binarization process A binarization process is then ap-
plied to the retained colorplane. For this step, the pixels of the
image are divided into two classes (tools and background),
so it is possible to evaluate which binarization method is the
closest to the ground-truth provided by the manually seg-
mented mask using some metrics introduced later.

Two methods are compared for the binarization process:
the Otsu’s method [18], and a Bayesian classification method
developed at TIMC-GMCAO [19] in order to make the best
clustering. The advantage of these two methods is the auto-
matic separation of pixels in two classes from the histogram.

The Otsu’s method, described Fig. 8, is an automatically
clustering-based method using the histogram of a grayscale
image to split in two classes (in our case tool, background)
the images by computing the best threshold value. The main
idea of the algorithm is the choice of an optimal threshold
between the two classes, such that the variance intra-classes
is minimal. The complexity of the Otsu’s method is n × n,
with n the number of classes of the histogram.

The second method uses a Bayesian classifier to assign the
most likely class to a given feature, so each pixel is classi-
fied like a tool if its tool posterior probability is larger than its

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 31



Figure 8: Description of the Otsu method

background posterior probability. This probabilistic method
considers the histograms of pixel values as a mixture of two
Gaussian functions (Fig. 9). Parameters of the method are
therefore: mean (noted µ), variance (noted V ), prior prob-
ability (denote pt and pb, for tool and background respec-
tively) for the two histograms which are optimized with the
expectation-maximization algorithm (EM). The complexity
of the Bayesian classification method isO(k×n×m), where
k is the number of iterations, n the number of rows in the im-
age and m the number of columns.

Figure 9: Gaussian approximation of a histogram

Homographic registration
A second approach evaluated is the homographic regis-

tration to segment the frame. we compute here the homog-
raphy matrix H between the ROI at time t (manually seg-
mented) and the ROI at time t + n (output of the tracker).
Then, it is possible to compute the homography matrix H be-
tween the two ROIs. Then, H is used to compute the same
transformation (1) for each pixel of the mask at time t, so a
new mask is obtained in the frame t+ n.

[
x′/z
y′/z
z

]
= H

[
x
y
1

]
, withH =

[
h11 h12 h13
h21 h22 h23
h31 h32 h33

]
(1)

5 Experimental Protocol
5.1 Tools

Our implementation of the method is integrated in the
CamiTK framework2 (version 4.0.4). The image processing
task was performed thanks to OpenCV 3.1 library3.

5.2 Data
This semi-automatic segmentation method was applied

and evaluated on the practical case of the sleeve gastrec-
tomy surgery. Our experiments were realized on the only
already segmented video (= 426 frames with a resolution
of 720 × 576 pixels) that provides a ground-truth segmen-
tation (ground-truth mask, ground-truth ROI). These videos
were gathered at the Grenoble CHU in collaboration with an
expert surgeon. In our case, the annotation was performed
at a frequency of one frame per second on a key step of the
surgery named Fundus dissection.

5.3 Parameters
Tracking

For the two trackers, some parameters required to be
fixed.

For the FAsT Match algorithm the parameters ε, the num-
ber of points and δ, the step of the transformation was respec-
tively set to 0.2 and 0.5. These parameters were empirically
defined with the aim of obtaining a sufficient number of con-
figurations and a sufficient sample of points to obtain a com-
promise between quality of the ROI and acceptable running
-time. For the affine transformation parameters, the rotation
range was studied and shows that a range r ∈ [−90.0◦, 90.0◦]
allows to include a large amount of cases. The scaling range
was empirically defined with r ∈ [1.0, 1.2] allowing to pre-
vent the increase of the size of the objects. The photometric
invariance parameter has enabled because the laparoscopic
images are sensitive to illumination. Our algorithm stops
when the SAD score is the same for two consecutive itera-
tions or the number of iterations is upper than twenty and a
ROI is validated when the SAD score is lower than 0.075. To
define this score, a study of the average score for a relevant
ROI was performed.

For the VISP tracker, the parameters was defined to make
a trade-off between running-time and efficiency. We defined
a sampling 2 × 2, a maximum, at the maximum number of
iterations to 200, the pyramidal parameters with 3 levels from
3 to 0 and the parameter that force the tracker to only consider
the pixels with a high gradient value is enabled.

Segmentation
For the both methods, the maximization of the param-

eters is computed on the whole image. The Otsu’s method
chooses automatically the threshold by separating in two
classes the histogram Fig. 8. For the Bayesian method, the
EM algorithm optimal mean and variances for the two Gaus-
sian functions are estimated thanks to the EM algorithm in 10
iterations. However, to converge the algorithm needs initials

2http://camitk.imag.fr/
3https://opencv.org/

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 32



parameters values to start. Those initials values are automat-
ically computed from the two Gaussian, so the parameters
are: the mean as the center of the histogram the variance as
the value situated at 68% on it and the prior probabilities as
a ratio between the maximum values of the two histograms.
This process is described Fig. 9.

5.4 Metrics
Tracking

The tracker detects if a ROI is positive or negative (suc-
cess or fail of the tracker). We use the IoU score (2) that
corresponds to the overlap between the ROI detected and the
ground-truth provided. This score allows to define if the re-
sult of the tracker is coherent with the ground-truth (true if the
result is coherent or false otherwise). A ROI is consider as a
coherent with the ground-truth (true) if the overlap between
the two ROI is superior to 50%. This metric allows to define
the number of true positive ROI and know the percentage of
automatically tracked image (3).

IoU =
Area of Overlap

Area of Union
(2)

% of TP ROI =
# of TP ROI

# image available
(3)

Thereafter, some metrics are used to evaluate the perti-
nence of the tracker: the accuracy (4), the recall (5), the speci-
ficity (6). The percentage of automatically tracked image that
helps us to assess the time saving for the manual segmenta-
tion, the accuracy that corresponds to the proportion of pixels
well classified, the recall is the proportion of selected items
that are relevant and the specificity is the proportion of none
relevant item selected truly none relevant.

Accuracy =
TP + TN

P +N
(4)

Recall =
#TP

#TP +#FP
(5)

Specificity =
#TN

#TN +#FP
(6)

Finally, the running-time is computed to evaluate the speed
of the tracker.

Segmentation
We realize the quantitative comparison of the different

methods we use the ”ground-truth” provided. The metrics
used to compare each method are: the balance accuracy (7),
the recall (5), the specificity (6) and the DICE/F1 score (8).
The balance accuracy is a metric more precise that the accu-
racy because they balance the number of true negative and
true positive. The DICE/F1 represents the size of the over-
lap between the segmentation and the ground-truth over the
total size of the both objects. These metrics are used in the
literature to evaluate automatic segmentation machine learn-
ing methods [6]. Note that the metrics are computed on the
whole image.

B.Accuracy =
Specificity +Recall

2.0
(7)

DICE =
2#TP

2#TP +#FP +#FN
(8)

5.5 Experiments
Tracking

To evaluate the best tracking method, each method is
evaluated on the whole video. Three characteristics are study
the efficiency of the tracker, the pertinence of the tracker and
his running-time. The efficiency is define like the percentage
of the video segmented, the pertinence like the ability of the
tracker to detect correct or incorrect ROI. For each ROI (pos-
itive or negative), we compute the IoU score to know if the
result of our tracker is true or false and evaluate his efficiency
and her pertinence. For the running-time, we make an aver-
age of the time to find each ROI. The process is relaunched if
the ROI is negative.

Segmentation
The segmentation experiment compares two kinds of meth-
ods. One using automatic clustering and the other one us-
ing homographic registration. We evaluated the two auto-
matic clustering-based methods, for the binarization process,
on each channel from our three color spaces and the homo-
graphic registration method. To obtain a relevant evaluation,
we made the hypothesis that the ROI is known, so this part
was firstly evaluated independently of the tracking part.

Whole Process
Finally, for the whole process, the segmentation process is
applied of each true positive ROI.

6 Results
6.1 Tracking

Results for the comparison of the both trackers are pre-
sented in Table 1. We show that the VISP tracker tracks au-
tomatically more images and is faster than the FAsT Match
tracker. In addition, when the VISP tracker detects an incor-
rect ROI, this ROI is always incorrect (according to the IoU
score) in contrary of the FAsT Match tracker. However, the
FAsT Match tracker is better to detect an incorrect ROI than
the VISP tracker. The accuracy shows that the VISP tracker
has a better classification rate that the FAsT Match tracker.

The percentage of successfully tracked ROI and the
running-time are better for the VISP tracker than for the FAsT
Match tracker. In addition, the VISP tracker owns a better
classification rate. The only advantage of the FAsT match is
for the detection of the incorrect ROI, thus the segmentation
methods will be evaluated with the VISP method.

6.2 Segmentation
Results for the comparison of the segmentation approach

are presented in Table 2. We see that the channels a and O1
that belonging to color space that unmix brightness and color
have better results that the red channel except for the speci-
ficity that is homogeneous for each method. In addition, the

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 33



Table 1: Quantitative comparison between the tracking methods

% of TP ROI Accuracy Recall Specificity Running-time (in s.)
VISP Tracker 23.47 83.57 100.0 78.53 4.93401
FAsT Match Tracker 14.08 66.43 36.14 85.76 72.9919

Table 2: Quantitative comparison between the different automatic clustering based segmentation methods

B.Accuracy Recall Specificity DICE
Otsu a 95.87 (± 4.054) 93.76 (± 8.171) 97.98 (± 2.097) 87.93 (± 7.354)
Otsu O1 96.40 (± 4.384) 94.83 (± 8.858) 97.97 (± 2.294) 88.68 (± 8.052)
Otsu R 84.15 (± 9.322) 71.47 (± 18.40) 96.83 (± 2.663) 69.62 (± 13.76)
Bayesian a 92.58 (± 11.63) 87.13 (± 23.33) 98.03 (± 2.085) 82.23 (± 21.34)
Bayesian O1 93.71 (± 8.196) 89.22 (± 16.70) 98.20 (± 2.278) 85.75 (± 14.26)
Bayesian R 77.19 (± 17.80) 56.13 (± 36.88) 98.25 (± 1.990) 54.77 (± 30.64)
Homography 89.11 (± 8.103) 79.98 (± 15.12) 98.23 (± 2.733) 81.06 (± 14.40)

Table 3: Quantitative result of the segmentation with VISP Tracker

B.Accuracy (in %) Recall (in %) Specificity (in %) DICE (in %)
Otsu O1 90.82 83.50 98.14 81.72

results based on the channel O1 are better for the both bina-
rization methods. The homographic method is outperformed
by the method with a and O1 channel on the DICE score, the
balance accuracy and the recall. However, it is more efficient
than the method using the R channel.

The Fig 10 and Fig 11 show some quantitative results with
the Otsu’s method and Opponent 1 channel. This both images
show that our method can realize relevant segmentation. The
Fig 11 is representative of a common problem on our dataset,
where the tip of the tool has similar color with the compress,
and that for each color space evaluated.

Figure 10: Relevant
Electrothermal Biforceps
segmentation with Otsu’s
method on O1 channel

Figure 11: Incorrect
Electrothermal Biforceps
segmentation with Otsu’s
method on O1 channel

6.3 Whole process
Finally, the tables 3 give the results of our whole process. The
tracker is able to find a relevant ROI for 23.47% of the image
that we wish to segment (Table 1). In addition, the overlaps
between the GT mask and our segmentation is in average of
81.72%. On average, our method well classified the pixel in
90.82% of the cases. Note that this result are obtained in the
image where the ROI is TP.

7 Discussion

7.1 Tracking
The first experiments of our study investigate, compare

and evaluate two tracking methods. The tracking experiments
described earlier show that the most efficient tracker is the
VISP tracker because it is faster and more efficient than the
FAsT Match tracker. In addition, a ROI detected is not always
relevant as show in the table 1, so the VISP better detect the
number of irrelevant ROI. This first experiment responds at
a question of our problematic, i.e the VISP tracker is able to
obtain a relevant ROI for 23% of the image that we wish to
segment.

A limitation of our results is the use of only one annotated
video for the evaluation. However, many results are available
and allow to choose a tracking method. In addition, they show
interesting results on the quality of the ROI and the efficiency
of the tracker to detect irrelevant ROI.

7.2 Segmentation
The segmentation methods investigate two kinds of

methods (automatic clustering, Bayesian classification). The
results of the automatic clustering-based segmentation give
some interesting information. Results in Table 2 valid that in
the case of laparoscopic images, color spaces that unmixing
brightness and color are more discriminant than color spaces
mixing the both. This could be caused by the specular re-
flects that illuminate the tools and organs and harmonize the
value of the pixels to high intensities. Thereafter, the use
of color space unmixing brightness and color for clustering-
based segmentation is justified. In addition, the Opponent O1
channel seems to be more discriminant channel. The Otsu’s
method own better score than a Bayesian classification. In
addition, these results are satisfying because the complexity

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 34



of the Otsu’s method is inferior to the Bayesian classifica-
tion complexity. Finally, the comparison between the Otsu’s
method with O1 channel and the homographic registration
show that the clustering-based segmentation is more efficient.
This difference is caused by the high difference in the shape
and the size of the tools between two frames, so it is diffi-
cult to find an homographic registration between two frames
sampled every second (25 frames).

A limitation in our experiment is to compute the metrics on
the whole image because the number of true negative pixels is
very important compared to true positive pixels in the image,
so some metrics are distorted.

7.3 Whole process
Our method is able to segment 1/4 of the video. In addi-

tion, the results of the whole process detailed in Table 3 show
that the segmentation is close to the bounding box. However,
this segmentation stays imperfect, so the user needs to make
few change on the segmentation to correct it. However, the
segmentation is restricting to the ROI and implies only small
deformation to realize for the user.

In this paper, our method was not compared to State-of-
Art approaches. This project tries only to investigate some
methods to reduce the time for manual segmentation, not to
outperform the other segmentation methods. In addition, our
method is a semi-automatic one compared to the others that
are automatic.

8 Conclusion and Future work
In this paper, we propose a general method to seg-

ment semi-automatically the tool inside laparoscopic surgery
videos. We validate a method able to automatically segment
23% of the required images, with some acceptable perfor-
mances.

In future work, the most important work is to increase the
number of videos to realize the experiments. In addition, an-
other work will be to improve the tracker to increase the per-
centage of automatically segmented images. Finally, our fi-
nal aim, is to develop a complete software allowing to modify
the segmentation manually and thus reduce the manually seg-
mentation time.

References
[1] C. Schaaf, A. Iannelli, and J. Gugenheim, “État actuel

de la chirurgie bariatrique en france,” e-mémoires de
l’Académie Nationale de Chirurgie, vol. 14, no. 2,
pp. 104–107, 2015.

[2] A. P. Twinanda, S. Shehata, D. Mutter, J. Marescaux,
M. de Mathelin, and N. Padoy, “Endonet: A deep ar-
chitecture for recognition tasks on laparoscopic videos,”
IEEE transactions on medical imaging, vol. 36, no. 1,
pp. 86–97, 2017.

[3] S. S. Vedula, M. Ishii, and G. D. Hager, “Objective as-
sessment of surgical technical skill and competency in
the operating room,” Annual review of biomedical engi-
neering, vol. 19, pp. 301–325, 2017.

[4] M. C. Vassiliou, L. S. Feldman, C. G. Andrew,
S. Bergman, K. Leffondré, D. Stanbridge, and G. M.
Fried, “A global assessment tool for evaluation of intra-
operative laparoscopic skills,” The American journal of
surgery, vol. 190, no. 1, pp. 107–113, 2005.

[5] R. Wolf, Quantification de la qualité d’un geste chirur-
gical à partir de connaissances a priori. PhD thesis,
Université de Grenoble, 2013.

[6] I. Laina, N. Rieke, C. Rupprecht, J. P. Vizcaı́no, A. Es-
lami, F. Tombari, and N. Navab, “Concurrent segmen-
tation and localization for tracking of surgical instru-
ments,” in International Conference on Medical Im-
age Computing and Computer-Assisted Intervention,
pp. 664–672, Springer, 2017.

[7] T. Kurmann, P. M. Neila, X. Du, P. Fua, D. Stoyanov,
S. Wolf, and R. Sznitman, “Simultaneous recognition
and pose estimation of instruments in minimally inva-
sive surgery,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention,
pp. 505–513, Springer, 2017.

[8] D. Sarikaya, J. J. Corso, and K. A. Guru, “Detection and
localization of robotic tools in robot-assisted surgery
videos using deep neural networks for region proposal
and detection,” IEEE transactions on medical imaging,
vol. 36, no. 7, pp. 1542–1549, 2017.

[9] A. Shvets, A. Rakhlin, A. A. Kalinin, and V. Iglovikov,
“Automatic instrument segmentation in robot-
assisted surgery using deep learning,” arXiv preprint
arXiv:1803.01207, 2018.

[10] M. Allan, S. Ourselin, S. Thompson, D. J. Hawkes,
J. Kelly, and D. Stoyanov, “Toward detection and local-
ization of instruments in minimally invasive surgery,”
IEEE Transactions on Biomedical Engineering, vol. 60,
no. 4, pp. 1050–1058, 2013.

[11] S. Bodenstedt, M. Wagner, B. Mayer, K. Stemmer,
H. Kenngott, B. Müller-Stich, R. Dillmann, and S. Spei-
del, “Image-based laparoscopic bowel measurement,”
International journal of computer assisted radiology
and surgery, vol. 11, no. 3, pp. 407–419, 2016.

[12] N. Rieke, D. J. Tan, C. A. di San Filippo, F. Tombari,
M. Alsheakhali, V. Belagiannis, A. Eslami, and

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 35



N. Navab, “Real-time localization of articulated surgi-
cal instruments in retinal microsurgery,” Medical image
analysis, vol. 34, pp. 82–100, 2016.

[13] A. Agustinos, Navigation augmented fluorescence in-
formations for the laparoscopic surgeryrobot-assisted.
Theses, Université Grenoble Alpes, Apr. 2016.

[14] D. Bouget, M. Allan, D. Stoyanov, and P. Jannin,
“Vision-based and marker-less surgical tool detection
and tracking: a review of the literature,” Medical image
analysis, vol. 35, pp. 633–654, 2017.

[15] S. Korman, D. Reichman, G. Tsur, and S. Avidan, “Fast-
match: Fast affine template matching,” in Computer Vi-
sion and Pattern Recognition (CVPR), 2013 IEEE Con-
ference on, pp. 1940–1947, IEEE, 2013.

[16] A. Dame and E. Marchand, “Video mosaicing using a
mutual information-based motion estimation process,”
in Image Processing (ICIP), 2011 18th IEEE Interna-
tional Conference on, pp. 1493–1496, IEEE, 2011.

[17] S. Baker and I. Matthews, “Lucas-kanade 20 years on:
A unifying framework,” International journal of com-
puter vision, vol. 56, no. 3, pp. 221–255, 2004.

[18] N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE transactions on systems, man, and
cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[19] H. Younes, S. Voros, and J. Troccaz, “Automatic nee-
dle localization in 3d ultrasound images for brachyther-
apy,” in 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), pp. 1203–1207, April
2018.

Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos Maxime Calka

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 36





Integrating lexical constraints to K-Means with Deep Learning

Grand Maxence
Supervised by :

Gaussier Éric and Thonet Thibaut
and Tommasi Marc and Bellet Aurélien and Moradi Fard Maziar

Abstract

We study in this paper the problem of thematic
clustering. Thematic clustering is the set of
lexical constraints skewing the text clustering
towards different themes. These lexical con-
straints are represented by a set of keywords
given by the user. To perform K-Means with
these constraints, we need a representation
where data about documents and constraints
are present. For this reason, deep K-Means
can be used to learn a latent space showing all
constraints, and perform K-Means in the latent
space. We propose here an approach to inte-
grate constraints to K-Means algorithm by in-
troducing penalties in the Non Clustering loss
of the Deep K-Means model[4].

Keywords Clustering, K-means, DNN, Autoencoder,
Deep Clustering

1 Introduction
Clustering is one of the most fundamental tasks in data
mining and machine learning. K-Means algorithm is a
clustering method using centroid models, it represents
each cluster by a single mean vector. K-Means cluster-
ing sorts n objects into k clusters in which each obser-
vation belongs to the cluster with the nearest centroid.
Then, K-Means is often used in practice and it is easy to
interpret.
In real application domains, users may want to intro-
duce constraints to finding useful properties for cluster-
ing data. Traditional K-Means algorithms have no way
to take advantage of this information.
The difficulty with integration of constraints into K-
Means algorithm is to find a good representation for
data taking into account constraints. The Deep Learn-
ing and Auto-Encoder can be used to learn this rep-
resentation. With Auto-Encoder we have to perform
the K-Means in the latent space learned, and this latent
space must be K-Means friendly.
In this study, we specifically focus on the k-Means al-
gorithm with lexical biases. Lexical biases are repre-
sented by a set of keywords given by the user. We use

an Autoencoder to learn a latent space taking into ac-
count biases. The loss of the Autoencoder is divided in
two parts, (a) the reconstruct loss Lrec and (b) different
penalties skewing the representation. Then, the repre-
sentation must be K-Means friendly, to do this, we use
the Deep K-Means model [4].
In the next section, we provide some background on
the K-Means algorithm and deep learning. In section
3, we proposed a method to introduce constraints to
the K-Means algorithm. And we are experimenting our
method in section 4.

2 Background
2.1 K-Means
Given a corpus C, where each document X is a d-
dimensional real vector, k-means clustering aims to par-
tition the n documents into K Sk clusters represented by
centroids R = r1, r2, ..., rK. Formally, the objective is to
minimize :

K

∑
k=1

∑
X∈Sk

||X− rk||22

We can see K-Means algorithm in algorithm1

input : Corpus C, the number of cluster K
output: Assignment matrix S
Let r0

1, r0
2, ..., r0

k be the initial centroids
t← 1
repeat

forall X ∈ C do
St

k ← {X : ||X− rt−1
k ||22 ≤ ||X− rt−1

l ||22∀l 6=
k, 1 ≤ l ≤ K}

end
foreach centroids rk do

rt
k ← 1

|St
k |

∑
X∈St

k

X.

end
t← t + 1

until Convergence;
return S

Algorithm 1: K-means

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 38



Figure 1: K-Means algorithm result for the Iris Flower
Dataset [6]

2.2 Autoencoder
The Autoencoder [7] allows to learn a latent space with
significant information for the clustering without loss
of information. The Autoencoder tries to learn a func-
tion f (X, θ) = X. In other words, it is trying to learn
an approximation of the identity function. An Autoen-
coder is composed in two parts an encoder function g,
and a decoder function f. To learn representations from
which it is possible to reconstruct input data, we use a
reconstruct loss Lrec using euclidean distance :

Lrec(X; θ) = ∑
X
||X− A(X, θ)||22 (1)

where A(X, θ) is the Autoencoder output. We denote
hθ(X) = g(X, θ) the encoder output. The reconstruct
loss allows to minimize the euclidean distance between
input and output. In other word, after the training of
our Autoencoder, the output will be close to the input.
Minimize the reconstruct loss allows to have a latent
space where essential data are kept. In addition to re-
construct loss we can add different penalties Ω to bias
the latent space. If we add penalties we need to intro-
duce different hyperparameters Λ to balance the differ-
ent losses.
Generally, the Autoencoder loss with m penalties takes
the form :

L(X; θ) = ∑
X
||X− A(X, θ)||22 + λ0ω0 + . . . + λmωm

(2)

2.3 Deep Clustering
A several approaches for the deep K-Means propose
to jointly learn the representation and perform the K-
Means algorithm [2]. In these approaches, network’s
loss is divided in two parts : The non-clustering loss
and the clustering loss. The non-clustering loss does

Figure 2: Autoencoder

not take into account of the clustering parts. In gen-
eral, the non-clustering loss is the reconstruction loss of
the auto-encoder. We can add additional information in
the non-clustering loss to bias the representation. For
example, in our case, we add penalties to integrate lex-
ical constraints . The clustering loss allows to learn a
K-means friendly representation. Moradi Fard, Thonet
and Gaussier [4] proposed a method for deep K-Means
clustering based on a continuous reparametrization of
the objective function that leads to a truly joint solution.
The problem takes the form :

L(C, α; θ, R) = ∑
X∈C
||X− A(X; θ)||22

+λ0 ∑
X∈C
||hθ(X)− c(hθ(X); R)||22

(3)
where c(g(X; θ); R) = arg min

k=1..K
||hθ(X) − rk||22 is a non

differentiable function that assigns the document X to
its nearest centroid.
They transform this representation as follows :

L(C, α; θ, R) = ∑
X∈C
||X− A(hθ(X))||22+

λ0 ∑
X∈C

K
∑

k=1
||hθ(X)− rk||22Gk(hθ(X), α; R)

(4)
where Gk is a differentiable function such that :

lim
α→α0

Gk(hθ(X), α; R) =
{

1 if rk = c(hθ(X); R)
0 Otherwise. (5)

where α play the role of an inverse temperature. In [4] ,
Gk was chosen to be a parameterized softmax.
The softmax function take as input a K-dimensional
vector z of real values and return K-dimensional vec-
tor σ(z) of positive real values and all the entries add
up to 1. The softmax function takes the form :

∀k, σ(z)k =
ezk

∑K
k′=1 ezk′

(6)

In the case of deep K-Means, they want :

σ(z)k →
{

1 if rk = c′(hθ(X); R)
0 Otherwise. (7)

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 39



Finally, Gk is defined as follows :

Gk(hθ(X), α; R) =
e−α||hθ(X)−rk ||22

K
∑

k′=1
e−α||hθ(X)−rk′ ||22

(8)

To update (θ, R), they used the stochastic gradient de-
scent (SGD) as follows :

(θ, R)← (θ, R)− ε
1
|C̃|
∇(θ,R)L(C, α; θ, R) (9)

where C̃ is a random mini batch of C, and ε the learning
rate.
SGD is an iterative method for optimizing a differen-
tiable objective function. If we find a local minimum
(respectively maximum) of an objective function us-
ing stochastic gradient descent, one takes steps propor-
tional to the negative (respectively positive) of the gra-
dient of the function at the current point. It is called
stochastic because samples are shuffled.
Algorithm 2 summarizes the deep K-Means algorithm :

input : Corpus C , number of clusters K, balancing
parameter λ0, scheme for α, number of
epochs T , number of minibatches MB ,
learning rate ε

output: Autoencoder parameter θ, cluster
representative R

Initialize θ and rk, 1 ≤ k ≤ K (randomly or through
pretraining)

foreach α = mα : Mα do
foreach t = 1 : T do

foreach n = 1 : MB do
Draw minibatch C̃ ⊆ C
Update (θ, R) using SGD

end
end

end
Algorithm 2: Deep K-Means

2.4 Seed Words classification
Li, Xing, Sun and Ma [12] proposed a classification al-
gorithm using Keywords. They assume that keywords
could be semantically or statistically related to the seed
words of the same category. In this paper, they use a
function p to compute the co-occurrence of each word
of a document with keywords of each category :

p(i|w) =
d f (w, i)
d f (w)

(10)

where d f (w) is the number of the documents contain-
ing keywords w, d f (w, i) is the number of the docu-
ments containing both word i and keywords w. Then,

diagram_f.xml https://www.draw.io/

1 sur 1 17/05/2018 à 15:34

Figure 3: Overview of the Deep k-Means approach

they calculate the relevance score rel(i, k) for each word
i and category k as follows :

rel(i, k) =
1
|k| ∑

w∈k
s(w, i) (11)

ν(i, k) = max


 rel(i, k)

∑
k′∈KW

rel(i, k′)
− 1
|KW| , 0


 (12)

In Equation 12, they normalize the relevance score
rel(i, k) and subtract it by the average relevance score
for each category. It is expected that word i is a category
word for category k only if i and k have a high rel(i, k)
value. Therefore subtracting the relevance scores by the
average is necessary to filter out irrelevant categories.

3 Integrating Lexical Biases to Deep
K-Means Algorithm

The idea is to learn a latent space taking into account
lexical biases.
We denote X a document of size d, C the corpus, N the
size of C, and K the number of cluster.
We denote :

KW =




KW1
...

KWk
...
...

KWK




(13)

where KWk the set of keyword for the kth class. Also,
we denote X’ a biasing version of X. X’ can be defined
in two different ways :

1. Masked Document :

X′k = maskk(X) (14)

where maskk(X) is the document X masked by key-
words from the kth class

∀i, maskk(X)i =

{
Xi if i ∈ KWk
0 Otherwise. (15)

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 40



Masked documents allow to have a representation
biased by keywords. The risk with this method is
to have a large number of documents containing no
keywords, and therefore to have many X′ such that
∀k, X′k =~0.

2. Similarity function :
For the similarity function we use the score defined
in equation 12 :

X′k = ∀i, Xiν(i, k) (16)

The similarity function allows to minor the words
being semantically distant from keywords. In addi-
tion, unlike hidden documents, words that are se-
mantically close to keywords will not have a null
score. Nevertheless the risk with this method is
to have words with little importance for clustering
have high score.

3.1 Lexical Constraints

We want a latent space where document X is close to the
closest X′k :

||hθ(X)− hθ(c′(X; X′))||22 (17)

where c′(X; X′) = arg min
X′k∈X′

||hθ(X)− hθ(X′k)||22

However, the function c′ is not differentiable, and we
cant use SGD algorithm [5] to learn this function. To ap-
proximate the arg min function we can use the parame-
terized softmax function [17]. The softmax function can
be used as a differentiable substitute to arg min.
Indeed, want representation where document X is close
to the closest, so we want a function ωk such that :

ωk =

{
1 if rk = c′(hθ(X); R)
0 Otherwise. (18)

Then if we minimize

∑
X∈C

K

∑
k=1

ωk||hθ(X)− hθ(X′k)||22 (19)

we minimize the distance between the document hθ(X)
and the closest hθ(X′k) allowing to have a latent space
where document X is close to the closest X′k. Let’s take
the equation 6 and set zk = −α||hθ(X)− hθ(X′k)||22. So
we have :

lim
α→α0

σ(z)k →
{

1 if rk = c′(hθ(X); R)
0 Otherwise.

}
≈ ωk (20)

Finally, the penalty takes the form :

∑
X∈C

K
∑

k=1

e−α||hθ (X)−hθ (X′k)||
2
2

K
∑

k′=1
e
−α||hθ (X)−hθ (X′

k′ )||
2
2
||hθ(X)− hθ(X′k)||22 (21)

3.2 Deep K-Means
For the Deep K-Means, we can use the approach pro-
posed by Moradi Fard, Thonet and Gaussier [4] see in
section 2.3 introducing lexical biases with equation 21.
We denote R = (r1 r2 ... rK) the vector of centroids.
The loss function is :

L(C, α; θ, R) = ∑
X∈C
||X− A(X; θ)||22+

λ0 ∑
X∈C

K
∑

k=1
||hθ(X)− rk||22Gk(hθ(X), α; R)+

λ1 ∑
X∈C

K
∑

k=1

e−α||hθ (X)−hθ (X′k)||
2
2

K
∑

k′=1
e
−α||hθ (X)−hθ (X′

k′ )||
2
2
||hθ(X)− hθ(X′k)||22

(22)
with hyperparameters λ0 ≥ 0, λ1 ≥ 0.

3.3 Learning Algorithm and Pretraining
For the learning algorithm we can use the Deep K-
Means algorithm with pretraining (algorithm 2) see in
section 2.3.

Pretraining
The pretraining we performed here simply consists in
initializing the weights by training the auto-encoder
then, petraining allows to initialize centroı̈ds. We use
two methods for pretraining :

1. simple pretrain : minimizing only reconstruct loss
: ∑

X∈X
||X − f (hθ(X))||22. It allows to initialize with

the least loss of information about documents.
2. lexical pretrain : minimizing

∑
X∈X
||X− f (hθ(X))||22 + λ1 ∑

X∈C

K
∑

k=1

e−α||hθ (X)−hθ (X′k)||
2
2

K
∑

k′=1
e
−α||hθ (X)−hθ (X′

k′ )||
2
2
||hθ(X)− hθ(X′k)||22

It allows to initialize centroı̈ds with bias represen-
tation.

Centers Initialization
After pretraining we need to initialize centers. We de-
note S(k) as follows :

∀i, S(k)
i =

{
log
(

N
d f (i)

)
if i ∈ KW

0 Otherwise
(23)

Then we initialize R as follows :

∀k, rk = hθ(S(k)) (24)

4 Experiment
4.1 Data
To experiment our algorithm we use the dataset
20Newsgroups [1]. The 20 Newsgroups data set is a
collection of approximately 20,000 Newsgroups doc-
uments, partitioned evenly across 20 different news-
groups. We use also the RCV1 dataset [11]. The RCV1
dataset is a collection of over 800,000 text documents.

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 41



For RCV1 dataset, we use only a subset of 10,000 docu-
ments from RCV1 such that each document belongs to
only one of the root classes in the class hierarchy. This
was detailed in [[4]].
Each document are represented by a vector using term
frequency-inverse document frequency (TFIDF) repre-
sentation [9]. The term frequency-inverse document
frequency is a method of weighting depicting the sig-
nificance of each word of a document in relative to a
corpus.

TF(t, X) =
ft,X

maxt′∈C ft′ ,X
(25)

IDF(t, C) = log(
N

|X ∈ C : t ∈ X| ) (26)

TFIDF(t, X, C) = TF(t, X).IDF(t, C) (27)

For each dataset there is a preprocessing step. We re-
move stopword and keep only the 2000 words with the
top TFIDF scores. We use also a stemming step [14].

4.2 Keywords Extraction
To generate the set of keywords KW we rank each word
of each document of each classes using TFIDF accord-
ing to algorithm 3. We add for each document of each
classes the TFIDF of each word, in this manner we find
the most important word of each class. Furthermore,
for discriminative keywords, we substract the TFIDF of
other class, so that the keywords are the most discrimi-
nating.

input : Corpus C, The number of keywords per
classes P

output: KW
KW ← {}
foreach Class ci ∈ C do

ranki ← [0...0]
foreach Document X ∈ ci do

foreach Word w ∈ X do
ranki,w ← ranki,w + TFIDF(w, X, C)

end
end

end
if Discriminating Extraction then

foreach Class ci ∈ C do
rank′ i ← ranki − ∑

∀cj ,cj 6=ci

rank j

end
rank← rank′

end
foreach Class ci ∈ C do

KW ← KW ∪ {{w1, w2...wP} : 6 ∃(v1, v2)|v1 6∈
{w1, w2...wP}, v2 ∈ {w1, w2...wP}, ranki,v1 ≥
ranki,v2}

end
return KW

Algorithm 3: Extract Keywords

4.3 Evaluation
Baseline Algorithm
As our goal in this work is to study the k-Means clus-
tering algorithm with constraints, we focus on the fam-
ily of K-Means-related models and compare our ap-
proach against state-of-the-art models from this fam-
ily, using both standard and deep clustering models.
For the standard clustering methods, we used: the K-
Means clustering approach, denoted KM; an approach
denoted as AE-KM in which dimensional reduction is
first performed using an auto-encoder followed by K-
Means applied to the learned representations. For AE-
KM, we can use only the reconstruct loss (denoted AE-
KM SP) or integrate lexical constraints loss (denoted
AE-KM LP).
For the deep clustering models, we use the Deep K-
Means Model see in section 2.3 denoted DKM with pre-
training.

