
Magistère
Informatique

JEUDI 1er SEPTEMBRE

9h Steve ROQUES
Optimisation des accès mémoire spécifiques à une
application par prechargement de page dans les
manycores.

9h40 Thomas LAVOCAT
Gotaktuk, a versatile parallel launcher

10h25 Myriam CLOUET
Ra�inement de propriétés de logique temporelle

11h05 Lenaïc TERRIER
A language for the home - Domain-Specific
Language design for End-User Programming in
Smart Homes

14h Mathieu BAILLE
Méthodologie d’analyse de corpus de flux RSS
multimédia

14h40 Jules LEFRERE
Composition in Coq of silents distributed self-
stabilizing algorithms.

VENDREDI 2 SEPTEMBRE

8h30 Thomas BAUMELA
Integrating Split Drivers in Linux

9h10 Rémy BOUTONNET
Relational Procedure Summaries for
Interprocedural Analysis

10h Quentin RICARD
Détection d'intrusion en milieu industriel

10h40 Christopher FERREIRA
Scat : Function prototypes retrieval inside
stripped binaries

11h30 Lina MARSSO
Formal proof for an activation model of real-
time system

14h Antoine DELISE
Is factorization helpful for current sat-solvers ?

Le Magistère est une option pour les élèves de
niveau L3 à M2 leur permettant d’acquérir de
l’expérience dans le domaine de la recherche.

Les soutenances, organisées sous forme de
conférence, sont ouvertes au public.

2016

UFR IM4AG

15h20 Rodolphe BERTOLINI
Distributed Approach of Cross-Layer
Allocator in Wireless Sensor Networks

16h15 Claude Gobet
3D kidney motion characterization from
2D+T MR Images

Rendez-vous au grand amphithéatre
de l’IMAG

Prefetching memory pages in manycores

Roques Steve Supervised by: Fr

´

ed

´

eric P

´

etrot

steve.roques@imag.fr, frederic.petrot@imag.fr

Abstract

Computer systems contain an increasing number of
processors. Unfortunately, increasing the compu-
tation capability is not sufficient to obtain the ex-
pected speed-up, because then memory accesses
become a bottleneck. To limit this issue, most
multi/manycore architectures are clustered and em-
bed local memory, but then what, when and how
the content of these local memories is managed be-
comes a crucial problem called prefetching.

In this article, we perform a study of the state of
the art around memory pages prefetching and pro-
pose a simple model to evaluate the performances
of such systems. This ultimately leads us to con-
clude with a description of the future works to
achieve.

1 Introduction

The memory hierarchy in modern embedded massively
multi-processor CPUs is usually structured in the form of L1
caches (coherent or not) close to the processor, local memory
(LM) dedicated to a small set of processors (8 or 16, called
a cluster or a tile) which can be regarded as a L2, but whose
content is the responsibility of the software, and an external
global memory (GM) can be seen as a L3.

The local memories are usually small, for technological in-
tegration reasons, and have good performances (latency and
throughput). But this implies that any access to the LM that
fails requires access to the GM, which causes an important
slowdown.

Some operating systems attempt to prefecth pages on the
fly, based on previous page-fault occurrences for example.
This approach is general but makes assumptions, such as that
the desired pages are on disk, and thus suffer of extremely
high latencies.

Let us take the example of figure 1 in which one can see
one CPU, one direct memory access engine (DMA) and 2
memories. The time t1, corresponding to time to load be-
tween Mem2 and DMA is shorter than time t2, corresponding

to time to load between Mem1 and DMA. It is better to use
the Mem2 more often and therefore repatriate Mem1 data to
Mem2. So the execution time is reduced. To do this we will
see several methods.

Figure 1: Prefetch between 2 memories

CPU DMA

Mem1

Mem2

t1
t2

The objective of this paper is to examine the state of the art
in prefetching memory pages (typically 4 KB) to determine
if the knowledge of the application can be exploited to define
an offline approach able to limit the number of page faults.
We start by doing a quick tour of different works already re-
alised about prefetching memory pages. Then the evaluating
system that we used for experimentation aiming at comparing
these approaches will be explained. Finally, we present future
works and conclusion.

2 State of the art

2.1 Comparison of several algorithms

Dini et al. [1] compare many caching and prefetching al-
gorithms in order to explain why prefetching improves ef-
ficiency. They begin by explaining the two basic algorithms
they use for comparison: Least recently used (LRU) and Most
recently used (MRU). LRU is defined with this rule: every
page replacement evicts the buffered page whose previous
reference is farthest in the past. MRU is defined with this
rule: every page replacement evicts the buffered page whose

previous reference is nearest in the past. These two algo-
rithms probably represent the program response times upper
and lower bounds in the absence of page prefetch.

Krueger et al. [2] trace the memory accesses produced by
the successive over relaxation (SOR) target application. They
simulate SOR with LRU page replacement policy and they
show that LRU is inadequate under the given circumstances
because it generates one page fault by iteration of the loop.
However the objective of prefetch is to reduce access time
not only because the data is closer, but also by reducing the
number of page faults too. Krueger et al. [2] show that the
replacement algorithm for page depends directly on the target
application.

Unlike those algorithms, Dini et al. [1] presents two
prefetch algorithms EP (early prefetch) and LP (late
prefetch), that characterise different degrees of secondary
memory system (SMS) activity.

EP include several phases, one for early prefetch when
SMS becomes idle and until the fair replacement rule was
satisfied. Fair replacement rule is defined as every page re-
placement evicts the buffered page whose next reference is
farthest in the future, provided this page has been referenced
since its most recent load from secondary memory into the
buffer. Finally, the next reference is every page fetch loads
the non-buffered page whose next reference will be in the fu-
ture.

LP is defined by the next reference and fair replacement
rules and a third rule. This is late prefetch, when the SMS
becomes idle and a page is missing in the buffer, the fetch
of this page is done at the earliest time making it possible to
complete fetch before occurrence of the next reference to this
page.

Dini et al. [1] concluded that the time necessary for the
processor to control the SMS has a significant impact on pro-
grams response times. And the results of their experimental
measurements made in local SMS configuration indicate that
these holes, those created by allocation of buffer, are respon-
sible for significant increases in program response time.

2.2 Compiler and Prefetching

There are also proposals which aim to include the prefetch
phase directly in compilation. Thus one can gather the list of
information required to perform the prefetch. There is even
the version that automate this task and thus relieves the pro-
grammer of this task. Mowry et al. [3] propose and evaluate
a fully automatic technique. They use a hierarchically mem-
ory cluster, named Hurricane, which is a micro-kernel based
operating system that is mostly POSIX compliant. They com-
pare many applications on this system, which represent a va-
riety of different scientific workloads. The compiler analyses
future access patterns to predict when page faults are likely

to occur and when data is no longer needed. Then, operat-
ing system manage I/O to accelerate performance and min-
imising prefetch. Caragea et al. [4] aim at evaluating many
algorithms with compiler prefetching for manycores. Many-
cores, or massively multi-core, describe multi-core architec-
tures with an high number of cores. They evaluate prefetching
algorithms on the explicit multi-threading (XMT) framework.
The goal of the XMT is improving single-task performance
through parallelism. Furthermore, they present Resource-
Aware Prefetching (RAP) algorithm, an improvement over
Mowry’s algorithm.

Mowry’s looping prefetch is a three-phase algorithm. One
for determining dynamic accesses which are likely to suf-
fer cache misses and therefore should be prefetched. A sec-
ond for isolating the predicted dynamic miss instances using
loop-splitting techniques such as peeling, unrolling, and strip-
mining. Finally, a scheduler that prefetches the appropriate
page the proper amount of time in advance using software
pipelining[4].

RAP is an improved Mowry’s algorithm lowering 2 itera-
tion. Thereby, it limits resource requirements and uses them
to hide as much latency as possible. Experiments with this al-
gorithm show that it has up to 40% better performances than
Mowry’s algorithm.

2.3 Shared Memory Systems

Paudel et al. [5] and Speight and Burtscher [6] present how
prefetching improves performance in shared memory. They
showed that employing optimised coherence protocols for tar-
geted patterns of shared-variable accesses improves applica-
tion performance. Paudel et al. [5] have used different access
patterns to test and optimise these access :

• Read-mostly : variables are initialised once and subse-
quently only read by many threads.

• Producer-consumer : variables are updated by one pro-
ducer and read by many consumers.

• Accumulator : variables are updated from values gener-
ated at each node.

• Migratory : variables are read and modified one at a time
by different processors.

• Stencil pattern : each variable in a multidimensional grid
is updated with weighted contributions from a subset of
its neighbouring variables.

• General read-write : variables are read from and written
to by multiple threads.

However, when the prediction window grows, so does the
numbers of page fault. This is due to the fact that the algo-
rithms tested are not very resilient to page fault. However, the
results show that the prefetch on shared memory increase per-
formances, it is sufficient just to check that the target program
uses the good memory address at the right time and reduce er-
rors.

2.4 Dependence Graph Precomputation

Annavaram et al. [7] use a different approach. They use
a dependence graph precomputation for prefetching memory
page. This graph represents a scheduling of precomputations
in the target program. Thus, the target program is precom-
puted as if it was compiled. The advantage of this method
is that it can associate the prefetched memory page at the
node graph and so define what page will be fetched after.
Annavaram et al. [7] use for their simulation the CPU2000
integer benchmark suite. It is composed of the following pro-
gram set: gcc, crafty, parser, gap... This set forms a coverage
of target program for testing. The precomputation is neces-
sary when parts of the target application is repeated over time.
Indeed the fact of precomputing allows memoization, and re-
turns it directly to the next request. However precomputa-
tion is not useful if the operation does not perform repeat-
edly. It would be advantageous to associate precomputation
and prefetching in order to increase the performance.

2.5 Prefetching by Markov predictors

In this section we explain why Markov chains are inter-
esting for prefetching. Joseph and Grunwald [8] use the miss
address stream as a prediction source. They use this stream to
build the Markov chain and so achieve a prediction automa-
ton. Pathlak et al. [9] shown that Markov history table size of
32 is sufficient for cache prefetching. They modify memory
hierarchy along with Markov prefetch engine and prefetch
buffer. Firstly quick explanation on how the Markov chain
works. In figure 2 one can see an automaton that represents
the Markov chain for the string ”A,B,C,A,C,D,B,A,B,A”.
The chain is built by the following way: If A is followed
by B, we create an edge of 1 weight between A and B. Then
once all the stream is traversed, we normalize the weight of
edges.

Figure 2: Markov chain example

A
B

C
D

.67

.33

.67

.33

.5

.5

1.0

Chain : A, B, C, A, C, D, B, A, B, A

The Joseph and Grunwald [8]’s predictor works this way.
Each page miss is referenced in the predictor and pushed in
the queue of miss address stream. Then the Markov chain
is updated with this new reference. They realize the Markov
prefetcher in hardware with several registers to predict fu-
ture address miss and they use these registers to request a
prefetch in cache. This method works using only two thirds
of the memory of a demand-fetch cache organisation. This
is expensive, but this method is still advantageous and can be
reworked by software.

2.6 Speculative data prefetching for branching

structures

Carpov et al. [10] examine two different strategies for
prefetching in dataflow programs, a fractional strategy and an
all-or-nothing strategy. Their analyse is specific to n-output
branching structure. The fractional strategy consist on if is
allowed to prefetch only fractions of branch data, or all-or-
nothing otherwise. Carpov et al. [10] try to find the opti-
mal data prefetching strategies to minimize objective func-
tions as the mathematical expectation and the worst-case of
the execution time. In both cases, problems are resume by a
linear programming problem and Dantzig algorithm[11] (or
simplex algorithm) can solve this problem in an polynomial
time. Carpov et al. [10] prove the branch prefetching order is
an optimal one.

2.7 Machine Learning based prefetch

Liao et al. [12] presents a prefetch optimization based on
machine learning with several algorithm of machine learn-
ing and a benchmark data center application. They apply
machine learning to predict the best configuration using data
from hardware performance counters.

Figure 3: Workflow of framework construction and evalua-
tion

P1

P2

Pk

Pk+1

Target
Platform

Target
Platform

Model
Builder

Prediction
Model

Prediction
Model

.

.

.

.

.

.

X T→ →+
1

2

K

K+1

1

X T→ →+

X T→ →+

X
T

→
→

2

K

K+1

In figure 3 we can see a workflow of framework con-
struction then a workflow of framework evaluation. Firstly
we construct the prediction model from programs P1 to Pk

with their entries �!
X and their execution times �!

T . Then we
use the model built to assess the program Pk+1 with input
�!
Xk+1. Thus we obtain an execution time �!T k+1 based on the
knowledge that was acquired from previous programs. Liao
et al. [12] created their prefetch algorithms from this machine
learning approach.

Liao et al. [12] created four hardware prefetchers based on
four machine learning algorithms.

• Data Prefetch Logic : fetches streams of instructions and
data from memory to the unified L2 cache.

• Adjacent Cache Line : fetches the matching cache line
in a cache line pair to the L2 cache.

• Data Cache Unit : fetches the next cache line into the L1
data cache when it detects multiple loads from the same
cache line.

• Instruction Pointer-based : keeps sequential load history
information per instruction pointer and uses this data to
decide whether to fetch data into the L1 cache.

By combining these algorithms and multiplying the test,
they get an improvement in execution time between 1% to
75% according to target program and platform used. This can
serve us to create the preftech models we wish to achieve with
Markov chains. So by combining the stochastic approach of
Markov chain and systematic approach to machine learning
should lead to interesting results for our technical prefetch.

3 Experimentation environment

In this section we describe the environment used for sim-
ulation. It is based on the RABBITS platform, that uses
QEMU to simulate processors and SystemC (a standard for
modeling hardware components) to simulate the other hard-
ware parts of the system. QEMU is a generic and open source
machine emulator and virtualizer. This enables us to vir-
tualize our system and evaluate different prefetching strate-
gies. We test several applications: matMult (matrix multi-
plication), ParallelMjpeg (muti-threaded Mjpeg decoder) and
Pyramid (image processing algorithm). These applications
make multiple memory accesses and we will recover traces
of execution that allow us to determine when and by what al-
gorithm should we prefetch these pages. The applications run
on top of DNA/OS, a simple operating system that allows to
schedule threads and provides accesses to the libc function-
alities, among which memory allocation and terminal output.
The binary generated by the cross-development toolchain will
be executed on the CPU of QEMU. The Communication Bus
is realized by an abstract network on chip (NoC) as we can
see in figure 4. This NoC allows to abstract communication
between the CPU in QEMU and the memories modeled in
SystemC.

Figure 4: Rabbits architecture and compilation chain with
apes compiler

Qemu Wrapper

CPU CPU CPU

Bus : Abstract Noc

Frame
Buffer RAM 1 RAM 2

0xC8000000

0xC8100000

0x00000000

0x08000000

0xC5000000

0xC5100000

Application
C DNA OS

Apes

Binary

The trace of executions we generate with this system al-
lows us to know when the page is entered and at what time.
This allows us to chain the memory access and fill define at
what time the pages should be prefetched so that execution
are conducted more quickly. Indeed if the page has directly
from the cache the CPU will not raise a page fault and there-
fore will directly access a resource.

4 The prefetcher simulator

The prefetcher we have implemented has two alternative
algorithms based on Markov chains like Joseph and Grun-
wald [8] and Pathlak et al. [9] did. Markov chains were used
for learning the sequence of page accesses and selecting the
future page which has the highest probability. The advantage
of using such an approach is that developers are not solicited
to perform the prefetches themselves. The system ”learns”
by itself the most probable accesses to pages on a given ex-
ecution path and predicts which pages should be repatriated
according to the latency characteristics of the architecture and
the execution of the target application. The execution traces
recovered contain a list of page addresses accesses and the
time at which the accesses have been made. By browsing the
list, a Markov automaton is built. From the current page, this
automaton gives the probabilities to access any of its succes-
sor pages.

Figure 5: Simulator

@ t1 1

@ t2 2
@ t3 3

@ tn n

@ t1 1

@ t2 2
@ t3 3

@ tn n2

2

2

2

Speed up = nt nt

nt
--2 * 100

Prefetcher
simulator

Markov
automaton

Input trace Output trace

current
address
 @

probability

We developed a simple prefetch simulator which reads in
a trace of execution with the addresses of accessed pages and
their corresponding access times. Architectural information
such as the latencies of memories accesses, their sizes, and
the time it takes to copy a page from and to the large and small
memories are also required. Then the simulator built the
Markov chain by browsing the entry trace and it provided an-
other trace that represents simulation with prefetch. The con-
struction of the Markov chain is the same as that of described

Figure 6:

0

5

10

15

20

25

30

35

40

45

2m
m
3m

m
ata

x
bic

g

ch
ole

sk
y

do
itg

en

ge
mm

ge
mve

r

ge
su

mmv
mvt

sy
mm

sy
r2

k
sy

rk

du
rb

in

dy
np

ro
g

gr
am

sc
hm

idt lu

lud
cm

p

flo
yd

-w
ar

sh
all

re
g_

de
tec

t
ad

i

fdt
d-

2d

fdt
d-

ap
ml

jac
ob

i-1
d-

im
pe

r

jac
ob

i-2
d-

im
pe

r

se
ide

l-2
d

co
rre

lat
ion

co
va

ria
nc

e

S
pe

ed
 u

p(
%

)

Polybench 3.2 C - Benchmark

in section 2.5. Each page is chained to former then normalises
edges to obtain the probabilities for each of these pages from
previous. At last, the simulator verifies if the probability re-
turned by the automaton is greater than the threshold of ac-
ceptability defined by the developer and charging or not the
page in the buffer representing the local memory.

The simulator also uses an algorithm to simulate the oust-
ing of the local memory that contains the pages that have been
loaded. This algorithm is a simple LRU, it may be replaced
by a more efficient algorithm based on the architectures and
application testing. Generally the simulator is scalable and
several heuristic to test anymore can be added. The algo-
rithms described above, as EP and LP [1] or Mowry’s looping
prefetch algorithm [3], will be used as heuristic in the simu-
lator.

Figure 7:
Polybench (speed up in %)

Page 1

Application DATA Medley Stencils Data mining

Split Full Split Full Split Full Split Full

100 – 100 MINI -24.32 -24.32 -25.27 -25.27 -27.37 -27.37 -37.85 -37.85

10 – 100 MINI 14.69 14.71 13.75 13.75 16.20 16.20 22.58 22.58

10 – 200 MINI 17.83 17.85 17.11 17.11 22.42 22.43 28.62 28.62

10 – 500 MINI 20.02 20.04 19.88 19.88 26.02 25.86 32.34 32.34

10 – 1000 MINI 20.88 20.91 20.97 20.97 27.29 27.15 33.77 33.77

10 – 2000 MINI 21.34 21.36 21.50 21.50 28.03 27.88 34.38 34.38

10 – 5000 MINI 21.60 21.63 21.77 21.77 28.42 28.26 34.73 34.73

100 – 100 SMALL -29.47 -29.47 -38.93 -38.93 -32.68 -32.68 -55.42 -55.42

10 – 100 SMALL 16.88 15.77 25.57 25.87 18.98 18.76 31.93 21.99

10 – 200 SMALL 21.51 20.57 29.43 29.72 28.00 27.76 38.63 28.59

10 – 500 SMALL 24.98 23.92 32.12 32.41 32.10 31.26 42.70 32.67

10 – 1000 SMALL 26.92 25.72 33.18 33.29 33.93 32.28 44.11 34.32

10 – 2000 SMALL 27.96 27.33 33.58 33.95 32.42 32.84 42.40 35.58

10 – 5000 SMALL 29.52 28.65 34.99 35.43 37.05 33.12 47.28 37.92

10 – 100 STANDARD 19.04 17.75 27.05 24.89 21.13 20.83 25.56 27.47

10 – 200 STANDARD 19.69 21.07 26.57 27.90 27.18 27.26 27.29 29.01

10 – 500 STANDARD 21.44 22.96 27.57 28.90 28.17 28.19 31.34 31.94

Linear
Algebra

Latencies
L1 – L2(ns)

SLS (speed up in %)

Page 1

Application Dinner Pyramid Quicksort

Split Full Split Full Split Full Split Full Split Full

100 – 100 -44.44 -44.44 -35.70 -35.70 -32.95 -32.95 -39.05 -39.05 -29.87 -29.87

10 – 100 14.36 13.99 22.27 22.34 22.87 23.05 26.77 27.09 18.03 17.55

10 – 200 22.14 21.74 27.90 28.03 26.11 26.31 30.55 30.86 22.18 21.42

10 – 500 27.56 26.49 31.38 31.56 28.16 28.35 33.70 33.95 24.90 24.34

10 – 1000 32.10 30.53 32.96 33.09 28.90 29.07 34.51 34.73 25.93 25.33

10 – 2000 30.81 29.47 33.76 33.84 29.37 29.47 34.93 35.13 26.47 26.24

10 – 5000 39.63 39.84 34.26 34.41 29.65 29.75 35.33 36.27 26.81 27.55

Parallel
RGB_2_YUV

Parallel
Mjpeg

Latencies
L1 – L2(ns)

5 Results

We test the prefetch for two benchmark. The first, named
SLS, is composed of linear programming and parallel pro-
gram developed by SLS team at TIMA laboratory. The sec-
ond is the Polybench benchmark developed by Pouchet and
Yuki [13]. Polybench 3.2 is composed of different categories:

• Linear Algebra
• Medley
• Stencils
• Datamining
We also tested different data size provided by this bench-

mark (mini, small and standard). This verifies that the
prefetch is effective even with longer executions. Finally la-
tencies of the two memories accesses are used as limit. If
both latencies are identical then the prefetch has no inter-
est because it just used the distant memory directly. But
when the gap between memory accesses is large enough then
the prefetch helps to enhance performance. The experiment
shows that the prefetch is useful and helps reducing target
programs execution time.

It is observed in figures 6 and 7 that when the difference
between memory accesses increases the speed up obtained
grows also. The executions of longer duration, thus with
larger data, obtain better results than the smaller ones. In-
deed the gain is proportional to the length of the execution of
the program. So if the execution time is long enough, the gain
between the prefetcher version and the normal version will be
great. These results remain observable with both benchmarks
for both sequential and parallel programs. So the fact of shar-
ing data among several given thread does not seem to affect
the prefetch data.

What these results do not show, as the simulator does
not model it, is the effect of the memory required to hold
the prefetcher information, i.e. the Markov chain. Indeed,
traversing many pages may lead to a large automaton is no
provision is taken. If this information, which must be quickly
accessible, fills this memory, then the system will spend much
time to flush it and allocate for application data. This can re-
duce the prefetcher gain or even slow down the execution of
the program. This will require before realising the prefetch
to conduct an analysis of the architecture of the system tak-
ing into account the size of memories, their latency and size
that the prefetcher information will need. To avoid this risk, a
simple solution is to bound the amount of memory and accept
not fully accurate information.

5.1 Split versions

The simulator implements two strategies. A first one, called
”full” that contains all the transitions since the beginning of
the execution, and a second one, called ”split”, which uses
a threshold representing the number of transitions, and thus
considers only the n last transitions. This latter method
allows to define how much information is retained by the
prefetcher. Thus the pages that were used at the beginning
or from a certain point on will be forgotten because it may
not be useful in the current context of the application. In
this experimentation we defined a limit of 10% of total tran-
sition because we know the number of pages used in the in-
put trace. This represents between 1000 and 10000 transition
memorised by the prefetcher. The split version destroys the
automaton each time it reaches the threshold. We could also
implement a version that uses a circular buffer of transitions
that will keep a local context throughout the execution and
therefore avoid the loss of local information.

However this limit is to be defined in terms of architec-
ture because it generates an huge accuracy lost with respect
to the full version. Indeed, whenever the prefetcher destroys
the automaton and restart from the current pages, it loses
time which impacts the total execution time of the applica-
tion. And so if the prefetcher has emptied his memory too
often the error will accumulate. This error can be positive or
negative that is to say what can be increase the gain by the
prefetcher or reduce it, so it will assess whether the loss is not
too large compared to the target application used.

6 Future work

We achieved a prefetch simulator that takes an execution
trace and estimates the execution time as if a page prefetcher
was used. We observe that this is profitable and that pro-
gram implementation is faster and easier, as this method has
no impact on the programmer. Indeed, it can be implemented
directly into operating system. To do so will require pages
fault and caches miss information form the CPU to build the
Markov chains. Then the rest of prefetcher will be the same
as that of the simulator. With Markov automaton it predicts
pages to preload. This is technically challenging, as it re-
quires the use of a Direct Memory Access for the copy opera-
tion, and the correct management of the Translation lookaside
buffer and the page tables for each process of each CPU con-
cerned by the accessed data. Note that if the cost of doing
the copy using the DMA has been taken into account in our
model, the cost of the changes in the page tables and the cache
misses they will induce is not. Once this implementation re-
alised, a comparative study between the solutions proposed
by this article and reality can be done, thus checking whether
the simulator is correct and if not, explaining the potential
gap between the expected solution by the simulator and the
reality on the system studied.

We can also add several heuristic based on what has been
presented in the state of the art. As the precomputation[7],
algorithms EP and LP[1]. Or machine learning that could ac-
celerate the creation of the Markov chain and refine the model
for the target application. Finally, we can look learning al-
gorithms to achieve a more accurate prefetcher. We could be
using the Markov automaton as the first learning function and
refined the model over execution.

7 Conclusion

To conclude, we have seen several method to prefetch
pages with their advantage and disadvantage. We provide a
tool to simulate the prefetch from a trace of execution. This
tool allows to set up a prefetch strategy quickly, avoiding the
pain to developed this strategy directly in the operating sys-
tem. It remains tracks to explored, such as prefetch by learn-
ing. Finally, the prefetch allows to increase performance of a
system by reducing the access time of data. There also remain
several studies to conduct concerning the result of variations
in the simulated version and a version implemented on a sys-
tem or to studying the minimum size required for prefetcher
with Markov automaton to obtain satisfactory results without
taking too much memory.

Acknowledgement

I wish to thank Frédéric Pétrot for providing this internship
and helping me along it, Afif Temani for his unvaluable help
in setting up the environment used for the experiments and
the System Level Synthesis (SLS) team members for their
help in my research and experiences. Finally I would like to
thank the TIMA lab for welcoming me during this work.

References

[1] Gianluca Dini, Giuseppe Lettieri, and Lanfranco Lopri-
ore. Caching and prefetching algorithms for programs
with looping reference patterns. The Computer Journal,
2005.

[2] Keith Krueger, David Loftesness, Amin Vahdat, and
Thomas Anderson. Tools for the development of
application-specific virtual memory management. Pro-
ceeding OOPSLA ’93 Proceedings of the eighth annual
conference on Object-oriented programming systems,
languages, and applications Pages 48-64, 1993.