Metric
To evaluate our algorithm and compare results with ref-
erence algorithms we can use the NMI Metric, Accuracy
Metric [3], and Adjusted Rand index[20].
• NMI is an information-theoretic measure based on

the mutual information of the ground-truth classes
and the obtained clusters, normalized using the en-
tropy of each. The NMI Metric is defined as follows

NMI(S, C) =
I(S, C)

[H(S) + H(C)]/2

with I(S, C) = ∑
k

∑
f

|sk∩c f |
N log

N|sk∩c f |
|sk ||c f | and H(S) =

−∑
k

|sk |
N log N|sk |

|sk |

• The Accuracy is the proportion of true results
among the total number of cases examined. The
Accuracy metric is defined as follows :

ACC(S, C) =
1
N ∑

k
maxj|sk ∩ cj|

• Let a be the number of pairs of document in C that
are in the same cluster in the predicted partition
and in the same cluster in the real partition, and b
be the number of pairs of document in C that are in
different clusters in predicted partition and in dif-
ferent cluster in real partition. The Adjusted Rand
index is defined as follows :

ARI =
a + b
(N

2 )

4.4 Experimental Setup
Autoencoder Architecture
We use the same architecture used in [4]. The encoder
is a fully-connected multilayer perceptron formed by
3 hidden layers (with dimensions 500, 500, 2000) and
an embedding layer (with dimension K, the number of

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 42



cluster). The decoder is a mirrored version of the en-
coder 2. All layers except the one preceding the em-
bedding layer and the one preceding the output layer
are applied a ReLU activation function [16] before being
fed to the next layer. For the layer preceding the embed-
ding layer and for the layer preceding the output layer
we apply the identity function.

Experimental Protocol
The purpose of the experiment is to rediscover the dif-
ferent classes of datasets with keywords.
To add noise to 20 newsgroups dataset we divide the
dataset into two corpus C1, C2. Each corpus contains
ten classes. We generate keywords 3 from C1. Then we
concatenate document from corpus C1 with document
from corpus C2. The clustering processed on corpus C1.
The tests were carried out in 3 steps :

1. Discriminative Keywords : We test our algorithm
with 3 discriminative keywords (see algorithm 3).

2. Non Discriminative Keywords : We test our algo-
rithm with 3 non discriminative keywords (see al-
gorithm 3).

3. Robustness : We test the robustness of our algo-
rithm. To test this, we can vary the number of key-
words by classes. In addition we compare the re-
sults of each version of CDKM. We generate dis-
criminative keywords with algorithm 3 for this test.

For all tests we select hyperparameters with 3 discrimi-
native keywords per classes see section 4.5.

Hyperparameters Selection
The hyperparameters λ0 and λ1 , that define the trade-
off between the lexical constraint error and clustering
error in the loss function, were determined by perform-
ing a grid search on the set {10i|i ∈ [−6,−1]}. To do
so, we randomly split each dataset into a validation set
(10% of the data) and a test set (90%). Each model is
trained on the whole data and only the validation set
labels are leveraged in the grid search to identify the
optimal λ0 and λ1.
We select hyperparameters which maximize the Accu-
racy Metrics for Validation Set. The results of Grid
Search are reported in table 1.

4.5 Results
To present the tests, we denote CDKM MASK (re-
spectively CDKM SIM) the version of the algorithm
using masked document (respectively similarity func-
tion), and LP (respectively SP) when we use the Lexical
Pretrain (respectively Simple Pretrain).
The results for the evaluation of the compared cluster-
ing methods on the different benchmark datasets are
summarized in tables 2 3 and in figures 4. The cluster-
ing performance is evaluated with respect to three stan-
dard measures Normalized Mutual Information (NMI),
the Adjusted Rand Index (ari) and the clustering ac-
curacy (ACC) see in section 4.3. We report for each

Table 1: Best results of Grad Search for the optimization
of hyperparameters for each dataset.

λ0 λ1
Deep K-Means 10−2

AE + KM, LP mask 10−4

AE + KM, LP sim 10−2

CDKM, LP mask 10−1 10−3

CDKM, LP sim 10−1 10−3

CDKM, SP mask 10−1 10−3

CDKM, SP sim 10−1 10−2

RCV1

λ0 λ1
Deep K-Means 10−1

AE + KM, LP mask 10−2

AE + KM, LP sim 10−2

CDKM, LP mask 10−6 10−1

CDKM, LP sim 10−3 10−1

CDKM, SP mask 10−1 10−6

CDKM, SP sim 10−1 10−5

20 Newsgroups

λ0 λ1
Deep K-Means 10−1

AE + KM, LP mask 10−2

AE + KM, LP sim 10−2

CDKM, LP mask 10−1 10−3

CDKM, LP sim 10−1 10−3

CDKM, SP mask 10−1 10−4

CDKM, SP sim 10−1 10−5

20 Newsgroups without noise

dataset/method pair the average and standard devia-
tion of these metrics computed over 10 runs and con-
duct significance testing as described in section 4.4.
Bold Result in each column of tables 2 3 corresponds
to the best result for the corresponding method/metric.

Discriminative Keywords
Results are reported in table 2.
We can observe that cdkm is always better than base-
lines, whatever the method to define X’ and the type
of pretraining. We also observe that Lexical Pretrain is
generally better than Simple Pretrain. Finally, the re-
sults for the mask method and for the sim method are
similar.
The strongest progression is for the dataset RCV1, and
the weakest progression is for the dataset 20 newsgroup
with noise.
While observing results for AE+KM mask LP and
AE+KM sim LP, we notice that lexical biases give better
results than K-Means or Deep K-Means.

Non Discriminative Keywords
Results are reported in table 3.
We can observe that cdkm is always better than base-
lines, whatever the method to define X’ and the type of
pretraining.

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 43



While observing results for AE+KM mask LP and
AE+KM sim LP, we notice that lexical biases give bet-
ter results than K-Means or Deep K-Means. It is with
the method sim that we have the lowest performance
decrease.
We also notice that both types of pretraining have simi-
lar performance.

Robustness
We can see results in figures 4.
We observe that when we use only one keyword the re-
sults are bad for each metrics.
We observe that the sim method is more stable. Indeed,
from two keywords, performances increase. While for
the mask method we see a peak for 3 keywords, then
performances decrease. Moreover, we note that for the
sim method, the two methods of pretraining have fairly
similar results. While for the mask method there is a big
difference in terms of performance.

5 Conclusion
We have presented and tested in this study an approach
to integrate lexical constraints to the K-Means algorithm
by introducing in the non clustering loss penalties bi-
asing the representation. To the best of our knowl-
edge, this is the first approach that integrates lexical
constraints to the K-Means algorithm.

6 Future Work
In future work, we plan to add priorities to classes In
other words, we would like some classes to be more im-
portant than others, to bias clustering to some classes
considered more important by the user.
Also, because users do not always know the entire cor-
pus of documents, it might be useful to add a trash class
system that groups documents that have no links to the
user’s given keyword classes.
In addition, the initialization of the centers is only tak-
ing into account keywords, we could use a similarity
function and initialize the centers with the words clos-
est to the keywords in the corpus.
Moreover, our tests do not allow us to know if the per-
formance gain is due to lexical biases or centroid initial-
ization. Indeed, for Deep K-Means algorithm, centroid
are initialized after the pretraining with K-Means++ al-
gorithm. It could be interesting to add two baselines :

1. DKM LP : We could test a version of the DKM al-
gorithm where pretraining would take lexical bias
into account. In other words, we could use the lexi-
cal pretrain with Deep K-Means algorithm. For this
test, we continue to use the K-Means++ algorithm
for the centroid initialization.

2. DKM SI : We could test a version of the DKM algo-
rithm the centroid initialization defines in section
3.3. For this test, we continue to use the petraining
defined in [4] for Deep K-Means algorithm.

Table 2: Clustering results for K-Means applies to dif-
ferent learned latent space to measure the efficiency of
lexical constraints for K-Means algorithm. Performance
is measured in terms of NMI, Adjusted Rand Index and
clustering Accuracy, higher is better. Each cell contains
the average and the standard deviation computed over
10 runs.

ACC ARI NMI
K-Means 48.8± 6.6 18.4± 6.0 29.7± 5.8
AE + KM, SP 51.3± 3.5 17.5± 5.8 24.5± 5.1
Deep K-Means 54.4± 4.9 23.9± 3.5 29.6± 3.6
AE + KM, LP mask 65.0± 6.7 35.6± 7.3 37.5± 6.5
AE + KM, LP sim 62.7± 6.1 35.1± 5.7 38.4± 4.1
CDKM, LP mask 72.7 ± 4.0 43.8 ± 5.4 44.1 ± 3.9
CDKM, LP sim 72.5± 4.5 43.7± 5.7 44.0± 4.3
CDKM, SP mask 70.3± 4.2 41.0± 5.1 42.1± 4.0
CDKM, SP sim 70.4± 5.1 41.8± 7.1 43.0± 5.2

RCV1

ACC ARI NMI
K-Means 36.1± 2.2 13.3± 1.7 40.9± 1.6
AE + KM, SP 53.1± 2.3 35.0± 1.4 49.3± 1.0
Deep K-Means 54.9± 1.7 37.6± 1.1 51.6± 0.6
AE + KM, LP mask 56.8± 1.7 38.4± 1.1 51.6± 0.6
AE + KM, LP sim 56.0± 2.3 37.6± 1.6 50.8± 0.7
CDKM, LP mask 61.3 ± 0.6 41.2 ± 0.8 52.7± 0.5
CDKM, LP sim 60.6± 1.3 40.5± 1.3 53.0± 0.8
CDKM, SP mask 60.2± 1.8 41.2 ± 0.9 53.5 ± 0.5
CDKM, SP sim 60.5± 1.2 40.7± 0.8 52.9± 0.5

20 Newsgroups

ACC ARI NMI
K-Means 33.1± 2.7 8.7± 1.3 26.3± 1.6
AE + KM, SP 45.2± 3.3 23.0± 2.5 30.0± 2.0
Deep K-Means 44.5± 2.4 23.6± 2.4 30.2± 2.0
AE + KM, LP mask 45.9± 2.2 24.0± 1.8 31.8± 1.5
AE + KM, LP sim 46.2± 2.6 24.6± 1.9 32.3± 1.3
CDKM, LP mask 50.0± 2.1 26.0± 1.6 31.7± 1.7
CDKM, LP sim 49.4± 2.1 25.3± 1.9 31.1± 1.7
CDKM, SP mask 49.5± 1.7 26.1± 1.1 32.0± 0.9
CDKM, SP sim 49.3± 1.1 25.9± 1.2 32.0± 1.1

20 Newsgroups with noise

Finally, one of the major problems of our algorithm is
that we cannot use as keywords only words present
in the corpus, nevertheless it is possible that the user
wants to give keywords that are not part of corpus. To
do this, we could use words embedding [15]. Word
embedding is a method that focuses on learning a rep-
resentation of words. This technique allows to repre-
sent each word of a dictionary by a corresponding real
number vector. This facilitates the semantic analysis of
words. This new representation is unique in that words
appearing in similar contexts have corresponding vec-
tors that are relatively close.

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 44



Table 3: Clustering results for K-Means applies ap-
plies to different learned latent space to measure the
efficiency of lexical constraints for K-Means algorithm.
Performance is measured in terms of NMI, Adjusted
Rand Index and clustering Accuracy, higher is better.
Each cell contains the average and the standard devia-
tion computed over 10 runs.

ACC ARI NMI
K-Means 48.8± 6.6 18.4± 6.0 29.7± 5.8
AE + KM, SP 51.3± 3.5 17.5± 5.8 24.5± 5.1
Deep K-Means 54.4± 4.9 23.9± 3.5 29.6± 3.6
AE + KM, LP mask 66.1± 5.0 38.2± 5.3 40.5± 4.3
AE + KM, LP sim 62.3± 4.8 35.2± 5.0 38.7± 3.5
CDKM, LP mask 68.5 ± 5.6 39.6 ± 6.4 41.3 ± 4.6
CDKM, LP sim 65.8± 5.0 36.2± 5.5 38.9± 3.7
CDKM, SP mask 68.5± 5.6 39.6± 6.4 41.3± 4.6
CDKM, SP sim 67.5± 6.3 38.6± 6.4 40.7± 4.4

RCV1

ACC ARI NMI
K-Means 36.1± 2.2 13.3± 1.7 40.9± 1.6
AE + KM, SP 53.1± 2.3 35.0± 1.4 49.3± 1.0
Deep K-Means 54.9± 1.7 37.6± 1.1 51.6± 0.6
AE + KM, LP mask 57.5± 2.8 39.6± 1.7 51.6± 1.4
AE + KM, LP sim 55.7± 1.7 37.6± 1.0 50.8± 0.4
CDKM, LP mask 58.8± 1.4 38.5± 1.4 52.6± 0.6
CDKM, LP sim 60.1 ± 2.1 40.2 ± 1.4 52.8 ± 1.0
CDKM, SP mask 58.9± 2.0 38.9± 1.6 52.8 ± 0.9
CDKM, SP sim 60.1± 1.7 40.1± 1.5 52.7± 0.7

20 Newsgroups

ACC ARI NMI
K-Means 33.1± 2.7 8.7± 1.3 26.3± 1.6
AE + KM, SP 45.2± 3.3 23.0± 2.5 30.0± 2.0
Deep K-Means 44.5± 2.4 23.6± 2.4 30.2± 2.0
AE + KM, LP mask 45.2± 2.2 24.2± 1.6 32.4± 1.1
AE + KM, LP sim 42.3± 2.4 21.7± 2.0 29.1± 1.3
CDKM, LP mask 48.8± 2.3 25.7 ± 1.9 31.6 ± 1.9
CDKM, LP sim 47.8± 2.6 24.3± 1.8 30.8± 1.7
CDKM, SP mask 48.8± 2.3 25.7± 1.9 31.6± 1.9
CDKM, SP sim 49.2 ± 2.3 25.2± 2.0 31.5± 1.7

20 Newsgroups with noise

Figure 4: Results for 20 newsgroups dataset

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 45



References
[1] 20 Newsgroups Dataset.
[2] E. Aljalbout et al. “Clustering with Deep Learn-

ing: Taxonomy and New Methods”. In: ArXiv e-
prints (Jan. 2018). arXiv: 1801.07648 [cs.LG].

[3] Deng Cai, Xiaofei He, and Jiawei Han. “Lo-
cally consistent concept factorization for docu-
ment clustering”. English (US). In: IEEE Transac-
tions on Knowledge and Data Engineering 23.6 (Mar.
2011), pp. 902–913. ISSN: 1041-4347.

[4] Maziar Moradi Fard, Thibaut Thonet, and Eric
Gaussier. Deep K-Means : An End-to-End,
Annealing-based Approach for jointly Clustering with
K-Means and Learning Representations. Submitted
to 32nd Conference on Neural Information Pro-
cessing Systems (NIPS 2018).

[5] Thomas S. Ferguson. “An Inconsistent Maximum
Likelihood Estimate”. In: Journal of the American
Statistical Association 77.380 (1982), pp. 831–834.

[6] Ronald A. Fisher. UCI Machine Learning Reposi-
tory: Iris Data Set. Jan. 2011.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.

[8] Y.-C. Hsu and Z. Kira. “Neural network-based
clustering using pairwise constraints”. In: ArXiv
e-prints (Nov. 2015). arXiv: 1511 . 06321
[cs.LG].

[9] KAREN SPARCK JONES. “A STATISTICAL IN-
TERPRETATION OF TERM SPECIFICITY AND
ITS APPLICATION IN RETRIEVAL”. In: Journal
of Documentation 28.1 (1972), pp. 11–21.

[10] S. Kullback and R. A. Leibler. “On Information
and Sufficiency”. In: Ann. Math. Statist. 22.1 (Mar.
1951), pp. 79–86.

[11] David D. Lewis et al. “RCV1: A New Benchmark
Collection for Text Categorization Research”. In:
J. Mach. Learn. Res. 5 (Dec. 2004), pp. 361–397.
ISSN: 1532-4435.

[12] Chenliang Li et al. “Effective Document Labeling
with Very Few Seed Words: A Topic Model Ap-
proach”. In: Proceedings of the 25th ACM Interna-
tional on Conference on Information and Knowledge
Management. CIKM ’16. Indianapolis, Indiana,
USA: ACM, 2016, pp. 85–94. ISBN: 978-1-4503-
4073-1.

[13] S. Lloyd. “Least squares quantization in PCM”.
In: IEEE Transactions on Information Theory 28.2
(Mar. 1982), pp. 129–137. ISSN: 0018-9448.

[14] Julie Beth Lovins. “Development of a stemming
algorithm.” In: Mech. Translat. and Comp. Linguis-
tics 11.1-2 (1968), pp. 22–31.

[15] T. Mikolov et al. “Efficient Estimation of Word
Representations in Vector Space”. In: ArXiv e-
prints (Jan. 2013). arXiv: 1301.3781 [cs.CL].

[16] Vinod Nair and Geoffrey E. Hinton. “Rectified
Linear Units Improve Restricted Boltzmann Ma-
chines”. In: Proceedings of the 27th International
Conference on International Conference on Machine
Learning. ICML’10. Haifa, Israel: Omnipress,
2010, pp. 807–814. ISBN: 978-1-60558-907-7.

[17] Nasser M. Nasrabadi. “Pattern Recognition and
Machine Learning”. In: Journal of Electronic Imag-
ing 16 (2007).

[18] Lorenzo Rosasco et al. “Are Loss Functions All
the Same?” In: Neural Computation 16.5 (2004),
pp. 1063–1076.

[19] W.H. Swann. “A survey of non-linear optimiza-
tion techniques”. In: FEBS Letters 2 (1969), S39–
S55. ISSN: 0014-5793.

[20] Nguyen Xuan Vinh, Julien Epps, and James Bai-
ley. “Information Theoretic Measures for Cluster-
ings Comparison: Variants, Properties, Normal-
ization and Correction for Chance”. In: J. Mach.
Learn. Res. 11 (Dec. 2010), pp. 2837–2854. ISSN:
1532-4435.

[21] Kiri Wagstaff et al. “Constrained K-means Clus-
tering with Background Knowledge”. In: Pro-
ceedings of the Eighteenth International Conference on
Machine Learning. ICML ’01. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001,
pp. 577–584. ISBN: 1-55860-778-1.

Integrating lexical constraints to K-Means with Deep Learning Maxence Grand

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 46





A System-Wide Study of Performance Issues in FaaS Platforms
Magistère M1 Report

Christopher Ferreira
LIG, ERODS Team

Supervised by: Renaud Lachaize and Vivien Quéma
With the help of: Hugo Guiroux

Abstract

The Function as a Service (FaaS) paradigm intro-
duces a new programming model that reduces the
size of the execution unit managed by a Cloud
provider’s infrastructure to its bare minimum: the
request. As a result, the resource management logic
of a FaaS infrastructure is involved in each and ev-
ery request, exacerbating its overhead. Moreover,
strong evidence shows that a significant portion of
these Cloud functions are likely to have low exe-
cution times, in the order of 10–100 milliseconds.
Overall, the FaaS model introduces extremely de-
manding requirements for the underlying software
stack in terms of efficiency.
This Master thesis aims at studying the behavior
of the whole software stack of FaaS infrastruc-
tures, with the end goal of improving their per-
formance and resource usage. More precisely, our
work aims at identifying the main performance bot-
tlenecks within an existing FaaS platform, with a
particular interest for the software stack of the ma-
chines that execute the Cloud functions. We de-
scribe three main performance bottlenecks identi-
fied in the OpenWhisk architecture: (i) garbage col-
lection within the internal components of the infras-
tructure, (ii) scheduling interferences between the
Linux kernel, the container subsystem and the FaaS
middleware, (iii) protocols used to interact with the
containers hosting the user functions. Additionally
our study reveals some of the challenges that exist
for the understanding of the root causes of perfor-
mance issues in today’s Cloud infrastructures. In
particular, we highlight that the heterogeneity and
isolation mechanisms of these infrastructures re-
veal some limitations of existing profiling tools for
such situations. Finally, we discuss possible mit-
igation strategies for the above-mentioned bottle-
necks.

1 Introduction
One of the most recent developments of Cloud computing
platforms is the introduction of so-called serverless services.

In the present work, we focus on the most popular Server-
less service: Functions as a Service (FaaS) platorms. Since
the release of Amazon Web Service (AWS) Lambda [55]
in 2014 (joined notably by Microsoft Azure Functions [56],
Google Cloud Functions [57] and IBM Cloud Functions [58]
in 2016), FaaS platforms have gained significant traction in
the industry [1] and are raising the interest of the research
community [2, 3, 4, 5, 6].

1.1 Functions as a Service
Essentially, the term “serverless” in “serverless computing”
refers to the lack of server management duties from the point
of view of the user. For FaaS platforms, this means that
users do not upload their applications as virtual machines or
containers running longstanding servers (as in Infrastructure
as a Service (IaaS) and Containers as a Service (CaaS)) but
as simple functions1 written using one of the supported lan-
guages and their API (for example AWS Lambda supports
Java, Javascript, C#, Python and Go). The serverless/FaaS
computing model shares many similarities with Platform as
a Service (PaaS), however current PaaS offerings still oper-
ate in a longstanding server fashion while functions in the
FaaS model are designed to be ephemeral — quickly spawned
and dismissed. Besides, the billing principles of FaaS plat-
forms are designed to closely follow the actual resource con-
sumption: customers are billed with a fixed cost for each ex-
ecution of the function and an additional cost proportional
to the duration of the function (as an example, for an AWS
Lambda function having its memory consumption capped to
1GB, a customer pays $0.20 for each million of invocations
and $0.00001667 per second accounted from the start of the
execution of each function to its end). This proportional cost
is usually billed at a granularity of 100 milliseconds, which
can result in much less idle time being charged, in contrast
to other models for which the granularity is much coarser (a
typical order of magnitude is one hour [35]).

FaaS platforms hide away most of the system stack (hard-
ware, Operating System (OS), virtualization), leaving only
the language runtime exposed and the application layer to
the hands of the user. This trade-off of convenience over

1These functions have different names in different contexts: they
are named lambdas in the AWS ecosystem, actions with IBM Cloud
Functions and simply functions or Cloud functions in other contexts.

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 48



flexibility and control is easily justified: server configura-
tion and management is a well-known pain point. Setting
up and maintaining a custom software stack (e.g., addressing
performance, fault tolerance and security issues) requires a
non-negligible amount of time and expertise (these software
stacks generally offer a large set of configuration options for
performance tuning and regularly require to be updated with
security fixes). With FaaS platforms, most of the server op-
erations are delegated to the Cloud provider. Additionally,
elasticity – the capacity of an online service to quickly allo-
cate and deallocate resources to meet the variation of service
demands – is no longer a concern. Effectively, the elas-
ticity of the service is also entirely delegated to the Cloud
provider: the Cloud provider automatically allocates and del-
locates new resources for the functions when the service de-
mand increases and decreases.

Characteristics & Use Cases
Cloud functions are attached to events that trigger their exe-
cution. For example a function can be executed as the han-
dler of an HTTP request with its return value being used as
the HTTP response. As another example, when a new entry
has been added to a database table, a function can be conse-
quently called and this function can propagate the new entry
to a search engine indexer. The functions written for FaaS
platforms are stateless: the platform offers no guarantee that
a global state is shared from one execution of the function to
the next execution. Consequently applications written with
these functions tend to rely heavily on other Cloud services,
i.e., typically the functions fetch and store data from and to
databases or other Cloud storage services.

There are typically only a few configuration options avail-
able for these functions: (i) the maximum execution time
(ranging from 1s to 5 minutes on AWS Lambda) and (ii) the
maximum amount of memory available (from 128MB up
to 3GB). Other options like CPU frequency and number of
CPUs are automatically derived from the memory cap: with
AWS Lambda, if the allocated memory is greater or equal to
1.5GB, the function has access to a second CPU.

Given the rapid pace of innovation of the Web/mobile soft-
ware industry, the FaaS model is an appealing solution for
consumers thanks to its lower time-to-market. FaaS platforms
can be perceived as a response from the Cloud providers to
the move from monolithic applications towards microservice
architectures [36]. In a microservice architecture, instead of
a single monolithic application, the application is written as a
set of small dedicated services running independently and co-
operating via network communications (usually using HTTP,
with each microservice exposing an API). These kinds of
architectures have gained popularity because, among others
reasons, they simplify the process of scaling the application
(both on a day-to-day basis to adapt to demand variations and
in the long term, when a service gains popularity) when only
one component actually needs more resources. FaaS plat-
forms are a good fit for the deployment of such microservice-
based applications, for example each microservice can be de-
ployed as its own function and transparently benefits from
the automatic elasticity featured by the FaaS platform. Ad-
ditionally, the FaaS model simplifies the process of setting

up a service on the Cloud, potentially allowing a new type
of users to access the computing facilities of the Cloud with-
out the complexity of server operations. For example, Jonas
et al. [7] show that FaaS platforms can be used to run a va-
riety of large-scale data processing computations, using the
Map Reduce model, in a simpler manner than what is cur-
rently offered by existing solutions, which require to set up
and configure a complex data processing system stack. An-
other example is ExCamera [8], which implements a highly
parallel video transcoder by invoking the same function more
than a thousand times in parallel .

Server Consolidation
The FaaS model gives Cloud providers more control over the
management of their resources: it offers a new opportunity to
maximize server consolidation, i.e., maximize utilization of
the machines of their data centers. One of the main reasons
that explains the widespread adoption of Cloud computing
is the cost-effectiveness of its model. In contrast to the use
of dedicated hardware, Cloud computing enables the phys-
ical resources to be shared between consumers (i.e., multi-
tenancy) and to remain at a higher utilization (server con-
solidation). Given that the expenses related to data centers
contain a non-negligible portion of fixed costs (i.e., initial
purchase of hardware) and that energy consumption is non-
proportional to the utilization (higher utilization have better
energy efficiency – energy efficiency being defined as the en-
ergy consumption divided by the utilization [9]), Cloud com-
puting allows a better mitigation of these expenses. However,
most data centers report an average utilization that is sub-
optimal (typically between 20% and 40%) [10, 11]. This gen-
erally low utilization leaves room for further improvement to-
wards cost-effectiveness. A sensible target utilization would
be to have an average of server utilization around 70%-80%
which is closer to the maximum cost-efficiency while leav-
ing some room to handle unexpected bursts . Increasing the
utilization requires an infrastructure that is able to balance
the workload on the machines intelligently and adapt to their
variations over time. FaaS offers a good opportunity to tackle
this issue. In contrast to virtual machines and containers mi-
grations which are costly and complex operations , functions,
due to their ephemeral and stateless nature, can be executed
virtually anywhere in the data center. This offers more flexi-
bility for optimizations in load balancing and server consoli-
dation leading to a better utilization of the physical resources
of the data center.

Cold Start
Conversely this new model creates a new challenge. The
overhead incurred before starting a function should be kept
low as it would directly impact every function request. Cur-
rent implementations of FaaS platforms rely internally on
operating system containers to execute the function. Even
though container startup is considered lightweight in compar-
ison to the same operations for a virtual machine, this startup
time (around 100ms for a lightweight container [12]) is high
in proportion for a function that may run for a duration of the
same order of magnitude. In order to address this issue, FaaS
platforms reuse already running containers for further execu-
tions of the same functions. Consequently, this introduces

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 49



two types of function startup profiles, a cold start when the
container has to be started from scratch and a warm start for
functions that are executed on an already available container.

1.2 Problem Statement
The FaaS model introduces a new programming model that
reduces the size of the execution unit managed by the Cloud
provider’s infrastructure, from the long-standing application
server in the IaaS model to its bare minimum: the request.
As a result, the resource management logic (load balancing,
resource pooling) of the FaaS infrastructure is involved in
each and every request, exacerbating its overhead. More-
over, strong evidence suggests [2] that a significant portion of
these Cloud functions are likely to have low execution times
in the order of 10–100 milliseconds (or even below 1 ms if
a function acts as a basic gateway to a simple service like a
key-value store). Such a low order of magnitude further exac-
erbates the overhead of the FaaS platform. Overall, the FaaS
model introduces extremely demanding requirements for the
underlying software stack in terms of efficiency.

Besides, most of the existing FaaS platforms have been
developed by the Cloud providers in order to provide their
customers/users with a functional substrate allowing them to
develop and host simple and cost-effective “glue code” in or-
der to connect the different Cloud services that they use (e.g.
Web frontends, storage backends, data analytics pipelines).
Most of the publicly available information about these indus-
trial platforms is related to their functional aspects and use
cases rather than their internal design and performance opti-
mizations. Furthermore, beyond the specific considerations
regarding the available FaaS platforms operated by commer-
cial Cloud providers, there is to date (to the best of our knowl-
edge) no study that provides a detailed analysis of the perfor-
mance challenges within the software layers of a FaaS infras-
tructure. Such insights can be of interest both for the scientific
community (operating system researchers) and the designers
and maintainers of FaaS platforms used in production. Ar-
guably, we can draw a parallel with the history of the system-
level infrastructures that support the World Wide Web: FaaS
platforms are still in their infancy and achieving highly ef-
ficient operating conditions for such complex infrastructures
will likely require years of research and performance engi-
neering efforts.

In the above-described context, this Master thesis aims at
studying the behavior of the whole software stack of FaaS
infrastructures, with the end goal of improving their perfor-
mance and resource usage. More precisely, our work aims at
identifying the main performance bottlenecks within an exist-
ing FaaS platform (OpenWhisk, the main open-source FaaS
platform to date), with a particular interest for the software
stack of the machines that execute the Cloud functions. Our
study focuses on performance in terms of throughput and la-
tency2. We study the impact of the software infrastructure
at different levels, from the components in charge of request
routing and resource allocation and the language runtimes
running the applications to the Linux kernel and its container

2Energy efficiency, while a growing and important concern, is
left for future work.

abstraction. Additionally our study reveals some of the chal-
lenges that exist for the understanding of the root causes of
performance issues in today’s Cloud infrastructures. In par-
ticular, we highlight that the heterogeneity (i.e., mixture of
various programming languages, language runtimes, concur-
rency models) and mechanisms of isolation of these infras-
tructures (i) introduce complex interactions between software
components that can degrade performance in subtle, yet sig-
nificant ways, and (ii) reveal some limitations of existing pro-
filing tools for such situations. Our contributions can be sum-
marized as follows:

• We highlight several profiling challenges that are intro-
duced by the characteristics of modern Cloud infrastruc-
tures and describe how we have overcome them;

• We describe three main performance bottlenecks identi-
fied in the OpenWhisk architecture: (i) Garbage collec-
tion within the internal components of the infrastructure,
(ii) scheduling interferences between the Linux kernel,
the container subsystem and the FaaS middleware, (iii)
protocols used to interact with the containers hosting the
user functions;

• We discuss possible mitigation strategies for the above-
mentioned bottlenecks;

1.3 Contents of the Report
The remainder of this document is organized as follows:

• Chapter 2 introduces and discusses related works.

• Chapter 3 describes the OpenWhisk platform, which is
the focus of our empirical case study.

• Chapter 4 describes our experimental methodology.

• Chapter 5 describes the results of our study.

• Chapter 6 concludes this report and discusses future
work.

2 Related Work
The FaaS model is still relatively new and the research com-
munity is only starting to tackle the new challenges that it
introduces. We discuss these challenges in Section 2.1. Sec-
tion 2.2 discusses more general contributions related to the
performance of Cloud infrastructures.

2.1 Research Challenges of the FaaS Model
Hendrickson et al. [2] perform an early study of FaaS plat-
forms with the expressed intent to discuss a research agenda
for these platforms. The authors compensate for the absence
of public FaaS workloads by providing an ad-hoc empirical
evaluation of the characteristics of the requests generated by
the Google Gmail Web client. This empirical evaluation no-
tably highlights that a significant portion of the requests gen-
erated by the Gmail client have an execution time that is less
than 100 milliseconds; Cloud functions are likely to have the
same range of execution times or even lower execution times
for some workloads. The authors then discuss their vision of
the research challenges introduced by FaaS platforms.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 50



The first of these challenges is the startup overhead of the
container engine. FaaS platforms currently leverage contain-
ers for the execution (in an isolated environment) of func-
tions. Unfortunately, current container runtimes have large
startup times, in the order of hundreds of milliseconds. To
mitigate this issue, current platforms pause and reuse already
started containers for the following executions of the same
functions. However, both running and paused containers con-
sume memory space, thus the maximum number of running
and paused containers that a machine can keep is limited.
Therefore, improving the startup time of containers or de-
creasing their memory sizes are both means to reduce the
overhead of the container engine. As an illustration, Oakes
et al. [13] propose PipSqueak, a system that combines pre-
started containers with a python libraries cache to reduce
startup time.

Other works discuss the same issue, but instead, propose
alternative solutions to container engines to remove their
overhead. Given the relatively large startup time of con-
tainers, Koller and Williams [12] state that the container ab-
stractions of the Linux kernel are simply inadequate for FaaS
workloads, and that it is preferable to introduce new abstrac-
tions designed for this context. Furthermore, they claim that
implementing these new abstractions directly in the kernel
would be counter-productive as it would increase the kernel
code complexity (which is already a concern both for per-
formance and safety/security reasons), mentioning as an ex-
ample the pervasive modifications that have been required by
the introduction of container-related mechanisms in the re-
cent past. To support their claim, they show that it is possi-
ble to obtain faster startup times while conserving isolation
guarantees by using a lightweight virtual machine manager
running a unikernel (i.e., an operating system kernel stripped-
down to the only necessary components for the execution of
one single application). In a similar fashion, Manco et al. [14]
propose LightVM, a version of the Xen virtual machine man-
ager that is optimized for the executions of a large number of
concurrent virtual machines running unikernels. The authors
validate their approach by showcasing that LightVM can be
used to design a new FaaS platform. In this design, functions
are executed in virtual machines running unikernels enabling
startup times that are less than 10 milliseconds. However, in
both cases, the use of unikernels introduces new challenges.
Unikernels are fast to boot because their are written specifi-
cally for their use cases and contains only what is necessary
for the application, as a consequence they are complex to cre-
ate and maintain. For a similar reason, debugging support
on unikernels is usually problematic [37]. Furthermore it is
not clear how these solutions could be integrated in existing
Cloud infrastructure where machines usually run a mixed set
of workloads (virtual machines of IaaS services, containers
of CaaS services, and functions of FaaS)3.