[3] Todd C. Mowry, Angela K. Demke, and Orran Krieger.
Automatic compiler-inserted i/o prefetching for out-of-
core applications. Operating Systems Design and Im-
plementation (OSDI ’96), 1996.

[4] George C. Caragea, Alexandros Tzannes, Fuat Keceli,
Rajeev Barua, and Uzi Vishkin. Resource-aware com-
piler prefetching for many-cores. Parallel and Dis-
tributed Computing (ISPDC), 2010.

[5] Jeeva Paudel, Olivier Tardieu, and José Nelson Amaral.
Optimizing shared data accesses in distributed-memory
x10 systems. High Performance Computing (HiPC),
21st International Conference on Computer architec-
ture, 2014.

[6] Evan Speight and Martin Burtscher. Delphi: Prediction-
based page prefetching to improve the performance of
shared virtual memory systems. Proceedings of the In-
ternational Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, 2002.

[7] Murali Annavaram, Jignesh M. Patel, and Edward S.
Davidson. Data prefetching by dependence graph pre-
computation. ISCA ’01 Proceedings of the 28th an-
nual international symposium on Computer architecture
- Pages 52-61, 2001.

[8] Doug Joseph and Dirk Grunwald. Prefetching using
markov predictors. ACM SIGARCH Computer Archi-
tecture News - Special Issue: Proceedings of the 24th
annual international symposium on Computer architec-
ture (ISCA ’97) Volume 25 Issue 2, May 1997 Pages
252-263, 1997.

[9] Pranav Pathlak, Mehedi Sarwar, and Sohum Sohoni.
Markov prediction scheme for cache prefetching. Pro-
ceedings of 2nd Annual Conference on Theoretical and
Applied Computer Science, Stillwater, OK, 2010.

[10] Sergiu Carpov, Renaud Sirdey, Jacques Carlier, and Dri-
tan Nace. Speculative data prefetching for branching
structures in dataflow programms. Electronic Notes in
Discrete Mathematics, 2010.

[11] Hans Kellerer, Ulrich Pferschy, and David Pisinger.
Knapsack problems. Springer, Berlin, Germany, 2004.

[12] Shih-Wei Liao, Tzu-Han Hung, Donald Nguyen,
Chinyen Chou, Chiaheng Tu, and Hucheng Zhou. Ma-
chine learning-based prefetch optimization for data cen-
ter applications. Proceedings of the Conference on

High Performance Computing Networking, Storage and
Analysis, 2009.

[13] Louis-Noël Pouchet and T Yuki. Polybench/c 3.2, 2012.

Gotaktuk a versatile parallel launcher

Thomas Lavocat tlavocat@april.org
Supervised by: Olivier Richard

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
In the High Performance computers (HPC) field,
computers are attached to each other to create clus-
ters that are made of thousand of computational
nodes and continue to grow bigger. As computers
needs maintenance, administration task, and even-
tually to execute some jobs, there is a need to fol-
low the growing cluster’s complexity with more ef-
ficient tools than yesterday. This report focus on the
building of Gotaktuk a versatile tool that deploys
commands and schedule tasks with adaptation to
the network configuration.

1 Introduction
In the field of High Performance Computing the next gener-
ations of platform will become bigger and Grids will involve
more and more nodes [6]. Actual tools are still usable for
thousand of cores, but what about millions of them ? There is
a need for a quicker way to continue the daily administration
and exploitation tasks. Administration tasks often consist of
broadcasting commands over a range of nodes. Exploitation
tasks often consist to process a set of jobs with the higher
efficiency.

As definitions, executing a command on a computational
node is called a remote executions deployment and is made
of some steps : The first and most time consuming part is to
connect the nodes, the second is to execute the final command
and fetch the output [1] and the final step is to shutdown each
node. If the program need to be copied on the remote, this
task is called the propagation and it is an additional cost to
the deployment.

Gotaktuk is also a refactor of Taktuk a versatile tool that
is able to handle thousands of computers. Those two will
be compared in this report. Finally, this tool has been built
using Grid5000 [10] a large-scale and versatile testbed for
experiment-driven research in all areas of computer science.

This report focuses on the ideas behind the development
of Gotaktuk and is organized as follows, section 3 will go
over the developed solution of Gotaktuk, section 4 presents

the experiments and to finish, section 5 presents the related
work.

2 Problematic
As said above, there is a need to have a faster versatile
launcher, with some needed qualities to be usable on hetero-
geneous grids. First of all, the launcher need to propagate it-
self over the nodes to avoid an additional administration task
for installation and maintenance, to obtain this quality, the
program should not have too much dependencies to external
libraries and must run out of the box on standard exploitation
systems and architectures. Second, as platforms of computa-
tional nodes are heterogeneous and involve a lot of comput-
ers, the program need to be fail resilient and at least be able to
terminate in every situation and not let any phantom program
running on nodes that will impact performance. Third, the
program need to be efficient in term of CPU usage and min-
imize its impact in order to gain efficiency while scheduling
tasks. Fourth, to keep maintainability, the program need to be
write with high level libraries to minimize the code volume
and minimize bug sources.

3 Solution
3.1 Chosen technologies
To follow the need of maintainability and speed, two main
choices have been made. Golang as language and Zmq as
networking library.

Golang a fast and compiled language Taktuk was written
in Perl. A Script language like Perl is a good solution for
several reason. For self deployment purpose, because of the
program’s weight and for portability, because of native pres-
ence of the Perl interpreter on computers. From one side,
interpreted languages are slow compared to a compiled one,
but as Taktuk is most IO intensive than computational inten-
sive this cost can be neglected [1]. This is not the case of
Gotaktuk, because this tool is also able to schedule a lot of
task and this functionality is computational intensive.

From the other side, Perl suffer from usabilities issues, like
dynamic typing, or its trickyness making more difficult to
maintain a well done program for a non Perl expert. A re-
build of Taktuk should consider a more easy to use language

root

1

2

tn

3

tn

t0

6

7

tn

8

tn

t0

Figure 1: Deployment sequence shown on a binary tree. Times
t0 and tn correspond to the time needed to launch a node in the
deployment tree. Those two times are equivalent, the imposent only
mean the floor of the tree. This time is the one that can not be reduce
or overlapped, and to be optimized, a node should use this ”dead”
time to launch as many children has possible.

to be maintained. Golang has been chosen for several rea-
son, it has a native high performance concurrency system [8]
usefull for scheduling and allow writing simpler and more re-
liable code [7] and can be linked with external libraries.

Deploying Gotaktuk on a node means sending the exe-
cutable on the remote and run it. As said, Golang is a com-
piled language, and the Golang compiler produces an ELF
format on GNU/Linux systems. For the moment, we do not
take care of the grid heterogeneity, this a engineering concern.
Luckily on Grid5000 we can ensure that our test benches
will run on Debian with the deployment facilities provided
by Kadeploy [10].

A quick networking library A reliable and high perfor-
mance communication layer is needed to link nodes to-
gether. ZeroMq is a high-performance reliable library for
asynchronous communications [9] that is not in an experi-
mental state and used on production’s programs. It provide
out of the box easy to use communication patterns.

Unfortunately, Zmq is a C library, it needs to be present on
the node, to keep the propagation facilities a workaround con-
sists to statically link the library inside the executable. This
has not been made for now.

The Gotaktuk’s engine is described in this section, explain-
ing how it work and how it answer the problematic.

3.2 Deployment and auto propagation
Gotaktuk reduces the complexity of the all execution by split-
ting its work through a communication tree called ”deploy-
ing tree”. The width can be fixed or variable depending on
the ”work stealing” activation, we will define this mechanism
later. Each node has for visibility its direct neighbours, x chil-
dren and 1 parent, except for the root node that has no parent
and leaf nodes that have no children.

The first action made by a node is to initialize and launch
its children. This operation is called a ”launching sequence”
and is considered done only when the launched node has send
its first message to its parent.

A node cannot start working until it is properly launched.
On the diagram presented on figure 1 this time is represented
by t0. This constant time cannot be overlapped and is equals
to the needed time to open a ssh connexion.

When the remote computer a node try to launch has no Go-
taktuk installed, the parent node will install Gotaktuk ont it,

Figure 2: Workstealing between a node and its parent, the request
to new jobs always come from the child, between two request the
parent measure the time spent executing the requests. If the time
is lower than twice the last one, then the parent give twice more
commands to execute, otherwise the parent will restart the number
of given tasks to two and start over the time computations.

this is an auto propagation sequence and its made over scp.
In the auto propagation case, a copy time must be added to t0
and is equals to the required time to upload Gotaktuk on the
remote computer.

To optimize the deployment sequence, a node should con-
tinue launching children until the first one is ready, this would
mean that the t0 time would have been spent entirely doing
something useful and not just waiting.

It may be a good idea to limit the nary tree, because a node
may launch a lot of children before the first one start to re-
spond and it may affect the IO performance of the parent.

3.3 Work stealing
Gotaktuk is inspired of Taktuk’s workstealing behavior. And
use this well known algorithm to bring adaptivity over the
heterogeneous grid[4] [2].

The work stealing is used two times in Gotaktuk. One to
create the deploying tree, one to steal jobs when Gotaktuk is
in schedule mode. The key idea behind work stealing is to let
the slow nodes less active than the quicker ones.

The algorithm behind is quite simple and shown on fig-
ure 2. When receiving a task request a node will give 2 task

and save the demand’s timestamp. On the second time a
demand is received, it will give 4 tasks, mesure the times-
tamp again and save the difference as ’time needed to ac-
complish two tasks’. After that, on the next ask if the new
delay was lower to twice last one, then the parent will give
2(lastPower+1) otherwise, as TCP’s most basic slow start, it
will start from the beginning.

A node has for the two types of tasks that can be stolen, a
pool of task that can be stoled and memorize for a son which
tasks has been stolen, in order to get them back in case of
failure.

This heuristic has some drawbacks, it only detect when a
node is slowing down but because there is no comparison be-
tween nodes it’s not possible to discriminate a slow one. A
way to do this would be to keep a reference time to process a
task, but this may only work when the task are homogeneous
in term of execution time.

For now this basic heuristic has given some good results
that we will see later.

3.4 Asking tasks
A node is responsible of its work, this mean that, a node need
to ask tasks to do to its parents. In the first version of Gotak-
tuk a parent had no way to contact its children, only to answer
them. In the last version, the functionality has been added but
only in broadcast mode for synchronisation purposes. This is
useful for recursive task asking. We said above that a node
has only a local visibility of its neighbours and can only ask
tasks to do to its parent. If the parent has no more task to do,
it will ask its parent and then to the root node if necessary to
find job to do. Once a parent has fetch tasks to process, it will
send a broadcast message to its children asking them to send
their potential question again. It leaves the responsibility to
tell that there is no more work to do to the root node. To min-
imize the network impact, each node follow the same rule,
do not send again a question until it got an answer about it.
Per example, on the graph 1 if 1 receive a task request from
2 and need to request the root about it and in the mean time 3
ask the same question, 1 will wait root answer before sending
again a potential question. And what if root never answer ?
We will see that failure detection later.

3.5 Broadcast commands and shutdown sequence
Gotaktuk is able to broadcast commands. This functionality
goes along with the shutdown sequence. Because for both of
them the deployment need to be over to complete the task.

A broadcast command is simply a command that will be
executed on every nodes. And those will have to send back
their results. On a deployed tree like the one above, 1 would
have to wait for 2 and 3 answer before sending the result to
the root. And 2 and 3 would have to be sure that there is no
more child to launch before taking the decision to send their
answer.

At the end of the deployment sequence, 2, 3, 7 and 8 will
ask to their parent if there is another node to launch, 1 and 2
having no child to launch, will ask to the root with a recursive
request. After receiving a bootstrap request from all its direct
children, the root node will declare that the bootstrap phase

is over, freeing 2, 3, 7 and 8, after propagation by 1 and 6, to
send their broadcast results.

The shutdown sequence need the same precondition. The
root node will tell its direct children to shutdown only if ev-
ery node is launched and ready. And will wait for its direct
children to shutdown (this is done recursively along the tree).
This ensure a clean stop of the deployment tree leaving no
orphan process on each node.

3.6 Work scheduling
Gotaktuk is able to schedule tasks over a deployed tree. The
scheduling engine use a process per core of the computer to
execute tasks in parallel.

Tasks are given by the parent node following the work
stealing algorithm. And the results are send immediately af-
ter execution, even if in fact, to avoid sending too much small
messages, the node groups its answer to send messages less
often.

On heavy load of schedule tasks to execute we notice the
first nodes of the tree will have a greater network charge than
the leafs. This is caused by the nature of a tree for communi-
cations.

For now, we juste observed that the work stealing give
more work to children that are parents and we did not reach
the network limit. Further experimentations need to be done
here.

We maybe would have to rethink the connexion between
nodes and create a graph with different routes to obtain work
to do.

3.7 Failure detection
On a distributed program, failure are often to append. A node
can be shutdown because of many reason or its network link
may die too.

Each Gotaktuk’s node embed a failure detection mecha-
nism that allow it to detect a failure parent or a failure child.
This functionality is build over a heart beat to detect defective
children, once a child has been declared failed, all its broad-
cast task are filled with a failure message and all its non done
schedule task are taken by other nodes.

The parent failure detection is triggered when the parent
stopped answering to questions (heartbeat is a question too).
Once a node has detect its parents as failed, it began its shut-
down procedure so in cascade, thanks to heart beating, its
children will shutdown too and so on to the end of the de-
ploying tree.