Another interesting approach to replace container engines
for function execution is to implement the isolation at the the

3For example, Google is known to use Linux as a common base
for all its servers/workloads, which among other benefits, provides
high flexibility for resource allocation within a datacenter and uni-
fied tooling for performance monitoring/analysis.

level of the language runtime. With this approach, only one
language runtime would have to run on a machine and would
process all requests assigned to the machine. However, this
solution also introduces new challenges, e.g., (i) the language
runtime should support multiple programming languages to
have feature-parity with current platforms, (ii) it is not clear
how to implement performance isolation at the level of the
language runtime. We know of at least two initiatives work-
ing towards this kind of solutions [6, 15].

Other challenges highlighted by Hendrickson et al. include
the reuse of JIT information across containers running the
same functions (for language runtimes like Java and Node.js)
and mitigation of the overhead of using third-party libraries
(given that transporting the code of these libraries over the
network can take a significant time). Furthermore, at the
cluster level, the performance of FaaS platform can be im-
proved by implementing intelligent load balancing strategies
that are locality-aware, relatively to different locality dimen-
sions: (i) locality of code, such as JIT information and third-
party libraries, (ii) locality of session, for cases when the ses-
sions share long-lived network connections, (iii) locality of
data, notably for data processing function patterns such as a
Map/Reduce implementation on top of Cloud functions. For
example, Abad, Boza, and Eyk [16] report early results of on
ongoing work that shows that, using a cluster-level scheduler
that favors code locality, it is possible to improve the latency
of requests by up to 66%.

Other challenges are related to new opportunities identified
by the authors to extend the FaaS model: (i) improving the
interoperatibility with databases, notably the support for the
processing of batches of data from the database, (ii) defining
a more adequate billing model for functions that have a long
polling behavior, (iii) proposing metrics reporting the billed
cost of each individual execution of a functions to facilitate
cost optimization for the developers.

Finally, Hendrickson et al. discuss their intent to create a
benchmark suite, LambdaBench, to facilitate the performance
evaluation of research contributions for FaaS platform. Eyk
et al. [4] also express their intent of developing a benchmark
in the context of the SPEC Research Group. Unfortunately,
these benchmark suites have not been released as of today.

2.2 Performance of Cloud Infrastructures
Our study focuses on the impact of the FaaS infrastructures on
the performance of Cloud function executions. Although, to
the best of our knowledge, no work has studied this problem
specifically in regards to the performance of FaaS platforms
(except for the overhead of the container engine), several
works have studied it in the more general context of Cloud
infrastructures.

In the recent years, the focus of these studies have shifted
towards improving the utilization of Cloud infrastructure and
improving the tail latencies. The latter is motivated by a phe-
nomenon known nowadays as the “Tail at Scale” problem
[17]. For one request, a 99 percentile latency describes the
worst case over 99 other better cases. However, in the context
of Cloud platforms and microservices, a single user-facing
request (e.g., loading a page from a Web application such as
Facebook) may result in hundreds of parallel and sequential

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 51



sub-requests (e.g., to fetch and aggregate data from several
distributed servers). The latency of the request from the point
of view of the user is thus determined by the slowest of all
these sub-requests. Consequently, the worst case for one sub-
request becomes the common case for the end-user. For ex-
ample with 10 sub-requests, the probability that one of these
sub-requests has a latency that is greater or equal to its 99
percentile latency is roughly 10%; for 100 sub-requests, this
probability becomes 63%.

Among the studies of tail latency in existing systems, one
of the major works is the study of Li et al. [18]. Li et al.
provide a systematic study of the causes (at the hardware, op-
erating system and application levels) of high tail latencies
for latency-sensitive services. The authors start by deriving
an ideal model relying on queuing theory in order to use it
as a baseline. Then, they evaluate the latency of three rela-
tively simple online services (a null-RPC server, an instance
of Nginx serving a static web page and a Memcached key-
value store server) and show that their performance are sig-
nificantly worse than predicted by the theoretical model. The
study thus proceeds to uncover and fix six causes of high tail
latency with these applications.

The first cause of high tail latency is the presence of back-
ground processes (e.g., the SSH and Network Manager dae-
mons), which (when scheduled) can delay the execution of
the latency-sensitive tasks. Their solution is to give a higher
priority of execution to these latency-sensitive tasks, enforc-
ing the fact that an incoming latency-sensitive job should be
run as soon as possible, potentially preempting a currently
running background task. This is achievable by configuring
these tasks to be scheduled using the real-time FIFO schedul-
ing policy implemented in Linux while the background tasks
are still scheduled using the standard scheduling policy.

Similarly, Leverich and Kozyrakis [19] study the co-
location of latency-sensitive tasks (in their study, a Mem-
cached server) and other tasks (notably long-running,
batch/best-effort tasks such as data analytics jobs) on the
same machine to increase the utilization of data center ma-
chines (a common setup used by Google on its server farm).
The authors identify three sources of latency degradation that
are caused by the co-location of these tasks and provide so-
lution to address them: (i) interference on shared hardware
resources (caches or memory) that can be mitigated with a
more careful/conservative provisioning of the machines for
the latency-critical service (to avoid pathological queuing de-
lays), (ii) threads imbalance on cores that the authors solve
with a careful thread-to-core mapping of the latency-sensitive
tasks, (iii) scheduling delays that are best handled with tun-
ing of the scheduler behavior (by assigning more weight to
latency-sensitive tasks, e.g, a higher niceness or a real-time
priority) or a new scheduler, such as the Borrowed Virtual
Time scheduler [20] that implements specific mechanisms to
boost latency-sensitive tasks.

In the study of Li et al., the use of the FIFO scheduling
policy also introduces another benefit for the null-RPC server
that uses a multi-threaded execution model. In this model,
each request is assigned to one thread, thus the order in which
the threads (hence the requests) are processed is determined
by the operating system scheduling policy. By applying a

FIFO policy to these threads, the requests are processed in a
FIFO order, which has be shown to yield lower tail latencies.

The advantage of using a FIFO scheduling policy is also
discussed more in-depth by Asyabi et al. [21] in the more
specific context of multi-threaded servers using the Linux
Completely Fair Scheduler (CFS). Asyabi et al. instrument
the Linux kernel and show that the fair scheduling policy
implemented by the Linux CFS scheduler behaves in prac-
tice closer to a Last-Come, First-Served (LCFS) scheduling
policy than a First-Come, First-Served (FCFS) policy. The
authors more specifically pinpoint the strategy of the sched-
uler that tries to schedule I/O-bounded tasks as early as pos-
sible. In the context of a server that processes requests by
assigning each one of them to a dedicated thread (such as
the Apache Web Server), this LCFS behavior translates into a
server that processes requests in a non-FIFO order. In order to
address this problem, Asyabi et al. propose a modification of
the Linux kernel that adds a new layer to the scheduler: CTS.
With their modification, the CFS policy is still responsible
for scheduling the processes running on the machine in a fair
fashion. However, the CFS policy is no longer responsible
for the scheduling of threads. This responsibility is delegated
to the new CTS layer that schedules the threads pertaining to
the same process in an FCFS fashion. The empirical evalua-
tion of the authors shows that CTS improves the 99 percentile
latency of an Apache Web Server by up to 51%.

As a third cause of high latency, Li et al. study the impact
of using a multicore machine. Theoretical results shows that
a single shared queue of ready tasks (in contrast to multiple
queues, one for each core) offers better tail latencies because
it ensures a better load balance. However, in practice, a sin-
gle shared queue is difficult to implement efficiently because
of the overhead of synchronization and contention. For ex-
ample, the Linux scheduler uses one queue of ready tasks for
each core to minimize contention but tries to mimic the per-
formance of a single queue system by implementing a work-
stealing strategy [22]. The null-RPC server, with its one-
thread-per-request model, inherits this queuing model and
performs well on a multicore machine. On the other hand,
Nginx and Memcached have tail latencies that are similar to a
single-core setup. They both use a multiple-queue design and
assign new TCP connections to one of these queues for its en-
tire lifetime. Effectively, single instances of Nginx and Mem-
cached on a multicore server behave as multiple instances of
themselves on a single core machine, one on each core.

The fourth cause that the authors identified is the process-
ing of interrupts, notably due to the management of network
I/O operations. At high utilization, most server machines rely
on the irqbalance daemon to balance the interrupts among
the available cores. Similarly to background processes, this
can cause delays in the processing of requests and slow down
the processing due to cache pollution. In order to fix this is-
sue, the authors configured the operating system to issue all
interrupts on a core that was exclusively reserved for this pur-
pose. Consequently latency-sensitive threads can be executed
on the other cores without interruption.

The last two causes are related to NUMA (Non Uniform
Memory Access) effects and power saving optimizations. In a
NUMA architecture, accesses to remote parts of the memory

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 52



can be significantly slower than accesses to the local mem-
ory. The authors show that for a multi-threaded server, a bad
memory allocation strategy can cause many remote memory
accesses and consequently degrade the latency. Power sav-
ing optimizations include C-State and the dynamic CPU fre-
quency system of Linux. At low utilization, the different CPU
C-States enable lower energy consumption by shutting down
more components of the CPU chip at the cost of higher wake
up times of these components and degradation of the tail la-
tency. The dynamic CPU frequency system is able to reduce
CPU frequency and thus power consumption, but it can slow
down the execution of latency-sensitive tasks.

These studies shows that it is possible to substantially im-
prove performance of Cloud workloads by carefully tuning
the infrastructure. However, they validate their solutions in
simple contexts (e.g., a simple Nginx or Memcached server)
that are not representative of the complex nature of current
Cloud infrastructures and more specifically FaaS infrastruc-
tures (a detailed description of a FaaS platform architecture
is provided in Chapter 3).

3 OpenWhisk: a Case Study of FaaS Plaftorm
Architectures

This chapter provides a description of the architecture of the
OpenWhisk platform as a case study and preliminary step of
our study of FaaS platform performance. This description fo-
cuses on the architectural components involved in the execu-
tion of Cloud functions as it is our main interest in this work.
Although descriptions of the architecture of OpenWhisk are
available [38, 39], we have found that they are sometimes no
longer entirely accurate (OpenWhisk is a recent and quickly
evolving project) and lack lower-level details which are im-
portant as they can have a great performance impact.

In our work, we chose to use OpenWhisk as our testing
platform given that: (i) it is used in production (it has been in
public beta for more than two years, since February 2016, and
has been generally available since December 2016), (ii) it is
increasingly being adopted by companies for their own plat-
forms (public or private), (iii) it has a better documentation of
its internals than other platforms and (iv) the development of
the (academic) OpenLambda prototype seems to have been
mostly stalled since its release (with less than 30 git commits
in the last five months, while OpenWhisk has seen almost 300
commits in the same period).

3.1 Overall Architecture
OpenWhisk is a relatively complex piece of software im-
plemented as a set of distributed components, as displayed
in Figure 1: (i) the API Gateway (OpenResty [59] a distri-
bution of Nginx [60] with support for Lua [61] extensions)
that works as a user-facing reverse-proxy, (ii) an HTTP load
balancer (another instance of Nginx [60]) that receives the
end-user HTTP requests and forward them using the corre-
sponding REST API call to the Controller (iii) an internal
database (Apache CouchDB [62]) that stores the platform data
(functions, execution results, and other informations), (iv) a
message broker (Apache Kafka [63]), (v) the Controller, and

(vi) the Invoker, the latter two being custom components writ-
ten with the Akka actor framework [64] (in Scala, a program-
ming language targeting the Java Virtual Machine). In a typi-
cal production setup, each component is deployed in multiple
instances, both for scalability and fault tolerance purposes.
However, we do not study these aspects in details in this work,
as we focus on the inner working of individual Controller and
Invoker machines. In the remainder of this section, we pro-
vide additional details on the main components: a Controller
machine (§3.1), an Invoker machine (§3.1), and the contain-
ers used to execute the Cloud functions (§3.1).

Controller
The Controller is the component of the architecture that coor-
dinates all the other components and has several roles. First,
it implements the REST API, i.e. it is responsible for the
creation, update and deletion of all the stored information
of the system (e.g., the functions). More importantly, the
Controller receives execution requests for all the functions
and dispatches these requests towards the Invoker instances.
The Controller balances the function executions assigned to
each Invoker: in other words, the Controller keeps track of
which Invokers are available4 and the number of ongoing ex-
ecutions assigned to each Invoker. This number of ongoing
executions is used as a measure of the load of the Invokers.
When the Controller is duplicated in several instances (for re-
dundancy or scalability reasons), each Controller maintains
its own local counters of the number of functions assigned
to each Invoker and these counts are synchronized using an
eventually consistent algorithm (more precisely, a conflict-
free replicated data type relying on the Akka Distributed Data
feature [40]).

The Controller sends execution requests to Invokers
through a dedicated Kafka topic (i.e., communication chan-
nel), one for each Invoker. As an example, if the Controller
has decided to assign an execution request to the Invoker of
id 3, it will produce a message containing the function identi-
fier in the dedicated Kafka topic invoker3. The justification
for the choice of Kafka is that [41]: “[It] lifts the burden of
buffering in memory, risking an OutOfMemoryException, off
of both the Controller and the Invoker while also making sure
that messages are not lost in case the system crashes.”

If the execution of a function is requested as non-blocking,
the REST HTTP response is sent immediately after the exe-
cution has been sent to the Invoker instance and it contains
the execution identifier that can be used to query the result of
the execution later on. In the case of a blocking execution, the
Controller gets the response from the Invoker through Kafka
(via the completed${controller_id} Kafka topic) and re-
turns it in the the REST HTTP response.

Invoker
The Invoker is designed as a machine-wide container pool. It
creates new containers when necessary and implements the
pooling strategy that reuses containers for consecutive exe-
cutions of the same functions. Its role is to receive function
executions, execute them inside a container, get the execution

4Invokers sends periodic heartbeat messages to notify the Con-
troller that they are running.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 53



results back and put these results in the CouchDB instance.
As mentioned before, in the case of a blocking execution the
Invoker will also send the result back to the Controller via
Kafka.

The Invoker is implemented as an Akka [64] “actors sys-
tem” running as a single process application in a Java Virtual
Machine (JVM). Akka actors offer a programming abstrac-
tion different from the common multi-threaded model and
closer to the event-oriented model. One of the most important
characteristics of this model is that one actor instance cannot
have two concurrent executing contexts. Each Akka actor is
essentially an event-loop that processes incoming messages
(i.e., events) from its mailbox (i.e., event queue). These mes-
sages can be received from external sources (e.g., network
messages) or from other actors. This model promotes the de-
velopment of an application targeted for multicore systems in
a distributed fashion, i.e., it promotes an application design
that splits the application in several actors that do not share
state and only communicate by messages. This model re-
duces the need for synchronization mechanisms, which are a
well-known cause of performance issues. In order to actually
implement this actor model on existing operating systems that
rely on threads to leverage the multiple cores of a machine,
Akka uses its Dispatcher abstraction, which defines how ac-
tors are executed with threads [42]. A Dispatcher manages a
pool of threads and executes actors with one of the available
thread of the pool when they receive a new message.

In an event-oriented model, it is generally better to prefer
non-blocking APIs than blocking APIs for I/O. Nonetheless,
Akka provides several strategies to deal with blocking APIs
when they are unavoidable (typically when a non-blocking li-
brary alternative is not available). For example, the Invoker
uses blocking calls for everything related to the management
of containers. The strategy used in the Invoker to handle
blocking calls is to execute these calls in a Scala future. Given
that futures are run on separate threads, the blocking call ex-
ecuted in the future does not block the actor (which would
prevent it from processing other messages).

The Invoker is comprised of three main kinds of actors
(represented in the Invoker process in Figure 2). The first
one is the MessageFeed, its role is to poll the Kafka topic pe-
riodically for new execution requests received from the Con-
troller. When it receives a request, it loads the metadata of
the function to be executed from the database and forwards
the request to the second actor, ContainerPool. The Contain-
erPool is used to manage the pool of containers, it receives
execution requests from the previous actor, selects an already
existing container instance or starts a new one when necessary
and forwards the execution request to the relevant Container-
Proxy actor. For each running container, a distinct instance
of ContainerProxy actor is used. A ContainerProxy instance
keeps track of the state of its associated container (starting,
running, idle) and forwards the functions to be run to their
container.

Invoker and Containers
While the Invoker manages the lifecycle of the containers, it
relies on the Docker daemon to actually start, stop, pause and
resume them. The Invoker sends commands to the Docker

daemon via the Docker command line tool; the command
line tool itself uses either a Unix domain socket or a TCP
socket (depending on its configuration) to communicate with
the Docker daemon. When the Docker daemon receives a
command to start a container, it creates the new initial process
of this container and issues the necessary system calls to con-
figure the isolation settings (i.e., configuration of the names-
pace, cgroup, overlayFS and creation of virtual network inter-
face). In order to stop a container, the Docker daemon simply
sends a SIGTERM signal. For the two other operations (pause
and resume) the Invoker bypasses the Docker daemon for ef-
ficiency. It does so thanks to the runc command line tool that
is able to control running containers without going through
the Docker daemon (thus avoiding the overhead of the com-
munication over the socket). A container is paused via the
cgroup freezer feature, which works similarly to the SIGSTOP
signal in a standard process context.

For the language runtimes that are explicitly supported by
OpenWhisk (e.g., JVM, Node.js, Python, Swift, ..., as op-
posed to custom black-box containers), the containers are
started with pre-made container images, one image for each
kind of these execution runtimes. By default (without any of
the optimizations described below in this section), the exe-
cution of a function in a container can be separated in three
main steps: 1) starting the container, 2) loading the function
code in the container and 3) actually executing the function.
When the execution has to go through these three steps, it is
referred to as a cold start. In order to mitigate the overhead of
the first two steps in the latency perceived by the end-user, the
Invoker uses two techniques: pre-warm containers and reused
containers.

The first technique allows the execution to skip the first
step of starting the container. The Invoker can be configured
to prepare a pool of ready containers for specific execution
runtimes (e.g., Node.js) and memory limits. These pre-warm
containers are already started, hence the execution skips the
first step but they will still need to be loaded with the code
(second step). Once a pre-warm container is used for the ex-
ecution of a function, it is removed from the pool and a new
container is started in parallel to replace it.

The second technique is to reuse containers: once a func-
tion has run, the Invoker will keep its container. If the same
function is invoked again on the same Invoker the idle con-
tainer will then be reused. This second execution, described
as a warm start, can thus skip the first and second steps.
An Invoker keeps the most recent containers after the exe-
cution of functions up to a configurable maximum number
of running and warm containers. When the Invoker needs
to run a function for which no warm container is available
and this maximum number of containers has been reached,
it will shutdown the oldest warm container. If all containers
are executing a function, the execution will be queued. Warm
containers are kept ready for 50ms and paused after that.

4 Experimental Methodology
This chapter describes our experimental process. Section 4.1
describes the deployment of the components of OpenWhisk
on our testbed. Section 4.2 explains our choice of metrics.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 54



Section 4.3 explains our experimental protocol and some of
the changes we made to OpenWhisk to streamline the exper-
imental process.

4.1 OpenWhisk Deployment
For our experiments, we use three different machines; the
hardware and software specifications of these machines are
summarized in Table 1, and the deployment of the Open-
Whisk components and their configuration are summarized
in Table 2. Given that we do not consider energy efficiency
in our study (this aspect is left for future work), the machines
are configured for maximum performance: we disabled the
cpufreq daemon of Linux and configured the CPUs of the
machine for maximum speed via the BIOS (notably we dis-
abled change of C-State).

The Load Injector machine is used to simulate the user re-
quests (directly through the Controller component, bypassing
the REST API load balancer — see Figure 1). While the hard-
ware configuration of this machine is somewhat less powerful
than the two other machines, we have verified that it is not a
limiting factor in practice. The Controller machine hosts the
Controller process, the Kafka broker, and the CouchDB in-
stance. Similarly to the Load Injector machine, we verified
that this machine was not a limiting factor in the experiments
(by checking that its utilization of hardware resources re-
mains low5). The Invoker machine hosts the Invoker and runs
the Cloud functions in the containers. This machine requires
at least the version v4.13 of Linux: before this version, Linux
was suffering from a performance issue with large number
of cgroups in the system [43]. Additionally, we configured
this machine using the guidelines provided by IBM for the
performance tuning of Docker on large multicore machines
[44]. All components of the FaaS platform are installed with
the Ansible [65] configuration provided by OpenWhisk. In
order to facilitate and automate the deployment, this config-
uration sets up every component (e.g., Controller, CouchDB,
Kafka, Invoker) inside its own Docker container (not to be
confused with the Docker containers used for the execution of
Cloud function). Finally, all the machines are equipped with
a 10Gb/s Ethernet Network Interface Controller (NIC) con-
nected to the same switch and all network communications
between the components across machines are configured to
use these links.

4.2 Performance Metrics
We use two main metrics to evaluate the performance of our
system. First, we use the throughput expressed as the num-
ber of function execution requests that have been completed
(i.e, the results of the request has been received by the client)
per second. Second, we also use latency as a performance
metric. In order to assess the overall performance of the sys-
tem we use the latency as perceived by the end-user, i.e., the
elapsed time between the request of a blocking function exe-
cution and the reception of its results. We do not summarize
the distribution of latencies using averages and standard de-
viations as they are inadequate. The latency distribution of a

5Except for a garbage collection issue that we address in section
5.2.

system such as OpenWhisk does not necessarily follow a nor-
mal distribution: they are usually multimodal (e.g., with mea-
surements under regular system behavior and measurements
under temporary slowdown such as a stop-the-world garbage
collection), asymmetric, and can be significantly right-tailed
which skews the mean towards the right. As a replacement we
use the median as it provides a better estimation of the central
tendency [23, Chapter 12.3] and percentiles as a description
of the tail of the distribution. More specifically, we use 95%
and 99% percentiles as they have become the standard in both
the industry and academic world. In the industry, they are
used to express SLAs (Service-Level Agreements), e.g., 99%
of the requests must be serviced under 1 second. The use
of high percentile values (95% and 99%) is motivated by the
“Tail at Scale” problem (described in Section 2.2).

Throughput and latency are both important in their own
right and their relation is not trivial: while an optimization
can benefit both metrics, sometimes an improvement of the
throughput can degrade the latency and vice-versa. Our main
objective is to improve the resource usage efficiency of a
FaaS platform. A primary means to achieve this objective
is to improve the throughput as this improvement can directly
be translated to a higher number of collocated functions on
the same machine. However if this improvement in terms
of throughput comes with a significant degradation of the
latency, the Cloud provider might not be able to satisfy its
SLAs. Given this complicated relation between throughput
and latency, an important tool to assess the quality of a FaaS
platform is the throughput versus latency plot. The points of
the plot are obtained by measuring the throughput and latency
with increasing levels of input load applied to the system un-
der test and thus increasing levels of utilization of the system
until it reaches saturation. This plot summarizes the values
of throughput and latencies and how they relate to each other.
Furthermore, it provides an insight into the performance char-
acteristics of the system and more precisely in its ability to
work at a high level of utilization.

4.3 Experimental Protocol
For our experiments we use a synthetic workload that consists
in a single function written for the Node.js runtime that takes
no argument, consumes 10 milliseconds worth of CPU cycles
and returns with an empty response. We choose the duration
of the function to be at the scale of the millisecond, in line
with the focus on our study. More specifically, we choose 10
milliseconds, i.e., on the low end of the millisecond scale, to
stress and reveal the infrastructure overheads.

One of the important objectives for the performance eval-
uation of a system via experiments is the adequacy of the ex-
periments with real-world settings. In the context of a system
that is used as a remote server by many simultaneous users, an
accurate load injection 6 is of decisive importance. Although
it is essential and has a significant impact on the validity of
the measures, choosing an efficient and accurate load injec-
tor remains a non-trivial task [24, 25, 26]. One experiment

6The term “load injection” describes the process of simulating a
set of (concurrent) user requests, usually from another machine, in
order to trigger the workload in the system under test and measure
its performance characteristics.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 55



consists in an injection of load lasting 10 minutes. The load
injector creates blocking execution requests for the 10 mil-
lisecond function following the closed loop injection model
described by Schroeder, Wierman, and Harchol-Balter [25].
We also provides results using correction for the coordinated
omission problem as described by Tene [45].

In order to streamline the experimental process, we made
some changes to OpenWhisk. First, our study focuses on the
executions of functions in warm containers for simplicity and
ease of reproducibility. In order to ensure that no request
during the experiments will have to wait for the startup of a
container, we modified OpenWhisk so that it does not pause
warm containers and does not destroy them after a timeout.
After a new deployment of OpenWhisk, we run a short load
injection so that OpenWhisk fills its pool with a large number
of containers (512).

Second, in its default configuration, once a the execution
of a function is terminated, OpenWhisk collects its standard
output using the Docker daemon and stores these logs along-
side the function results in the CouchDB database. In prac-
tice, during our early tests, these steps of collecting the logs
and storing the results in the database took substantially more
time than the actual execution of the requests. Pending col-
lection of logs and database operations would both continue
to be executed long after all requests were processed. More-
over, Docker seems to suffer from a bug that makes containers
crash when a large number of container logs are collected at
the same time. These two problems made experiments im-
practical and unreliable, and fixing these two issues is not a
trivial process. However, the container logs and the database
are not essential for our performance analysis as they are not
necessary for the execution of blocking functions. Therefore,
we choose to disable the background tasks that perform these
operations in order to focus our efforts on the intrinsic perfor-
mance issues of a FaaS infrastructure.

5 Performance Issues

This chapter presents the performance issues that we have
identified in our study of the OpenWhisk platform. For each
issue, we describe the steps we followed and the tools and
methodologies we relied on to understand its root cause. This
chapter also highlights some of the challenges we faced in the
process due to the mixture of language runtimes, concurrency
models and the use of containers for isolation that are present
in the OpenWhisk platform and discusses our approach to ad-
dress them.

Section 5.1 presents our assessment of the importance of
the Invoker in the performance of the platform. Section 5.2
details our study of the effect of the garbage collector of the
JVM on the throughput and tail latency. In Section 5.3, we
describe the bottleneck caused by the ContainerPool actor of
the Invoker process and the performance isolation resulting
from the use of containers. Section 5.4 provides an analysis
of the performance overhead of the communication scheme
used between the Invoker process and the containers running
the functions.

5.1 Identification of the Bottleneck Component
Our first step in the process of improving the performance
of the platform was to identify which component (Controller,
Kafka, Invoker or the function runtime) of the whole system
was acting as the main bottleneck. In order to do so, we fol-
lowed a latency analysis approach [27, Chapter 2.5.12]. With
this approach, the latency of an operation is divided into the
substeps of the operation. This process can be reiterated as
much as necessary by subdividing the steps which takes the
most time. In our case, the operation is a Cloud function exe-
cution request and we were trying to pinpoint the component
of the OpenWhisk architecture where the request spends the
most time. OpenWhisk already provides a logging system
that logs various timed events related to a request (e.g., when
a request is received by the Controller, when the Invoker is
sending the request to the container’s HTTP server for execu-
tion). The log entries generated by the logging system con-
tain (i) the unique identifier of the user request related to the
log entry, (ii) a timestamp (from the nanosecond-scale sys-
tem clock) in milliseconds relative to the start of the request,
and (iii) additional information depending on the nature of
the log entry. Table 3 provides a simplified trace gathered
from these logs and filtered to include only the entries re-
lated to one request. This is the trace of a simple hello-world
Cloud function that returns immediately. From this a trace
we were able to assess that a significant part of the process-
ing time of such a minimal request was due to the processing
inside the Invoker machine – about 60% of the total process-
ing. Therefore, in the remainder of this chapter, we focus our
study on the Invoker machine — although we also discuss the
Controller process in Section 5.2 as both the Controller and
Invoker processes suffer from the same issue.

5.2 Garbage Collection
While we were applying the latency analysis approach to pin-
point the Invoker as the component to focus our effort on, we
also observed substantially high tail latencies. These results
led us to the first issue that we will discuss: the Garbage Col-
lector (GC) of the Controller and the Invoker processes7. Fig-
ure 5 shows the tail latency of our system with and without the
correction of wrk, i.e., with and without additional requests to
account for the coordinated omission problem as described in
Section 4.3. The difference between the two latencies ob-
served with and without the correction is substantial. This
result illustrates the importance of choosing the right injec-
tion model.

Evidence of the Issue
The main difference between the two tail latency distribu-
tions in Figure 5 is that the corrected values account for the
large period of time when requests are significantly delayed
because of a general slowdown of the system. During the ex-
periment, we observe that the CPU utilization of the Invoker
machine is showing both spikes (most CPUs are at 100% uti-
lization, while a few others are idle at 0% utilization) and
slowdowns (all CPUs are close to 0% utilization) for short

7Remember that each of these two processes corresponds to an
Akka application running in a Java Virtual Machine.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 56



periods of time (less than 1 second). The spike episodes are
due to the garbage collections happening in the Invoker pro-
cess, whereas the slowdown episodes are due to the lack of
incoming requests for the Invoker because of the garbage col-
lections happening in the Controller. The Controller machine
displays the same type of behavior: high utilization episodes
during its garbage collections and low utilization during the
garbage collections in the Invoker machine (because of the
closed-loop model, requests blocked by the stop-the-world
GC in the Invoker prevent new requests from being created).

Figure 3 and 4 shows the evolution of the allocated heap
memory (in orange) and the used memory (in blue) of the
Controller and Invoker processes. In both cases, the used
memory raises up to about one third of the allocated mem-
ory and then drops close to zero. The GCs used in the Con-
troller and Invoker are generational [28]: they partition allo-
cated objects into generations based on their lifetime. As an
illustration, in the simplest version of a generational GC with
only two generations, a newly allocated object is put inside
the young generation and if it survives a certain amount of
garbage collections, it will be promoted to the old generation.
The default configuration of the JVM dedicates one third of
the whole memory allocated to the JVM to the Eden space
(the newest generation). When a new object is allocated while
the Eden space is full, a garbage collection is triggered in
order to free memory in the Eden space, by freeing objects
that are no longer necessary or promoting the surviving ob-
jects to the older generations otherwise. The pattern shown
in Figure 3 and 4 illustrates this behavior: the Eden space is
quickly filled with objects until its maximum, at which point
a garbage collection is triggered which brings the allocated
memory close to zero as the large majority of allocated ob-
jects are ephemeral. Garbage collection is not an issue in
itself. However, in our case, the stop-the-world step of the
garbage collection was taking almost 1 second and delaying
all the requests by the same amount of time.

Memory Allocation Flame Graph
In order to address a GC issue, it is important to understand
what kind of objects are created and which parts of the code
are creating them. Java Flight Recorder (JFR), a profiling
tool (described in Section 5.3) bundled with the Oracle JVM,
offers the ability to obtain a trace of the occurrences of two
events related to memory allocations: allocation in new TLAB
and allocation outside TLAB. The notion of Thread-Local Al-
location Buffer (TLAB) corresponds to buffers, part of the
Eden Space, that threads use for the allocation of new objects
[28]. Each TLAB is exclusive to one thread, thus a thread can
allocate an object inside its TLAB without synchronization.
A synchronization is only necessary when the current TLAB
of a thread is full and a new TLAB has to be allocated by
the JVM for the thread. The allocation of a new TLAB by
the JVM is an allocation in new TLAB event reported by JFR.
The allocation outside TLAB event corresponds to (the rare)
allocations of large objects. The designers of the Oracle JVM
have made the allocation of a new TLAB available as a JFR
event because it offers a low-overhead (i.e., less frequent than
reporting each and every allocation), yet representative, sam-
ple of the allocations of objects. These two allocation events

can be traced with JFR and report the type of object that is
allocated and, like any JFR event, the Java application call
stack that led to the event. In order to properly8 analyze the
results of these allocations, we used the jfr-flame-graph
[66] tool that consumes the trace generated by JFR and gen-
erates a flame graph [29]. A flame graph is a type of visual-
ization that displays call stacks using a diagram with an icicle
layout. Each entry of the call stack is represented as a node
of the diagram with its horizontal size being representative of
the weight given to the entry. Flame graphs are notably used
to analyze the time spent executing functions on the CPU, but
are versatile. In our case, we use them to analyze memory al-
locations and the code paths that led to them and we weight
the entries of the flame graph with the size in bytes of the
allocation (see Figure 8 in appendix for an example).

Logging System
Our first allocation flame graph for both the Invoker and the
Controller shows that most of the allocations are triggered by
the logging system (the same logging system we used for our
latency analysis in Section 5.1) and more precisely its internal
buffers. We choose to disable this logging system to assess
the performance impact of this bottleneck. Figure 6 shows the
throughput vs. median latency curves using a closed-loop in-
jection, before and after disabling the logs. As an illustration
of the improvement, for a median latency of 20 milliseconds
the throughput increases from roughly 2800 to 3400 requests
per seconds: a 20% improvement. Figure 7 shows the same
curves but for the 95% and 99% percentile latency with and
without the correction of wrk. The tail latency is greatly re-
duced without the logging system. However the corrected
version still shows a degradation of the 99% tail latency.

Although, we disabled the logging system of OpenWhisk
as a quick fix to remove its overhead, a logging system is still
desirable for a platform running in production. However, a
new, more efficient logging system is necessary to achieve
good performance for such an high rate of incoming requests.
This is especially true regarding the latency of the requests as
we have seen that the 99% percentile latency is substantially
degraded because of the garbage collection pauses. One so-
lution would be to replace these logs with creation of JFR
events, effectively delegating the log processing to the JVM.
Another possible alternative would be to integrate a logging
system designed for microsecond-scale efficiency, like the
very recent NanoLog research prototype [30, 47] developed
in the context of the Granular Computing Initiative at Stan-
ford University [67].

Communication Buffers
As explained previously, disabling the logs increases the
throughput of our system. However, increasing the load to
match this new maximum throughput reveals that the garbage

8The Java distribution offers a GUI interface to visualize the in-
formation of these traces [46] but it is impractical for large programs
like the Invoker process with many code paths leading to alloca-
tions. Notably, this tool aggregates the call stacks from callee to
caller whereas our solution aggregates from caller to callee. Both
approaches have their advantages in different circumstances, yet,
based on our experience, aggregating from caller to callee is often
more relevant.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 57



collectors of the Controller and Invoker are still degrading the
tail latency. Figure 8 in appendix shows the allocation flame
graph of the Invoker when the logs are disabled. This flame
graph shows two prevalent sources of allocations: (i) the
code paths starting with the function HttpUtils#post rep-
resent 36% of the memory allocations and are objects al-
located for the HTTP communications between the Invoker
and the containers, (ii) the code paths containing the package
spray.json in their name account for more than 30% of the
memory allocations. Spray-json is the Scala library used
by the Controller and Invoker for the serialization of the mes-
sages that they exchanged through the Kafka message broker.
The allocation flame graph of the Controller (not shown here
due to a lack of space) shows that most of the allocations can
be traced back to the creation of many char[] arrays used as
buffers for the processing of HTTP requests and generation
of HTTP responses by the akka-http framework [68].