3.8 Reliability
For now, the only insured reliability is that Gotaktuk will
eventually terminate in a finite time.

A further work would be to have backup link to great par-
ents allowing a node to continue working and not cut the tree
for a single failure.

4 Experiments
The bellow presented graphs are from two kind. Fixed nodes
number and progressive growing nodes number. For the
fixed nodes number, three time measures are shown, those
are given by the Debian time command.

• real is the elapsed wall clock time used by the process
• user is the elapsed time spent in user mode
• system is the elapsed time spent in kernel mode
For the progressive growing nodes number, the number of

nodes is increasing by 10 from 10 to 250 and by 50 from 250
to 2000.

Note that the experiments didn’t use 2000 different ma-
chines to run the tests. This configuration is obtained by
deploying 200 nodes per computer. This will impact the
second test bench set where we need ’real’ computers to
measure propagation cost.

Experiments have been made to be reproducible and ran
on Grid5000. The operating system has been built with the
Inira’s Kameleon tool[3].

4.1 Deployment Experiments results
Those result shows a comparison between Taktuk and Gotak-
tuk at a development stage where work stealing wasn’t devel-
oped in Gotaktuk.

Executions without propagation
Flat launch comparison : Figure 3 shows a comparison
between two flat launch. As we can see on this graph, for
Gotaktuk the user time is really greater than the real time, it
shows a multi-core usage, thing we do not have on Taktuk. It
lead in fact to a problem corrected by the work stealing algo-
rithm, Taktuk has a sliding window feature limiting the num-
ber of parallelized launch. We do not have this on Gotaktuk’s
flat launch and with a greater number of nodes, performance
begin to crush.

The purpose of this test is to measure the deployment cost
on a fair execution, this is not relevant in real world appli-
cation because the execution is limited by the master node
characteristic and is generally not scalable [1].

Tree comparison : Figure 4 show the mean and standard
deviation Gotaktuk’s and Taktuk’s executions. Taktuk is in
work stealing mode (its faster mode) and Gotaktuk in binary
tree launch. Even in this non linear tree configuration, Go-
taktuk is faster compared to Taktuk. In this configuration Tak-
tuk’s speed is increased by two, and its capacities are closer
than a real world execution.

This time, Gotaktuk’s user time is almost zero (2ms), it
can be explained because, a node only use CPU resources
to launch two nodes, and then, spend it time waiting for its
children to ask questions or giving answers.

Increasing tree comparison : Figure 5 shows the real time
execution over an increasing work load. Taktuk is launched
with work stealing and no-numbering and as it was an op-
portunity to test different deploying tree for Gotaktuk, we
launched it with different fanout values, 2 stands for a bi-
nary tree, 4 for a four nodes by level tree and 8 for an height
nodes by level tree. We can notice the logarithmic shape for
Gotaktuk.

That graph shows that there is not much differences be-
tween the 4, 2 and 8 level tree, it can be explained because in

user real system
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

Taktuk
Gotaktuk

Ti
m

e
(s

ec
on

ds
)

Type

Figure 3: Mean an standard deviation of flat launch for Taktuk and
Gotaktuk over hundred nodes. There is 30 measure for both of the
program.

user real system

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5 Taktuk

Gotaktuk

Ti
m

e
(s

ec
on

ds
)

Type

Figure 4: Mean and standard deviation of work stealing launch for
Taktuk and btree for Gotaktuk over a hundred nodes. There is 30
measure for each program.

10 200 400 600 800 1050 1300 1550 1800

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

● Taktuk
Gotaktuk fanout 2
Gotaktuk fanout 4
Gotaktuk fanout 8

Ti
m

e
(s

ec
on

ds
)

Number of nodes

Figure 5: Increasing workload from 10 to 2000 nodes. Gotaktuk is
launched in different n-ary tree (2,4 and 8) Taktuk is in work stealing
mode, the efficiency of Gotaktuk follow a more sensible logarithmic
shape than Taktuk who seems more linear. There is only on measure
per point.

term of complexity, logarithms function are equivalent. Even
if the 4 one seems a little faster, there is only one measure
per point, and we need, more measure per point, a mean and
a standard deviation for each of them to really see if the 4 is
faster than the others. It can also be explained that in term of
complexity, logarithms functions are equivalent.

Execution with propagation
Figure 6 and 7 show two executions with propagation. In
this configuration, Gotaktuk is slower than Taktuk. This can
be easily explained because of the executable format. Even
stripped, Gotaktuk’s dynamically linked executable weights
4.5MB and Taktuk’s 220KB.

There is still an advantage for the go version, as it installs
itself on the remote computer and it does not have to pay the
propagation cost each time a node is contacted.

4.2 Tasks scheduling
Gotaktuk’s was not good or efficient with realy quick jobs like
the echo command and we wondered why. This inefficiency
lead to the building of a basic scheduling program only able
to do the basics of Gotaktuk, like parsing input schedule com-
mands, and use all the cores of the computer to process them.
Figure 8 shows on the red curve the growing efficiency of the
scheduler with longer tasks to process. This curve represent
the best than can be achieved for now in term of efficiency.

Gotaktuk’s full engine can be compared to this best possi-
ble curve. As the full engine work in this case with 10 nodes it

user real system
0.

0
0.

2
0.

4
0.

6
0.

8

Gotaktuk
Taktuk

Ti
m

e
(s

ec
on

ds
)

Type

Figure 6: Self propagation binary tree for Gotaktuk and work steal-
ing for Taktuk over 10 nodes. There is 30 measure for each program.

user real system

0.
0

0.
5

1.
0

1.
5

Gotaktuk
Taktuk

Ti
m

e
(s

ec
on

ds
)

Type

Figure 7: Self propagation with a flat launch tree for Gotaktuk and
Taktuk over 10 nodes. There is 30 measure for each program.

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Full distributed engine over 40 cores
local engine on 4 cores

Ef
fic

ie
nc

y
pe

rc
en

ta
ge

Task duration in ms

Figure 8: Comparison of the efficiency of Gotaktuk with full func-
tionality (network, children handling) and the core engine of Go-
taktuk, which is just a loop launching parrallel program without
any network functionality, while executing 5000 commands burn-
ing CPU for a determined time (5ms to 500ms) The simple engine
which is software brick responsible of Gotaktuk’s task execution has
the ”best efficiency” we may achieve on Golang for now. The rea-
son of comparison is to measure the efficiency loss with network
handling.

cannot be as stable as the local engine. So standard deviation
and mean are shown.

We can see on this diagram that Gotaktuk begin to be us-
able with 30ms tasks instead of 10ms for the local engine.

Further test campaign must be done, in order to see the effi-
ciency evolution with a greater number of nodes and a greater
number of tasks to proceed. We also need to compare the ef-
ficiency of Gotaktuk with other tools, Taktuk has a mode that
enable it to execute single tasks and this functionality can be
measured in term of efficiency.

The percentage is processed looking to the perfect time
needed to accomplish the task and is equals to
(5000tasks ∗ xms)/ycores).

5 Related work
Regarding broadcast execution, there are some software do-
ing the job too, Taktuk, Clustershell [5], pdsh [1], gexec [5].

The table 1 from Taktuk’s [1] paper has been reused to in-
clude Gotaktuk and Clustershell in it. It shows the function-
alities diffrencies between Gotaktuk and its peers.

From its paper, Clustershell [5] seems really fast but it has
not the ability to adapt its deployment topology dynamically.
We could not reproduce the results because the tree topology

No remote New Can mix Insensitive Distributed Compiled
installation connector several to nodes deployment engine

required plugin connectors failures
TakTuk [1] Yes Immediate Yes Yes Yes No
Gotaktuk Yes Simple Simple No Yes Yes
Clustershell [5] No for unknown unkown Yes Fixed No

distributed
deployment

pdsh [1] Yes Simple Yes Yes No Yes
gexec [5] No No No No Yes Yes

Table 1: Functionality comparison between Gotaktuk and its
peers

need to be statically declared and intermediate nodes in the
deployments needs to host the program, there is no self prop-
agation facilities.

Pdsh only launch itself through a flat deployment tree but
even if it’s a fast program [1][5] this is not scalable [6] and
suitable for heavy deployment configuration. In comparison
Gexec has a distributed tree but cannot spread itself over the
network and is intrusive as it need to run as a server on each
nodes. [1].

This first version of Gotaktuk use the same system with a
fixed n-ary tree and follow the same paradigm that Taktuk as
it embeds some of the needed functionality to run on a Grid
environment : - self propagation - high performance - and
failure detection.

Regarding scheduling capabilities of Gotaktuk and except
for Taktuk, none of the previous tools provide this kind of
functionalities. Ipyparallel [13] is one that provide a script-
ing way to launch parallelized tasks this one is the closest to
Gotaktuk, even if in our case, we only have the execution en-
gine. For a further work we need to compare ipyparallel’s
engine to Gotaktuk’s to situate where our software is com-
pared to concurrence.

Another kind of parallelizer is Swift that is also scripted
parallelizer, this one is a really fast and compiled one. Go-
taktuk can be compared to Swift [14] [15] in term of effi-
ciency but those two kind of systems are not on the same
level. Gotaktuk is more a versatile tool than an high perfor-
mance scheduler, at least for now.

6 Conclusions and further work
Gotaktuk has extra functionalities regarding Taktuk, like task
scheduling. It is not simple rebuild in an other language and it
opens perspectives. Gotaktuk can connect efficiently a wide
range of computational nodes and make them work. The next
step may be to allow people to write script that uses Gotaktuk
to run. And for sure there is a need to explore other communi-
cation graph to connect nodes, bring some reliability, improve
performance and scalability.

With a limited amount of code, thanks to the different used
libraries, Gotaktuk seems to be a nice way to explore scala-
bility on large scale platforms.

Gotaktuk is fast and do the job its build for. Even the prop-
agation time is not that bad. A good point, is that this program
only weights 2.5 thousand lines of code. That means that all
the high level libraries we’ve used have allowed us to create
a functional program very quickly. See on table 2 the lines
number counting via the cloc tool for Gotaktuk. And on the

Language files blank comment code
Go 16 252 573 2701
Bourne Shell 2 1 2 25
SUM: 18 253 575 2726

Table 2: Gotaktuk code line volume

Language files blank comment code
Perl 32 672 753 3218
C 11 200 201 1590
SUM: 42 872 954 4808

Table 3: Taktuk code line volume

table 3 the one for Taktuk.

7 Acknowledgment
Thanks to Olivier Richard for accompanying me during this
internship, Michael Mercier for his help with Kamelon, Bap-
tiste Pichot for his help on my first steps on Grid5000 and
Vincent Danjean for helping me find this internship.

References
[1] Benot Claudel, Guillaume Huard, Olivier Richard. Tak-

Tuk, Adaptive Deployment of Remote Executions. Pro-
ceedings of the International Symposium on High Per-
formance Distributed Computing (HPDC), 2009, Munich,
Germany. ACM, pp.91-100, 2009,

[2] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. In Proceedings
of the 35th Symposium on Foundations of Computer Sci-
ence , pages 356 368, 1994.

[3] Joseph Emeras, Olivier Richard, Bruno Bzeznik. Recon-
structing the Software Environment of an Experiment with
Kameleon. [Research Report] RR-7755, INRIA. 2011.

[4] Martin, C., Richard, O., SAINT MARTIN-France, Mont-
bonnot (2003). Algorithme de vol de travail appliqu au
dploiement dapplications parallles. Renpar15, 64-71.

[5] THIELL, Stphane, DEGRMONT, Aurlien, DOREAU,
Henri, et al. Clustershell, a scalable execution framework
for parallel tasks. In : Linux Symposium. 2012. p. 77.

[6] Buchert, T., Jeanvoine, E., & Nussbaum, L. (2014, May).
Emulation at Very Large Scale with Distem. In Clus-
ter, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on (pp. 933-936).
IEEE.

[7] Meyerson, J. (2014). The Go Programming Language.
Software, IEEE, 31(5), 104-104.

[8] Togashi, N., & Klyuev, V. (2014, April). Concurrency in
Go and Java: Performance analysis. In Information Sci-
ence and Technology (ICIST), 2014 4th IEEE Interna-
tional Conference on (pp. 213-216). IEEE.

[9] Georgiev, D., & Atanassov, E. (2014, May). Extensible
framework for execution of distributed genetic algorithms

on grid clusters. In Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), 2014
37th International Convention on (pp. 301-306). IEEE.

[10] Nussbaum, L. (2015, November). Grid’5000: a Large
Instrument for Parallel and Distributed Computing Exper-
iments. In Journes SUCCES-Rencontres Scientifiques des
Utilisateurs de Calcul intensif, de Cloud Et de Stockage.

[11] Cappello, F., Caron, E., Dayde, M., Desprez, F., Jgou,
Y., Primet, P., ... & Mornet, G. (2005, November).
Grid’5000: a large scale and highly reconfigurable grid ex-
perimental testbed. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing (pp. 99-106).
IEEE Computer Society.

[12] Lamport, L. (1978). Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21(7), 558-565.

[13] https://github.com/ipython/ipyparallel
[14] OUSTERHOUT, John. PARALLEL SCRIPTING FOR

APPLICATIONS AT THE PETASCALE AND BE-
YOND.

[15] WILDE, Michael, HATEGAN, Mihael, WOZNIAK,
Justin M., et al. Swift: A language for distributed paral-
lel scripting. Parallel Computing, 2011, vol. 37, no 9, p.
633-652.

Refinement of requirements for critical systems

Myriam CLOUET

Supervised by : Laurence PIERRE
Laboratory : TIMA

Team : AMfoRS

Abstract
The context of this paper is the verification of Systems on

Chip (SoC’s) during their design flow. These systems are de-
scribed as virtual platforms in SystemC at Transaction Level
(TL) then they are refined step by step to be ultimately refined
at Register Transfer Level (RTL). At each level, the behaviour
can be verified with Property Specification Language (PSL)
assertions according to the system specifications. The goal of
this work is to reuse the assertions throughout the design flow.
Due to different timing granularities, they cannot be directly
reused. A set of assertion refinement rules was previously
defined. These rules allow to refine assertions according to
given timing conditions. Here we extend and generalize this
set. This paper discusses this issue and proposes a new PSL
assertion refinement set. The illustrative examples use prop-
erties of an industrial case study.

1 Introduction
Systems on Chip (SoC’s) are more and more com-

monly used. A SoC is composed of several components.
For example, these components are processors, memories,
busses. . . There are many different kinds of SoC’s in embed-
ded systems. Those systems can be more or less expensive,
more or less complex. They can be found in washing ma-
chines, smartphones, planes, nuclear plants . . . Most of these
SoC’s are very complex to design and to verify.

A usual design methodology is based on the description of
a virtual platform of the system under development. This vir-
tual platform is defined at Transaction Level Modeling (TLM)
abstraction level in SystemC. A virtual platform at TLM is a
coarse-grained model. At TLM we abstractly represent the
components of the system and their communications. We do
not specify precisely the internal behavior of these compo-
nents or how the communications are precisely made. Each
communication action is seen as an atomic operation.

Then this platform is refined step by step. It is ultimately
given at the Register Transfer Level (RTL). At RTL we see
the clock of each component and the details at signal level
(bit). We specify more precisely the components of the sys-
tem and their communications. For example we can select a
bus protocol, and the communications are defined with this
protocol in mind. In this case, to respect the chosen proto-
col, we use the signals and the timing of the protocol. And

communications take this timing into consideration. For ex-
ample, at TLM we can have ”write X at address A”. This is
an atomic action. At RTL, according to the chosen protocol,
it can become a series of events which are spread over time.
This is no more atomic.

At every abstraction level, the system behavior must be ver-
ified. To that goal, we can simulate the virtual platform. Then
we analyze the trace generated by the simulation. We verify
that communications are made correctly.

For example consider a system with a processor and a Di-
rect Memory Access (DMA). A DMA is a component which
is used to transfer data between memories. The processor
configures the DMA, and then the DMA transfers the data.
When the DMA finishes the transfer, it sends an interrupt to
the processor. We may want to verify ”The DMA must not be
configured again before the end of transfer interrupt”. So we
simulate the virtual platform, and we check on the generated
trace that the behavior respects this specification.

Traces generated by the simulation can be very long. So,
the manual verification of the respect of specifications can
be tedious and error-prone. Therefore we formalize proper-
ties in Property Specification Language (PSL)[IEEE, 2005b].
These properties correspond to specifications of the system
behavior. Properties in PSL can be used by differents tools to
automatically verify on the generated trace that the behavior
respects the specifications.

In that design and validation context, the project of the
team aims at giving the possibility to use these properties
throughout the refinement of the virtual platform. But com-
munications in virtual platforms at TLM and virtual platforms
at RTL can be different. Therefore the properties on their
communications, at TLM and at RTL can be different. We
need to refine the properties concurrently with the refinement
of the virtual platform, in particular the properties that use
components which are refined.

The team has previously defined a set of transformation
rules [Pierre and Bel Hadj Amor, 2013] that allow to semi-
automatically refine properties. The resulting properties can
be used in tools to verify the behavior of the virtual platform.

This set of transformation rules was very restrictive there-
fore we define new rules to extend and to generalize this set.

The remainder of the paper is organized as follows. In Sec-

tion 2 we present the PSL monitoring for SystemC. In Section
3 we provide the existing assertion refinement rule set and its
extention. In Section 4 we illustrate the assertion refinement
with an industrial case study. In Section 5 we briefly present
the related work and in Section 6 we conclude.

2 PSL monitoring for SystemC
2.1 SystemC TLM modeling

SystemC [IEEE, 2005a] is a C++ library which allows to
define virtual platforms. The components of the platform are
represented by class instances. SystemC has a specific class
to define components of platforms : sc module. For exam-
ple, to define a processor of the platform we will define a
new class Processor which extends the class sc module, and
implements a specific behavior. Then the virtual platform in-
cludes an instance of this class Processor, this is the represen-
tation of the processor of the system.

The communication channels between the components are
represented by class instances too. SystemC has a specific
class to define the communication channels : sc channel. For
example, to define a bus of the platform we will define a new
class Bus which extends the class sc channel, and implements
a specific behavior.

The interrupts in the system are represented by instances
of a SystemC class : sc signal.

Throughout this paper we use a running example that was
designed by Astrium in the SoCKET [Soc, 2010] project.
The behaviour of this platform, described in [Pierre and Bel
Hadj Amor, 2013], is : This image processing platform per-
forms spectral compression on incoming images, see Figure
1. Raw data are first sub-sampled to reduce the data set to
its most significant part, free of optical aberrations (left part,
with the ”Leon a” processor and the ”DMA a” component).
A 2D-FFT is applied to obtain the corresponding spectrum.
The latter is then compressed and encoded to reduce the out-
put throughput (right part of the figure, with the ”Leon b”
processor and the ”DMA b” component). Each processor has
its own 32-bits wide bus, with a memory and a DMA compo-
nent.

The IO module generates periodic IRQs, received by
Leon a, wich configures DMA a to copy data from the IO
module to Mem a. At the end of the transfer, Leon a sub-
samples the data and writes the result to Mem a. It then con-
figures DMA a to copy the results form Mem a to Mem b.
Leon b configures the FFT module to perform 2D-FFT on
these data in Mem b, and then compresses the obtained spec-
trum. Compressed data are then transferred by DMA b to the
IO port. The processing platform can start processing a new
image before finishing the processing of previous ones, thus
increasing the overall throughput.

This platform has been described in SystemC. The Leon a,
Leon b, Mem a, Mem b, DMA a, DMA b, FFT, and
IO module are instances of classes which extend sc module.
The three busses are instances of a class which extends
sc channel. The interrupts between DMA a and Leon a, be-
tween DMA b and Leon b, between FFT and Leon b are in-
stances of sc signal.

Figure 1: Astrium Platform

The communications on the bus are implemented by func-
tions read block and write block that represent read or write
requests, and that take the necessary values as parameters.
For example the first parameter of write block is the address
and the second parameter represents the data to be written.

2.2 Overview of PSL
Property Specification Language (PSL) [IEEE, 2005b] is

a standard language that enables to formalize temporal logic
formulae. Its Foundation Language (FL) class extends Lin-
ear Temporal Logic (LTL). PSL uses temporal operators like
: next, until, always, . . . PSL uses Sequential Extended Reg-
ular Expressions (SERE) like : *, +, . . .

PSL allows to interpret properties on a finite or infinite
word, or trace. A trace is a set of successive observation
points, denoted : v = v

0
v

1
v

2
v

3
. . .

We briefly explain some notations in PSL.
Let v be a trace, b a boolean, ' a FL formula. The length of

v is noted |v|. vi denotes the (i+1)th observation point of v.
For j � i, vi..j = v

i
v

i+1
. . . v

j and for j < i, vi..j = ✏. vi..
denotes the suffix of v starting at vi. vi |= b means v satisfies
b. v |= ' means v satisfies '.

We briefly present some operators in PSL. Let v be a word,
r, r1, r2 SERE formulae, ', FL formulae.

• v |= r1; r2 , 9v1, v2 s.t. v = v1v2, v1 |= r1, and v2 |=
r2.

• v |= ' until!
def
= 9k < |v| s.t. vk.. |= , and 8j <

k, v

j.. |= '.

• v |= ' until

def
= (' until) _ always(').

• v |= always(')
def
= 8j < |v| s.t. vj.. |= '

• v |= next!(')
def
= |v| > 1 and v

1.. |= '

• v |= next![i](')
def
= next! next! . . . next!| {z }

i times

(')

• next a![i..j]'
def
= next![i](') ^ . . . ^ next![j](')

until! is called the strong until and until is called the weak
until. The weak until does not require the occurence of .

PSL supports parameterized SEREs and FLs. Let f be a
PSL formula, S a set of constants, integers or boolean values
and p an identifier.

• for p in S : || f def
=

W
s2S f [p s]

• forall p in S : f
def
=

V
s2S f [p s]

Here, PSL will be used to formalize and to verify properties
at TLM and RTL levels of abstraction. The evaluations of
RTL and TLM properties require the construction of traces
with different sampling schemes.

Figure 2: Example of temporal refinement

Figure 2 shows an example of a TLM trace and a RTL
trace. At TLM level, the trace is sampled on communications.
At this level, an observation point contains the communica-
tion information (call, parameters). At RTL level, the trace
is sampled on clock ticks. At this level, an observation point
contains the signals set at this clock tick.

At TLM the transactions are atomic, but at RTL these trans-
actions can correspond to several actions. On this example,
at TLM the FFT write was atomic, at RTL, the data is sent
1 cycle after the address. At TLM the leon read was atomic,
at RTL the data read can occur several cycles after the read
request.

2.3 Instrumentation with assertion checkers
The team has developed a tool called ISIS [Pierre and Ferro,
2008] which allows to check PSL assertions for a virtual plat-
form, during simulation. This tool can deal with properties at
TLM level.

With the description of a virtual platform and PSL proper-
ties for this platform, the tool generates assertion checkers. It
combines generated assertion checkers with the virtual plat-
form. This new design can be used in simulation to verify if
the system behavior respects the specifications.

Let us continue with our example of Astrium platform.
One property on this platform is : An input data packet
must be read before the IO module generates a new inter-
rupt[Pierre and Bel Hadj Amor, 2013].

This correspond to : ”each time the IO module generates
an IRQ, the DMA a must read the data before the next IRQ
”.

i.e. It is always true that, if ”IO module generates an IRQ”
then from the next evaluation point, ”the DMA a must read
the data” before that ”IO module generates an IRQ” (again).
Therefore the property will have the form : always(A =>

next(B before A)), with A which respresents ”IO module

generates an IRQ”, and B which represents ”the DMA a must
read the data”.

The IRQ generation by the IO module is represented by
io module.generate irq CALL().

The read by the DMA a at IO
module address is represented by
dma a.read block END() && dma a.read block.p1 ==
io module add

So the corresponding PSL property is :
ALWAYS(io_module.generate_irq_CALL()
=> NEXT((dma_a.read_block_END() &&

dma_a.read_block.p1 == io_module_add)
BEFORE! (io_module.generate_irq_CALL())

)
)

The team has also developed HORUS [Morin-Allory et al.,
2008], a tool which allows to check PSL assertions during
simulations at RTL level. This tool has a similar behaviour.
With a description at RTL level and RTL PSL properties, the
tool generates assertion checkers. It combines generated as-
sertion checkers with the RTL design. This new design can
be used in simulation to verify the system behavior.

Figure 3: TLM-to-RTL verification flow [Pierre and Bel
Hadj Amor, 2013]

Figure 3 represents the targeted verification flow. When a
Design Under Verification (DUV) at TLM level is defined,
TLM PSL assertions can be used with ISIS to verify if the
system behavior respects the specifications.

Then the DUV is refined manually or automatically. PSL
assertions at RTL level can be used with HORUS to verify if
system behavior respects the specifications.

The goal is to reuse the TLM assertions at the RTL level.
But TLM PSL assertions cannot be used at RTL level because
RTL assertions represent a more fine-grained specification, as
illustrated in section 2.2. Therefore we have to refine TLM
assertions to RTL assertions according to the PSL semantics
and specific constraints due to the platform refinement.

3 Assertion refinement
3.1 Existing rules
A set of refinement rules has been defined in [Pierre and Bel
Hadj Amor, 2013]. It defines specific refinements for some

expressions commonly used in TLM properties, and some
specific timing schemes.

Refinement of a communication into a sequence of events
Transformation 1 :
• expression : A before! (B and C)

• time constraint : C occurs X cycles after B
• refined expression : ((B ! next![X](¬C)) until! A)
and next event(A)(B ! next![X](¬C))

Transformation 2 :
• expression : (A and B) before! C

• time constraint : B occurs X cycles after A
• refined expression : (prev(A,X) and B) before! C

Transformation 3 :
• expression : A and B ! C

• time constraint : B occurs X cycles after A
• refined expression : (A and next a![1..(X �
1)(¬B) and next![X](B))! next![X](C)

The transformation that was originaly proposed did not actu-
ally correspond to this timing constraint. The refinement has
been reworked here.