One could argue that it would be sufficient to increase
the allocated heap memory (and consequently the size of the
Eden) to have less frequent GC phases but these GC phases
would take a longer time as the memory space to reclaim
would be bigger. We have also evaluated the G1GC algorithm
(the other main garbage collection algorithm of the Oracle
JVM, designed to minimize the length of garbage collections
pauses to avoid creating large tail latencies as we have seen
in the Section 5.2) but it does not improve the tail latency
of our workload. Other alternative garbage collection algo-
rithms with similar low latency objectives can be found in
other JVM implementations, notably the Oracle JRockit Real
Time JVM [69, 31] and the Azul Zing JVM [70, 32], but we
lacked the time to evaluate them.

Ultimately, the root cause of these problems is that is
that the diverse components that we have highlighted (HTTP
server of the Controller, serialization of Kafka messages,
HTTP client of the Invoker) are not designed for low tail la-
tencies at microsecond-scale requests. Currently these com-
ponents delegate all their memory management to the JVM,
they allocate their buffers using the new JVM operation and
let the garbage collector eventually deallocate them. If these
components used their own memory management strategy
(using techniques such a pooling and/or reference counting)
they could release memory exactly at the moment when it is
no longer necessary rather than eventually when the garbage
collector decides that it should be reclaimed. For example,
the netty Java HTTP library [71] uses reference counting to
minimize the number of allocated buffers and a buffer pool to
reuse the buffers instead of letting the GC reclaim them [48].

5.3 ContainerPool Bottleneck
The latency analysis of Section 5.1 shows that a significant
part of the processing time of the request was due to the pro-
cessing inside the Invoker machine. Besides, it shows more
than that: 40% of the processing time of the request is spent
just before the request is processed by the ContainerPool ac-
tor (see Section 3.1 for the explanation of its role). This ac-
tor acts as a bottleneck because of the complex interaction
between two factors: its single-instance nature and the per-
formance isolation mechanism introduced by containers (de-
tailed in the following sections).

Evidence of the Issue
In Table 3, a significant part of the processing time of the
request (39 milliseconds out of 98 milliseconds, i.e., about
40%) is spent in between two entries at timestamps 35 and
74. The first of these two entries shows when the Invoker has
fetched the action source code (in this case from the cache)
and is about to send the request (via an Akka actor message)
to its ContainerPool actor. The second entry shows when the
ContainerPool actor actually receives the request and is about
to start processing it. The only thing happening in between
these two steps is the queuing of the message. Consequently,
the most probable reason explaining the large time spent be-
tween these two steps is that requests are delayed a long time
in the ContainerPool actor message queue.

In order to verify this hypothesis, we implemented a new
lightweight instrumentation facility to monitor the size of
the actor message queues. Another instrumentation tool, the
kamon-akka library [72] is available for this purpose and is
integrated in OpenWhisk (although disabled by default) but
using it is complex and requires setting up new distributed
components that add complexity to the testbed and an addi-
tional overhead to the Invoker process: (i) a metric gatherer
(e.g., Statsd [73]), (ii) a metric listener (e.g., Graphite [74]),
and (iii) a visualization tool (e.g., Grafana [75]). In compar-
ison, our solution is straightforward to setup, only relies on
tools that are bundled with a standard Oracle Java distribu-
tion and is low-overhead as it gathers the profiling informa-
tion directly in the JVM.The instrumentation of the message
queues is inspired by the technique proposed in Akka in Ac-
tion [33, Chapter 16.2.1] (replacing the implementation of the
MessageQueue with a custom implementation) and exports
message queue statistics via JFR [76] custom events. JFR
is an in-JVM profiling tool; the JVM records occurrences of
events via an efficient buffering scheme with minimal over-
head and can dump the trace of these events in a file for post-
mortem analysis. Although this process of collecting in-JVM
and buffering makes this instrumentation less suitable for live
monitoring, it enables fine-grained — and low-overhead —
analyses. Furthermore the instrumentation is designed in
such a way that it causes almost no overhead when not en-
abled. Our instrumentation of the message queues generates
occurrences of custom JFR events [49] each time a message
is queued and occurrences of another custom event each time
a message is dequeued. It also reports additional information
such as the size of the message queue at that moment for both
events and the queuing delay of the message for the dequeue
events.

With this instrumentation, we observed that the number of
messages in the queue of the actor increases sporadically. A
likely explanation for these sporadic increases of the number
of messages in its queue is that the ContainerPool actor does
not receive enough CPU time to process them, i.e., the in-
creases correspond to periods where the ContainerPool is not
scheduled, thus does not consume messages.

However, observing the CPU time (and more generally the
behavior) of the ContainerPool actor to verify this hypothesis
was not immediate. Usual profiling tools provide informa-
tion associated to threads. The default configuration of the
Invoker uses one single Dispatcher for all the actors of the

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 58



Invoker and, furthermore, all the actors and futures share the
same thread pool. As explained in Section 3.1, the thread that
executing the ContainerPool actor changes from one recep-
tion of a message to another9. We modified the configura-
tion of the Invoker so that it uses a dedicated Dispatcher with
its own thread pool — containing only one thread — for the
ContainerPool actor. VisualVM (a Java monitoring tool [77])
shows that the single Java thread used by the ContainerPool
actor is never in a JVM-level blocked state. In other words,
this thread is always eligible to receive CPU time from the
point of view of the JVM. However, the ContainerPool thread
could still be in a situation where it does not receive enough
CPU time from the OS scheduler. In order to verify this hy-
pothesis, we run a new experiment with the ContainerPool
thread configured to use the FIFO Linux scheduling policy
(SCHED_FIFO ). The FIFO policy has a higher priority than
the standard (CFS) policy: threads configured as FIFO are
scheduled before any other threads. This new setup improves
the performance by 15%, confirming the hypothesis of a lack
of CPU time at the OS level.

Cgroups Performance Isolation
In this section, we show that the lack of CPU time of the
ContainerPool actor is explained by the performance isola-
tion mechanism used by containers in Linux. The Linux CFS
scheduler is a fair scheduler. In a standard server setting, this
fairness is applied at the granularity of threads, i.e., the sched-
uler tries to give the same amount of CPU time to each thread.
In the multi-tenant context of Cloud computing, fairness is
applied at the granularity of containers (via cgroups) to en-
sure performance isolation. As an example, consider a server
in a Cloud environment with two applications from different
tenants running in containers: App1 that uses only one thread
and App2 that uses one hundred threads. In this context, the
single thread of App1 receives one hundred times the aver-
age amount of CPU time that each thread of App2 receives.
Therefore, the two applications receive the same amount of
CPU time. However, this strictly fair allocation of CPU time
is only true if both applications make use of all their allotted
CPU time because the Linux scheduler is first and foremost
work conserving: if the single thread of App1 blocks often
and/or for long periods of time and requires less than half of
the CPU time, the remaining available CPU time will be given
to the threads of App2.

In Section 4.1, we explained that the Invoker process is de-
ployed inside a container. In our case, the single container
that runs the Invoker process receives the same amount of
CPU time as each of the containers running on the Invoker
machine. In our experiments, when the load injection ap-
proaches the saturation point, the number of containers in
a runnable state can be as high as 70. During these periods
of high utilization, the performance isolation mechanism pre-
vents the Invoker process and its ContainerPool from receiv-
ing enough CPU time. Consequently the number of pend-
ing requests in the ContainerPool message queue starts to in-
crease.

9Or possibly from the reception of a batch of messages to another
batch depending on the configuration of Akka.

We fixed this problem by increasing the cpu-shares pa-
rameter of the Invoker container. This parameter defines a
relative weight for the allocation of the container CPU time.
As an illustration, if the cpu-shares parameter of a con-
tainer C1 is twice the value of the cpu-shares parameter of
container C2: C1 receives twice as much CPU time as C2.
We increase this parameter by a factor of one hundred10 for
the Invoker container and observe that the throughput of the
platform increases from roughly 3400 requests per second to
3700 at a median latency of 20 milliseconds.

Increasing the cpu-shares parameter of the Invoker pro-
cess ensures that it receives more CPU time during utilization
spikes. However, this is done at the expense of the containers
executing the Cloud functions. Given that these containers
also process the functions and thus contribute to the through-
put, the increase in CPU time allocated to the Invoker does
not fully explain the increase of the throughput. To under-
stand the effect entirely, it is necessary to consider the design
of the actor system of the Invoker process. The Container-
Pool actor is a single-instance actor that has to process every
request assigned to the Invoker machine: it is a serial bottle-
neck. Giving more time to this actor ensures that it is able to
assign functions to the containers in a timely manner and con-
sequently that more functions are able to execute in parallel
and to leverage the available cores.

In order to validate our understanding of the problem, we
devised a new experiment. The hypothesis is that there is a
mismatch between the single-instance nature of the container,
which cannot scale, and the number of containers that scales
accordingly to the capacity of the system. By changing the
number of cores of the machine hosting the Invoker and ad-
justing the load injected into the system, we can verify this
hypothesis. Figure 10 shows a set of experiments with the
same Invoker machine booted with a different number of en-
abled cores (16 and 64 cores). The throughput is expressed as
the throughput per core. As we can see in the bottom plot of
Figure 10 with our modification of the cpu-shares param-
eter, the throughput per core does not change with 16 or 64
cores, the characteristic curves of the two configurations are
the same. However, in the top plot, without the modification
of the value of the cpu-shares of the Invoker, the curves
are different: the 64-core machine has a lower throughput per
core. By increasing the number of cores and the load injected
into the system, we increase the number of containers that are
necessary to sustain this throughput. In contrast, the Contain-
erPool actor remains a single instance actor and gets to the
share the CPU with roughly four times the number of con-
tainers.

One can argue that this issue is simply a problem of a
badly configured system, However, we think that there is a
lesson to learn regarding the usage of Docker (and to some
extend other container engines). While Docker has been de-
signed with multi-tenant settings in mind, it is increasingly

10Increasing this value step by step shows that the throughput in-
crease accordingly until it reaches a plateau around a factor of 37.
Our understanding is that the CPU time given to the ContainerPool
increases until it reaches the maximum CPU time that the actor can
make use of. At this point the parameter has no more influence and
the throughput stagnates.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 59



being adopted as a DevOps tools, i.e., to ease the process of
packaging and deploying applications. When the developers
of OpenWhisk provide an Ansible configuration that deploys
the components as Docker containers, they do it primarily to
simplify the deployment, not to ensure performance isolation
between the components and other containers running on the
same machine. However, as we have seen above, the perfor-
mance isolation mechanism can create undesirable degrada-
tion on the performance of the containerized application.

5.4 Overhead of the TCP/HTTP Communications
in the Invoker

Once we had addressed the GC and ContainerPool issues, we
wanted to understand which code paths of the Invoker ma-
chine were taking most of the CPU time. Such an analysis
is achievable via perf [78], a versatile performance debug-
ging tool integrated into Linux. perf can — among other
features — sample the call stacks of running threads at reg-
ular intervals of time. This sample of call stacks can then be
aggregated and visualized using a flame graph that shows the
most called code paths.

However, using perf to obtain system-wide results is chal-
lenging with a platform such as OpenWhisk because of two
reasons: container isolation [50] and language-level virtual
machines (VMs) [51, 52]. Notably, perf relies on debug-
ging symbols to retrieve the name of the functions appear-
ing in a call stack. These symbols can be directly embedded
into the executable or stored aside (usually for packages in-
stalled via the package manager of the Linux distribution).
perf reads these files (executable or detached symbol files)
from the filesystem. However, when the functions are part of
programs running inside a container, given that perf is run
from the host, the files may not be available because of the
isolation of the file system. Furthermore, these symbols are
not available for “JITed” (Just-in-time compiled) functions in
language-level VMs such as the JVM and Node.js. For these
functions, perf offers an alternative, the perf-<pid>.map
files [53], which should be generated by the VM and contain
the names of the JITed functions. If a language-level VM is
run inside a container, this file should also be made available
to perf running in the host. Additionally, perf expects the
file name to contain the pid of the language-level VM, how-
ever, the pid of the VM as seen by perf from the host can
be different from the pid inside the container because of the
namespace isolation.

In order to obtain a trace of call stacks with perf, we had to
devise various solutions to work around these limitations. For
example, the Invoker uses the Oracle JVM. This JVM (i.e.,
the libjvm.so library file) embeds the debugging symbols
of its internal functions. This library is part of the Invoker
container filesystem, thus the library file is in a filesystem
isolated from the host that is running perf. Consequently,
when looking for the mapping between the function address
and the function name, perf looks at the debug symbols in-
side the executable using the path that is reported by Linux,
however this path is only valid from inside the container. Our
quick fix for this specific issue was to create a copy of the
Java distribution (and thus the libjvm.so file) in the host
under the same path to trick perf into thinking it is reading

the symbols of the running executable whereas it is only read-
ing a copy. As another example, in order to allow perf to find
the perf-<pid>.map file, we modified the parameters used
to start the various containers of the Invoker machine to dis-
able the namespace feature so that the pid seen from the JVM
and Node.js processes inside the containers is the same as the
pid seen by perf.

After addressing these issues we were able to generate the
flame graph shown in Figure 11 in appendix. This flame
graph shows the breakdown of CPU-time per code paths for
the Invoker machine. With an analysis of the code paths
in this flame graph that correspond to the TCP/HTTP com-
munications between the Invoker and the containers, we can
see that around 34% of the CPU time is spend on these com-
munications. This large overhead could be mitigated by re-
placing TCP/HTTP communications with a faster communi-
cation scheme. Additionally, this could reduce the effects of
the garbage collector in the Invoker on the tail latency if the
communication scheme also minimizes its usage of buffers.
For example, a very recent reverse-engineering analysis re-
vealed that AWS Lambda containers most likely receive ex-
ecution requests via a segment of shared memory [54]. A
similar approach applied to OpenWhisk could be beneficial
for the performance. However, this solution requires substan-
tial changes for both the Invoker and the containers running
the functions. Another less intrusive solution would be to re-
place the TCP socket by a UNIX domain socket and replace
the HTTP protocol by a custom protocol on top of the UNIX
domain socket. Given more time, we could have evaluated
the benefits of replacing the TCP socket by a Unix domain
using Slipstream [34]. Slipstream automatically detects and
replaces the local TCP sockets with Unix-domain sockets to
improve performance.

6 Conclusion & Perspectives
During our study of the performance bottlenecks of the Open-
Whisk platform, we faced several technical challenges to ob-
serve and understand their root causes. These challenges stem
from the complex mixture of language runtimes, concurrent
execution models and OS-level virtualization of the Open-
Whisk infrastructure. However, these challenges are not lim-
ited to OpenWhisk or FaaS platforms as this complexity of
the software stacks is representative of modern Cloud infras-
tructures in general. For each of the profiling challenges we
faced, we proposed a corresponding, although often ad-hoc,
solution. We believe these challenges deserve to be addressed
with more robust and perennial solutions that can be applied
to production systems.

Our study uncovered several performance issues in the cur-
rent design of the OpenWhisk platform, notably in the In-
voker machine. These performance issues reduce the ability
of the platform to achieve workload consolidation in the con-
text of small-scale functions as they all significantly degrade
the throughput and latency. We have highlighted : (i) the
high rate of ephemeral memory allocations (resulting from
the logging system and the unfit buffer management policy of
the communications stacks), which, coupled to the reliance
on delayed garbage collections for memory reclamation sub-

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 60



stantially degrades the tail latency of the requests, (ii) the
ContainerPool bottleneck that prevents the Invoker process
from being scaled up properly (because of the performance
isolation of the Docker containers), (iii) the overhead of the
TCP/HTTP communications. We also started investigating
the potential impacts of general scheduling decisions on the
performance; although this last part of the work is unsuccess-
ful for now, we plan to continue investigating in this direction.

The solution applied to remove the ContainerPool and
the garbage collection issues (by respectively adjusting the
cgroup performance isolation and disabling the logging sys-
tem) improved the performance of the OpenWhisk platform
from 2800 requests per second to 3700 at a 20 millisecond
median latency. We believe the performance could be even
further improved with the application of our two improve-
ment proposals related to the communications (to mitigate
garbage collection effects on the tail latency and improve the
speed of communication between the Invoker process and the
functions containers).

Given that FaaS workloads have characteristics that dif-
fer from previous Cloud workloads, we think that the FaaS
model can benefit from new scheduling strategies. As a sim-
ple example, Cloud functions, which can have very short run-
ning times, can benefit from a lower overhead of the sched-
uler. More generally, given that the unit of execution of a
FaaS platform is the function and that functions are more
likely to have predictable execution times, memory and I/O
patterns (as opposed to traditional, long-running operations
of previous Cloud workloads), a smart FaaS platform could
try to identify the behavior of a function based on its name
and arguments and implement a more optimized allocation
of resources for this expected behavior. However, we think
a first step towards devising these kinds of improvements of
the scheduling strategy is to develop profiling tools to better
understand the behavior of the kernel-level and runtime-level
schedulers and how their strategies influence the execution of
functions.

Our study has also highlighted some challenges related to
the profiling and detection of performance issues on Cloud
platforms. The main problems of these platforms stem from:
(i) their distributed nature (i.e., they are designed with sev-
eral cooperating and communicating components); (ii) the
heterogeneous nature of their software stacks: diverse lan-
guage runtimes (e.g., Java or Node.js) and diverse execution
models (e.g., thread-based or actor-based concurrency model,
event-driven models); (iii) the security and performance iso-
lation implemented for multi-tenancy. In the continuation of
our work, we believe an important objective is to work to-
wards better support of profiling tools in the Cloud, in order
(i) to provide platform operators with more insightful perfor-
mance profiles that offer a consistent view of the bottlenecks
and interactions throughout the system stack and (ii) to im-
prove the detection and root-cause analysis of transient and
sporadic inefficiencies, which are essential for mitigating is-
sues like variability and high tail latencies.

Acknowledgement
This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir A special thanks
goes to Hugo Guiroux, for all his help, advices, quick in-
sights and his willingness to dive deep into the idiosyncrasies
of the Linux kernel with me. I would also like to express
my gratitude to my supervisors Renaud Lachaize and Vivien
Quéma for giving me the opportunity to work on such an in-
teresting topic and for their dedication and continuous guid-
ance throughout this Master thesis, both on the scientific and
non-scientific levels.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 61



Controller (Akka)
Controller (Akka)

API Gateway 

wsk 
command-line

Controller

REST API

Invoker 
Load Balancer

Invoker

Kafka Broker

Client Library (Go)

CouchDB

REST API 
Load Balancer

e.g., wsk invoke myFunction 
=> POST /api/.../actions/myFunction

Get Function  
Source Code

Store Function 
Execution

Result

Get Function  
Metadata

Poll  
for Result

consume 
Topic: completed<controller_id>

produce 
Topic: completed<controller_id>

consume 
Topic: invoker<invoker_id>

produce 
Topic: invoker<invoker_id>

e.g., GET mywebsite.host/endpoint 
=> POST /api/.../actions/myFunction

Figure 1: Architectural diagram of all OpenWhisk components.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 62



Invoker Machine
Invoker Process

Containers

HTTP
Server

Docker 
Daemon

Load Function

Run function

/init
/run

Container 
Pool 
Actor

Container
Proxy 
Actors

Run

Create 
Init 
Run 
Remove 

docker cli

Create / Remove 
container

runc cli

Pause / Resume 
container

Send result on topic 
completed<controller_id>

HTTP conn

syscalls

syscalls

unix://

CouchDB 
HTTP connections pool

Store Results

Fork/Exec

Kafka Producer

Message
Feed 
Actor

Kafka Consumer

Ready 
Removed 

In-Memory
Cache 

Get Action 
Metadata & 

Source Code

tcp://

Figure 2: Architectural diagram of the OpenWhisk components on an Invoker machine.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 63



Machine Load Injector Controller Invoker
Model DELL PowerEdge DELL PowerEdge DELL PowerEdge

R905 R815 R815
Microarchitecture - Piledriver / Abu Dhabi Bulldozer / Interlagos
Processor AMD Opteron 8380 AMD Opteron 6344 AMD Opteron 6272
Frequency 2.5 GHz 2.6 GHz 2.1 GHz
Total # cores 16 48 64
Memory 32 GB 64 GB 128 GB
Type DDR2 DDR3 DDR3
Frequency 667 MHz 1600 MHz 1600 MHz
# NUMA nodes 4 8 8
Linux kernel v3.16.0 v4.14.0 v4.15.14
Docker - v1.11.2 v18.03.0-ce

Table 1: Hardware and software description of the machines used for the deployment of OpenWhisk.

Machine Controller Invoker
Component Controller Kafka CouchDB Invoker
Docker Image (custom) wurstmeister/kafka apache/couchdb (custom)

Version - 0.11.0.1 2.1 -
JVM Oracle Oracle - Oracle

Version 8u141b15 8u144b01 - 8u141b15
GC ParallelGC G1GC - ParallelGC
Heap 16 GB 8 GB - 64 GB

Table 2: Specifications of the software components.

Relative Component Event
timestamp involved

0 Controller Received execution request
0 Controller Action metadata: Serving from cache

10 Controller Load Balancer [start]
19 Controller Sending function to Invoker0 through Kafka [start]
22 Controller Sending function to Invoker0 through Kafka [end]
22 Controller Load Balancer [end]
30 Invoker Received execution request from Kafka
30 Invoker Action source code: Serving from cache
35 Invoker Sending request to ContainerPool actor
74 Invoker ContainerPool actor starts processing the request
74 Invoker Sending action to Container
80 Container Function execution [start]
82 Container Function execution [end]
85 Invoker Received action results from Container
85 Invoker Sending function to Invoker0 through Kafka [start]
91 Invoker Sending function to Invoker0 through Kafka [end]
98 Controller Sending response to client

Table 3: Simplified example of a trace gathered from OpenWhisk logs, showing consecutive events for the processing of an
hello-world request.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 64



Figure 3: Evolution of used the Controller heap memory over time as displayed by VisualVM [77].

Figure 4: Evolution of used the Invoker heap memory over time as displayed by VisualVM [77].

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 65



●●
●

●●
● ●

●● ●
●● ●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●
●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

uncorrected corrected

0 1000 2000 3000 0 1000 2000 3000

100

1000

Throughput (req/s)

La
te

nc
y 

(m
s)

Percentile ● ● ●50 % 95 % 99 %

Figure 5: Throughput vs. Latency of the initial configuration of OpenWhisk. Note the logarithmic scale. These results
were measured using the wrk closed-loop injector and illustrate the difference between the tail latency directly measured
(uncorrected) and with the correction applied to account for the coordinated omission problem (corrected).

●
● ●●

●●

● ●

● ●

● ●

●
●

● ●

● ●

● ●

● ●

15

20

25

30

35

40

0 1000 2000 3000

Throughput (req/s)

M
ed

ia
n 

La
te

nc
y 

(m
s)

Logging System
●

●

enabled

disabled

Figure 6: Comparison of the throughput vs. median latency before and after disabling the logging system of OpenWhisk.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 66



●● ●
● ●● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

uncorrected corrected

0 1000 2000 3000 0 1000 2000 3000

25

50

75

Throughput (req/s)

La
te

nc
y 

(m
s)

Percentile ● ●95 % 99 %

Figure 7: Comparison of the throughput vs. the tail latency with and without the correction of wrk. Note that the scale is not
logarithmic (unlike in in Figure 5).

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 67



whisk...

spray.js..

spr..

spray.js..

scala.concurrent.Future$$a..

spra..

spray.json...

akka.dispatch.BatchingExecutor$BlockableBatch#run

ak..

whisk.core...

spray.j..

byte[]

o..

s..

scala.concurrent.impl.Future$PromiseCompletingRunnable#run

o..

whisk.core.containerpool.HttpUtils$$anonfun$1#apply

spray..

whisk.c..

spray.js..

akka.d..

o..

ak..

o..

sc..

sp..

whisk.co..

w..

spr..

spray..

spray.json.Pr..

spray.js..

org.apache.http.impl.conn.Defau..

org.apache.http.impl.conn.Manage..

whisk.core.connector...

spray.js..

whisk.core..

a..

spray..

spray.json.Pr..

whisk.core.connecto..

akka.a..

org.apache.http.impl.client.CloseableHttpClient#ex..

spr..

org.apache.http.pool.AbstractCon..

byte[]

whisk.core.invoker.Invoker..

scala.concurrent.Future$$a..

org.apac..

spray.js..

org.apache.http.impl.conn.Poolin..

whisk.core..

org.apache.http.impl.conn.Loggi..

whisk.core.containerpool.HttpUtils$$anonfun$1#apply

scala.util...

s..

whisk.core.containerpool.C..

wh..

org.apache.http.pool.AbstractCon..

scala.concurrent..

spr..

s..

spray.js..

org.apache.http.impl.execchain.RedirectExec#ex..

sp..

w..

s..

org.apache.http.pool.AbstractCon..

org..

w..

s..

or..

w..

o..

whisk.core.containerpool.docker.DockerContainer$$anonfun$ca..

whisk.core.containerpool.C..

java.util.concurrent.ThreadPoolExecutor$Worker#run

whi..

sp..

w..

whisk.core.invoker.I..

ak..

scala.concu..

org.apac..

akka.dispatch.BatchingExecutor$BlockableBatch$$anonfun$run$..

or..

scala.concurrent.impl.Future$PromiseCompletingRunnable#liftedTree1$1

whisk.core.invoker.Invoker..

whisk.core.co..

org.apache.http.impl.client.InternalHttpClient#doE..

org.apache.http.pool.PoolEntryFu..

scala.util.Try$#ap..

java.lang.Thread#run

sp..

akka.a..

scala.concu..

scala.util.Success#foreach

w..

org.apache.http.imp..

akka.d..

whisk.core.connect..

akka.dispatch.BatchingExecutor$BlockableBatch$$anonfun$run$..

sp..

s..

spr..

java/object_alloc_in_new_TLAB

whisk.core.invoker.Invoker..

or..

spray.json.Pr..

spray.js..

s..

org.apache.http.impl.execchain.ProtocolExec#ex..

org.apache.http.impl.conn.Poolin..

sp..

scala.concurrent..

org.apache.http.impl.client.CloseableHttpClient#ex..

w..

java.util.concurrent.ThreadPoolExecutor#runWorker

org.apache.http.impl.conn.Poolin..

whisk.core.containerpool.HttpUtils#post

s..

scala.concurrent.impl.CallbackRunnable#run

spra..

whisk.core.containerpool.HttpUtils#execute

akka.dispatch.TaskInvocation#run

sp..

scala.util...

scala.util.Try$#apply

akka.dispatch.BatchingExecutor$BlockableBatch$$anonfun$run$..

byte[]

whisk...

sp..

whisk.core.containerpool.docker.DockerContainer$$anonfun$ca..

whisk...

org.apac..

scala.util...

sp..

w..

org.apache.http.impl.conn.Poolin..

w..

spray.json...sp..

w..

spray.js..

spray..

w..

whisk.connector.kafka.Kaf..

org.apache.http.impl.DefaultBHt..

whisk.core.invoker.I..

whisk.core...

scala.concurrent.BlockContext$#withBlockContext

or..

whisk.core.connect..

akka.dispatch.BatchingExecutor$AbstractBatch#processBatch

whisk.core...

org.apache.http.impl.execchain.MainClientEx..

org.apache.http.impl.conn.Manage..

org.apache.http.pool.AbstractCon..

org.apache.http.impl.BHttpConn..

Figure 8: Allocation flame graph of the Invoker process. This flame graph only shows the allocation in new TLAB events as they represent 97% of the total of
events. The colors are arbitrary. Some less relevant function calls (whose width is smaller than 5 pixels) are filtered out for clarity.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 68



●

● ●●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

0 1000 2000 3000 4000

Throughput (req/s)

M
ed

ia
n 

La
te

nc
y 

(m
s)

cpu−shares of the Invoker container ● ●1 100

Figure 9: Comparison of the throughput vs. median latency with the initial value of cpu-shares for the Invoker process (1)
and the value multiplied by one hundred (100).

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 69



●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Invoker cpu−
shares=

1
Invoker cpu−

shares=
100

0 20 40 60

10

20

30

40

50

10

20

30

40

50

Throughput normalized by the number of cores (req/s)

M
ed

ia
n 

La
te

nc
y 

(m
s)

Number of cores ● ●16 cores 64 cores

Figure 10: Comparison of the throughput per core vs. median latency, with a 16-core and a 64-core machine, with the initial
value of cpu-shares for the Invoker process (1) and the value multiplied by one hundred (100).

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 70



L..

Laz..

v8:.. node::InternalMakeCallback

{Node-VM}

uv__ser.. na..

node::Inte..

L..

[doc..

__i..

nod..

{N..

gith..

L..

v8::Function::Call

io.c..

L..

class whisk.core.contai..

class akka.disp..

c..

[..

P..

os.(..

v8::interna..

r..

de..

node::Start

class akka.dispatch.TaskInvocation.run

{..

Laz..

Lazy..

class ..

node::Start

runti..

class scala.concurrent.impl.Fut..

c..

node::Asyn..

{Node-VM}

no..

Java_..

__clone

c..

http_parser_ex..

class or..

class..

class ja..

node

class kamon.tr..

L..

call_stub

cla..

c..

i..

r..

[vml..

thread_entry

uv__read

r..

{Node..

gith..

uv__stream_io

c.. class org.apach..

class akka.disp..

start_thread

JavaCalls::call_virtual

v8:..

{..

class scala.con..

[..

cl..

{No..

v8::interna..

[..

LazyCompile:*_tickC..

{No..

[..

r..

{..

[doc..

{Node..

r..

inet_..

JavaThread::run

In..

{..

[doc..

v8::interna..

__libc_start_main

Laz..

no..

v8::internal::Execution::C..

nod..

Lazy..

U..

uv__io_poll

node::(anon..

node::(anonymous namespace)::Parser::OnReadImpl

La..

uv_run

{..

class org.apache..

[doc..

class java.util.concurrent.ThreadPoolExecutor.runWorker

{No..

do_sy..

L..

LazyCom..

LazyComp..

{..

[doc..

{Node-VM}

{Node-VM}

{N..

JavaThread::thread_main_inner

c..

cla..

do_i..

cla..

c..

i..

v8::interna..

c..

{Node-VM}

class or..

class org.apache..

dockerd

star..

nod..

nod..

[do..

La..

io.C..

JavaCalls::call_virtual

JavaCalls::call_helper

cl..

LazyC..

node::InternalCallbackScop..

La..

L..

v8::intern..

entry..

node::AsyncWrap::MakeCallb..[d..

class ja..

java

class scala.co..

class kamon.trace.Tracer$.withC..

java_start

[doc..

L..

node::..

docker-..

gith..

node::LibuvStreamWrap::OnRead

class kamon.scala.instrumentati..

class..

swap..

{No..

inte..

L..

v8::Functi..

LazyC..

Laz..

os.(..

cpu_..

{N..

class kamon.sc..

class java.lang.Thread.run

cl..

v8::Function::Call

LazyCo..c..

v8..

i..

LazyCompil..

__lib..

c..

SYSC_..

[doc..

[do..

{No..

class scala.concurrent.impl.Fut..

La..

v8..

Figure 11: Flame graph of the most frequent code paths for the Invoker machine. The colors are arbitrary. Some less relevant function calls (whose width would be
smaller than 2 pixels) are filtered out for clarity.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 71



A Bibliography
Scientific Literature

[1] Ioana Baldini et al. “Serverless Computing: Current
Trends and Open Problems”. In: Research Advances
in Cloud Computing. Springer Singapore, 2017, pp. 1–
20.

[2] Scott Hendrickson et al. “Serverless Computation with
OpenLambda”. In: Proceedings of the 8th USENIX
Workshop on Hot Topics in Cloud Computing. Hot-
Cloud’16. Denver, CO, 2016.

[3] Neil Savage. “Going Serverless”. In: Communications
of the ACM 61 (Jan. 2018), pp. 15–16.

[4] Erwin van Eyk et al. “A SPEC RG Cloud Group’s Vi-
sion on the Performance Challenges of FaaS Cloud Ar-
chitectures”. In: Companion of the 9th ACM/SPEC In-
ternational Conference on Performance Engineering.
ICPE’18. Berlin, Germany, 2018.

[5] Edwin F. Boza. “Towards Improved Cloud Function
Scheduling in Function-as-a-Service Platforms”. In:
Proceedings of the 12th EuroSys Doctoral Workshop.
EuroDW’18. Porto, Portugal, 2018.

[6] Simon Shillaker. “A Provider-Friendly Serverless
Framework for Latency-Critical Applications”. In:
Proceedings of the 12th EuroSys Doctoral Workshop.
EuroDW’18. Porto, Portugal, 2018.

[7] Eric Jonas et al. “Occupy the Cloud: Distributed Com-
puting for the 99%”. In: Proceedings of the 9th Sym-
posium on Cloud Computing. SoCC’17. Santa Clara,
California, 2017.

[8] Sadjad Fouladi et al. “Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny
Threads”. In: Proceedings of the 14th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation. NSDI’17. Boston, MA, 2017.

[9] Luiz André Barroso and Urs Hölzle. “The Case for
Energy-Proportional Computing”. In: Computer 40
(Dec. 2007), pp. 33–37.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Höl-
zle. The Datacenter As a Computer: An Introduction
to the Design of Warehouse-Scale Machines. Morgan
& Claypool, 2013.

[11] Christina Delimitrou. “Improving Resource Efficiency
in Cloud Computing”. PhD thesis. Stanford University,
Aug. 2015.

[12] Ricardo Koller and Dan Williams. “Will Serverless
End the Dominance of Linux in the Cloud?” In: Pro-
ceedings of the 16th Workshop on Hot Topics in Oper-
ating Systems. HotOS’17. Whistler, BC, Canada, 2017.

[13] E. Oakes et al. “Pipsqueak: Lean Lambdas with Large
Libraries”. In: Proceedings of the 37th IEEE Interna-
tional Conference on Distributed Computing Systems
Workshops. ICDCSW’17. 2017.

[14] Filipe Manco et al. “My VM is Lighter (and
Safer) Than Your Container”. In: Proceedings of the
26th Symposium on Operating Systems Principles.
SOSP’17. Shanghai, China, 2017.

[15] Istemi Ekin Akkus et al. “SAND: Towards High-
Performance Serverless Computing”. In: 2018
USENIX Annual Technical Conference (USENIX ATC
18). Boston, MA: USENIX Association, 2018.

[16] Cristina L. Abad, Edwin F. Boza, and Erwin van
Eyk. “Package-Aware Scheduling of FaaS Functions”.
In: Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering. ICPE ’18.
Berlin, Germany: ACM, 2018, pp. 101–106.

[17] Jeffrey Dean and Luiz André Barroso. “The Tail at
Scale”. In: Communications of the ACM 56 (Feb.
2013), pp. 74–80.

[18] Jialin Li et al. “Tales of the Tail: Hardware, OS, and
Application-level Sources of Tail Latency”. In: Pro-
ceedings of the 5th ACM Symposium on Cloud Com-
puting. SoCC’14. Seattle, WA, USA, 2014.