Simplification, considering the specific delay of a
communication
Transformation 4 :
• expression : A until! B

• time constraint : B expected 1 clock cycle after A
• simplified expression : (A and ¬B) and next! B

Transformation 5 :
• expression : A until! B

• time constraint : B expected X clock cycles after A
• simplified expression : next a![0..X � 1](A and ¬B)
and next![X](B)

Transformation 6 :
• expression : A before! B

• time constraint : B expected X clock cycles after A
• simplified expression : next e![0..X � 1](A) and
next a![0..X � 1](¬B) and next![X](B)

The correctness of each refinement rule has been proven
in [Pierre and Bel Hadj Amor, 2013]. Here we recall one of
these proofs :

Proof of transformation 1 Since we are under the
constraint C occurs X cycles after B, A must hold
before the clock tick in which B and next![X](C)
holds, which means that we have to consider: v |=
A before!(B and next![X](C)),

i.e., v |= ¬(B and next![X](C)) until!
(A and ¬(B and next![X](C)))

i.e., 9k < |v| s.t.
v

k.. |= (A and ¬(B and next![X](C))) and
8j < k, v

j.. |= ¬(B and next![X](C))

i.e., 9k < |v| s.t.
v

k.. |= (A and ¬(B and next![X](C))) and
v

k.. |= A and

8j < k, v

j.. |= (¬A) _ (B and next![X](C)) and
8j < k, v

j.. |= ¬(B and next![X](C))

i.e., 9k < |v| s.t.
v

k.. |= (A and ¬(B and next![X](C))) and v

k.. |= A and

8j < k, v

j.. |= (¬A) and
8j < k, v

j.. |= ¬(B and next![X](C))

i.e., v |= (¬(B and next![X](C)) until! A) and
next event(A)(¬(B and next![X](C)))

i.e., v |= ((B ! next![X](¬C)) until! A) and
next event(A)((B ! next![X](¬C)))

that avoids having a temporal operator under a negation.

3.2 Creation of new rules
Each existing rule was based on a time constraint with a

fixed number of clock cycles (X or 1). Often with bus proto-
cols the delay of a communication request is unknown.

Therefore we extend the set of rules with more general
transformations.

Refinement of a communication into a sequence of events
Generalization of transformation 1 :

• expression : A before! (B and C)

• time constraint : C occurs any number of cycles after B
• refined expression : (¬C and ¬A) until!
(¬C and A and next!((¬C and ¬B) until B))

Generalization 1 of transformation 2 :
• expression : (A and B) before! C

• time constraint : B occurs any number of cycles after A
• refined expression : (¬C and ¬A) until!
(¬C andA and next!((¬C and¬B) until! (¬C andB)))

Generalization 2 of transformation 2 :
• expression : (A and B) before! C

• time constraint : B occurs any number of cycles after A,
before a given event E (usually the final event of a com-
munication)

• refined expression : (¬C and ¬A) until!
(¬C and ¬B and ¬E and A and

next!((¬C and ¬E and ¬B) until!
(¬C andB and¬E and next!((¬C and¬E) until!
(¬C and E)))))

Extension of transformation 3 :
• expression : A and B ! C

• time constraint : B occurs at most X cycles after A
• refined expression : forall i in {1 : X} :
(A and next a![1..i� 1](¬B) and next![i](B))!
next![i](C)

Generalization of transformation 3 :
• expression : A and B ! C

• time constraint : B occurs any number of cycles after A
• refined expression : A! next event(B)(C)

Simplification, considering the specific delay of a
communication
Extension of transformation 5 :
• expression : A until! B

• time constraint :B expected at most X cycles after A
• simplified expression : for i in{0 : X � 1} :
|| (next a![0..i](A and ¬B) and next![i+ 1](B))

We have proven the correctness of these rules. We give
below one of these proofs.

Proof of generalization of the transformation 1 B

and C was simultaneous at TLM level, but at RTL
level C occurs any number of cycles after B. There-
fore v |= A before!(B and C) becomes v |=
{(¬C and ¬A)[⇤];¬C and A; (¬C and ¬B)[⇤] _
{(¬C and ¬B)[⇤];B}}.

From the definition of r1; r2
9i < |v| s.t. v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and v

i+2.. |= (¬C and ¬B)[⇤] _
{(¬C and ¬B)[⇤];B}

i.e 9i < |v| s.t. v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and

(vi+2.. |= (¬C and ¬B)[⇤]_
v

i+2.. |= {(¬C and ¬B)[⇤];B})

From the definition of r1; r2
9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and

(vi+2.. |= (¬C and ¬B)[⇤]_
(9j, i+ 1 j < |v| s.t.
v

i+2..j |= (¬C and ¬B)[⇤] and v

j+1 |= B))

But v |= b[⇤], 8k < |v|, vk |= b.

Thus 9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and

(vi+2.. |= (¬C and ¬B)[⇤]_
(9j, i+ 1 j < |v| s.t. 8m, i+ 2 m j,

v

m |= ¬C and ¬B and v

j+1 |= B))

From the definition of until!
9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and

v

i+1 |= ¬C and A and

(vi+2.. |= (¬C and ¬B)[⇤]_
v

i+2.. |= (¬C and ¬B) until! B)

But vi+2.. |= b[⇤], v

i+2.. |= always(b).

Thus 9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and

(vi+2.. |= always(¬C and ¬B)_
v

i+2.. |= (¬C and ¬B) until! B)

i.e. 9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and

(vi+2.. |= always(¬C and ¬B) _ (¬C and ¬B) until! B)

From the definition of until
9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and

(vi+2.. |= (¬C and ¬B) until B)

From the definition of next!
9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and
v

i+1 |= ¬C and A and

v

i+1.. |= next!((¬C and ¬B) until B)

i.e. 9i < |v| s.t v0..i |= (¬C and ¬A)[⇤] and
v

i+1.. |= ¬C and A and next!((¬C and ¬B) until B)

But v |= b[⇤], 8k < |v|, vk |= b.

Thus 9i < |v| s.t 8j < i+ 1, vj |= (¬C and ¬A) and
v

i+1.. |= ¬C and A and next!((¬C and ¬B) until B)

Form the definition of until!
v

0.. |= (¬C and ¬A) until!
(¬C and A and next!((¬C and ¬B) until B))

v |= (¬C and ¬A) until!
(¬C and A and next!((¬C and ¬B) until B))

We obtain the refined rule(¬C and ¬A) until!
(¬C and A and next!((¬C and ¬B) until B)). This rule
has the form : b until! ', where b is a boolean, ' is a temporal
expression. This seems to be an issue because this property is
not in the PSL simple subset.

In [IEEE, 2005b] the simple subset is defined as : a sub-
set that conforms to the notion of monotonic advancement of
time, left to right through the property, which in turn ensures
that properties within the subset can be simulated easily.

This subset must be used in the context of dynamic verifi-
cation. It limits the use of some operators, in particular for
the operator until! : its right operand must be boolean.

Therefore our property is not in the simple subset as de-
fined in [IEEE, 2005b] and seems to violate the notion of
monotonic advancement of time.

However, in [Ben-David et al., 2005] they define a sub-
set of safety Regular-LTL (RLTL) formulae, called RLTLLV .
RTLT extends LTL with regular expressions.

They define : If b is a boolean expression, r is an RE

and ','1 and '2 are RLTLLV then the following are in
RLTLLV :

1. b 3. (b ^ '1) W (¬b ^ '2) 5. X'
2. '1 ^ '2 4. (b ^ '1) _ (¬b ^ '2) 6. r 7! '

The formula 3. is interesting in our case. The W opera-
tor corresponds to the weak until in PSL. Here we see that
both operands of the until are not constrained to be boolean
expressions.

But they explain that their subset is less restrictive than the
simple subset in [IEEE, 2005b] : for the operators _ and W
the simple subset allows only one operand to be non-boolean,
whereas RLTLLT allows both non-boolean, conditioned they
can be conjuncted with some boolean and its negation.

Our property has pattern : b until!'. But we notice that b
is ¬A ^ b1 and ' is A ^ '1.

So, our property is (¬A^ b1) until! (A^'1), where b1 is
a boolean and '1 is a temporal expression. We have the right
operand conjuncted with a boolean (A), and the left operand
conjuncted with the negation of this boolean (¬A).

Therefore our property is in the simple subset as defined
in [Ben-David et al., 2005] and conforms to the notion of
monotonic advancement of time.

4 Experiments
Let us continue with our example of Astrium platform.

For the experiments we use a platform defined in SystemC
at TLM level. This platform is concretized with buses that re-
spect the WISHBONE protocol [WIS, 2010]. This protocol
works according to a master-slave principle. A master reads
or writes at an address on a slave.

Figure 4: SINGLE WRITE cycle [WIS, 2010]

Figure 4 shows the signals of a master when it sends a write
request, and when the slave responds in one cycle.

The CYC O signal requests use of a bus from an arbiter.
The signal is asserted for the duration of all bus cycles. It
is asserted during the first data transfer, and remains asserted
until the last data transfer. The STB O signal indicates a valid
data transfer cycle. The slave asserts the ACK I, ERR I or
RTY I signals in response of every assertion of STB O sig-
nal. The acknowledge input ACK I, when asserted, indicates
the normal termination of a bus cycle. The write enable out-
put WE O indicates whether the current local bus cycle is
a READ or a WRITE cycle. The signal is negated during

READ cycles, and is asserted during WRITE cycles. In the
single write of WISHBONE protocol, most control signals,
address and data are set simultaneously.

One of the properties on this platform is The FFT module
must not be configured before the end of the computation.

This is : each time leon b processor finishes the FFT con-
figuration, the end of the computations occurs before the next
configuration.

The end of the FFT configuration corresponds to
leon b which writes in the register read addr of FFT.
This is represented by leon b.write block CALL() &&
leon b.write block.p1 == read addr.

The end of the computation corresponds to leon b reads
a value equal to image size in register write length of
FFT. This is represented by leon b.read block END()
&& leon b.read block.p1 == write length &&
leon b.read block.p2 == img size.

This property is in PSL :

ALWAYS (leon_b.write_block_CALL() &&
leon_b.write_block.p1 == read_addr
=> NEXT((leon_b.read_block_END() &&

leon_b.read_block.p1 == write_length &&
leon_b.read_block.p2 == img_size
)
BEFORE!(leon_b.write_block_CALL() &&

leon_b.write_block.p1 == read_addr
)

)
);

Using ISIS [Pierre and Ferro, 2008], we instrument the
platform with the previous property. If we run the simula-
tion for 10 io cycles, the monitor is triggered 6548 times and
it is evaluated 10 times(number of times the premise of the
implication is true).

After we refine the platform buses. We need to refine the
property.

TLM to RTL, temporal refinement : With the WISH-
BONE protocol, there can be a delay between the read request
of Master and the effective read of the data provided by the
Slave.

In our case, at TLM the read request and the data read were
simultaneous but at RTL, the data read can occur any number
of cycles after the read request.

We are in the case of a refinement of a communi-
cation into a sequence of events. Our property is of
shape always(X => next(Y)) and Y has the form
(A and B) before! C.

Where :
A = leon b.read block END() &&

leon b.read block.p1 == write length,
B = leon b.read block.p2 == img size and
C = leon b.write block CALL() &&

leon b.write block.p1 == read addr.
In our case, the time constraint is : B occurs any number

of cycles after A. Therefore we can use the Generalization 1

of transformation 2 rule.

TLM to RTL, structural refinement : Moreover, boolean
expressions must be structurally transformed in terms of the
corresponding conditions on signals. In PSL, the function
rose(signal) returns true when there is a rising edge of the
signal. With WISHBONE protocol [WIS, 2010],
• leon b.write block CALL() && leon b.write block.p1

== read addr corresponds to :
rose(leon b CYC O) && leon b STB O &&
leon b WE O && leon b ADR O == read addr.

• leon b.read block END() && leon b.read block.p1 ==
write length corresponds to :
rose(leon b CYC O) && leon b STB O &&
!leon b WE O && leon b ADR O == write length.

• leon b.read block.p2 == img size corresponds to :
leon b DAT I == img size && rose(fft ACK O).

Finaly the property becomes :
ALWAYS (
leon_b.rose(CYC_O) && leon_b_STB_O && leon_b_WE_O &&
leon_b_ADR_O == read_addr
=> NEXT((!(rose(leon_b_CYC_O) && leon_b_STB_O &&

leon_b_WE_O && leon_b_ADR_O == read_addr
) &&
!(rose(leon_b_CYC_O) && leon_b_STB_O &&
!leon_b_WE_O && leon_b_ADR_O == write_length
)

)
UNTIL!
(!(rose(leon_b_CYC_O) && leon_b_STB_O &&

leon_b_WE_O && leon_b_ADR_O == read_addr
) &&
(rose(leon_b_CYC_O) && leon_b_STB_O &&
!leon_b_WE_O && leon_b_ADR_O == write_length
) &&
NEXT!((!(rose(leon_b_CYC_O) && leon_b_STB_O

&& leon_b_WE_O &&
leon_b_ADR_O == read_addr
) &&
!(leon_b_DAT_I == img_size &&

rose(fft_ACK_O))
)
UNTIL!(!(rose(leon_b_CYC_O) &&

leon_b_STB_O && leon_b_WE_O
&& leon_b_ADR_O == read_addr
) &&
leon_b_DAT_I == img_size
&& rose(fft_ACK_O)

)))));

Using ISIS, we instrument the refined platform with this
property. An example of a simulation trace excerpt is in Fig-
ure 5. The text displayed by the monitor is between the ar-
rows ==> <== and just below. The rest of the text comes
from the normal simulation of the platform. As explained
in section 2.2 the trace is sampled on clock ticks, and pe-
riod clock is 12 ns. If we run the simulation for 10 io cy-
cles, this property is triggered 583334 times and it is eval-
uated 10 times. The evaluation number is the same as at
TLM though the trace has been sampled on clock ticks. On
the trace at 454932 ns, leon b writes at the address of the
fft read addr register : CYC O is rising, WE O is asserted,
and ADR O is egal to the address of read addr. Before that
observation point, the property was not pending (was not be-
ing evaluated), here its pending variable becomes true. Due
to lack of space, intermediate steps are not displayed. At
584472 ns, leon b sends a read request at the address of the

fft write length : CYC O is rising, WE O is negated, and
ADR O is egal to the address of write length. 17 cycles after,
at 584676 data are read by the leon b : fft ACK O is rising
. At TLM the read was atomic, here the data read can occur
any number of cycles after the read request. On this particular
case in the simulation it is 17 cycles. In this case, leon b is
granted the bus 16 cycles after its read request. Several cy-
cles later at 1154916 ns leon b writes at the address of the
fft read addr register, as previously. Here the checking vari-
able of the property is true, because its current evaluation is
finished. The pending variable should be false, because its
evaluation is finished, but the next evaluation of the property
starts. Therefore the pending is true again.