[19] Jacob Leverich and Christos Kozyrakis. “Reconciling
High Server Utilization and Sub-millisecond Quality-
of-service”. In: Proceedings of the 9th European Con-
ference on Computer Systems. EuroSys’14. Amster-
dam, The Netherlands, 2014.

[20] Kenneth J. Duda and David R. Cheriton. “Borrowed-
virtual-time (BVT) Scheduling: Supporting Latency-
sensitive Threads in a General-purpose Scheduler”. In:
Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles. SOSP ’99. Charleston,
South Carolina, USA: ACM, 1999, pp. 261–276.

[21] Esmail Asyabi et al. “CTS: An operating system CPU
scheduler to mitigate tail latency for latency-sensitive
multi-threaded applications”. In: Journal of Parallel
and Distributed Computing (Apr. 2018).

[22] Jean-Pierre Lozi et al. “The Linux Scheduler: A
Decade of Wasted Cores”. In: Proceedings of the
11th European Conference on Computer Systems. Eu-
roSys’16. London, United Kingdom, 2016.

[23] Raj Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Mea-
surement, Simulation, and Modeling. Wiley, 1991.

[24] Gaurav Banga and Peter Druschel. “Measuring the Ca-
pacity of a Web Server Under Realistic Loads”. In:
World Wide Web 2 (Jan. 1999), pp. 69–83.

[25] Bianca Schroeder, Adam Wierman, and Mor Harchol-
Balter. “Open Versus Closed: A Cautionary Tale”. In:
Proceedings of the 3rd Conference on Networked Sys-
tems Design & Implementation. NSDI’06. San Jose,
CA, 2006.

[26] Marios Kogias, Christos Kozyrakis, and Edouard
Bugnion. “Measuring Latency: Am I doing it
right?” Presented at: 14th USENIX Symposium
on Networked Systems Design and Implementation.
NSDI’17. Boston, Massachusetts, USA. 2017.

[27] Brendan Gregg. Systems Performance: Enterprise and
the Cloud. 1st ed. Prentice Hall Press, 2013.

[28] Sun Microsystems Inc. Memory Management in the
Java HotSpot(tm) Virtual Machine. Tech. rep. Sun Mi-
crosystems Inc, 2006.

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 72



[29] Brendan Gregg. “The Flame Graph”. In: Communica-
tions of the ACM 59 (June 2016), pp. 48–57.

[30] Stephen Yang, Seo Jin Park, and John Ousterhout.
“NanoLog: A Nanosecond Scale Logging System”. In:
Proceedings of the 2018 USENIX Annual Technical
Conference. ATC’18. Boston, MA, 2018.

[31] Oracle. Deterministic Garbage Collection: Unleash
the Power of Java with Oracle JRockit Real Time.
Tech. rep. Oracle, 2008.

[32] Gil Tene, Balaji Iyengar, and Michael Wolf. “C4: The
Continuously Concurrent Compacting Collector”. In:
Proceedings of the International Symposium on Mem-
ory Management. ISMM’11. San Jose, USA, 2011.

[33] Raymond Roestenburg, Rob Bakker, and Rob
Williams. Akka in Action. Manning Publications,
2016.

[34] Will Dietz et al. “Slipstream: Automatic Interprocess
Communication Optimization”. In: Proceedings of the
201USENIX Annual Technical Conference. USENIX
ATC’15. Santa Clara, USA, 2015.

Internet Sources
[35] IBM. How are EC2 instance-hours billed? Oct. 26,

2017. URL: https : / / aws . amazon . com /
premiumsupport / knowledge - center / ec2 -
instance - hour - billing/ (accessed: June 18,
2018).

[36] James Lewis and Martin Fowler. Microservices.
Mar. 25, 2014. URL: https : / / martinfowler .
com / articles / microservices . html (accessed:
May 15, 2018).

[37] Bryan Cantrill. Unikernels Are Unfit for Production.
Jan. 22, 2016. URL: http://dtrace.org/blogs/
bmc/2016/01/22/unikernels-are-unfit-for-
production/ (accessed: May 15, 2018).

[38] IBM. OpenWhisk - Platform architecture. May 18,
2018. URL: https : / / console . bluemix . net /
docs / openwhisk / openwhisk _ about . html #
platform-architecture (accessed: June 3, 2018).

[39] Janakiram MSV. An Architectural View of Apache
OpenWhisk. Feb. 3, 2017. URL: https : / /
thenewstack . io / behind - scenes - apache -
openwhisk - serverless - platform/ (accessed:
June 3, 2018).

[40] Lightbend. Akka - Distributed Data. URL: https :
/ / doc . akka . io / docs / akka / current /
distributed- data.html?language=scala (ac-
cessed: June 3, 2018).

[41] OpenWhisk Contributors. OpenWhisk - about.md -
Please form a line: Kafka. May 27, 2018. URL:
https : / / github . com / apache / incubator -
openwhisk / blob / master / docs / about . md /
#please-form-a-line-kafka (accessed: May 27,
2018).

[42] Lightbend. Akka - Dispatchers. URL: https://doc.
akka.io/docs/akka/2.5/dispatchers.html
(accessed: June 3, 2018).

[43] Tejun Heo. LKDML.org - sched/fair: Fix O(# total
cgroups) in load balance path. Apr. 25, 2017. URL:
https://lkml.org/lkml/2017/4/25/925 (ac-
cessed: June 4, 2018).

[44] Seetharami Seelam. Docker at insane scale on IBM
Power Systems. Nov. 13, 2015. URL: https://www.
ibm . com / blogs / bluemix / 2015 / 11 / docker -
insane - scale - on - ibm - power - systems/ (ac-
cessed: June 8, 2018).

[45] Gil Tene. How NOT to Measure Latency. Jan. 24, 2014.
URL: http://yowconference.com.au/slides/
yow2014 / Tene - HowNotToMeasureLatency . pdf
(accessed: May 27, 2018).

[46] Marcus Hirt. Allocation Profiling in Java Mission Con-
trol. Sept. 12, 2013. URL: http://hirt.se/blog/
?p=381 (accessed: May 27, 2018).

[47] Stephen Yeng. NanoLog: A Nanosecond Scale Log-
ging System. Feb. 9, 2018. URL: https : / /
platformlab . stanford . edu / Presentations /
Yang__S.pdf (accessed: June 18, 2018).

[48] The Netty Project. Reference counted objects - Netty
project. May 14, 2018. URL: http://netty.io/
wiki / reference - counted - objects . html (ac-
cessed: June 15, 2018).

[49] Marcus Hirt. Creating Custom JFR Events. Nov. 10,
2013. URL: http://hirt.se/blog/?p=444 (ac-
cessed: May 27, 2018).

[50] Brendan Gregg. Container Performance Analysis at
DockerCon 2017. Apr. 15, 2017. URL: http : / /
www . brendangregg . com / blog / 2017 - 05 - 15 /
container-performance-analysis-dockercon-
2017.html (accessed: June 12, 2018).

[51] Brendan Gregg. Java Flame Graphs. June 12, 2014.
URL: http : / / www . brendangregg . com / blog /
2014-09-17/node-flame-graphs-on-linux.
html (accessed: June 12, 2018).

[52] Brendan Gregg. node.js Flame Graphs on Linux.
Sept. 17, 2017. URL: http://www.brendangregg.
com/blog/2014-09-17/node-flame-graphs-
on-linux.html (accessed: June 12, 2018).

[53] Andi Kleen. Linux kernel - perf - jit-interface. URL:
https://github.com/torvalds/linux/blob/
0fe7d7e9761ec7e23350b5543ddac470bb3cde1e /
tools/perf/Documentation/jit- interface.
txt (accessed: June 12, 2018).

[54] Anonymous. Reverse engineering AWS Lambda.
May 31, 2018. URL: https : / / www . denialof .
services/lambda/ (accessed: June 12, 2018).

Misc. Links
[55] Amazon. AWS Lambda. URL: https : / / aws .

amazon.com/lambda/ (accessed: May 26, 2018).
[56] Microsoft. Microsoft Azure Functions. URL: https:

/ / azure . microsoft . com / en - us / services /
functions/ (accessed: May 26, 2018).

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 73



[57] Google. Google Cloud Functions (BETA). URL:
https://cloud.google.com/functions/ (ac-
cessed: May 26, 2018).

[58] IBM. IBM Cloud Functions. URL: https : / /
console . bluemix . net / openwhisk/ (accessed:
May 26, 2018).

[59] OpenResty. OpenResty. URL: https://openresty.
org/en/ (accessed: June 13, 2018).

[60] Nginx. Nginx. URL: http://nginx.org/ (accessed:
June 13, 2018).

[61] Lua. Lua. URL: https://www.lua.org/ (accessed:
June 13, 2018).

[62] Apache Software Foundation. Apache CouchDB. URL:
http://couchdb.apache.org/ (accessed: June 13,
2018).

[63] Apache Software Foundation. Apache Kafka. URL:
https://kafka.apache.org/ (accessed: June 13,
2018).

[64] Lightbend. Akka. URL: https://akka.io (accessed:
May 27, 2018).

[65] Red Hat. Ansible. URL: https://www.ansible.
com/ (accessed: June 4, 2018).

[66] M. Isuru Tharanga Chrishantha Perera. jfr-flame-
graph - Github. URL: https : / / github . com /
chrishantha / jfr - flame - graph (accessed:
June 13, 2018).

[67] Platform Lab. Granular Computing. URL: https :
/ / platformlab . stanford . edu / platform -
granular - computing . php (accessed: June 18,
2018).

[68] Lightbend. akka-http. URL: https : / / doc . akka .
io/docs/akka-http/current/ (accessed: June 13,
2018).

[69] Oracle. Oracle JRockit Real Time. URL: http : / /
www . oracle . com / technetwork / middleware /
jrockit / overview / index - 086343 . html (ac-
cessed: June 13, 2018).

[70] Azul Systems. Zing. URL: https://www.azul.com/
products/zing/ (accessed: June 13, 2018).

[71] The Netty Project. Netty project. URL: http : / /
netty.io/ (accessed: June 15, 2018).

[72] Kamon. Kamon - kamon-akka. URL: http://kamon.
io / documentation / 1 . x / instrumentation /
akka/ (accessed: May 29, 2018).

[73] Datadog. Statsd. URL: https://www.datadoghq.
com/blog/statsd/ (accessed: June 18, 2018).

[74] Graphite Labs. Graphite. URL: https : / /
graphiteapp.org/ (accessed: June 18, 2018).

[75] Grafana Labs. Grafana. URL: https://grafana.
com/ (accessed: June 18, 2018).

[76] Oracle. About Java Flight Recorder. URL: https://
docs.oracle.com/javacomponents/jmc-5-4/
jfr-runtime-guide/about.htm#JFRUH170 (ac-
cessed: May 28, 2018).

[77] Oracle. VisualVM. URL: https : / / visualvm .
github.io/ (accessed: May 28, 2018).

[78] Vincent M Weaver. The Unofficial Linux Perf Events
Web-Page. URL: http://web.eece.maine.edu/
~vweaver / projects / perf _ events/ (accessed:
June 8, 2017).

A System-Wide Study of Performance Issues in FaaS Platforms Christopher Ferreira

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 74





Deciding Multivariate Polynomials Inequalities by combining Factorization,
Euclidian Division and Handelman’s Theorem

A.Delise, B.Grenet, A.Maréchal and M.Périn
Univ. Grenoble Alpes, CNRS, Grenoble INP∗, VERIMAG, 38000 Grenoble, France

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
Both assertion proof and automatic deciding need
efficient way to solve problem containing multi-
variate polynomial inequalities. We are proposing
in this paper new methods to fasten their resolution
in certain cases.

1 Program verification using polynomial
invariants

A property is an invariant of a program point if it holds in
any execution whenever the program reaches that program
point. Invariant property are the key of program verification.
The goal of static analysis of program is to discover invariant
properties. The goal of satisfiability solvers modulo theory
(SMT) is to prove their invariance or to disprove it by pro-
ducing a counter-example which can be used as a bug finder.
Hence, program verification and bug finding is often built as
a combination of a static analyzer and a SMT solver.

Multivariate polynomials on Q[x1, . . . , xn] are sums of
products of scalars in Q and indeterminate variables xi, eg.
Q(x1, x2, x3) , 1 + x1x2 + x22 + x2x

2
3. Such constraints

appear in static analysis of ... systems to capture invariant
relations between program variables. For instance, the fol-
lowing constraint are invariants of a example program from
[dOBP16] which provides recent progress on the generation
of polynomial relations on program variables.

In this report, we focus on the SMT solver and more pre-
cisely on algorithms for deciding the satisfiability or unsatis-
fiability of systems mixing polyhedral and polynomial con-
straints. In other words, we consider a system of polyhedral
constraints A and a system of polynomial constraints Q and
we try to decided the satisfiability of the system A ∪Q.

1.1 Preliminaries
Notation We use boldface to denote vectors x =
(x1, . . . , xn) ∈ Qn. We consider multivariate polynomials
over the rationals. Polynomials are denoted by Q and affine
forms (i.e. polynomial of degree ≤ 1) are denoted by A, eg.
A(x) , a0 + a1x1 + . . . anxn with ai ∈ Q.

Polynomial and polyhedral positivity constraints With-
out loss of generality we can focus on positivity con-
straint Q(x) . 0 where . ∈ {>,≥}. Indeed, an equal-
ity Q(x) = Q′(x) can be encoded as a conjunction of in-
equalities Q(x) ≤ Q′(x) ∧ Q(x) ≥ Q′(x), and every con-
straints Q(x).Q′(x) can be written as a positivity constraint
Q(x)−Q′(x) . 0. The negation of an inequality can also be
turned into a positivity constraints: ¬ (Q(x) > 0) ≡ Q(x) ≤
0 ≡ −Q(x) ≥ 0. However, disequalities require a special
treatement as they introduce disjunctions.

A polyhedron is a linear system of inequalities, i.e. a con-
junction of affine constraints {A1(x) . 0, . . . , Ap(x) . 0}.
We use A to denote a polyhedron, Q to denote a system of
polynomial inequalites {Q1(x) . 0, . . . , Qq(x) . 0}. Hence,
A ∪Q refers to a system mixing p polyhedral constraints and
q polynomial constraints

The notation [[A ∪Q]] is convenient to refer to the set of
points satisfying the constraints of A and Q:

[[A ∪Q]] =

{
x ∈ Qn |

p∧

i=1

Ai(x) . 0

q∧

i=1

Qi(x) . 0

}

We also use A (x) for x ∈ [[A ]] and Q(x) for x ∈ [[Q]].

Satisfiability An valuation is a function associating a value,
denoted by xi, to each free variable, denoted by xi. Given
a theory, a logical formula ϕ is satisfiable, denoted by
SAT(ϕ) if there exists a valuation of the free variables [x1 ←
x1, . . . , x` ← x`] such that ϕ[x1 ← x1, . . . , x` ← x`] holds.
Otherwise the formula is said to be unsatisfiable denoted by
UNSAT(ϕ). A formula is valid if it holds for all possible in-
stantiations. The following equivalences relates satisfiability,
unsatisfiability and validity:

¬SAT(ϕ) ≡ UNSAT(ϕ) ≡ VALID(¬ϕ)

The value of a formula ϕ(x) under a valuation of the vec-
tor x = (x1, . . . , xn) is written ϕ(x) as a shortcoming for
ϕ[x1 ← x1, . . . , xn ← xn].

1.2 Reductions of mixed polyhedral and
polynomial constraints

Given a system of polyhedral constraints A =
{Ai(x) . 0 | i = 1..p} and a system of polynomial

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 76



constraints Q = {Qi(x) . 0 | i = 1..q} SMT must de-
cide the question SAT(A ∪ Q) which is equivalent to
∃x, A (x) ∧Q(x) which expands to

∃x,
p∧

i=1

Ai(x) . 0

q∧

i=1

Qi(x) . 0 (1)

The general way for tackling such a problem is to sepa-
rate polyhedral constraints from polynomial ones. Polyhedral
constraints are used as assumptions under which the solver
tries to decide the satisfiability of Q. This requires some ex-
planation as this resolution technique only provides a suffi-
cient condition. Indeed, (1) is implied by (but not equivalent
to) the following conjunction

∃x, A (x) ∧ ∀x, A (x)⇒ Q(x) (2)

Remark 1 This equivalence holds if we consider polyhedra
A ′ included in A , denoted by A ′ v A .

∃x, A (x) ∧Q(x) ⇔
∃A ′, A ′ v A ∧ ∃x, A ′(x) ∧ ∀x, A ′(x)⇒ Q(x)

Proof (⇐) is obvious. For (⇒), assume that x
satisfies A (x) ∧ Q(x) then we can defined A ′ ={
xi ≤ xi ≤ xi | i = 1..n

}
which encode the equal-

ity x = x. �
For proving SAT(A ∪Q) it is sufficient to prove (2) which

can be reformulated as SAT(A ) ∧ VALID(∀x, A (x) ⇒
Q(x)) and, since satisfiability of polyhedron A is efficiently
handled by solvers, we will focus on the validity of

∀x, A (x)⇒ Q(x). (3)

Exploiting the fact that Q is a conjunction of positivity con-
straints

∧q
i=1Qi(x) . 0, we can prove (see §A) that (3) is

equivalent to a conjunction of subproblems consisting in es-
tablishing the sign of a polynomial Qi on a polyhedral space
A :

q∧

i=1

(∀x, A (x)⇒ Qi(x) . 0) (4)

Summarizing: we reduced the initial satisfiability problem
(1) to the validity of implication in the form of (4). Section
§2 is dedicated to the algorithms used to provide evidence that
the constraints of A entail the positivity of Qi. Basically, we
search for rewritings of Qi in an obvious positive form using
constraints of A .

Unsatisfiability While trying to prove satisfiability, typical
solvers also launch processes that search for a proof of un-
satisfiability. All processes can be non-terminating and are
afforded a limited exploration time. If an UNSAT process ter-
minates with a proof, all others processes are killed and the
solver returns UNSAT. If all SAT in the opposite case it returns
UNSAT; and if both processes reach their timeout, the solver
returns DONT KNOW.

The same separation of concerns applies in the UNSAT
case. We first establish the equivalence – no valuable intu-
ition in its proof, just logical equivalence (see §A)

UNSAT(A ∧Q) ≡ UNSAT(A ) ∨ (∀x, A (x)⇒ ¬Q(x)) (5)

from which we derive a sufficient condition (6) for proving
∀x, A (x) ⇒ ¬Q(x) where Q =

∧q
i=1Qi and Qi(x) is

just a shortcut for Qi(x) . 0.

q∨

i=1


∀x,


A (x)

q∧

j=1,j 6=i

Qj(x)


⇒ ¬Qi(x)


 (6)

This reformulation requires some explanations (see §A)
but let us first explain its benefit for proving unsatisfiability:
Exploiting (5) the UNSAT process attempts to prove the un-
satisfiability of A . If that fails, the problem boils down to
∀x, A (x) ⇒ ¬Q(x). Thanks to (6), it is sufficient to suc-
ceed on one case of the disjunction to conclude to unsatifiabil-
ity. Thus, the solver runs q independant processes adressing
a subproblem of the form

∀x, A (x) ∧Q′(x)⇒ ¬ (Qi(x) . 0) (7)
The problem has been simplified since the goal is to deter-
mine the sign of one polynomial Qi under a greater number
assumptions consisting in polyhedral constraints A and poly-
nomials ones Q′ ,

∧q
j=1,j 6=iQj . Now the goal of the algo-

rithm is to find a appropriate rewriting of Qi as (±) a sum of
product of positivity constraints of A ∪Q′ so that the sign of
Qi becomes obvious.

Finally, using simple tricks we reduced the SAT and UNSAT
questions (1, resp. 5) to the validity of implications (4, resp.
7) of the form

∀x, A (x) ∧Q′(x)⇒ Q(x) . 0 (8)
Now we focus on the next phase of our solver: finding an

appropriate rewriting ofQ in terms of constraints of A ∪Q′.

2 Interesting polynomial positive forms
We present reasonings on polynomial forms that help decid-
ing the satisfiability of systems mixing polyhedral and poly-
nomial constraints.

Our goal is to find decomposition of Q that ease the
resolution. We investigated three decompositions

1. Handelman form. Given a system of positivity con-
straints A ∪Q =

∧p
i=1Ai

∧q
i=1Qi,Handelman’s theo-

rem says that a polynomialQ is positive on A ∪Q if it is
a positive linear combination of products of positive con-
straints on A ∪Q. It ensures that there exist some rewrit-
ings of Q in the form of

∑
λ(k,`)Π

p
i=1Aki

i Πq
j=1Q

`j
j

from which it becomes obvious to prove its positivity
as a sum of products of positive terms. Obviously it is
possible to add any square polynomials as a member of
the system Q. This is done in an opportunistic way in
our solver.

2. Factorization. If Q = Q1×Q2 then
Q . 0 ≡ (Q1 . 0 ∧Q2 . 0) ∨ (−Q1 . 0 ∧ −Q2 . 0)

3. Decomposition over an Ideal 〈A 〉. Q ∈ 〈A1, . . . , Ap〉
iff there exist polynomials Q′1, . . . , Q

′
p such that Q =

p∑
i=1

Q′i × Ai. Remind that Ai are positivity constraints

of A ; thus, Q is positive if all the Q′i are.

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 77



2.1 Factorization
Let A ′ be a set of affine forms {A′i | i = 1..p′} and assume
that Q has a factorization: Q = Q′×ΠA ′ = Q′×Πp′

i=1A
′
i.

Then, the validity problem ∀x, A ∧ Q ⇒ Q . 0 can be
rephrased

∀x, A ∧Q ⇒
(
Q′×ΠA ′

)
. 0. (9)

Let us introduce some notations to expose the reformula-
tion. Let si ∈ {−1,+1} denote signs. The sign of ΠA ′

is obviously positive on the polyhedron
∧p′

i=1(si × Ai) . 0
with si = +1 for all i. We can generalize the reason-
ing by splitting the sign study onto a disjunction of polyhe-
dra:

∨
(s1,...,sp′ )∈{−1,1}p

′ A ′(s1,...,sp′ ) where A ′(s1,...,sp′ ) ,∧p′

i=1 (si ×A′i) . 0 is a polyhedron made of the constraints
of A ′ with signs settings. The sign of ΠA ′ is Πp′

i=1si on
A ′(s1,...,sp′ ).

Proof Note that, by construction, Πp′
i=1(si × Ai)

is positive on A ′
(s1,...,sp′ )

. Then, on A ′
(s1,...,sp′ )

,

ΠA ′ = Πp′
i=1Ai = Πp′

i=1s
2
i × Ai =

(
Πp′

i=1si
)
×

(
Πp′

i=1(si ×Ai)
)

= Πp′
i=1si �

Some sign settings give empty polyhedra. For instance
s1×x ≥ 0 ∧ s2×(1 − x) ≥ 0 has solutions for (s1, s2) ∈
{(1, 1), (1,−1), (−1, 1)}, it respectively corresponds to 0 ≤
x ≤ 1, x ≥ 1, x ≤ 0, but it is empty for (s1, s2) = (−1,−1)
which stands for 1 ≤ x ≤ 0. Let P denotes the set of
sign settings s ∈ {−1,+1}p

′
such that A ′s is non-empty

and Πp′

i=1si = +1. Similarly N denotes the sign settings of
non-empty polyhedra with Πp′

i=1si = −1. Then, Q′×ΠA ′ is
positive iff Q′ is positive on P and negative on N . Formally,

Q′×ΠA ′.0 ≡ ∧ ∀A
′
s ∈ P, ∀x, x ∈ A ′s ⇒ Q′(x) . 0

∀A ′s ∈ N , ∀x, x ∈ A ′s ⇒ −Q′(x) . 0

Therefore, the problem (9) ∀x, A ∧Q ⇒ Q′×ΠA ′ . 0
can be split into |P|+ |N subproblems

∀x, A ′s ∧A ∧Q ⇒ Q′ . 0 for A ′s ∈ P
∀x, A ′s ∧A ∧Q ⇒ −Q′ . 0 for A ′s ∈ N

3 Experimentations
We study the impact of factorization on solvers: is it eas-
ier for an off-the-shelf solver (like Z3) to answer the ques-
tion Q . 0 knowing that Q = Q1×Q2? An experimental
study will tell that this information is not exploited by the
standard resolution method called CAD (for Cylindric Algre-
braic Decomposition). Roughly speaking the CAD can be
thought as a usual study of the variation of a function, which
is complicated by the fact that the domain the multiviari-
ate polynomial function has numerous dimensions. We im-
plement the rule of signs learned at high school in the Z3
SMT solver and measures a gain of performance. We use
the SAGE math library for factorization. We explain how
the rule of sign can be elegantly encoded using exclusive-
or. It is not suprising since exclusive-or as strong connection

with parity problems. We discovered that parity problems
are intrisically difficult to solve as [GK14] shown it and are
still an active research domain like in this study: [LJN13;
HJ12]. This can explain that factorization has not been con-
sidered in SMT solver. However, Gwynne etal identified
classes of parity problems for which the resolution can be
efficient.

3.1 Xor Form Correctness
According the sign rule, a non null factor product is negative
if and only if an odd number of its factor is negative. So we
have to treat apart the null case. In the non null case, we can
rewrite the sign rule using the Xor operator.

Proof We want to prove by recursion the following
assertion:
An :
¬
(⊕n

i=0(fi < 0))
)
∧∧n

i=0 fi 6= 0
≡∏n

i=0(fi) > 0
Initialization:
¬ ((f0 > 0)⊕ (f1 > 0)) ∧ f0 6= 0 ∧ f1 6= 0

≡ ((f0 > 0)∧ (f1 > 0)∨ (f0 > 0)∧ (f1 > 0))∧ f0 6=
0 ∧ f1 6= 0
≡ ((f0 > 0) ∧ (f1 > 0) ∨ (f0 <= 0) ∧ (f1 <=
0)) ∧ f0 6= 0 ∧ f1 6= 0
≡ ((f0 > 0)∧ (f1 > 0)∨ (f0 < 0)∧ (f1 < 0))∧ f0 6=
0 ∧ f1 6= 0
By the sign rule:
≡∏1

i=0(fi) > 0 ∧ f0 6= 0 ∧ f1 6= 0

≡∏1
i=0(fi) > 0

We had initialized the assertionA0 so let see for any
An+1 supposing An is true.
Recursion:
¬
(⊕n+1

i=1 (fi < 0))
)
∧∧n+1

i=0 fi 6= 0

≡ ¬
(
fn+1 < 0⊕⊕n

i=1(fi < 0))
)
∧∧n+1

i=0 fi 6= 0

≡ ¬
(
fn+1 < 0⊕∏n

i=0(fi) > 0
)
∧∧n+1

i=0 fi 6= 0

Let’s set F ′ =
∏n

i=0(fi) we recognize the same for-
mula as in the initialization phase, so we conclude
≡ ¬ (fn+1 > 0⊕ F ′ > 0) ∧∧n+1

i=0 fi 6= 0
≡ fn+1 ∗ F ′ > 0
≡ fn+1 ∗

∏n
i=0(fi) > 0

≡∏n+1
i=0 (fi) > 0

So we have prove if An true, An+1 is true, but A0

is true so by recursion An is true for any n which
mean: ∀n ∈ N, ¬

(⊕n
i=0(fi < 0))

)
∧∧n

i=0 fi 6= 0
≡∏n

i=0(fi) > 0
�

This mean of writing the rule sign show well the necessity
of treating in dis-junction the null case. The Xor form has the
advantage that the solveur can’t ignore the rule sign and have
to solve it in order to solve the problem.

3.2 Xor form performance
In order to test the efficiency of the Xor form we have to use
some problems to test on them. We choose to not use usual
workbench because all of them are designed for a particu-
lar characteristic but none of them were relevant in our case.
Indeed most of them didn’t have any constraint with polyno-
mial of degree higher than 2. So we decide to generate our
own problems to run this study. We designed an problem gen-

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 78



erator capable of generating some batch of problems in both
classic and Xor form.

Definition 1 Classic problem form
(x irr1..x irra) ∈ <a

(x1..xb) ∈ <b

∀n ∈ J1, c+ d ∗ aK, Affn =
∑b

i=0 constn,i ∗ xi⋂
1≤n≤a

Pirr(x irrn) ∗∏d
i=1(Affi+c+1+d∗(n−1)) < 0

Definition 2 Xor problem form
(x irr1..x irra) ∈ <a

(x1..xb) ∈ <b

∀n ∈ J1, c+ d ∗ aK, Affn =
∑b

i=0 constn,i ∗ xi⋂
1≤n≤a

Pirr(x irra) < 0⊕ (
⊕c+d∗a

i=c+1(Affi < 0)))
⋂

1≤n≤a
Pirr(x irrn) 6= 0
⋂

c+1≤n≤c+d∗a
Affn 6= 0

As it is proven, use factorized instead of developed poly-
nomial in problems doesn’t impact z3 efficiency we use the
first one to fasten the generation. As a reminder Figure 1 is a
plot of the efficiency comparison of both for z3.

Figure 1: Cactus plot of z3 efficiency for factorized and de-
veloped formed

3.3 Xor problem efficiency
As advanced SMT solver are erratic by essence due to theory
behaviour, the study test several combination of characteris-
tic. The result is parameter dependant.
Figure 2 represent the time taken by z3 to solve problem in
raw and Xor form. The curve color show the number vari-
able of problems. The Xor form based on sage factorization
algorithm start to be better than pure CAD between degree of
4 and 8 depending on the number of variable of the polyno-
mial. The higher the number of variable is, more efficient the
Xor form is, in comparison to the CAD. It can be explained
by the fact, as previously said, the CAD doesn’t manage very
well multivariate polynomial. Multivariate constraint used in
these study are pure linear constraint product, study includ-
ing irreducible part were non conclusive due to both method

seemed to struggle the same way resolving it which lead to
same results.

Figure 2: Comparison between mean raw form resolution
time and Xor form one plus factorization time

The current drawbacks of the method are it is worth only
polynomial with many variable and an high degree, and its
incompressible cost. With Figure 3 have the proportion of the
sage factorization from resolution time. It appear half of the
incompressible time and 70% or more of the time is taken by
the factorization which mean many efficiency improvement
can be done here.

Figure 3: Proportion of time taken by the factorization phase
form Xor form

For instance Figure 4 is the same plot as Figure 2 despite
the factorization time is ignored. There is a really substantial
possible profit starting to degree of 3 which make interesting
the research of different method of more efficient factoriza-
tion.

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 79



Figure 4: Comparison between mean raw form resolution
time and Xor form one

An ongoing work pursue by Bernard Grenet of LIRMM
(IT laboratory of Montpellier) and Michäel Périn of Verimag
show it exist a fast algorithm of linear factorization which
would be an improvement for the Xor form, first because it
could be directly implemented in the solveur reducing the in-
compressible cost, then because complete factorization algo-
rithm are necessarily cost-full but the information gain is not
worth in time consumed to compute. Focusing only on lin-
ear factor allow the algorithm to be really quick, more linear
factor are worth for the other method discussed in this article
too, as Handelman decomposition, the gain can be enhanced
by side effect when combined with theses ones.

4 HSat
We developed a SMT solver to test more freely our methods,
especially the method using Handelman theory. We used VPL
to implement an polyhedral based theory for the solving and
performed some test with it. We setup an experimentation
process to study VPL behaviour and Handelman decompo-
sition. The study showed up some heuristic VPL limitation
and which need an update in order to redoing the study and
conclude on Handelman decomposition efficiency.

4.1 Handelman SAT
The goal was to create a SMT solver based on the library
of polyhedral calculus, the VPL, developed and maintained
by the Verimag laboratory. As the VPL is written in Ocaml
we decide to use a SAT solver in the same language for
efficiency reason. We choose MSat, MSat is a modern Sat
solver create by Guillaume Bury and derived from Alt-Ergo
Zero from Microsoft. So HSat is the merging of MSat and the
VPL library which make an important use of the Handelman
mathematics theory giving the name to Hsat, Handelman
SAT.

MSat wasn’t fully compatible with theory addition and it
needed many re-writing. The first important part was on the
file parser, MSat using Dolmen a librairy developed by the
same author which weren’t able to parse correctly all math-
ematical operator. The biggest re-writing was on the typing

and the theory handling. We redesigned the problem analyz-
ing part of HSat to be theory oriented. We create a mod-
ule interface for theory and added some algorythme in order
to manage multi-theory capabilities. We made the choice to
assign a theory to each symbol (as equation or boolean op-
erator) during the analyze phase. The assignation is done
via dedicated analyzer implemented in each theory. This be-
haviour is not optimal but it is an excellent compromise be-
tween efficiency, multi-theory capabilities and implementa-
tion time when no dynamic theory change are needed for the
same expression.

4.2 Handelman decomposition

Definition 3 Handelman Problem
(c11..cNA) ∈ QN∗A

(x1..xN ) ∈ QN

(p1..pA) ∈ NA

∀j ∈ [1, A], Affj =
∑N

i=1 cij ∗ xi
∀j ∈ [1, A], Affj > 0∑A

i=1(Affpi

i ) > 0

Definition 3 is an optimal form of problem for the Handel-
man decomposition. Studying efficiency of Handelman de-
composition on it give us a mighty top bound of performance.
We have generated some Handelman form problem test and
their study showed up some limitation on the VPL heuristic.
When confront with constraint generated by product of linear
constraint of the problem, which should be the optimal form
for the VPL, their heuristic are currently searching for an too
complicated decomposition. That behaviour made the qual-
itative study to be delayed. Indeed the slowness induced by
this behaviour made the result of studies too low in compari-
son of the expectation. That is the reason why we recommend
to start over the study with the already done experimentation
process as soon as VPL heuristic had their behaviour fixed.

4.3 Xor issue

We tried to test the factorization with Xor form with HSat but
it appear that MSat don’t have a good implementaion of Xor
operator handling. The incapacity of MSat handling imbri-
cated Xor operation prevent us tu push farther the study on
Xor form.

4.4 VPL experimentation

We studied the other main functionality of the VPL, the poly-
hedral calculus. To do so we designed some study focused on
linear constraint analyze. Figure 5 is the time taken by z3 and
Hsat (ie the VPL) to solve some linear unsat problem.

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 80



Figure 5: Comparison between mean raw form resolution
time and Xor form one

Both solver had different behaviour, when HSat is quick to
solve but its time taken grew up quickly too, z3 is slower but
has an almost constant time consumption to solve the prob-
lem. We can conclude Hsat, thanks to the VPL polyhedral
implementation, is more efficient to compute linear problem.

Figure 6: Comparison between mean raw form resolution
time and Xor form one

The second interesting point we tested about the VPL is its
ability to ignore irrelevant data. Indeed, du to its implemen-
tation the VPL has a more wide focus than the CAD theory
which work separately on all constraint. To test this ability
we generate unsat linear problem in which we include a dif-
ficult multilinear constraint with only variable not present in
the linear constraints. The best strategy to treat such prob-
lem is to completely ignore the multilinear part and focus on
the linear one, the multilinear constrain having absolutely no
influence on the problem the optimal resolution time is the
time taken to solve only the linear part. We can see in Figure
6 that HSat solve easily the problem ignoring the irrelevant
part when z3 waste most of its time solving the multilinear
constraint.

5 Tools
In order to test all the methods and solving tool we designed
a tool chain of amortization and batch test managing. Figure
[ref] is the global organization of the project as an layered ar-
chitecture. Each layer had been designed for specific purpose
and with an judged adapted technology. We decide the effi-
ciency gain is higher benefit than the loss of maintainability
due to heterogeneous technology.

5.1 Detailed layer
Solver
The most important part of this project is the solver, which
is the program we are studying. It is in fact 2 different pro-
gram, the first one is an external solver used as a reference,
we choose z3. The second one is HSat which is the smt solver
we developed during this project to test our diverses theory.
HSat is developed in Ocaml because it allow the possibility of
CoQ certification to prove the code and because it use mainly
the VPL library which is written in Ocaml.

Problem Generator
As explained in part [] in order to test specifically some aspect
of the behaviour of our theory, we designed some category of
problem detailed in []. Then we developed an Ocaml program
capable of generating a problem of these kinds according to a
bunch of parameters. We choose Ocaml first because it’s the
technology use in the solver and it’s the main technology of
this research project which allow some code re-usability.

Batch Problem Manager
It would be extremely inefficient and painful to use directly
the problem generator, indeed for a study user would use only
one or two problems but a batch of problem. More he would
make some variation between set of problem to see the differ-
ence. That’s why we create this top layer script which allow
to create easily some sets of problem with parameter vary-
ing gradually in range and more than one problem of each
parameters to reduce the randomness effect.

DATA Framework
This work was intended to study several theory and many pa-
rameters for each one. That lead to extremely heterogeneous
type of DATA. Indeed some are classical analyzing of the im-
pact of parameters by an other, other was representing up to 5
degree of variation in the same picture, due to the frequency
of ”local behaviour” which could lead easily to wrong general
conclusion. An example is, the solving time in function of
the number of variable and the amount of linear constraint is
considerably varying of behaviour depending of max degree,
it can be approximately linear for degree of 2 then exponen-
tial for degree of 3 then faster for degree of 4. This behaviour
can be explained by the theory strategy which are chosen by
the solver sometime a characteristic change make the solver
adopting an other strategy of solving which can be more effi-
cient even if the problem is harder in theory.
In addition of the quantity of information that could be
needed to be represented, many non ”classical” graph and
computation has to be done, for instance the cactus plot or
even a graph which represent solving time for a solver in

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 81



Figure 7: Test platform architecture

function of solving time for another allowing to visually rep-
resent the difference for each problem/point specifically in-
stead of watching for the global behaviour. For these reasons
i decide to thing, first i would use R to work with my data,
because it is convenient as R is intend and efficient for mak-
ing statistics. The second is, writing algorithm in R for each
plot and computation is really painful, even with copy and
paste it’s tedious and make the code thousand of line wide
and opaque. So I decided to write a framework on top of R
library to do computation and drawing special plot easily.
The framework is based on computation algorithm I already
did for the preliminary test and is designed according 3 prin-
ciples:
• Silent Data:

All data has to be manipulated silently which mean the
user do not manipulated variable or array of data but
function already known of which data we are talking
about allowed by the second point. That allow to re-
duce considerably the size of the code ignoring many
code redundancy.
• Functional programming:

I choose functional programming for 2 reason, the first
one is because functional code is shorter (in character)
than imperative one, the fact that long stack of function
call is less readable should not be a weak point because
it aim to be concise (one line wide) thank to it’s effec-
tiveness of writing.
The second one is I would not the user writing code for
making plot but only describing what he want as he do
in natural language.
• Limited amount of function

The framework must be 100% classic R compatible and
has to be easily extended to make weird plot without
really overstepping the ”not code” principle, that point
will be discuss after.

I achieve these goals by developing currification with op-
tional parameter in R. That mean function of the framework

can be called with less parameter than they are intended to
have and it return a function which intended to have missing
parameter, more some optional named parameters can be
added which is particularly useful to limit the amount of
function of the framework as parameter name for the function
graf to add a title.
Even if data are silent they can be manipulated by function
as ”select” to filter row of data according value of a specific
field, function ”foreach” allowing to apply a function to each
set of data with different value of a specific field, function
”mean” which collapse a data set according mean function
for each different value of a specific field, ”col” which only
return a column of data set or classical mathematical function
as log, sum, cumsum...
We generate the Figure 8, the simplest instance of plot
possible with the command:

graph(line(col(”x”), col(”y”)))

Figure 8: A simple plot

Figure 9 is a simple classical plot generated with the

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 82



following command:

graph(auto color(foreach(”solver”,

line(col(”x”), col(”y”)))))

Figure 9: A classic plot

A more complex plot with 3 degree of variation:
Use the function ”then” which evaluate two function instead
of one, ”auto color” which apply automatically color on data
set in a determinate way and the function ”ldoted” which
draw a doted line.

graph(then(select(”Type”, ”Raw”, auto color(foreach(

”solver”, line(col(”x”), col(”y”))))), select(”Type”, ”

Factorized”, auto color(foreach(”solver”, ldoted(col(”x”),

col(”y”)))))))

Figure 10: Comparison between mean raw form resolution
time and Xor form one

DATA Analyzer
To make a simpler use of the framework for external usage I
wrote a simple R script that allow to execute a command as
previously seen and produce a pdf of the generated graph.

Graphical User Interface
Finally, all these tools could be a bit complicated to use,
especially the batch manager, because they need the user to
remember the parameters which are a lot. That’s the reason
why I decide to produce a GUI showing visually every single
feature described previously making they’re use extremely
simple.

Figure 11: Main screen of Batch Problem Manager

Figure 12: Detailed screen of Batch Problem Manager

For the framework, as it appear as a drawback managing
parentheses in a long expression of the framework and the
fact that the user would regularly use a copy-paste function
(to create a doted line with only one parameter difference)
which is sometimes a bit complicated due to the parentheses.
I designed a small GUI which render the expression as a tree
where node/sub-tree can be expanded or collapsed. That al-
low first to work only in with small expression negating the
parentheses problem and allowing a simple copy/past of node
or sub-tree. These two features make the framework really

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 83



user friendly. It still remain a confident user could be faster
writing directly the command manually, that is why I have let
this possibility in the GUI. Finally in later work it could be in-
teresting to add an integrated documentation and a code pred-
ication. An other main feature which still need to be added
is the extension management, it is really simple like it would
be only a way to add function before executing the command
and making a simplified management and use in the GUI.

6 Conclusion & Future Work
6.1 Future Work
On the study
When VPL issues will be solved, il will be important to restart
the experimentation to gather the results needed to conclude
the study about Handelman theory methods. More, other re-
lated method had to be explored as ideal decomposition or
euclidean division. When the VPL will permit it, it will be
interesting to study the interacton between the VPL en the
other methods.

On the Platform
To allow the test platform to lived outside its specific initial
purpose it could be use-full to create an abstraction of the in-
terfaces and layer. That would allow to use any and pilot au-
tomatically any software and gather its data to benefit of the
features of the DATA Framework easily. Closer to its initial
purpose, that would allow to easily adapt the platform to any
other kind of testing, allowing to choose customized param-
eters and to provide your own test generator. Finnaly as the
DATA Framework is the most important feature of the plat-
form, improving it would be greatly beneficial for the plat-
form. Or even enhancing the communication with the frame-
work, like adding better functionalities to write framework
command like auto-completion, integrated documentation or
a better version of the current syntaxic tree viewer for more
complicated command.

On the Framework
The Data Framework could be a really use-full tool, it could
be shared with the community allowing people to use it but
in order to do that a better and detailed documentation need
to be written and exportation function must be improved to
allow more flexibility. The top layer of the DATA Framework
must be improved too to be usable more easily as an external
tool from anybody.

6.2 Conclusion
In this article we have shown we could decompose polyno-
mial constraint in different way to reduce problem complex-
ity and resolution time. We point out non irreducibly is an
information ignored by modern solver like z3. This infor-
mation still use-full as it allow a performance gain when use
an adapted form to force the solver knowing it. The gain
reached in this article for the factorization method isn’t opti-
mal as we could improve it by reducing communication de-
lay including directly algorithm in solver and using a more
suitable and faster algorithm. We presented our work on the
creation of HSat an SMT solveur based on the SAT solver
MSat and the library of polyhedral computation the VPL and

we explained how using polyhedron can be an improvement
for SMT solvers. Finally we detailed the structure and func-
tioning of the test platform we designed to conduct all theses
studies.

A Proofs
Proof ∀x, ψ(x) ⇒ ϕ1(x) ∧ ϕ2(x) ≡
(∀x, ψ(x)⇒ ϕ1(x)) ∧ (∀x, ψ(x)⇒ ϕ2(x))
�

Proposition 1 (5 p.2) UNSAT(A ∧ Q) ≡ UNSAT(A ) ∨
(∀x, A (x)⇒ ¬Q(x))

Proof UNSAT(A ∧Q) ≡ ¬ (SAT(A ∧Q))
≡ ¬ (SAT(A ) ∧ SAT(A ∧Q))
≡ ¬SAT(A ) ∨ ¬SAT(A ∧Q)
≡ UNSAT(A ) ∨ ¬ (∃x, A (x) ∧Q(x))
≡ UNSAT(A ) ∨ (∀x, ¬A (x) ∨ ¬Q(x))
≡ UNSAT(A ) ∨ (∀x, ¬A (x) ∨ ¬Q(x))
≡ UNSAT(A ) ∨ (∀x, A (x)⇒ ¬Q(x))

�

Proposition 2 (6 p.2) Given Q(x) =
∧q

i=1Qi(x)

∀x, A (x)⇒ ¬Q(x) ≡ ∀x, A (x)

⇒
q∨

i=1




q∧

j=1,j 6=i

Qj(x)⇒ ¬ (Qi(x))




Proof The proof relies on the general version of the
following equivalences: ¬ (ϕ1 ∧ ϕ2 ∧ ϕ3) ≡ ¬(ϕ1 ∧
ϕ2) ∨ ¬ϕ3 ≡ (ϕ1 ∧ ϕ2)⇒ ¬ϕ3

¬Q(x) ≡ ¬
(∧q

j=1Qj(x)
)

≡ ∨q
j=1 ¬ (Qj(x))

≡ ∨q
i=1

(∨q
j=1 ¬ (Qj(x))

)
since A ≡ A ∨ . . . ∨A

≡ ∨q
i=1

(∧q
j=1,j 6=iQj(x)⇒ ¬ (Qi(x))

)

�

References
[dOBP16] Steven de Oliveira, Saddek Bensalem, and Virgile

Prevosto. Polynomial invariants by linear alge-
bra. In Automated Technology for Verification and
Analysis - 14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Pro-
ceedings, pages 479–494, 2016.

[GK14] Matthew Gwynne and Oliver Kullmann. On sat
representations of xor constraints. In Language
and Automata Theory and Applications (LATA),
pages 409–420. Springer International Publish-
ing, 2014.

[HJ12] Cheng-Shen Han and Jie-Hong Roland Jiang.
When boolean satisfiability meets gaussian elim-
ination in a simplex way. In Proceedings of
the 24th International Conference on Computer
Aided Verification (CAV), CAV’12, pages 410–
426. Springer-Verlag, 2012.

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 84



[LJN13] Tero Laitinen, Tommi Junttila, and Ilkka Niemelä.
Simulating parity reasoning. In Ken McMillan,
Aart Middeldorp, and Andrei Voronkov, editors,
Logic for Programming, Artificial intelligence,
and Reasoning (LPAR), pages 568–583. Springer
Berlin Heidelberg, 2013.

Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s
Theorem Antoine Delise

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 85





Automatic Grading based on Bisimulation

Alexandre Borthomieu
Grenoble, France

alexandre.borthomieu@etu.univ-grenoble-alpes.fr

Supervised by: Michael Perin

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
MOOC1 and exams require lot of time to teachers
and give no useful feedback to students. We believe
that instant feedback on student’s answer is a better
way to practice and learn. In this paper, we present
the first steps of an algorithm which will automat-
ically grade students with a feedback as close as
possible to their answer. This algorithm is based on
Bisimulation [Sangiorgi, 2009] and can be used on
trees, automatons and graphs.

1 Introduction
The first goal of this work is to grade students and to provide
useful feedback on automaton. In order to achieve that, we
use the structure of a colored labeled oriented graph (called
CLOG). It is a simple generalization which allow a compati-
bility with graphs.

1.1 Grading
Before getting a grade, the teacher has to provide the solu-
tion, hidden from students, who have to provide their solu-
tion. Both solutions will be written in a certain syntax in or-
der to be parsed and stored in a CLOG structure. The next
step is to let the algorithm work.

1.2 Similar works
We can find similar ideas at Microsoft Research Center :
[Wang et al., 2018; Gulwani et al., 2018] developed algo-
rithms which aim to repair code’s parts from students on
MOOC.

2 Algorithm
The algorithm developed here need to compare both solutions
from a student (1.a) and a teacher (1.d). To be able to compare
those, both solutions need to be complete. Therefore, the first
step of this algorithm is to add a new node which will gather
all the edges. It is called a black hole (1.b).

1Massive Online Open Courses

(a)

A

0

1

a

2

b

(b)

A

0

1

a

3

b

2

b

a

b

b a

(c)

A

0

Cost: 1

1

a

3

b

2

b

a

a

b

b a

(d)

S

0

1

a b

Figure 1: (a) Student’s solution (b) complete Student’s so-
lution (c) Final solution and feedback example (d) Teacher’s
solution

2.1 Equivalence Classes and Reparation
Based on Bisimulation [Sangiorgi, 2009], the algorithm will
create equivalence classes in which each node from both
CLOG will be stored. If for each node of a teacher’s solu-
tion, there is at least one node from the student’s solution in
an equivalence class and not any node of the student’s solu-
tion is alone in a class, then these two CLOG can be called
equivalent. Otherwise, a reparation will be required.

To be repaired and placed in a equivalence classes Eq, a
node n needs to have the same future than the other nodes
in Eq. In other word, n should be equivalent to every node
of Eq. But, the algorithm do not have the information on
which equivalence classes n should belong to. Therefore, it
will explore all possible repairs (with pruning). It will try to
put each wrong node in each equivalence classes. Each case
will produce a new automaton.

Finally, we retain the automaton based on the first student’s
solution and with the less expensive and minimal repair(s)
(1.c).

3 Future work
This algorithm can be upgraded by improving the explo-
ration, in order of increasing cost for instance. But another
algorithm may be developed without any enumeration of re-
pair. The global cost of this algorithm should be better. And
last, this work can be generalized to any larger domain if it

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 87



contain a decidable equivalence’s relation.

4 Conclusion
The aim of this work was to create a first algorithm which can
provide the right answer with a minimal number of repair. We
successfully achieved that goal. However, it is absolutely not
an optimal solution, but we can now examine this algorithm
and refine it to improve the global cost and the execution time.

References
[Gulwani et al., 2018] Sumit Gulwani, Ivan Radiček, and

Florian Zuleger. Automated clustering and program repair
for introductory programming assignments. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2018,
pages 465–480, New York, NY, USA, 2018. ACM.

[Sangiorgi, 2009] Davide Sangiorgi. On the origins of bisim-
ulation and coinduction. ACM Trans. Program. Lang.
Syst., 31(4):15:1–15:41, May 2009.

[Wang et al., 2018] Ke Wang, Rishabh Singh, and Zhendong
Su. Search, align, and repair: Data-driven feedback gener-
ation for introductory programming exercises. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2018,
pages 481–495, New York, NY, USA, 2018. ACM.

Automatic Grading based on Bisimulation Alexandre Borthomieu

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 88



Automatic Grading based on Bisimulation
applications to automata, trees, graphs, all seen as colored labeled oriented graph

Exercise: Give an automaton A that recognises {(ab)n | n ∈ N}
Student’s answer Teacher’s hidden solution

Answer A
A := automaton {
-> ((0)) - a -> (1)

(1) - b -> ((2))
}

parsing ;−→
output

A

0

1

a

2

b

The question is

'
?

S

0

1

a b

parsing ;←−
output

for check

Solution S
S:= automaton{

->((0))-a->(1)-b->((0))
}

Algorithm
First, complete both automaton with a ”black hole” node
Create equivalence classes for both (based on bisimulation1)
Find nodes of A that match with none of equivalence classes
Create a new Automaton Ar for each repair possible (repairs
listing) such that

Ar ' S

Find less expansive and minimal repair(s)
Produce a grade with the cost of the repair

Feedback
The purpose of this work is to
give an appropriate feedback to
students.
I That feedback correspond to

the minimal repair to his
answer completed with an
additional node ”black hole”
(node 3) and can be display
like this one

⇒

A

0

Cout: 1

1

a

3

b

2

b

a

a

b

b a

Final Solution

Limitations
I Exploration of all possible repairs with pruning

Solutions produced

A

1

Cout: 7

0

3

b a

b 5

a

2

a b

b a

b

a

A

0

Cout: 4

3

b 5

a

1

a b

2

a b

b a

b

a

A

0

Cout: 2

1

a

2

b

b

a

b a

A

2

Cout: 4

0

3

b a

1

b

a

a

b

b a

A

2

Cout: 50

b

3

a

1

b

a

a

b

b a

A

2

Cout: 4

0

3

b a

1

b

a

a

b

b a

A

0

Cout: 3

2

a

3

b

1

b

a

b

a

b a

A

4

Cout: 60

1

ab

2

b

3

a

a

b

b a

a

b

A

0

Cout: 1

1

a

3

b

2

b

a

a

b

b a

A

4

Cout: 40

1

a

3

b

2

b

a

a

b

b a

a

b

A

4

Cout: 40

1

a

3

b

2

b

a

a

b

b a

a

b

A

4

Cout: 6

0

3

a

b

1

a b

2

a b

b a

a

b

A

1

Cout: 7

0

b

3

a

a

b 2

a b

b a

A

4

Cout: 6

0

3

a

b

1

2

b

a

ab

b a

a

b

A

2

Cout: 50

b

3

a

1

b

a

a

b

b a

Future Work
Upgrade this algorithm by exploring repairs in order of increasing cost
New algorithm not based on enumeration of repairs

Generalization of this work to other domains with decidable equivalence

Related Work
I D. Sangiorgi, On the Origins of Bisimulation and Coinduction. TOPLAS’2009.
I Similar ideas are applied at Microsoft for assessing programming exercises on Massive Online Open Course to obtain developer certificate

K. Wang, R. Singh and Z. Su. Search, Align, and Repair: Data-Driven Feedback Generation for Introductory Programming Exercises. PLDI‘2018
S. Gulwani, I. Radiček and F. Zuleger. Automated Clustering and Program Repair for Introductory Programming Assignements. PLDI‘2018

Michael Perin, Alexandre Borthomieu
{firstname.name}@univ-grenoble-alpes.fr





Large Scale Traces Analysis : Multi-Scale Patterns
Extended Abstract

Nils Defauw
POLARIS (LIG) and IM2AG (UGA)

Grenoble, France
nils.defauw@etu.univ-grenoble-alpes.fr

Supervised by Jean-Marc Vincent

1 Introduction
In the context of large scale traces analysis, the quantity of
information to compute is often too big for analysis without
necessarily having this whole information relevant. A typical
case is the analysis of irregularities in execution traces of high
performance applications, counting millions of cores spread
in several places in the world. In these cases, any irregular-
ity arising in a single core, a machine or a whole cluster can
be hard to notice. As a low-cost strategy, aggregation tech-
nique have been developped [Lamarche-Perrin, 2013] which
consists of choosing the most qualitative partition in a set of
acceptable partitions. But in a low-knowledge system, we
can’t always define the set of acceptable partitions and we
thus aim to provide a way to aggregate without this knowl-
edge. We explored Lempel-Ziv techniques for finding places
where regularity is broken, such places could define partitions
in the system for aggregation.

2 Aggregation based on acceptable partitions
The aggregation technique [Lamarche-Perrin, 2013] previ-
ously developed consists of reducing the complexity of a sys-
tem without losing too much information. Actually, for each
partition in the set of acceptable partitions, it aggregates the
system with this partition replacing each part of the parti-
tion with a macroscopic object simpler than the part itself
which represents this part. Then each aggregated system is
interpreted, which means that each macroscopic object of the
aggregation is redistributed on the microscopic objects that
compose it and this interpretation is compared with the origi-
nal system, the divergence between the two is called the infor-
mation loss between the original system and the aggregated
one. The information loss is one of the two criteria defining
the quality measure, the other being the reduction of com-
plexity of the aggregation, which is the number of macro-
scopic objects (or parts) in the aggregation, the lower parts an
aggregation has, the simpler it is. Each acceptable partition
is compared using this measure and the best partition is used
for the aggregation. This leads to aggregations with a balance
between the reduction of complexity and the loss of infor-
mation, because aggregating homogeneous parts in a single
macroscopic object leads to less information loss than aggre-
gating in a single object an heterogeneous part of the same
size. But the problem with this approach is that it requires

knowledge on the system we’re analyzing because defining
the set of acceptable partitions needs for the user to know the
topology of the system.

3 Lempel-Ziv techniques for partitioning
We studied Lempel-Ziv techniques and particularly the
Lempel-Ziv complexity [Lempel and Ziv, 1976] as its useful-
ness in finding discontinuities in the regularity of a sequence
for providing a way for the aggregation algorithm to parti-
tion itself the system in homogeneous components without
the need of a set of acceptable partitions. We found that
when inserting a small random pattern at random positions
in a large regular sequence we could clearly identify discon-
tinuities at the positions where the patterns where introduced
in the graph of the eigenvalue [Lempel and Ziv, 1976] of the
prefixes of the sequence. We also remarked a few other dis-
continuities that we can’t explain yet in the sequence and that
need to be studied in future work. We also started to study the
eigenvalue of a sequence itself and found an elegant way to
represent it with the construction of a tree of suffixes which
would potentially lead to better understanding of this indica-
tor.

4 Conclusion
We studied Lempel-Ziv eigenvalue applications in aggrega-
tion process with a few interesting and promising results but
we left a lot of questions unanswered which leads us to think
that a continuation of this work is necessary. In particular,
how to explain the unexpected discontinuities in the graph
of eigenvalue, what is the behaviour of an homogeneous se-
quence not perfectly regular unlike in our experiment, and can
we use statistical tools to study the eigenvalue of a sequence
compared to the filling of the tree of suffixes that represents
it.

References
[Lamarche-Perrin, 2013] Robin Lamarche-Perrin. Analyse

macroscopique des grands systèmes. PhD thesis, Labo-
ratoire d’Informatique de Grenoble, oct 2013.

[Lempel and Ziv, 1976] Abraham Lempel and Jacob Ziv. On
the complexity of finite sequences. IEEE Transactions on
Information Theory, 22(1):75–81, jan 1976.

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 91



Large Scale Traces Analysis : Multi-Scale Patterns
Nils Defauw supervised by Jean-Marc Vincent

Team POLARIS - Laboratoire d’Informatique de Grenoble - Université Grenoble Alpes

Objectives
Using Lempel-Ziv techniques [1] for partitioning
and aggregating large scale systems
• No need for an extra-knowledge of the system

(no set of acceptable partitions)
• Possible discovery of the inner nature of the

system (its topology)
First step :
• Understanding the link between Lempel-Ziv

theory [1] and algorithms [2, 3] and the
regularity of a sequence

• Testing Lempel-Ziv indicators on multiple
specially forged sequences

Context

Execution traces of high performance applications
• Huge amount of data, difficult to summarize

without losing too much information
• Multi-scale patterns in the data require multiple

levels of aggregation

Figure 1:Execution trace on the GRID’5000 platform

Figure 2:One dimension execution trace, function of the time

Based on aggregation technique

Extension of the efficient and low cost aggregation
algorithm [4]
Pros
• Assurance to have the most qualitative partition

in the set of acceptable partitions
• Assurance to have an aggregation reliable with

the topology of the system
Cons
• Require a previous knowledge of the system
• Can miss a yet unknown link between

microscopic objects

Figure 3:Aggregated execution trace on the GRID’5000 platform

Use Lempel-Ziv techniques

Lempel-Ziv techniques [1, 2, 3] as a notion
of regularity in the sequence
• Usage of the Lempel-Ziv complexity [1] and more

particularly the eigenvalue used by it
• Sub-additivity property useful for a measure of

complexity (a low-complexity sequence is said
regular, same concept)

C(S · Q) ≤ C(S) + C(Q)
• Can be summarized as the growth of vocabulary

(list of sub-chains inside the sequence), easily
represented by a tree

Figure 4:Vocabulary of 110011011 with the last nodes added
in gray

Important Result
After generating a regular sequence 0101 0101 0101 . . . of length 1024 and adding a 32 bit long specific
pattern at positions 86, 258 and 622, we remark discontinuities in the graph of the eigenvalue of the
sequence at positions ≈ 90, ≈ 260, ≈ 430, ≈ 620 and ≈ 980.

Figure 5:Eigenvalue of S, y = k(S(1, x))

Conclusion

This research has brought some interesting results
like the discontinuities in the graph of the eigenvalue
of a sequence and the vocabulary representation in
a tree form. This is a promising lead for future work
for which we hope some concrete applications will
appear. A lot still needs to be understood like the
two other discontinuities in the graph of the figure 5
and a lot of new experiments needs to be done in
order to fully understand the measures involved and
be able to use this knowledge to aggregate a large
scale system without more information on the struc-
ture of the system.

References

[1] Abraham Lempel and Jacob Ziv.
On the complexity of finite sequences.
IEEE Transactions on Information Theory,
22(1):75–81, jan 1976.

[2] Jacob Ziv and Abraham Lempel.
A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory,
23(3):337–343, may 1977.

[3] Jacob Ziv and Abraham Lempel.
Compression of individual sequences via variable-rate
coding.
IEEE Transactions on Information Theory,
24(5):530–536, sep 1978.

[4] Robin Lamarche-Perrin.
Analyse macroscopique des grands systèmes.
PhD thesis, Laboratoire d’Informatique de Grenoble, oct
2013.





Knowledge base mining using compressed data structures

Adelina PROKHOROVA
adelina.prokhorova@etu.univ-grenoble-alpes.fr

SLIDE - LIG, Université Grenoble Alpes

1 Introduction

Knowledge bases (KBs) provide information about a great variety of entities such as people, places, organisations, countries, cities,
films... Today’s KBs contain millions of entities and hundreds of millions of facts, however, these KBs are limited to human knowledge
and capacity, so they are still far from complete. Due to new approaches it is possible to find patterns(regularities) to infer new
knowledge, to evaluate the sureness of each rule to construct a complete KB, to identify potential errors, to reason the rules, and
to understand the data better.

2 Related work

Existing approaches of knowledge rule mining are : AMIE+ [1], Ontological Pathfinding [3]. The first version of AMIE [2] shows
that Horn rule mining corresponds to association rule mining on a database, which are defined as a list of transactions (set of
items). The problem of association rule mining is that the standard measurements for support and confidence do not produce
good results for some applications.
Ontological Pathfinding and AMIE+ used association rule mining. A rule consists of a head : r(x,y) and a body : {B1,...,Bn},
where the head is a single atom and the body is a set of atoms:

B1^B2^...^Bn)r(x,y)()�!B)r(x,y)
The used definition of support is explained as the number of distinct pairs of subjects and objects in the head of all instantiations
that appear in the KB.

supp (
�!
B)r(x,y)) := #(x,y) : 9z1,...,zm :

�!
B^r(x,y)

There are two definitions for confidence, the first one, called standard confidence, counts all unrepresented facts as negative evidence,
and the second one calls PCA confidence and operates only with facts that we know to be true together with the facts that we
assume to be false.

conf (
�!
B)r(x,y)) :=

supp (
�!
B)r(x,y))

#(x,y) : 9z1,...,zm :
�!
B

confpca (
�!
B)r(x,y)) :=

supp (
�!
B)r(x,y))

#(x,y) : 9z1,...,zm,y0 :
�!
B ^ r(x,y0)

All the definitions were taken from article describing AMIE+. The problem of those two approaches is that they took a lot of
time to execute the program on the big datasets, due to evaluating each rule from the queue of rules, initially the size of all rules
is 1, later, deciding that the rule is sure, it would be added in the queue, and the execution would be continued, but those algorithms
are limited by rule size equals to 3 and it they are using also head coverage, some facts could be loosed. Another one approach
that could resolve this problem is SAMi, developed at LIG, using Frequent Subgraph Mining (FSM). SAMi, uses a compressed
representation of the embeddings of a pattern based on automata. SAMi generates patterns recursively, by applying primitive
operations on parent patterns of smaller size. This approach is more efficient, avoids duplicates and his complexity depends on
the size of the automata instead of the number of embeddings.

3 Contribution

The aim of my internship was to find a possibility to implement the indicated definitions of support and confidence to evaluate SAMi
results. My method to calculate support using automata is looking for distinct pairs of variables at indicated levels of automata.
For exemple, we have a rule:
A isMarriedTo B ^ B hasChild C ) A hasChild C, so the goal is to find all pairs of (A, C) which satisfy this rule. To realise this
aim, the algorithm must return a set of all values from level 1 in automata and all corresponding values from level 3. To compute
standard confidence, ”result” was computed in the same way, just automata was corresponding to body of rule :
A isMarriedTo B ^ B hasChild C, but the idea is the same - find all pairs of (A, C), and the value of standard confidence is the
number of distinct pairs in support divided by the number of distinct pairs in ”result”. The calculation of PCA confidence is a
bit more complicated, but it is proceeding the same idea: computed pairs of (A, C) for a body must be controlled by A hasChild
C’, so A should have at least one child to be added to the ”final” set of values to calculate PCA confidence. To get a value of
this confidence, the number of distinct pairs in support must be divided by the number of distinct pairs in ”final” set.

4 Conclusion

During this internship a goal to implement an algorithm which allows evaluate rule’s confidence is achieved.
As the internship duration was limited, my algorithm works perfectly with these types of rules : ab ^ bc ) ac, ab ^ ab ) ab,
ab ) ab. The results of executing these types are the same as AMIE+ results on YAGO2 KB. Other types of rules could be
implemented in the future.

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 94



References

[1] L. Galárraga, C. Teflioudi, K. Hose, and F. M.Suchanek. Fast rule mining in ontological knowledge bases with amie+. The VLDB Journal,
24(6):707–730, Dec. 2015.

[2] L. Galárraga, C. Teflioudi, K. Hose, and F. M.Suchanek. AMIE: association rule mining under incomplete evidence in ontological knowledge
bases. WWW, 2013.

[3] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. Ontological pathfinding. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 835–846. ACM, 2016.

Knowledge base mining using compressed data structures Adelina Prokhorova

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 95



Knowledge base mining 
using compressed data structures

Adelina PROKHOROVA,  
adelina.prokhorova@etu.univ-grenoble-alpes.fr, 

SLIDE - LIG, Université Grenoble Alpes

Knowledge bases (KBs) provide information 
about a great variety of entities such as 
people, places, organisations, countries… It is 
possible to find patterns to infer new 
knowledge, to evaluate the sureness of each 
rule to construct a complete KB.