5 Related work

There have been few results on methods to refine TLM
properties to RTL properties.

In [Bombieri et al., 2007] they define a method to reuse
TLM properties with the refined design at RTL level. Their
method is based on transactors [tra, 2016]. A transactor is a
hardware component which is manually defined to translate
TLM transactions into RTL transactions and vice versa. Here
a transactor is linked between the assertion checker of the
TLM property and the design. The transactor automatically
translates the communications from the property to the design
and the communications from the design to the property.

This method is not based on semantic transformations. The
transactor must be defined for each property for each design.

In [Ecker et al., 2007] and in [Steininger, 2009] they de-
fine a new language of linear temporal logic, the Universal
Assertion Language (UAL). This language allows to formal-
ize TLM properties and RTL properties. They also propose
a method to refine TLM properties to RTL properties. This
method is based on the syntactic tree of the property. In this
tree, nodes are logical and temporal operators and leaves are
boolean expressions. In their method they just consider re-
finements which do not change the structure of the syntactic
tree of the property. i.e. they just consider the refinement of
the boolean expressions, the structural refinement.

This method is restrictive because they do not consider the
temporal refinements. However the temporal refinement can
be necessary, as seen previously.

6 Conclusion

In this paper we recalled an existing set of rules which al-
lows to refine a property at TLM level to a property at RTL
level according to a time constraint. We extended this set
with new rules which are more general because the time con-
straints are no more with a fixed number of cycles. We illus-
trated our refinement method with an industrial case study.

Future work is to include these new rules in the refinement
rule data base in ISIS and define new rules considering mul-
tiple data transfers such as bursts.

References
[Ben-David et al., 2005] Shoham Ben-David, Dana Fisman,

and Sitvanit Ruah. The safety simple subset. In Hardware
and Software Verification and Testing, First International
Haifa Verification Conference, Haifa, Israel, November,
2005, Revised Selected Papers, 2005.

[Bombieri et al., 2007] Nicola Bombieri, Franco Fummi,
Graziano Pravadelli, and Andrea Fedeli. Hybrid, In-
cremental Assertion-Based Verification for TLM Design
Flows. IEEE Design & Test of Computers, 24(2), 2007.

[Ecker et al., 2007] Wolfgang Ecker, Volkan Esen, Thomas
Steininger, and Michael Velten. Requirements and con-
cepts for transaction level assertion refinement. In Embed-
ded System Design: Topics, Techniques and Trends, IFIP
TC10 Working Conference: International Embedded Sys-
tems Symposium (IESS), May 30 - June 1, 2007, Irvine,
CA, USA, 2007.

[IEEE, 2005a] IEEE. IEEE Std 1666-2005, IEEE Standard
SystemC Language Reference Manual. IEEE, 2005.

[IEEE, 2005b] IEEE. IEEE Std 1850-2005, IEEE Standard
for Property Specification Language (PSL). IEEE, 2005.

[Morin-Allory et al., 2008] K. Morin-Allory, Y. Oddos, and
D. Borrione. Horus: A tool for Assertion-Based Verifica-
tion and on-line testing. In Proc. MEMOCODE’08, June
2008.

[Pierre and Bel Hadj Amor, 2013] Laurence Pierre and
Zeineb Bel Hadj Amor. Automatic refinement of re-
quirements for verification throughout the soc design
flow. In Proceedings of the International Conference
on Hardware/Software Codesign and System Synthe-
sis, CODES+ISSS 2013, Montreal, Canada, pages
29:1–29:10, October 2013.

[Pierre and Ferro, 2008] Laurence Pierre and Luca Ferro. A
Tractable and Fast Method for Monitoring SystemC TLM
Specifications. IEEE Transactions on Computers, 57(10),
October 2008.

[Soc, 2010] SoC toolKit for critical Embedded sysTems.
http://socket.imag.fr, 2010.

[Steininger, 2009] Thomas Steininger. Automated Assertion
Transformation Across Multiple Abstraction Levels. PhD
thesis, Technische Universität München, November 2009.

[tra, 2016] ZeBu Transactor and Memory Model Solutions .
https://www.synopsys.com/Tools/Verification/hardware-
verification/emulation/Pages/emulation-validation-ip.aspx
, 2016.

[WIS, 2010] Wishbone B4 - WISHBONE System-on-Chip
(SoC) Interconnection Architecture for Portable IP Cores
. 2010.

Figure 5: Excerpt of a Simulation Trace for the Property

A language for the home

Lénaı̈c Terrier
Supervised by: Sybille Caffiau and Alexandre Demeure

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
Smart Homes progammed by the end-user seems
to be the standard in the industry. We study sev-
eral languages currently available, their features
and their flaws. We discuss some important is-
sues that are mention in the research and finally we
propose a new language to programm smart homes
which combine the best features of the dominant
paradigm: ECA and the properties highlighed by
researchers.

1 Introduction
Smart Home is defined in [Mennicken et al., 2014] as “a
home that either increases the comfort of their inhabitants in
things they already do or enables functionalities that were not
possible through the use of computing technologies”. Tech-
nically a smart home is composed of sensors (thermometer,
clock, motion tracker, switches...), actuators (lights, sound
systems, digital displays...) and networked services (calen-
dar, weather, TV program, traffic...) that together can be used
to provide assistance to the inhabitants. Typical usage of the
smart home is to increase comfort as said in [Mennicken et
al., 2014] but also as noted in [Holloway and Julien, 2010]
to ease everyday life chores (automatic vacuum cleaner), to
save energy (heating system optimisation), to increase secu-
rity (alarm systems)...

Although the technical environment already exists and is
provided mostly by Home Automation Systems it is not
what makes a home smart. As discussed in [Davidoff et al.,
2006] the user should be in control at all time and should eas-
ily predict the behavior of his home. Several approaches aim
to provide a system adapted to each domestic context.

Automatic learning consist of a system which adapt its be-
haviour depending on the usage and habits of the users. In
the industry this way is used for certain tasks; for example,
Hot Water Recirculation Systems can learn the hours of con-
sumption of hot water of a household to deliver hot water
just in time, saving energy and minimising heat loss while
increasing comfort of the inhabitants [Frye et al., 2013]. Al-
though this solution works well for specific tasks which have

few variables, it doesn’t cover all the usages of smart homes
envisioned by researchers.

Another way is via End-User Development which is de-
fined in [Lieberman et al., 2006] as follow: “a set of methods,
techniques and tools that allow users of software systems,
who are acting as non-professional software developers, at
some point to create, modify, or extend a software artifact”.
In this case, the inhabitants have to express to the system the
behaviors they want. Because the user is directly program-
ming the behaviours he wants to his home automation system,
the solution provide a more precise tailoring of his needs.

Currently the most widespread solution for expressing be-
haviours to a home automation system via end-user develop-
ment both in the industry and in the research is the Event
Condition Action (ECA) paradigm and it’s subsets like the
trigger-action paradigm [Ur et al., 2014]. Granted ECA has
great properties for end-user development in the context of a
smart home, it’s subject to limitations.

While studying the published works on end-user develop-
ment in the smart home, we noticed a lot of papers focus ei-
ther on tools (like [Garcı́a-Herranz et al., 2010]) or on us-
age (like [Demeure et al., 2015], [Brush et al., 2011], [Lucci
and Patern, 2015]), but a few broach the underlying language.
And of those which do, they rarely put ECA in competition
against other languages [Ur et al., 2014].

This work aims to propose a end user development lan-
guage which allows inhabitants of a smart home to express
the behaviours they want to their home automation system.
This language should bring together the best features of ex-
isting ECA-based solutions and missing properties that are
asked by current users or highlighted by research works.

We first list the properties the language should have in sec-
tion 2. Then we define use cases that exhibits those proper-
ties and try to implement them with existing solutions. By
studying the ECA paradigm and by putting it against other
solutions we hope to extract useful properties to specify our
language. This is done in the section 3. Finally we expose the
detail of the solution we propose in section 4.

2 Desired properties of our programming
language

First we consider general properties that are required by all
programming languages. First off, the language should have

a low threshold: what is simple to mentally model (lit a
light) should be easy and simple to express (light.lit()
for example). Moreover, since end-user development is ad-
dressed to non professional developers, the basics should be
easy to learn [Burnett and Scaffidi, 2011]. On the other hand,
simplicity shouldn’t mean less expressiveness, the language
should have a high ceiling: complex tasks should be possible
to express, allowing more advanced users to work on bigger
projects [Patern, 2013]. It’s particularly relevant in home au-
tomation system where as observed in [Demeure et al., 2015]
some users need challenge.

Another property which is mandatory is the possibility to
encapsulate and abstract pieces of code. In addition to the
organisation and grouping needs observed in [Demeure et al.,
2015], this allow advanced users to work on big projects and
for novice users to use complex tools without knowing the
internal architecture. Combined with tools that check code
quality and rightness, this enable code sharing as stated in
[Burnett and Scaffidi, 2011]. Although [Burnett and Scaffidi,
2011] express concerns about sharing end-user programmed
code, stating that bad code will end up in more household
which will be exposed to attacks, it’s a well known fact
that sharing code leads to more people reading the code and
though more chances to detect faulty code.

Next, we focus on properties highlighted in research works.
For instance, [Huang and Cakmak, 2015] points out that the
distinction between states and events should be made clear,
and that the resulting action timing (punctual, extended or
maintained) should be explicit. Lack of commentary support
and variable naming has been observed in publicly available
solutions in [Demeure et al., 2015] forcing users to maintain
spreadsheets of correspondence.

Because, smart homes are homes there is specific issues
that arise. For instance, [Davidoff et al., 2006] explain that
the behaviours wanted by different members of the same fam-
ily are almost never the same, this is also supported in [De-
meure et al., 2015]. For that reason it’s mandatory to support
access level just like in classical system where users don’t all
have the same rights. But event then, the system would even-
tually encounter a conflict between two users with the same
level of access, it should be possible to define politics of con-
flict resolution depending on several factors. A solution is
proposed in [Ur et al., 2014]: the most recently added rule
wins. Altough this solution could prove effient, we think they
may be better ways to deal with this.

Finally, since non professionnals developers programs ac-
tions which have consequences in the real world, the system
should support an override mechanism, thus preventing sce-
narii where the shutters are trapping inside or outside the
household inhabitants. In short the system should give pri-
ority to security over comfort.This is supported by [Davidoff
et al., 2006] where the author highlight the concept of routine
crisis and explain that the system should be alble to react to
an exceptional scenario.

2.1 Use cases
In order to compare different solutions of ECA-based end
user development, we need to design use cases that high-
light precises properties noted above. Most of the use cases

are purposely design with vague action or devices to allow a
larger pool of solutions to be studied. All use cases mentioned
in this section can be found in the appendix.

The use case UC 1 is a basic binding of an event to a punc-
tual action. The only particularity is the repetition in “every
day”. This use case should be simple to implement, it high-
lights the low threshold.

The use case UC 2 a bit more complex. An event based
sensor is bound to a maintained action. This use case high-
light the issue with non sequitur reasoning. More detailed use
cases are provided at UC 2.1 and UC 2.2

The use case UC 3 highlight a simple pure state oriented
behaviour.

The use case UC 4 is almost the same as UC 3 but there
is a small difference. We know at all point the status of one
device from the other one. There is no unknown.

The use case UC 5 highlights a sequence of states bind to
maintained actions.

The use case UC 6 highlights the properties of abstraction
and encapsulation. The Domicube1 is a cube that act as a
remote controller for the home. To control a device, the user
turns upward the corresponding face of the cube and rotate it
on a vertical axis.

3 State of the art: existing ECA-based
solutions

ECA seems to be accepted by default as the solution for end-
user programming. So much, that it is used by most of home
automation systems and resembling tools on the market as it
is observed in [Demeure et al., 2015] and other works: eeDo-
mus2, Crestron3, Vera 34, Zibase5, HomeSeer 36, Zipabox7,
IFTTT8 and Tasker9.

The simplest of these ECA based tools is probably IFTT.
It is based on the action-trigger paradigm and has a very low
threshold (graphical use interface, guided steps). The prob-
lem is it also has a low ceiling: it can only handle one trigger
for one action. The figure 1 shows a IFTTT recipe that im-
plement the use case UC 1.

Systems like eeDomus and HomeSeer offer more ad-
vanced capabilities, enabling end-user to combine multiples
conditions and actions in a same rule. Because they are pure
product of the industry, we do not have access to a full de-
scription of their system. However, as a result of a capitaliza-
tion of years of experience in the domain of home automation,
it is interesting to notice that the constructors added func-
tionalities such as expressing duration for observed state (the
temperature has been lower than 10 degrees for 5 minutes).