KB Facts Subjects Relations
YAGO2 core 948K 470K 32
DBpedia 3.8 11.02M 2.20M 650

Wikidata 8.4M 4.00M 431

A rule consists of a head: r(x, y) and a body:  
               , where the head is a single atom 
and the body is a set of atoms: 
B1 ^B2 ^ ... ^Bn ) r(x, y)() �!B ) r(x, y)

<latexit sha1_base64="jdxdX69jABA1WFfXNZpAuY0alRU=">AAADPnicjVE9T8MwEL2E788WGFksChJIKEq6wIjKwsAAiAISRZWTusXCjSPHAaqq/41/gZjYEAyIlZGzSVU+BY6SvHt379nnCxPBU+37d447NDwyOjY+MTk1PTNbKM7NH6UyUxGrRlJIdRLSlAkes6rmWrCTRDHaDgU7Di+2Tf74kqmUy/hQdxJ21qatmDd5RDVS9WJnmVTq3aBHaoLGDYPLfex53oCNkT3grXNNlZJXRK1er5POGqntyrglWFOrQa4mccNB3K30flIu14sl3/PtIt9BkIMS5GtPFm+hBg2QEEEGbWAQg0YsgEKKzykE4EOC3Bl0kVOIuM0z6MEkajOsYlhBkb3Abwuj05yNMTaeqVVHuIvAV6GSwApqJNYpxGY3YvOZdTbsb95d62nO1sF/mHu1kdVwjuxfun7lf3WmFw1N2LQ9cOwpsYzpLspdMnsr5uTkQ1caHRLkDG5gXiGOrLJ/z8RqUtu7uVtq84+20rAmjvLaDJ7MKXHAwddxfgdHZS/wvWC/XNqq5KMeh0VYglWc5wZswQ7sQRW9750RZ9YpuDfug/vsvryXuk6uWYBPy319AwAFu2s=</latexit><latexit sha1_base64="SQR2FBvPJEYa0E0vajW6K8BlV7c=">AAADPnicjVFNS8NAEJ3E7++qRy+LVVCQkBRBj1IvHjyoWBWslE26rYvbbNhs1FL63/wX4smb6EG8enR2Tamf6IYkb97Me7uzEyaCp9r37xx3YHBoeGR0bHxicmp6pjA7d5TKTEWsEkkh1UlIUyZ4zCqaa8FOEsVoKxTsOLzYNvnjS6ZSLuND3U7YWYs2Y97gEdVI1QrtJVKudYIuqQoa1w0u9bDneX02RvaAN881VUpeEbVyvUbaq6S6K+OmYA2t+rmqxA37cafc/Um5VCsUfc+3i3wHQQ6KkK89WbiFKtRBQgQZtIBBDBqxAAopPqcQgA8JcmfQQU4h4jbPoAvjqM2wimEFRfYCv02MTnM2xth4plYd4S4CX4VKAsuokVinEJvdiM1n1tmwv3l3rKc5Wxv/Ye7VQlbDObJ/6XqV/9WZXjQ0YNP2wLGnxDKmuyh3yeytmJOTD11pdEiQM7iOeYU4ssrePROrSW3v5m6pzT/aSsOaOMprM3gyp8QBB1/H+R0clbzA94L99eJWOR/1KCzAIqzgPDdgC3ZgDyrofe8MOdPOjHvjPrjP7st7qevkmnn4tNzXNwClu20=</latexit><latexit sha1_base64="SQR2FBvPJEYa0E0vajW6K8BlV7c=">AAADPnicjVFNS8NAEJ3E7++qRy+LVVCQkBRBj1IvHjyoWBWslE26rYvbbNhs1FL63/wX4smb6EG8enR2Tamf6IYkb97Me7uzEyaCp9r37xx3YHBoeGR0bHxicmp6pjA7d5TKTEWsEkkh1UlIUyZ4zCqaa8FOEsVoKxTsOLzYNvnjS6ZSLuND3U7YWYs2Y97gEdVI1QrtJVKudYIuqQoa1w0u9bDneX02RvaAN881VUpeEbVyvUbaq6S6K+OmYA2t+rmqxA37cafc/Um5VCsUfc+3i3wHQQ6KkK89WbiFKtRBQgQZtIBBDBqxAAopPqcQgA8JcmfQQU4h4jbPoAvjqM2wimEFRfYCv02MTnM2xth4plYd4S4CX4VKAsuokVinEJvdiM1n1tmwv3l3rKc5Wxv/Ye7VQlbDObJ/6XqV/9WZXjQ0YNP2wLGnxDKmuyh3yeytmJOTD11pdEiQM7iOeYU4ssrePROrSW3v5m6pzT/aSsOaOMprM3gyp8QBB1/H+R0clbzA94L99eJWOR/1KCzAIqzgPDdgC3ZgDyrofe8MOdPOjHvjPrjP7st7qevkmnn4tNzXNwClu20=</latexit><latexit sha1_base64="jdxdX69jABA1WFfXNZpAuY0alRU=">AAADPnicjVE9T8MwEL2E788WGFksChJIKEq6wIjKwsAAiAISRZWTusXCjSPHAaqq/41/gZjYEAyIlZGzSVU+BY6SvHt379nnCxPBU+37d447NDwyOjY+MTk1PTNbKM7NH6UyUxGrRlJIdRLSlAkes6rmWrCTRDHaDgU7Di+2Tf74kqmUy/hQdxJ21qatmDd5RDVS9WJnmVTq3aBHaoLGDYPLfex53oCNkT3grXNNlZJXRK1er5POGqntyrglWFOrQa4mccNB3K30flIu14sl3/PtIt9BkIMS5GtPFm+hBg2QEEEGbWAQg0YsgEKKzykE4EOC3Bl0kVOIuM0z6MEkajOsYlhBkb3Abwuj05yNMTaeqVVHuIvAV6GSwApqJNYpxGY3YvOZdTbsb95d62nO1sF/mHu1kdVwjuxfun7lf3WmFw1N2LQ9cOwpsYzpLspdMnsr5uTkQ1caHRLkDG5gXiGOrLJ/z8RqUtu7uVtq84+20rAmjvLaDJ7MKXHAwddxfgdHZS/wvWC/XNqq5KMeh0VYglWc5wZswQ7sQRW9750RZ9YpuDfug/vsvryXuk6uWYBPy319AwAFu2s=</latexit>

{B1, ..., Bn}
<latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="LBCJAheE6lhAI2a1KnWMRRJPJg8=">AAACzXicjVLLSsNAFD2Nr1qrRl26CRbBRQmJG12KblxWsA+0pSTptA5Nk5BMhBIC7sSvcKtfJP6B/oV3xhTUIjohyZlz7zkzd+64kc8TYVmvJW1hcWl5pbxaWauub2zqW9VWEqaxx5pe6Idxx3US5vOANQUXPutEMXMmrs/a7vhMxtu3LE54GFyKacR6E2cU8CH3HEFUX9/pZqf9zM7rpmnWCQV5N+/rNcu01DDmgV2AGorRCPUXdDFACA8pJmAIIAj7cJDQcw0bFiLiesiIiwlxFWfIUSFtSlmMMhxix/Qd0ey6YAOaS89EqT1axac3JqWBfdKElBcTlqsZKp4qZ8n+5p0pT7m3Kf3dwmtCrMANsX/pZpn/1claBIY4VjVwqilSjKzOK1xSdSpy58aXqgQ5RMRJPKB4TNhTytk5G0qTqNrl2Toq/qYyJSvnXpGb4l3ukhps/2znPGgdmrZl2hcWytjFHg6ojUc4wTkaaJLlFI94wrN2pd1p959XQSsVd2Ib34b28AFuLJUJ</latexit><latexit sha1_base64="LBCJAheE6lhAI2a1KnWMRRJPJg8=">AAACzXicjVLLSsNAFD2Nr1qrRl26CRbBRQmJG12KblxWsA+0pSTptA5Nk5BMhBIC7sSvcKtfJP6B/oV3xhTUIjohyZlz7zkzd+64kc8TYVmvJW1hcWl5pbxaWauub2zqW9VWEqaxx5pe6Idxx3US5vOANQUXPutEMXMmrs/a7vhMxtu3LE54GFyKacR6E2cU8CH3HEFUX9/pZqf9zM7rpmnWCQV5N+/rNcu01DDmgV2AGorRCPUXdDFACA8pJmAIIAj7cJDQcw0bFiLiesiIiwlxFWfIUSFtSlmMMhxix/Qd0ey6YAOaS89EqT1axac3JqWBfdKElBcTlqsZKp4qZ8n+5p0pT7m3Kf3dwmtCrMANsX/pZpn/1claBIY4VjVwqilSjKzOK1xSdSpy58aXqgQ5RMRJPKB4TNhTytk5G0qTqNrl2Toq/qYyJSvnXpGb4l3ukhps/2znPGgdmrZl2hcWytjFHg6ojUc4wTkaaJLlFI94wrN2pd1p959XQSsVd2Ib34b28AFuLJUJ</latexit><latexit sha1_base64="/Zr0KKvrO6ree6Gv0WOEyH/qMlA=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooTEjS5L3bisYB/YlpKk0xqaJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlaXllda24XtrY3NreUXf3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2p7rG1PzkS8fcOi2A38Sz4LWX9qjX135DoWJ2qglntpfZCaWVXX9SohP+tlA7Vi6IZc2iIwc1BBvhqB+oIehgjgIMEUDD44YQ8WYnq6MGEgJK6PlLiIkCvjDBlKpE0oi1GGReyEvmPadXPWp73wjKXaoVM8eiNSajgkTUB5EWFxmibjiXQW7G/eqfQUd5vR3869psRyXBP7l26e+V+dqIVjhFNZg0s1hZIR1Tm5SyK7Im6ufamKk0NInMBDikeEHamc91mTmljWLnpryfibzBSs2Dt5boJ3cUsasPlznIugdaybhm5eGJVaPR91Efs4wBHN8wQ1nKOBJnnP8IgnPCtXyq1yp9x/piqFXFPGt6U8fADrzpZJ</latexit><latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="VtVpXsa43BAHOzqaoTi7uaQtqlo=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooREBF2WunFZwT6wLSVJpzWYJiGZCCUE3Ilbf8CtfpH4B/oX3hlTUIvohCRnzr3nzNx77dBzY24YrwVlYXFpeaW4Wlpb39jcUrd3WnGQRA5rOoEXRB3bipnn+qzJXe6xThgxa2J7rG1fn4p4+4ZFsRv4F3wasv7EGvvuyHUsTtRALffS+iA1s6qu61VCftbLBmrF0A25tHlg5qCCfDUC9QU9DBHAQYIJGHxwwh4sxPR0YcJASFwfKXERIVfGGTKUSJtQFqMMi9hr+o5p181Zn/bCM5Zqh07x6I1IqWGfNAHlRYTFaZqMJ9JZsL95p9JT3G1Kfzv3mhDLcUXsX7pZ5n91ohaOEU5kDS7VFEpGVOfkLonsiri59qUqTg4hcQIPKR4RdqRy1mdNamJZu+itJeNvMlOwYu/kuQnexS1pwObPcc6D1qFuGrp5flSp1fNRF7GLPRzQPI9RwxkaaJL3FI94wrNyqdwqd8r9Z6pSyDVlfFvKwwftDpZN</latexit><latexit sha1_base64="MRAvQp0+Vq9BwkQTqXvUOx+qvEI=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgooTEjS5L3bisYB/YlpKk0xqaF8lEKCXgTtz6A271i8Q/0L/wzpiCWkQnJDlz7j1n5t5rR56bcMN4LShLyyura8X10sbm1vaOurvXSsI0dljTCb0w7thWwjw3YE3uco91ophZvu2xtj05E/H2DYsTNwwu+TRifd8aB+7IdSxO1EAt92b1wczMqrquVwkFWS8bqBVDN+TSFoGZgwry1QjVF/QwRAgHKXwwBOCEPVhI6OnChIGIuD5mxMWEXBlnyFAibUpZjDIsYif0HdOum7MB7YVnItUOneLRG5NSwyFpQsqLCYvTNBlPpbNgf/OeSU9xtyn97dzLJ5bjmti/dPPM/+pELRwjnMoaXKopkoyozsldUtkVcXPtS1WcHCLiBB5SPCbsSOW8z5rUJLJ20VtLxt9kpmDF3slzU7yLW9KAzZ/jXAStY900dPPiuFKr56MuYh8HOKJ5nqCGczTQJO8pHvGEZ+VKuVXulPvPVKWQa8r4tpSHD+xulks=</latexit>

Support is the number of distinct pairs of 
subjects and objects in the head of all 
instantiations that appear in the KB.
supp (

�!
B ) r(x, y)) := #(x, y) : 9z1, ..., zm :

�!
B ^ r(x, y)

<latexit sha1_base64="VIEyLc6J4AvTJb/YtmqdcXBnX+8=">AAADSHicjVFda9RAFL1J/aj1o2t9UXwZXIQthJCIoAiFUl98rOK2hU5ZJtnpdmi+mJlo12Wf/Hf+AfEf2Le+Fd88M2ZFXUQnJDn33HvOzJ2bNYUyNkm+BOHKlavXrq/eWLt56/ad9d7djT1TtzqXw7wuan2QCSMLVcmhVbaQB42WoswKuZ+dvnT5/XdSG1VXb+20kUelmFTqWOXCghr1Ppq2aXg04DWqtJqcWKF1/X62M2f8zc+Q6cFZxKabmzxiL7Z4xPuIpz7Cy+UZDmrYh9EsnUdxHEdA5dxlmUsvWzNeiGq8cB31+kmc+MWWQdqBPnVrt+59Jk5jqimnlkqSVJEFLkiQwXNIKSXUgDuiGTgNpHxe0pzWoG1RJVEhwJ7iO0F02LEVYudpvDrHLgVeDSWjx9DUqNPAbjfm8613duzfvGfe051tin/WeZVgLZ2A/ZduUfm/OteLpWN67ntQ6KnxjOsu71xafyvu5OyXriwcGnAOj5HXwLlXLu6ZeY3xvbu7FT7/1Vc61sV5V9vSuTslBpz+Oc5lsPckTpM4ff20v73TjXqVHtIjGmCez2ibXtEuDeF9HqwH94MH4afwIrwMv/0oDYNOc49+Wyvhd8yrvEs=</latexit><latexit sha1_base64="VIEyLc6J4AvTJb/YtmqdcXBnX+8=">AAADSHicjVFda9RAFL1J/aj1o2t9UXwZXIQthJCIoAiFUl98rOK2hU5ZJtnpdmi+mJlo12Wf/Hf+AfEf2Le+Fd88M2ZFXUQnJDn33HvOzJ2bNYUyNkm+BOHKlavXrq/eWLt56/ad9d7djT1TtzqXw7wuan2QCSMLVcmhVbaQB42WoswKuZ+dvnT5/XdSG1VXb+20kUelmFTqWOXCghr1Ppq2aXg04DWqtJqcWKF1/X62M2f8zc+Q6cFZxKabmzxiL7Z4xPuIpz7Cy+UZDmrYh9EsnUdxHEdA5dxlmUsvWzNeiGq8cB31+kmc+MWWQdqBPnVrt+59Jk5jqimnlkqSVJEFLkiQwXNIKSXUgDuiGTgNpHxe0pzWoG1RJVEhwJ7iO0F02LEVYudpvDrHLgVeDSWjx9DUqNPAbjfm8613duzfvGfe051tin/WeZVgLZ2A/ZduUfm/OteLpWN67ntQ6KnxjOsu71xafyvu5OyXriwcGnAOj5HXwLlXLu6ZeY3xvbu7FT7/1Vc61sV5V9vSuTslBpz+Oc5lsPckTpM4ff20v73TjXqVHtIjGmCez2ibXtEuDeF9HqwH94MH4afwIrwMv/0oDYNOc49+Wyvhd8yrvEs=</latexit><latexit sha1_base64="VIEyLc6J4AvTJb/YtmqdcXBnX+8=">AAADSHicjVFda9RAFL1J/aj1o2t9UXwZXIQthJCIoAiFUl98rOK2hU5ZJtnpdmi+mJlo12Wf/Hf+AfEf2Le+Fd88M2ZFXUQnJDn33HvOzJ2bNYUyNkm+BOHKlavXrq/eWLt56/ad9d7djT1TtzqXw7wuan2QCSMLVcmhVbaQB42WoswKuZ+dvnT5/XdSG1VXb+20kUelmFTqWOXCghr1Ppq2aXg04DWqtJqcWKF1/X62M2f8zc+Q6cFZxKabmzxiL7Z4xPuIpz7Cy+UZDmrYh9EsnUdxHEdA5dxlmUsvWzNeiGq8cB31+kmc+MWWQdqBPnVrt+59Jk5jqimnlkqSVJEFLkiQwXNIKSXUgDuiGTgNpHxe0pzWoG1RJVEhwJ7iO0F02LEVYudpvDrHLgVeDSWjx9DUqNPAbjfm8613duzfvGfe051tin/WeZVgLZ2A/ZduUfm/OteLpWN67ntQ6KnxjOsu71xafyvu5OyXriwcGnAOj5HXwLlXLu6ZeY3xvbu7FT7/1Vc61sV5V9vSuTslBpz+Oc5lsPckTpM4ff20v73TjXqVHtIjGmCez2ibXtEuDeF9HqwH94MH4afwIrwMv/0oDYNOc49+Wyvhd8yrvEs=</latexit><latexit sha1_base64="12iQBcE+kn8ZXm9qE7ROkUpwCwU=">AAADSHicjVFNb9QwEJ2kfJTy0S1cQFwsVkhbKYqSXqiQKlXlwrEgtq1UVysn626tJnHkOKXLak/8O/4A4h/QGzfEjWeTRcAKgaMkb97Me/Z4srpQjU2ST0G4cu36jZurt9Zu37l7b723cf+g0a3J5TDXhTZHmWhkoSo5tMoW8qg2UpRZIQ+z8xcuf3ghTaN09cZOa3lSikmlTlUuLKhR733T1jWPBlyjyqjJmRXG6LezvTnjr3+GzAwuIzbd3OQRe77DI95HPPURXi4vcdCGvRvN0nkUx3EEVM5dlrn0sjXjhajGC9dRr5/EiV9sGaQd6FO39nXvI3Eak6acWipJUkUWuCBBDZ5jSimhGtwJzcAZIOXzkua0Bm2LKokKAfYc3wmi446tEDvPxqtz7FLgNVAyegqNRp0Bdrsxn2+9s2P/5j3znu5sU/yzzqsEa+kM7L90i8r/1bleLJ3Stu9BoafaM667vHNp/a24k7NfurJwqME5PEbeAOdeubhn5jWN793drfD5z77SsS7Ou9qWrtwpMeD0z3Eug4OtOE3i9NVWf3evG/UqPaYnNMA8n9EuvaR9GsL7KlgPHgaPwg/hl/Br+O1HaRh0mgf021oJvwPMC7xJ</latexit>

Standard confidence counts all unrepresented 
facts as negative evidence.  
PCA confidence operates only with facts that 
we know to be true together with the facts that 
we assume to be false.
conf (

�!
B ) r(x, y)) :=

supp (
�!
B ) r(x, y))

#(x, y) : 9z1, ..., zm :
�!
B

<latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="VV6GVF5gV7t3S19gL8ZZ0hM+N7s=">AAADanicjVLdbtMwGP3S8jPGgI4LbhCSRQF1UhQl3DAhkBAIxOVAdJu0TFXiuZ21JI5sB1aivBNvg3gDeAJuOTYZAirEHNk5Pt93jv3ZzutCGhvHX4LB8MLFS5fXrqxf3bh2/cZoc2PXqEZzMeWqUHo/z4woZCWmVtpC7NdaZGVeiL385IWL770X2khVvbPLWhyW2aKSc8kzC2o2+sRVNU9DNkkV0rRcHNtMa/Whfd4xlr79NWd6chqy5dYWch8/xcDSuc54a5q6TsNzq7s2HQMuvQ16Kk5Ro2EfZ23ShVEUhUBl56LMhVdsu9loHEexb2wVJD0YU9921OgzpXREijg1VJKgiixwQRkZfAeUUEw1uENqwWkg6eOCOlqHtkGWQEYG9gTjArODnq0wd57GqzlWKdA1lIzuQ6OQp4HdaszHG+/s2H95t97T7W2Jf957lWAtHYP9n+4s87w6V4ulOW37GiRqqj3jquO9S+NPxe2c/VaVhUMNzuEjxDUw98qzc2ZeY3zt7mwzH//qMx3r5rzPbeib2yUuOPn7OlfB7sMoiaPkTUxrdJvu0gTX+Iie0WvaoSnx4FbwJHgZvBp8H94Z3vv5FAZB/yZu0h9t+OAHPNfKOw==</latexit><latexit sha1_base64="VV6GVF5gV7t3S19gL8ZZ0hM+N7s=">AAADanicjVLdbtMwGP3S8jPGgI4LbhCSRQF1UhQl3DAhkBAIxOVAdJu0TFXiuZ21JI5sB1aivBNvg3gDeAJuOTYZAirEHNk5Pt93jv3ZzutCGhvHX4LB8MLFS5fXrqxf3bh2/cZoc2PXqEZzMeWqUHo/z4woZCWmVtpC7NdaZGVeiL385IWL770X2khVvbPLWhyW2aKSc8kzC2o2+sRVNU9DNkkV0rRcHNtMa/Whfd4xlr79NWd6chqy5dYWch8/xcDSuc54a5q6TsNzq7s2HQMuvQ16Kk5Ro2EfZ23ShVEUhUBl56LMhVdsu9loHEexb2wVJD0YU9921OgzpXREijg1VJKgiixwQRkZfAeUUEw1uENqwWkg6eOCOlqHtkGWQEYG9gTjArODnq0wd57GqzlWKdA1lIzuQ6OQp4HdaszHG+/s2H95t97T7W2Jf957lWAtHYP9n+4s87w6V4ulOW37GiRqqj3jquO9S+NPxe2c/VaVhUMNzuEjxDUw98qzc2ZeY3zt7mwzH//qMx3r5rzPbeib2yUuOPn7OlfB7sMoiaPkTUxrdJvu0gTX+Iie0WvaoSnx4FbwJHgZvBp8H94Z3vv5FAZB/yZu0h9t+OAHPNfKOw==</latexit><latexit sha1_base64="E0A4t9WFX4r5J0AcKPTK7EPQe4w=">AAADdXicjVHdatRAGP2y8afWn64K3ogwuCpbCDHxRhGFUlG8rOK2haYsyXR2G5pkwsxEu4a8k28jfYP6BN56ZkxFXcROyOTM+c45mW8mq4tcmyg68Qb+hYuXLq9cWb167fqNteHNW9taNoqLCZeFVLtZqkWRV2JiclOI3VqJtMwKsZMdvbL1nY9C6VxWH8yiFvtlOq/yWc5TA2o6/MJlNUsCNk4kZCqfH5pUKfmp3ewYS97/WjM1Pg7YYn0d2ucvMbFkplLe6qauk+Dc7q5NRoALF4M3EcfoUbPP0zbugjAMA6Cys1Vmy0ux3XQ4isLIDbYM4h6MqB9bcviVEjogSZwaKklQRQa4oJQ0nj2KKaIa3D614BRQ7uqCOlqFt4FKQJGCPcI8x2qvZyusbaZ2bo6/FHgVnIwewiOhU8D2b8zVG5ds2X9lty7T7m2Bb9ZnlWANHYL9n+9MeV6f7cXQjJ65HnL0VDvGdsf7lMadit05+60rg4QanMUHqCtg7pxn58ycR7ve7dmmrn7qlJa1a95rG/pmd4kLjv++zmWw/SSMozB+F402NvurXqG7dJ/GuM+ntEFvaYsmxL073gvvtfdm8N2/5z/wH/2UDrzec5v+GP7jHw42yxk=</latexit><latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="WYW3mut7GY6XOulnPm64BqmLht0=">AAADdXicjVHdatRAGP2y8afWv62CNyIMrsoWQkykoIhCqSheVnHbQlOWZDq7HZpkwmSiXUPeybcR30CfwFvPjKmoi9gJmZw53zkn881kVS5rE0VfvIF/7vyFiyuXVi9fuXrt+nDtxk6tGs3FhKtc6b0srUUuSzEx0uRir9IiLbJc7GbHL2x9973QtVTlO7OoxEGRzks5kzw1oKbDT1yVsyRg40RBpuX8yKRaqw/tVsdY8vbXmunxScAW6+vQPn2OiSUznfK2bqoqCc7s7tpkBLhwMXgTcYIea/Zx2sZdEIZhAFR0tspseSm2mw5HURi5wZZB3IMR9WNbDT9TQoekiFNDBQkqyQDnlFKNZ59iiqgCd0AtOA0kXV1QR6vwNlAJKFKwx5jnWO33bIm1zaydm+MvOV4NJ6P78CjoNLD9G3P1xiVb9l/Zrcu0e1vgm/VZBVhDR2D/5ztVntVnezE0oyeuB4meKsfY7nif0rhTsTtnv3VlkFCBs/gQdQ3MnfP0nJnz1K53e7apq391SsvaNe+1DX2zu8QFx39f5zLYeRTGURi/2RhtbvVXvUK36S6NcZ+PaZNe0zZNiHu3vGfeS+/V4Lt/x7/nP/gpHXi95yb9MfyHPwAPdssd</latexit><latexit sha1_base64="9QYwoBrZA+p0lL9a/wiuiBqckkE=">AAADdXicjVHdatRAGP2y8afWv1XBGxEGV2ULISa9aRGFUlG8rOK2haYsyXR2OzTJhMlEu4a8k28jvoE+gbeeGVNRF7ETMjlzvnNO5pvJqlzWJoq+eAP/wsVLl1eurF69dv3GzeGt27u1ajQXE65ypfeztBa5LMXESJOL/UqLtMhysZedvLD1vfdC11KV78yiEodFOi/lTPLUgJoOP3FVzpKAjRMFmZbzY5NqrT602x1jydtfa6bHpwFbrK1B+/Q5JpbMdMrbuqmqJDi3u2uTEeDCxeBNxCl6rNnHaRt3QRiGAVDR2Sqz5aXYbjocRWHkBlsGcQ9G1I8dNfxMCR2RIk4NFSSoJAOcU0o1ngOKKaIK3CG14DSQdHVBHa3C20AloEjBnmCeY3XQsyXWNrN2bo6/5Hg1nIwewaOg08D2b8zVG5ds2X9lty7T7m2Bb9ZnFWANHYP9n+9MeV6f7cXQjDZdDxI9VY6x3fE+pXGnYnfOfuvKIKECZ/ER6hqYO+fZOTPnqV3v9mxTV//qlJa1a95rG/pmd4kLjv++zmWwux7GURi/WR9tbfdXvUL36AGNcZ8btEWvaYcmxL273jPvpfdq8N2/7z/0H/+UDrzec4f+GP6THw7Wyxs=</latexit>

confpca (
�!
B ) r(x, y)) :=

supp (
�!
B ) r(x, y))

#(x, y) : 9z1, ..., zm, y0 :
�!
B ^ r(x, y0)

<latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="d8rIDdlrXWqhsehtUkECFjqgTzk=">AAADiHiclVLdatRAGP3SqP2x6ip45c3gIt2FJSRFqChCqV54WcVti01ZJrOz29AkEyYT7TbkFb0V38C+hWemqaiLqBOSnDnfOSfzzSQps7QyYfjVW/Fv3Ly1ura+cXvzzt17vfubB5WqtZBjoTKljxJeySwt5NikJpNHpZY8TzJ5mJy9svXDj1JXqSrem0UpT3I+L9JZKrgBNel9FqqYTZpS8DYesUGsINbp/NRwrdWnZq9lLH73Y8704HzEFsMhtM9f4sHimeaiqeqy/B9728R9wIXLwR3Lc7RasYtJE7WjIAhGQHkL7ZZVMCtZirZkxosp3le5W8N20uuHQegGWwZRB/rUjX3V+0IxTUmRoJpyklSQAc6IU4XrmCIKqQR3Qg04DZS6uqSWNuCtoZJQcLBneM4xO+7YAnObWTm3wFcy3BpORk/gUdBpYPs15uq1S7bsn7Ibl2nXtsA76bJysIZOwf7Nd638V5/txdCMnrkeUvRUOsZ2J7qU2u2KXTn7qSuDhBKcxVPUNbBwzut9Zs5Tud7t3nJX/+aUlrVz0WlrurSrxAFHvx/nMjjYDqIwiN6GtEaP6DENcIw7tEtvaJ/GJLyn3gdPeFP/of/C37v6FVa87p94QL8M//V3m+fTUw==</latexit><latexit sha1_base64="d8rIDdlrXWqhsehtUkECFjqgTzk=">AAADiHiclVLdatRAGP3SqP2x6ip45c3gIt2FJSRFqChCqV54WcVti01ZJrOz29AkEyYT7TbkFb0V38C+hWemqaiLqBOSnDnfOSfzzSQps7QyYfjVW/Fv3Ly1ura+cXvzzt17vfubB5WqtZBjoTKljxJeySwt5NikJpNHpZY8TzJ5mJy9svXDj1JXqSrem0UpT3I+L9JZKrgBNel9FqqYTZpS8DYesUGsINbp/NRwrdWnZq9lLH73Y8704HzEFsMhtM9f4sHimeaiqeqy/B9728R9wIXLwR3Lc7RasYtJE7WjIAhGQHkL7ZZVMCtZirZkxosp3le5W8N20uuHQegGWwZRB/rUjX3V+0IxTUmRoJpyklSQAc6IU4XrmCIKqQR3Qg04DZS6uqSWNuCtoZJQcLBneM4xO+7YAnObWTm3wFcy3BpORk/gUdBpYPs15uq1S7bsn7Ibl2nXtsA76bJysIZOwf7Nd638V5/txdCMnrkeUvRUOsZ2J7qU2u2KXTn7qSuDhBKcxVPUNbBwzut9Zs5Tud7t3nJX/+aUlrVz0WlrurSrxAFHvx/nMjjYDqIwiN6GtEaP6DENcIw7tEtvaJ/GJLyn3gdPeFP/of/C37v6FVa87p94QL8M//V3m+fTUw==</latexit><latexit sha1_base64="HFzx87NzGP2JZvWj59cWnmC4Vpc=">AAADk3iclVHdatRAGP3S+FPrT7eKV94MLtJdWEIigkURyuqFN0IVty02ZZnMzm5Dk0yYTLRryCt6K76BvoVnpqmoi6gTMjlzvnNO5ptJyiytTBh+8db8S5evXF2/tnH9xs1bm72t2/uVqrWQE6EypQ8TXsksLeTEpCaTh6WWPE8yeZCcPrf1g/dSV6kq3pplKY9zvijSeSq4ATXtfRKqmE+bUvA2HrFBrCDW6eLEcK3Vh2bcMha/+bFmenA2YsvhENonzzCxeK65aKq6LP/H3jZxH3DpcvDG8gytVuzjtInaURAEI6C8hXbbKpiVrERbMuPFDN/z3O1hO+31wyB0g62CqAN96sae6n2mmGakSFBNOUkqyABnxKnCc0QRhVSCO6YGnAZKXV1SSxvw1lBJKDjYU8wLrI46tsDaZlbOLfCXDK+Gk9EDeBR0Gtj+jbl67ZIt+6fsxmXavS3xTbqsHKyhE7B/810o/9VnezE0px3XQ4qeSsfY7kSXUrtTsTtnP3VlkFCCs3iGugYWznlxzsx5Kte7PVvu6l+d0rJ2LTptTd/sLnHB0e/XuQr2HwZRGESvw/7uuLvqdbpH92mA+3xMu/SS9mhCwnvkvfOEN/Pv+k/9sf/iXLrmdZ479MvwX30H1ivUTw==</latexit><latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="Y+kCbjmQaV8XufCUe6nS1Pjhql8=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0ikYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX7j4IoDKLX2/3dcXfV63SfHtAA9/mYdukl7dGEhLftvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H12vUUw==</latexit><latexit sha1_base64="mPLFpAGsgrsiAnjX+iYNLwTmUf4=">AAADk3iclVHdatRAGP3S+FPr31bxypvBRboLS0iKYFGEsnrhjVDFbYtNWSazs9vQJBMmE+0a8oreim+gb+GZaSrqIuqETM6c75yT+WaSMksrE4ZfvDX/0uUrV9evbVy/cfPW7d7mnf1K1VrIiVCZ0ocJr2SWFnJiUpPJw1JLnieZPEhOn9v6wXupq1QVb82ylMc5XxTpPBXcgJr2PglVzKdNKXgbj9ggVhDrdHFiuNbqQzNuGYvf/FgzPTgbseVwCO2TZ5hYPNdcNFVdlv9jb5u4D7h0OXhjeYZWK/Zx2kTtKAiCEVDeQrtlFcxKVqItmfFihu957tawnfb6YRC6wVZB1IE+dWNP9T5TTDNSJKimnCQVZIAz4lThOaKIQirBHVMDTgOlri6ppQ14a6gkFBzsKeYFVkcdW2BtMyvnFvhLhlfDyeghPAo6DWz/xly9dsmW/VN24zLt3pb4Jl1WDtbQCdi/+S6U/+qzvRia047rIUVPpWNsd6JLqd2p2J2zn7oySCjBWTxDXQML57w4Z+Y8levdni139a9OaVm7Fp22pm92l7jg6PfrXAX720EUBtHr7f7uuLvqdbpPD2iA+3xMu/SS9mhCwnvkvfOEN/Pv+U/9sf/iXLrmdZ679MvwX30H1svUUQ==</latexit>

The aim of my internship was to find a 
possibility to implement the indicated 
definitions of support and confidence to 
evaluate SAMi* results.

*SAMi approach, developed at LIG, which uses a compressed 
representation of the embeddings of a pattern based on 
automata.

For exemple, we have a rule: 
A isMarriedTo B ^ B hasChild C ) A hasChildC

<latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="U/L45W5LYAOcpbqmuoUwMmNwjLc=">AAADCHicjVLNbtQwGJyGFkpbYOHKJaJC4rBaJVzgSNkLF1BB3bZSU1VO1t216o0j2wFVFY/Bm3DjhngH1F7bA7wFYzeV+iMEjhLPN998E3+2y0Yr57PseC65Nb9w+87i3aXllXv3H/Qermw609pKjiqjjd0uhZNa1XLklddyu7FSzEott8qDYchvfZTWKVNv+MNG7s7EpFb7qhKe1F7v3VrRV+6tsFbJ8YYp+q+LflpoUY85BzwVbjhVOoTDkPqgJlNPufmUMly7ptjrrWaDLI70Jsg7sIpurJveTxQYw6BCixkkanhiDQHHZwc5MjTkdnFEzhKpmJf4jCXWtlRJKgTZA34njHY6tmYcPF2srvgXzdeyMsVT1hjqLHH4WxrzbXQO7N+8j6JnWNsh57LzmpH1mJL9V92F8n/rQi8e+3gZe1DsqYlM6K7qXNq4K2Hl6aWuPB0acgGPmbfEVay82Oc01rjYe9hbEfO/ojKwIa46bYvfYZU84Pz6cd4Em88HeTbI32dYxGM8wTMe4wu8whusY0TLrzjBKc6SL8m35Pv5VUjmujvxCFdG8uMPg2Op2A==</latexit><latexit sha1_base64="U/L45W5LYAOcpbqmuoUwMmNwjLc=">AAADCHicjVLNbtQwGJyGFkpbYOHKJaJC4rBaJVzgSNkLF1BB3bZSU1VO1t216o0j2wFVFY/Bm3DjhngH1F7bA7wFYzeV+iMEjhLPN998E3+2y0Yr57PseC65Nb9w+87i3aXllXv3H/Qermw609pKjiqjjd0uhZNa1XLklddyu7FSzEott8qDYchvfZTWKVNv+MNG7s7EpFb7qhKe1F7v3VrRV+6tsFbJ8YYp+q+LflpoUY85BzwVbjhVOoTDkPqgJlNPufmUMly7ptjrrWaDLI70Jsg7sIpurJveTxQYw6BCixkkanhiDQHHZwc5MjTkdnFEzhKpmJf4jCXWtlRJKgTZA34njHY6tmYcPF2srvgXzdeyMsVT1hjqLHH4WxrzbXQO7N+8j6JnWNsh57LzmpH1mJL9V92F8n/rQi8e+3gZe1DsqYlM6K7qXNq4K2Hl6aWuPB0acgGPmbfEVay82Oc01rjYe9hbEfO/ojKwIa46bYvfYZU84Pz6cd4Em88HeTbI32dYxGM8wTMe4wu8whusY0TLrzjBKc6SL8m35Pv5VUjmujvxCFdG8uMPg2Op2A==</latexit><latexit sha1_base64="XUnm3JTlNZ+cECOm80h18Aimm60=">AAADE3icjVFNb9QwFJyGr1K+FjhyiVghcVitEi7l2HYvXIoK6raVmqpysu6uVW8c2Q6oqvoz+k+49Ya4ckZwhQP8C8YmlaAVAkeJ582befHzKxutnM+yzwvJlavXrt9YvLl06/adu/d69x9sOdPaSo4ro43dKYWTWtVy7JXXcqexUsxLLbfLw1HIb7+R1ilTb/qjRu7NxbRWB6oSntR+7+VqMVBuXVir5GTTFIO1YpAWWtQT7gHPhBvNlA7hKKReq+nMU27epgxXLyj2e/1smMWVXgZ5B/ro1obpfUKBCQwqtJhDooYn1hBwfHaRI0NDbg/H5CyRinmJEyzR21IlqRBkD/mdMtrt2JpxqOmiu+JfNF9LZ4on9BjqLHH4Wxrzbawc2L/VPo41w9mOuJddrTlZjxnZf/nOlf/rC714HOB57EGxpyYyobuqq9LGWwknT3/ryrNCQy7gCfOWuIrO83tOo8fF3sPdipj/HpWBDXHVaVv8CKfkgPOL47wMtp4N82yYv8r6K2vdqBfxCI/xlPNcxgpeYANj1n6HL/iKb8lpcpa8Tz78kiYLnech/ljJx5/d6KtT</latexit><latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="NVEYvqIOLYBrxYhmBPBAHaejBGY=">AAADE3icjVFNb9QwFJyGr1I+utAjl4gVEofVKkFI9Nh2L1xABXXbSk1VOVl316o3jmwHVFX8DP4JN26IK+cKrnCAf8HYpBK0QuAo8bx5My9+fmWjlfNZ9nkhuXT5ytVri9eXbty8dXu5d+futjOtreS4MtrY3VI4qVUtx155LXcbK8W81HKnPBqF/M4raZ0y9ZY/buT+XExrdagq4Ukd9J6vFwPlnglrlZxsmWKwUQzSQot6wj3gmXCjmdIhHIXUSzWdecrN65Th+jnFQa+fDbO40osg70Af3do0vVMUmMCgQos5JGp4Yg0Bx2cPOTI05PZxQs4SqZiXeIMleluqJBWC7BG/U0Z7HVszDjVddFf8i+Zr6UzxgB5DnSUOf0tjvo2VA/u32iexZjjbMfeyqzUn6zEj+y/fmfJ/faEXj0Osxh4Ue2oiE7qruiptvJVw8vS3rjwrNOQCnjBviavoPLvnNHpc7D3crYj571EZ2BBXnbbFj3BKDjg/P86LYPvRMM+G+YvH/bWNbtSLuIf7eMh5PsEanmITY9Z+hy/4im/J2+R98iH5+EuaLHSeFfyxkk8/Ad8oq1c=</latexit><latexit sha1_base64="BNjNQ3P2sANKOzJPA01JuOzxZ10=">AAADE3icjVFNb9QwFJyGr1K+lnLkErFC4rBaJb3Ase1euLQqqNtWaqrKybq7Vr1xZDugquJn8E+4cUO9ckZwhQP8C8YmlaAVAkeJ582befHzKxutnM+yzwvJlavXrt9YvLl06/adu/d695d3nGltJceV0cbulcJJrWo59spruddYKeallrvl8Sjkd19J65Spt/1JIw/mYlqrI1UJT+qwt7lWDJTbENYqOdk2xWC9GKSFFvWEe8Az4UYzpUM4CqmXajrzlJvXKcO1C4rDXj8bZnGll0HegT66tWV6n1BgAoMKLeaQqOGJNQQcn33kyNCQO8ApOUukYl7iDZbobamSVAiyx/xOGe13bM041HTRXfEvmq+lM8Vjegx1ljj8LY35NlYO7N9qn8aa4Wwn3Muu1pysx4zsv3znyv/1hV48jvAs9qDYUxOZ0F3VVWnjrYSTp7915VmhIRfwhHlLXEXn+T2n0eNi7+FuRcx/j8rAhrjqtC1+hFNywPnFcV4GOyvDPBvmL1b6q+vdqBfxEI/whPN8ilU8xxbGrP0OX/AV35K3yfvkQ3L2S5osdJ4H+GMlH38C3oirVQ==</latexit>

A B CisMarriedTo hasChild

A B C

The support is a number of distinct pairs of  
(A, C), which satisfy this rule.
To compute standard confidence automata 
corresponds to body of rule :  

but the idea is the same - find all pairs of (A, 
C), and the result is support divided by the 
number of distinct pairs in body.

A isMarriedTo B ^ B hasChild C
<latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="xViwQ6zMW8yO5Jxt4AAoJBEzj/c=">AAAC5nicjVLLSsQwFD3W9/ga3bopDoKLYWjd6FKdjRtBYWYUrAxpJzrBTFuSVBDxJ9y5E7/Crf6E+Af6F97ECuogmtLm3HPvOc1NEudSaBMELyPe6Nj4xOTUdGVmdm5+obo429FZoRLeTjKZqaOYaS5FyttGGMmPcsXZIJb8MD5v2vzhBVdaZGnLXOb8ZMDOUnEqEmaI6lbr21Fd6D2mlOC9VhbVd6K6H0mW9mi2uM90sy+kDZvdai1oBG74wyAsQQ3l2M+qz4jQQ4YEBQbgSGEISzBoeo4RIkBO3AmuiFOEhMtzXKNC2oKqOFUwYs/pe0bRccmmFFtP7dQJ/UXSq0jpY5U0GdUpwvZvvssXztmyv3lfOU+7tkua49JrQKxBn9i/dJ+V/9XZXgxOsel6ENRT7hjbXVK6FG5X7Mr9L10ZcsiJs7hHeUU4ccrPffadRrve7d4yl391lZa1cVLWFnizq6QDDn8e5zDorDfCoBEeBJjCMlawRse4gS3sYh9tsrzBAx7x5Gnv1rv7uAreSHknlvBtePfvZamdvQ==</latexit><latexit sha1_base64="xViwQ6zMW8yO5Jxt4AAoJBEzj/c=">AAAC5nicjVLLSsQwFD3W9/ga3bopDoKLYWjd6FKdjRtBYWYUrAxpJzrBTFuSVBDxJ9y5E7/Crf6E+Af6F97ECuogmtLm3HPvOc1NEudSaBMELyPe6Nj4xOTUdGVmdm5+obo429FZoRLeTjKZqaOYaS5FyttGGMmPcsXZIJb8MD5v2vzhBVdaZGnLXOb8ZMDOUnEqEmaI6lbr21Fd6D2mlOC9VhbVd6K6H0mW9mi2uM90sy+kDZvdai1oBG74wyAsQQ3l2M+qz4jQQ4YEBQbgSGEISzBoeo4RIkBO3AmuiFOEhMtzXKNC2oKqOFUwYs/pe0bRccmmFFtP7dQJ/UXSq0jpY5U0GdUpwvZvvssXztmyv3lfOU+7tkua49JrQKxBn9i/dJ+V/9XZXgxOsel6ENRT7hjbXVK6FG5X7Mr9L10ZcsiJs7hHeUU4ccrPffadRrve7d4yl391lZa1cVLWFnizq6QDDn8e5zDorDfCoBEeBJjCMlawRse4gS3sYh9tsrzBAx7x5Gnv1rv7uAreSHknlvBtePfvZamdvQ==</latexit><latexit sha1_base64="n8NFQBVXndh3TSvRm8WTyx57lpU=">AAAC8XicjVHLSsQwFD3W1/gedemmOAguhqF1o8txZuNGUHBUsCJpJzrBTFuSVBDxJ9y5E7f+gFv9CfEP9C+8iRV8IJrS5txz7znNzY1zKbQJgucBb3BoeGS0MjY+MTk1PVOdndvVWaES3kkyman9mGkuRco7RhjJ93PFWT+WfC8+bdv83hlXWmTpjjnP+WGfnaTiWCTMEHVUra9HdaE3mVKCd3eyqN6K6n4kWdql3eIe0+2ekDZsH1VrQSNwy/8JwhLUUK6trPqECF1kSFCgD44UhrAEg6bnACEC5MQd4oI4RUi4PMclxklbUBWnCkbsKX1PKDoo2ZRi66mdOqG/SHoVKX0skSajOkXY/s13+cI5W/Y37wvnac92TntcevWJNegR+5fuo/K/OtuLwTHWXA+CesodY7tLSpfC3Yo9uf+pK0MOOXEWdymvCCdO+XHPvtNo17u9W+byL67SsjZOytoCr/aUNODw+zh/gt2VRhg0wu2g1myVo65gAYtYpnmuookNbKFD3le4xwMePe1dezfe7XupN1Bq5vFleXdvP6ufFg==</latexit><latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="cH/1RYp/JaASdkf1EereCPao1do=">AAAC8XicjVHLSsQwFD3W93vUpZviILgYhlYEXaqzcSMozIyCFUk70Qlm2pKkgog/4c6duPUH3OpPiH+gf+FNrOAD0ZQ25557z2lubpxLoU0QPPd5/QODQ8Mjo2PjE5NT05WZ2bbOCpXwVpLJTO3HTHMpUt4ywki+nyvOerHke/Fpw+b3zrjSIkub5jznhz12kopjkTBD1FGlthHVhN5mSgneaWZRbTOq+ZFkaYd2i7tMN7pC2rBxVKkG9cAt/ycIS1BFuXayyhMidJAhQYEeOFIYwhIMmp4DhAiQE3eIC+IUIeHyHJcYI21BVZwqGLGn9D2h6KBkU4qtp3bqhP4i6VWk9LFImozqFGH7N9/lC+ds2d+8L5ynPds57XHp1SPWoEvsX7qPyv/qbC8Gx1hzPQjqKXeM7S4pXQp3K/bk/qeuDDnkxFncobwinDjlxz37TqNd7/Zumcu/uErL2jgpawu82lPSgMPv4/wJ2sv1MKiHuyvV9c1y1COYxwKWaJ6rWMcWdtAi7yvc4wGPnvauvRvv9r3U6ys1c/iyvLs3QOufGg==</latexit><latexit sha1_base64="LfvF8DG0Q0OHGLpSLLNRM7WKH6Q=">AAAC8XicjVHLSsQwFD3W1/gedemmOAguhqF1o8txZuNGUHBUsCJpJzrBTFuSVBDxJ9y5E7f+gFv9CfEP9C+8iRV8IJrS5txz7znNzY1zKbQJgucBb3BoeGS0MjY+MTk1PVOdndvVWaES3kkyman9mGkuRco7RhjJ93PFWT+WfC8+bdv83hlXWmTpjjnP+WGfnaTiWCTMEHVUra9HdaE3mVKCd3eyqN6K6n4kWdql3eIe0+2ekDZsH1VrQSNwy/8JwhLUUK6trPqECF1kSFCgD44UhrAEg6bnACEC5MQd4oI4RUi4PMclxklbUBWnCkbsKX1PKDoo2ZRi66mdOqG/SHoVKX0skSajOkXY/s13+cI5W/Y37wvnac92TntcevWJNegR+5fuo/K/OtuLwTHWXA+CesodY7tLSpfC3Yo9uf+pK0MOOXEWdymvCCdO+XHPvtNo17u9W+byL67SsjZOytoCr/aUNODw+zh/gt2VRhg0wu2VWrNVjrqCBSximea5iiY2sIUOeV/hHg949LR37d14t++l3kCpmceX5d29AUBLnxg=</latexit>

To find PCA confidence, computed pairs of  
(A, C) for a body must be controlled by a rule 

so A should have at least one child to be 
accepted. To get a value of this confidence, 
support must be divided by the number of 
distinct pairs satisfying body and announced 
rule.

A hasChildC 0,
<latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="9Uch0duOIExltkklWhzt+NrHcr4=">AAAC13icjVHLTsJAFD3UF+Kr4tJNIzG6IKR1o0uUjUtM5GHAkLYMMKG0TTs1EmLcGbf+gFv9I+Mf6F94ZyyJSoxO0/bMufecmXuvE3o8Fqb5mtHm5hcWl7LLuZXVtfUNfTNfj4MkclnNDbwgajp2zDzus5rgwmPNMGL2yPFYwxlWZLxxxaKYB/65GIfscmT3fd7jri2I6uj543bRGNhxZcC9LsHKXrGjF8ySqZYxC6wUFJCuaqC/oI0uArhIMAKDD0HYg42YnhYsmAiJu8SEuIgQV3GGG+RIm1AWowyb2CF9+7RrpaxPe+kZK7VLp3j0RqQ0sEuagPIiwvI0Q8UT5SzZ37wnylPebUx/J/UaESswIPYv3TTzvzpZi0APR6oGTjWFipHVualLoroib258qUqQQ0icxF2KR4RdpZz22VCaWNUue2ur+JvKlKzcu2lugnd5Sxqw9XOcs6B+ULLMknVmFson6aiz2MYO9mmehyjjFFXUyPsaj3jCs3ah3Wp32v1nqpZJNVv4trSHDxtwlSM=</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="9Uch0duOIExltkklWhzt+NrHcr4=">AAAC13icjVHLTsJAFD3UF+Kr4tJNIzG6IKR1o0uUjUtM5GHAkLYMMKG0TTs1EmLcGbf+gFv9I+Mf6F94ZyyJSoxO0/bMufecmXuvE3o8Fqb5mtHm5hcWl7LLuZXVtfUNfTNfj4MkclnNDbwgajp2zDzus5rgwmPNMGL2yPFYwxlWZLxxxaKYB/65GIfscmT3fd7jri2I6uj543bRGNhxZcC9LsHKXrGjF8ySqZYxC6wUFJCuaqC/oI0uArhIMAKDD0HYg42YnhYsmAiJu8SEuIgQV3GGG+RIm1AWowyb2CF9+7RrpaxPe+kZK7VLp3j0RqQ0sEuagPIiwvI0Q8UT5SzZ37wnylPebUx/J/UaESswIPYv3TTzvzpZi0APR6oGTjWFipHVualLoroib258qUqQQ0icxF2KR4RdpZz22VCaWNUue2ur+JvKlKzcu2lugnd5Sxqw9XOcs6B+ULLMknVmFson6aiz2MYO9mmehyjjFFXUyPsaj3jCs3ah3Wp32v1nqpZJNVv4trSHDxtwlSM=</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="9Uch0duOIExltkklWhzt+NrHcr4=">AAAC13icjVHLTsJAFD3UF+Kr4tJNIzG6IKR1o0uUjUtM5GHAkLYMMKG0TTs1EmLcGbf+gFv9I+Mf6F94ZyyJSoxO0/bMufecmXuvE3o8Fqb5mtHm5hcWl7LLuZXVtfUNfTNfj4MkclnNDbwgajp2zDzus5rgwmPNMGL2yPFYwxlWZLxxxaKYB/65GIfscmT3fd7jri2I6uj543bRGNhxZcC9LsHKXrGjF8ySqZYxC6wUFJCuaqC/oI0uArhIMAKDD0HYg42YnhYsmAiJu8SEuIgQV3GGG+RIm1AWowyb2CF9+7RrpaxPe+kZK7VLp3j0RqQ0sEuagPIiwvI0Q8UT5SzZ37wnylPebUx/J/UaESswIPYv3TTzvzpZi0APR6oGTjWFipHVualLoroib258qUqQQ0icxF2KR4RdpZz22VCaWNUue2ur+JvKlKzcu2lugnd5Sxqw9XOcs6B+ULLMknVmFson6aiz2MYO9mmehyjjFFXUyPsaj3jCs3ah3Wp32v1nqpZJNVv4trSHDxtwlSM=</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="9Uch0duOIExltkklWhzt+NrHcr4=">AAAC13icjVHLTsJAFD3UF+Kr4tJNIzG6IKR1o0uUjUtM5GHAkLYMMKG0TTs1EmLcGbf+gFv9I+Mf6F94ZyyJSoxO0/bMufecmXuvE3o8Fqb5mtHm5hcWl7LLuZXVtfUNfTNfj4MkclnNDbwgajp2zDzus5rgwmPNMGL2yPFYwxlWZLxxxaKYB/65GIfscmT3fd7jri2I6uj543bRGNhxZcC9LsHKXrGjF8ySqZYxC6wUFJCuaqC/oI0uArhIMAKDD0HYg42YnhYsmAiJu8SEuIgQV3GGG+RIm1AWowyb2CF9+7RrpaxPe+kZK7VLp3j0RqQ0sEuagPIiwvI0Q8UT5SzZ37wnylPebUx/J/UaESswIPYv3TTzvzpZi0APR6oGTjWFipHVualLoroib258qUqQQ0icxF2KR4RdpZz22VCaWNUue2ur+JvKlKzcu2lugnd5Sxqw9XOcs6B+ULLMknVmFson6aiz2MYO9mmehyjjFFXUyPsaj3jCs3ah3Wp32v1nqpZJNVv4trSHDxtwlSM=</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="oQKoeoxEm4RDrKzCJPO8WMD2UHU=">AAACzHicjVLLSsNAFD2Nr1qrxm7dBIvoopTEjS6VblxWsA9pS0nSaTs0L5KJWIq4E7/Crf6R+Af6F94ZU1CL6IQkZ86958zcueNEHk+Eab7mtKXlldW1/Hpho7i5ta3vFJtJmMYua7ihF8Ztx06YxwPWEFx4rB3FzPYdj7WcSU3GW9csTngYXIppxHq+PQr4kLu2IKqvl866FWNsJ7Ux9wYEaweVvl42q6YaxiKwMlBGNuqh/oIuBgjhIoUPhgCCsAcbCT0dWDAREdfDjLiYEFdxhlsUSJtSFqMMm9gJfUc062RsQHPpmSi1S6t49MakNLBPmpDyYsJyNUPFU+Us2d+8Z8pT7m1Kfyfz8okVGBP7l26e+V+drEVgiBNVA6eaIsXI6tzMJVWnIndufKlKkENEnMQDiseEXaWcn7OhNImqXZ6treJvKlOycu5muSne5S6pwdbPdi6C5lHVMqvWhYk8drGHQ2rjMU5xjjoaZHmDRzzhWbvS7rT7z6ug5bI7UcK3oT18AKozk+Q=</latexit><latexit sha1_base64="9Uch0duOIExltkklWhzt+NrHcr4=">AAAC13icjVHLTsJAFD3UF+Kr4tJNIzG6IKR1o0uUjUtM5GHAkLYMMKG0TTs1EmLcGbf+gFv9I+Mf6F94ZyyJSoxO0/bMufecmXuvE3o8Fqb5mtHm5hcWl7LLuZXVtfUNfTNfj4MkclnNDbwgajp2zDzus5rgwmPNMGL2yPFYwxlWZLxxxaKYB/65GIfscmT3fd7jri2I6uj543bRGNhxZcC9LsHKXrGjF8ySqZYxC6wUFJCuaqC/oI0uArhIMAKDD0HYg42YnhYsmAiJu8SEuIgQV3GGG+RIm1AWowyb2CF9+7RrpaxPe+kZK7VLp3j0RqQ0sEuagPIiwvI0Q8UT5SzZ37wnylPebUx/J/UaESswIPYv3TTzvzpZi0APR6oGTjWFipHVualLoroib258qUqQQ0icxF2KR4RdpZz22VCaWNUue2ur+JvKlKzcu2lugnd5Sxqw9XOcs6B+ULLMknVmFson6aiz2MYO9mmehyjjFFXUyPsaj3jCs3ah3Wp32v1nqpZJNVv4trSHDxtwlSM=</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="HK8mTj5b6Ll+2LKB297BSOy2VZQ=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENIaE12ibFxiIg8DhLRlgAmlbdqpkRDjzrj1B9zqHxn/QP/CO2NJVGJ0mrZnzr3nzNx77cDlkTCM15Q2N7+wuJRezqysrq1vZDdztciPQ4dVHd/1w4ZtRczlHqsKLlzWCEJmjWyX1e1hWcbrVyyMuO9diHHA2iOr7/EedyxBVCebO2kV9IEVlQfc7RIs7xU62bxRNNTSZ4GZgDySVfGzL2ihCx8OYozA4EEQdmEhoqcJEwYC4tqYEBcS4irOcIMMaWPKYpRhETukb592zYT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3RHnKu43pbydeI2IFBsT+pZtm/lcnaxHo4VjVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hL8ZCwo5TTPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxbUDoqmUTTPD/Ol02TUaWxjB/s0zyOUcIYKquR9jUc84Vm71G61O+3+M1VLJZotfFvawwccsJUn</latexit><latexit sha1_base64="gAqPl1JQe7MS3q9W+1xewq5KcJs=">AAAC13icjVHLTsJAFD3UF+ILcemmkRhdENKy0SXKxiUm8jBASFsGmFDapp0aCTHujFt/wK3+kfEP9C+8M5ZEJUanaXvm3HvOzL3XDlweCcN4TWkLi0vLK+nVzNr6xuZWdjtXj/w4dFjN8V0/bNpWxFzusZrgwmXNIGTW2HZZwx5VZLxxxcKI+96FmASsM7YGHu9zxxJEdbO5k3ZBH1pRZcjdHsHKQaGbzRtFQy19HpgJyCNZVT/7gjZ68OEgxhgMHgRhFxYielowYSAgroMpcSEhruIMN8iQNqYsRhkWsSP6DmjXSliP9tIzUmqHTnHpDUmpY580PuWFhOVpuorHylmyv3lPlae824T+duI1JlZgSOxfulnmf3WyFoE+jlUNnGoKFCOrcxKXWHVF3lz/UpUgh4A4iXsUDwk7Sjnrs640kapd9tZS8TeVKVm5d5LcGO/yljRg8+c450G9VDSNonleypdPk1GnsYs9HNI8j1DGGaqokfc1HvGEZ+1Su9XutPvPVC2VaHbwbWkPHxwQlSU=</latexit>

A B CisMarriedTo

hasChild

hasChild

A B CisMarriedTo

hasChild

hasChild

C’

During this internship a goal to implement an 
algorithm which allows evaluate rule's 
confidence is achieved. 

Automata returned by SAMi* for this example:
ParislivesIn

livesIn

hasCapitalAlex France

Pierre

livesIn

Lyon
livesIn

Mark
Chili

livesIn
SantiagohasCapitallivesIn

Jane

isM
arriedTo

livesIn

Jack
hasChild

Max
hasChild

hasChild
wasBornIn

wasBornIn
livesIn

ValparaisoisDiedIn





1 Introduction 

1.1 Natural language generation 
Natural language generation is the art of generating under-
standable sentences. Text generation can be used in predic-
tive keyboards. The model can also be used for other pur-
poses than text generation. For example, you can train the 
model on differents author’s book, and then guess who 
wrote a random book by comparing the perplexity by sen-
tence of each model. 

1.2 Existing language models 
The most known language models are the N-grams, which 
consists of predicting the next word based on the N-1 previ-
ous words, by counting the occurences of this N-gram in the 
training corpus. The result is a fast trained but unoriginal 
text, due to N-grams only learning sequences of words. 

2 Language model using RNN 
Recurrent Neural Networks are Neural Networks with the 
capability process sequences of data with a state memory. 
This property makes RNN interesting in text generation for 
the reason that we need to memorize information from pre-
vious words to predict the next word. 

2.1 The model  
The model we will use to generate text is a modified version 
of the Tensorflow official LSTM tutorial. 
The model take in input 20 words, and will try to predict the 
2nd to 21st words of the sentence, using the precedent word 
and a state memory. The 21st word is the one we are trying 
to predict. 

2.2 Word embedding 
Word embedding is a method to map words to real numbers 
vectors, improving natural language processing tasks. Simi-
lar words tends to have a similar vector, which gives more 
originality to word prediction. N-gram model may learn “I 
love pizza” but not “I love eating pasta”, but words embed-
ding will see the similarity between “pizza” and “pasta” and 
will give them almost the same probability, without learning 
the phrase “I love pasta”. 

2.3 LSTM 
The LSTM is the part of the model which will memorize the 
state of the sentence. 

2.4 Logits 
Logits are value representing the likeliness of being the 
word predicted. They can be transformed into probability 
using a linear function or a softmax function. They are com-
puted by an addition of the word bias matrix and the product 
of the predicted word embedding matrix and the reverse 
embedding matrix. 

2.5 Backpropagation 
When learning, the model need to modify its tensors to give 
better resutls. The model will change the value of tensors 
starting from the result (logits), to the logit computation 
(reverse embedding and word bias), to the word prediction, 
to the word embedding of the input. 

3 Results  
The evaluation of the model is done by computing the per-
plexity and accuracy on a corpus, and comparing it to the 
perplexity and accuracy of N-grams on the same corpus. 

3.1 Perplexity 
The RNN manage to reach a perplexity of 105, while bi-
gram’s only reach 364. I don’t include trigram’s result be-
cause it seems irrealistic, probably because of a bug. 

3.2 Accuracy 
The RNN predict right 22% of the words in the corpus, 
which is much higher than bigram’s 10.7% and trigram’s 
7.8% 

4 Conclusion 
RNN seems to perform better than N-grams on perplexity 
and accuracy, but it must be noted that the corpus is rela-
tively small, which favorise RNN over N-grams. 

 

 

Natural language generation : comparison of language models

Fabien Lefebvre 
SIGMA (LIG) 

Saint-Martin-d’Hères, France 
Fabien.Lefebvre@etu.univ-grenoble-alpes.fr 

 
Supervised by Cyril Labbé 

 

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 98



References 
 

[Dan Jurafsky et al., 2017] Dan Jurafsky, James H. Martin. 
Speech and Language Processing (3rd edition). 2017. 

Tensorflow documentation, Google. 2018. 

[Zaremba et al., 2015] Wojciech Zaremba, Illya Sutskever, 
Oriol Vinyals 

Recurrent Neural Network Regularization. 2015. 

[Mikolov et al.,2014] Yoav Goldberg, Omer Levy 

Word2vec explained: Deriving Mikolov et al’s Negative-
Sampling word embedding method. 2017. 

Natural language generation : comparison of language models Fabien Lefebvre

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 99



LIG -  SIGMA

NATURAL LANGUAGE 
GENERATION :  COMPARISON 

OF LANGUAGE MODELS
BY  FAB I EN  L E F EBVRE  

INTRODUCTION
The aim of this internship is to evaluate the use of Recurrent Neural

Networks (RNN) as a language model to generate natural language.

N-GRAMS
N-grams use the N-1 previous

word to predict the next word.

With a trigram model, we try to

predict a word with the 2 (3-1)

previous words.  

In the sentence "the cake is a

lie", we try to predict "is"

knowing "the cake". 

 

WORDS 
EMBEDDING
Word embedding is a

method to map words to

real num-bers vectors,

improving natural

language processing

tasks. Similar words tends

to have a similar vector,

which gives more

originality to word

prediction. N-gram

model may learn “I love

pizza” but not “I love

eating pasta”, but words

embedding will see the

similarity between “pizza”

and “pasta” and will give

them almost the same

probabil-ity, without

learning the phrase “I love

pasta”. 

RNN
Recurrent Neural Networks are

Neural Networks with the

capability process sequences of

data with a state memory. This

property makes RNN

interesting in text generation

for the reason that we need to

memorize in-formation from

previous words to predict the

next word. 

This is the model I worked on.





Certifying Answers of Boolean SAT-Solvers with COQ and OCAML

Vandendorpe Thomas
Supervised by: Sylvain Boulmé.

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
This paper presents SATANS-CERT an OCAML pro-
gram, certified in COQ, that wraps state-of-the-art
Boolean SAT-solvers in order to check their an-
swers. Hence, this tool increases trust in answers of
these highly optimized and still evolving programs
(themselves written in C/C++).

1 Introduction
Boolean Satisfiability solvers are now used in critical system
industry. Ensuring their correctness thus seems important.
But certifying efficient SAT-solvers written in C/C++ is diffi-
cult. It is easier to only certify a checker of their results.

Below, Section 2 briefly recalls fundamentals about
Boolean SAT-problem. Section 3 sketches the state-of-the-
art checking of SAT-solver answers. Section 4 presents our
checker. Finally, Section 5 concludes from our benchmarks.

2 Preliminaries
A literal is either a variable or its negation, a clause is a dis-
junction of literals and a conjunctive normal form (CNF) is a
conjunction of clause. A model for a formula F is an assign-
ment of variables satisfying F. The resolution rule where c1
and c2 are disjunctions of literals, l and ¬l are literals:

l ∨ c1 ¬l ∨ c2 resolutionc1 ∨ c2
Resolution rule ensures that any common model to the two
input clause is also a model of the resolvant.

DPLL is an algorithm used by SAT solver that consists to
recursively: choose an unassigned variable, assign a value
to the variable, simplify the CNF. If the simplified CNF is
trivally true, the current assignment is a model of the input
CNF. If it is trivially false, there is a conflict which requires
to backtrack with another assignment. CDCL [Silva et al.,
2009] is a refinement of DPLL: on each conflict, some new
clauses are learned and added to the CNF (actually, they are
implied by the input CNF and will avoid many “similar” con-
flicts). Learning the empty clause means that the CNF is un-
satisfiable.

3 Checking UNSAT answers: a state of the art
While verifying a SAT answer is very easy (only needing to
evaluate the formula on the assignment), verifying UNSAT
answers is more complex. In theory, it reduces to check res-
olution proofs. But modifying a given SAT solver to pro-
duce such proofs is difficult and very inefficient because of
their huge size. Thus, state-of-the-art solvers produce shorter
proof traces, which require more work from the checker. Cur-
rently, there are several formats of proof traces. The most
standard one is RUP (Reverse Unit Propagation), simply list-
ing learned clauses from CDCL. The RAT format (Resolution
Asymetric Tautology [Heule et al., 2013]) is an extension of
the RUP format, allowing to introduce new boolean variables
during the proof.

The standard RUP/RAT checker is DRAT-TRIM [Wetzler et
al., 2014]. This tool is itself not certified: it is a C program
using optimized data-structures. This tools is also able to op-
timize the proof trace in input, and to output a LRAT proof,
adding informations to the RAT proof in order to check it with
resolutions.

4 Contribution
We have developed SATANS-CERT to certify SAT-solvers an-
swers. It includes a LRAT proof checker which is certified by
using a new type of interaction between COQ and OCAML
[Boulmé, 2018] – allowing to delegate a part of the COQ certi-
fication to the OCAML typechecker. The Trusted Computing
Base (TCB) of our proof thus contains the Coq proof assis-
tant, the OCaml compiler, and our process to link our OCaml
oracles to our Coq code through Coq extraction. It also con-
tains our OCAML parser of the input CNF in DIMACS for-
mat: only the computations from the CNF in abstract syntax
are certified. In brief, SATANS-CERT first parses the formula,
and then runs the SAT solver (given in parameter):

• If its anwer is SAT, the model is simply checked by a
coq-certified checker.

• If the answer is UNSAT, DRAT-TRIM is executed to pro-
duce an optimized LRAT proof. The OCAML part of
the LRAT checker learns new clauses (using COQ certi-
fied resolution functions) from existing clauses in order
to produce the empty clause.

Proceedings of MIGA’2018 - Magistère d’Informatique de l’Université Grenoble-Alpes 102



5 Conclusion
Our benchmarks shows that the running time of our checker
is lower than the one of DRAT-TRIM. This implies that our
checker is much faster than the previous LRAT checker writ-
ten in coq (this latter is much slower than DRAT-TRIM) [Cruz-
Filipe et al., 2017]. But it remains a bit slower than other
checker written in other languages as ACL2 [Cruz-Filipe et
al., 2017] or using an alternative format to LRAT (like GRAT
[Lammich, 2017]). Actually, DRAT-TRIM is the bottleneck
of our tool chain. In conclusion, some improvements remain
to be done on our checker: using experimental machine inte-
gers of Coq (instead of the less efficient but standard binary
integers of Coq); take into consideration other recent proof
formats like GRAT; certify inputs/outputs.

Acknowledgments
Work supported by grant ERC Stator of David Monniaux.

References
[Boulmé, 2018] Sylvain Boulmé. What is the Foreign Func-

tion Interface of the Coq Programming Language? Coq
Workshop 2018, 2018.

[Cruz-Filipe et al., 2017] Luı́s Cruz-Filipe, Marijn J.H.
Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified rat verification.
Automated Deduction - CADE-26, pages 220–236, 2017.

[Heule et al., 2013] Marijn J. H. Heule, Warren A. Hunt Jr.,
and Nathan Wetzler. Verifying refutations with extended
resolution. Automated Deduction - CADE-24, pages 345–
359, 2013.

[Lammich, 2017] Peter Lammich. The grat tool chain: Effi-
cient (un)sat certificate checking with formal correctness.
Proc. of SAT 2017, 2017.

[Silva et al., 2009] João P. Marques Silva, Inês Lynce, and
Sharad Malik. Conflict-driven clause learning SAT
solvers. In Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages
131–153. IOS Press, 2009.

[Wetzler et al., 2014] N. Wetzler, M.J.H. Heule, and W.A.
Hunt, Jr. Drat-trim: Efficient checking and trimming us-
ing expressive clausal proofs. Theory and Applications of
Satisfiability Testing – SAT 2014, pages 422–429, 2014.

Certifying Answers of Boolean SAT-Solvers with C OQ and OC AML Thomas Vandendorpe

Proceedings of MIGA’2018- Magistère d’Informatique de l’Université Grenoble-Alpes 103



Certifying Answers of Boolean SAT-Solvers with Coq
github.com/boulme/satans-cert

Sylvain Boulmé
Sylvain.Boulme@univ-grenoble-alpes.fr

Thomas Vandendorpe
Thomas.Vandendorpe@etu.univ-grenoble-alpes.fr

STATE-OF-THE-ART IN BOOLEAN SAT-SOLVING

Features
Continuous efficiency increase of C/C++ Solvers through “SAT competitions”
Decide satisfiability of Large Boolean Formulas :
thousands of variables and millions of boolean constraints
Output certificates, ie checkable answers

Applications in Electronic Design Automation
Formal equivalence checking Automatic test pattern generation
Model-checking Automated planning and scheduling
Routing of FPGA ...

Others: artificial intelligence, theorem proving, software dependencies, ...

CHECKING ANSWERS OF MODERN SAT-SOLVERS

BENCHMARKS
Mean running times (SAT)

 

 

 

 

 

 

 

 

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

 1
x
1

0
6

 1
x
1

0
7

 1
x
1

0
8

R
u
n
n
in

g
 T

im
e
 (

lo
g

)

Number of clauses (log)

cadical
satans-cert

 

 

 

 

 

 

 

 

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

 1
x
1

0
6

 1
x
1

0
7

R
u
n
n
in

g
 T

im
e
 (

lo
g

)

Number of literals (log)

cadical
satans-cert

Running with the Cadical SAT-solver on the 120 instances of the
SAT competition 2018 benchmarks.

Mean running times (UNSAT)

29.82% solver

50.13% drat-trim

20.05% satans-cert

Running with both Cadical and Cryptominisat SAT-solvers on 306
instances from the SAT competition 2015,2016,2018 benchmarks.

ARCHITECTURE OF SATANS-CERT

SAT Answer UNSAT Answer




	Thursday, August 30, 2018
	Paul Raynaud9:00 AM - 9:40 AM  Towards the automatic translation from C program to Horn clauses 
	Enzo Brignon9:40 AM - 10:20 AM  Runtime verification of logico-temporal properties for embedded C software 
	Florian Barrois10:35 AM - 11:15 AM  Combining Path and Cache Analysis for WCET estimation improvement 
	Maxime Calka1:30 PM - 2:10 PM  Semi-Automatic Segmentation of Surgical Instruments in Minimally Invasive Surgery Videos 
	Maxence Grand2:10 PM - 2:50 PM  Integrating lexical constraints to K-Means with Deep Learning 
	Christopher Ferreira3:05 PM - 3:45 PM  A System-Wide Study of Performance Issues in FaaS Platforms 
	Antoine Delise3:45 PM - 4:25  Deciding Multivariate Polynomials Inequalities by combining Factorization, Euclidian Division and Handelman’s Theorem 

	Friday, August 31, 2017
	Alexandre Borthomieu9:00 AM - 9:30 AM  Automatic Grading based on Bisimulation 
	Nils Defauw9:30 AM - 10:00 AM  Large Scale Traces Analysis : Multi-Scale Patterns 
	Adelina Prokhorova10:15 AM - 10:45 AM  Knowledge base mining using compressed data structures 
	Fabien Lefebvre10:45 AM - 11:15 AM  Natural language generation : comparison of language models 
	Thomas Vandendorpe11:30 AM - 12:00 AM  Certifying Answers of Boolean SAT-Solvers with C OQ and OC AML 