1https://amiqual4home.inria.fr/
projet-domicube/

2http:/www.eedomus.com/
3http://www.crestron.com/
4http://getvera.com/controllers/vera3/
5https://www.zodianet.com/
6http://www.homeseer.com/
7http://zipabox.domadoo.com/
8https://ifttt.com/
9http://tasker.dinglisch.net/

eeDomus even refined ECA into ECAN (N standing for noti-
fications), explicitly stating that notifications are semantically
different from other actions (such as opening shutters).

Tasker is a tool to program automation on Android smart-
phones. It can use almost every input of the phone as a trigger
and almost every output as an action. Although it has a high
ceiling, it also has a high threshold. You have to know the
app and its concepts to use it properly. Unlike its competitor
Tasker distinguishes the types of actions and the types of trig-
gers. It provides checkboxes and options to control the behav-
ior of the automation regarding this aspect. Because Tasker is
designed for power users, it allows its user to tune some very
precises options peculiar to rules programming. With Tasker,
we quickly reach the limits of the ECA paradigm when we
want complex behaviors. When the number of rule grows,
the predictability of the system falls.

Another solution, a little more far to smart homes than the
rest is the graphical tools for programming such as Scratch
or Blockly. These tools are basically a graphical represen-
tation of code. Therefore they have a high ceiling (almost
as high as the underlying language). It is possible to lower
their threshold by hiding parts of the language and by expos-
ing methods from a custom made framework. This is done
in several applications that use them like Blockly Games10.
Since these tools aren’t designed to control smart home but to
teach programming, the properties and structures are general
to programming and not specific to automation. It is worth
noting that the automation system Zipato use Scratch for its
end-user development.

4 Cascading Context Based Language
4.1 Context
The first concept to understand is the context. Almost all the
features of the language revolve around this idea. A context
is the association of a selector and an instruction block. The
selector refers to events and states of devices and services,
it determine if the instruction block should be taken into ac-
count by the system. The code sample 1 show the basic struc-
ture of a context.

1 SELECTOR {
2 INSTRUCTIONS
3 }

Code sample 1: Structure of a context

4.2 Instructions and actions
Actions possible on the system are of three types : instanta-
neous, extended and sustained. These are defined in [Huang
and Cakmak, 2015] :
• Instantaneous: do not change the state of the system,

completed within one step and the system should be
ready to make another instantaneous action at the next
step (send a email)

10https://blockly-games.appspot.com/

• Extended: completed in a limited amount of time and
then revert to its original state (brewing coffee).

• Sustained (maintained): involve changing the state of an
actuator, the state doesn’t revert back automatically (lit
a lamp).

In the language, we use method calls to represent instan-
taneous and extended actions and variable affectation to rep-
resent maintained actions. Only one kind of instruction is
allowed inside a instruction block depending on the type of
selector of the context. A context with an event selector can
only use method calls. An context with a state selector can
only use variable affectations.

4.3 Selector
A selector is a expression very close to a boolean expression.
It must always be assessable to true or false at any point in
time. The selector can depict either a state as in the code
sample 2 or an event as in the code sample 3.

1 Switch.isOn {
2 Lamp.isOn: true;
3 }

Code sample 2: When the switch is on, the lamp is lit.

1 Button.onPressed {
2 Phone.sendSMS(John, "The button has been pressed.");
3 }

Code sample 3: Each time the button is pressed, send a SMS
to John.

State selector
Using a state selector implies that the values affected in the
instruction block will be maintained to this value during the
time that the selector holds up. In the code sample 2, we’ve
shown a simple example with a device (the switch) that al-
ready supply a state. Obviously depending on the device, it
could supply only events or both events and states. Because
of that, we need to be able to make states from events.

From an event based device we can watch it as a state based
device using the operator until as shown in the code sample
4. In this example, the TV is forced to be off between 9pm
and 8am. The events 9pm and 8am have been used to define
a state that is true between this two events.

1 Clock.at(21, 0) until Clock.at(8, 0) {
2 TV.isOn: false;
3 }

Code sample 4: Between 9pm (21:00) and 8am (8:00) the
TV stays off.

It is also possible to specify the state using a duration as
shown in the code sample 5. Here, the state begin with the

motion sensor picking up a movement and is set to end 20
seconds after. In this time interval, the lamp in the garage
will remain lit.

1 MotionSensor.onMovement for 20 seconds {
2 GarageLamp.isOn: true;
3 }

Code sample 5: If they were a mouvement in the last 20
seconds, the garage lamp stays on.

The language also support classic booleans operators like
and and or. They can be use with states, as shown in code
sample 6.

1 // While the window or the front door is open the air
conditioning stays off

2 // system
3 Window.isOpen or Frontdoor.isOpen {
4 AirConditioning.isOn: false;
5 }
6
7 // While the window is open and it’s above 20 C , the

shutters stay closed
8 Window.isOpen and Thermometer.externalTemperature < 20

{
9 Shutters.areClosed: true;

10 }

Code sample 6: and and or on states

Event selector
From the other side we can also watch a state based device as
an event based device using the operator during as shown in
the code sample 7. In this example, if the fridge door is let
open for at least 20 seconds, the lamp will glow red until the
fridge door is closed. The events are broadcast at the end of
the time check, so when the fridge closes, the lamp will stay
up for one more second. Note that using during with until,
we actually build a state selector.

1 FridgeDoor.isOpen during 20 seconds until FridgeDoor.
isClosed during 1 second {

2 Lamp.isLit: true;
3 Lamp.color: "red";
4 }

Code sample 7: If the fridge stays open for at least 20 sec-
onds, lit the lamp red until the fridge stay closed for at least 1
second.

Because states have a starting event and a ending event,
it’s also possible to us a native device state as a trigger. This
is shown in the code sample 8. Note the keyword do that
signal a event selector. This keyword used on a state selector
will consider the last event of the state: the ending event. do
before tells the system to use the starting event and not the
ending event.

And and or can also be used with events, as shown in code
sample 9. Notice the keyword within that indicate the pe-
riod of sensitivity.

1 // When the state isNight toggles to false, send a sms.
2 Clock.isNight do {
3 Phone.sendSMS(John, "It’s dawn.");
4 }
5
6 // When the state isNight toggles to true, send a sms.
7 Clock.isNight do before {
8 Phone.sendSMS(John, "It’s dusk.");
9 }

Code sample 8: When the state isNight ends or begins, send
a sms

1 // When the front door or the back door open, send a
sms

2 Frontdoor.opens or Backdoor.opens do {
3 Phone.sendSMS(John, "Someone is in the house.");
4 }
5
6 // When both the front door and the back door open in a

5 seconds interval,
7 // sens a sms.
8 Frontdoor.opens and Backdoor.opens within 5 seconds do

{
9 Phone.sendSMS(John, "This is probably SWAT.");

10 }

Code sample 9: and and or on events

4.4 Context organization
The goal of the language is to avoid the errors of ECA, one
of which is the accumulation of rules without hierarchy. In
this language we provide several way to organize the contexts
based on Allen’s interval Algebra.

X takes place before Y (X < Y)
X

Y

This relation can be achieved using the keyword until
and the composition of selectors. This keyword used between
two states X and Y will create a state between the ending
event of X and the starting event of Y. The composition of se-
lector uses the keyword & allowing the executions of actions
in the middle of a selector. This is shown the code sample 10.
The period of time between the end of X and the beginning
of Y isn’t limited. The code sample 11 is an example more
concrete.

1 state1 {
2 // Maintained actions during state1 (X)
3 } & until state2 {
4 // Maintained actions during state2 (Y) (if X

happened before)
5 }

Code sample 10: X takes place before Y

X meets Y (XmY)
X

Y

1 X {
2 // Maintained actions during X
3 } & until Y {
4 // Maintained actions during Y (if X happened before)
5 }

Code sample 11: X takes place before Y

This relation means that the end event of one state should
be the starting event of another. It’s important to understand
that in this case, we can’t use two states from devices like in
the previous case. We can’t join states we don’t create. We
need to make a state using events and the keyword until
as shown in the code sample 12. The code sample 13 is an
example more concrete.

1 // CASE 1
2 event1 until event2 {
3 // Maintained actions between event1 and event2 (X)
4 } & until event3 {
5 // Maintained actions between event2 and event3 (Y)
6 }
7
8 // CASE 2
9 state1 {

10 // Maintained actions during state1 (X)
11 } & until event1 {
12 // Maintained actions between end of state1 and

event1 (Y)
13 }

Code sample 12: X meets Y

1 // From 6:00 to 6:30 set lamp light intensity to 10
2 // Then from 6:30 to 7:00 set lamp light intensity to 20
3 // Then from 7:00 to 7:30 set lamp light intensity to 30
4 Clock.at(6, 0) until Clock.at(6, 30) {
5 NightLamp.intensity: 10;
6 } & until Clock.at(7, 00) {
7 NightLamp.intensity: 20;
8 } & until Clock.at(7, 30) {
9 NightLamp.intensity: 30;

10 }

Code sample 13: Progressive light to wake up

X during Y (XdY)
X

Y

To achieve this relation we simply put a context into an-
other. This setup means the subcontext can only be activated
while it’s parent in in activity. This is shown in the code sam-
ple 14. The code sample 15 is an example more concrete.

X starts Y (XsY)
X

Y

We achieve this relation by using the same method plus
the keyword begins that represent the starting event of the

1 state1 {
2 // Maintained actions during state1 (Y)
3
4 state2 {
5 // Maintained actions during state1 and state2 (X)
6 }
7 }

Code sample 14: X during Y

1 TV.isOn {
2 TV.maxVolume: 100;
3
4 Phone.isInCall {
5 TV.maxVolume: 10;
6 }
7 }

Code sample 15: While the TV is on, when someone is on
the phone, the TV maximum volume is restricted.

parent context. This is shown in the code sample 16. The
code sample 17 is an example more concrete.

1 state1 {
2 // Maintained during state1 (Y)
3
4 begin until event1 {
5 // Maintained between start of state1 and event1 or

end of state1 (X)
6 }
7 }

Code sample 16: X starts Y

1 Phone.isInCall {
2 begin until Phone.onPickUp {
3 Phone.isRinging: true;
4 }
5 }

Code sample 17: When someones call, until the phone isn’t
picked up, the phone rings.

X finishes Y (XfY)
X

Y

As for above, we use the keyword end that represent the
ending event of the parent context. This is shown in the code
sample 18. The code sample 19 is an example more concrete
that show a simple security system.

4.5 Priority and Predictability
On a complex system with a lot of contexts simultaneously
running, it must remains simple to ascertain which context
should prevail over the others when both wish to act upon the
same device. Unlike ECA we wish to be able to tell without
doubt at any point of time which context is acting upon which

1 state1 {
2 // Maintained during state1 (Y)
3
4 event1 until end {
5 // Maintained actions between event1 and the end of

state1 (X)
6 }
7 }

Code sample 18: X finishes Y

1 House.isLockedDown {
2 MotionSensor.onMovement until end {
3 SecuritySystem.isInAlert: true;
4 }
5 }

Code sample 19: When the house is under locked down, from
the first movement detected from the end of lockdown, turn
on the alert system

device. To do so, whether a context can act upon a device
must me independent from the order of execution and of the
successions of events. In order to achieve that we set up rules
that put into order all the competing contexts.

Implication
If the selector of a context A implies the selector of a context
B, then A has priority over B. For example if A is X and Y
and Z and B is X and Y, then the context of A has priority.

This is compatible with the notion of inclusion. A subcon-
text is active only if its parent is active, so the subcontext has
priority over its parent. Generally speaking, any context has
priority over any of its ancestors (parents of parents). This
successions of nested contexts is called the cascade.

Complexity
If a selector of a context A which is more complex than the
selector of a context B, then A has priority over B. The notion
of complexity is vague but can be rationalize using several
indicators. For example, the numbers of operands : the more
operands and operators a selector contains, the more priority
it gets. This can be useful in the case of sequential context like
the code sample 11, where this context should have priority
over a context tha only uses one of the states in its selector.

Order
To avoid any case of two contexts having the same level of
priority we need an arbitrary rule that will always give priority
to one. Here, the earlier processed by the system a context is
the more priority it gets.

4.6 The Cascade
As mention earlier it is possible to put contexts inside the
instruction blocks of other contexts. This principle allow a
very powerful organization. The contexts are classified on a
tree with the default context(*) at its root. When a context is
disable (the selector is false), all the descending contexts are
also disabled. The code sample 20 shows a simple example
of powerful organization using this principle.

In this example, we control the shutters of the house. IN
the default context we set the shutters to be opened. Then,
we define different behavior for night and day. At night the
shutters are supposed to be closed, except it the temperature
rises above 40C. In the day the shutters are opened, except if
the light of the sun is too bright.

1 * {
2 Shutters.areClosed: false;
3
4 Clock.isNight {
5 Shutters.areClosed: true;
6
7 InternalThermometer.temperature > 40 {
8 // Abnormal temperature, risk of fire
9 Shutters.areClosed: false;

10 }
11 }
12
13 Clock.isDay {
14 Shutters.areClosed: false;
15
16 LightMeter.lux > 500 during 2 minutes until
17 LightMeter.lux < 500 during 2 minutes {
18 // Strong light
19 Shutters.areClosed: true;
20 }
21 }
22 }

Code sample 20: Simple cascade example

4.7 Grammar
The BNF grammar in the figure 2 should provide further de-
tails on the language.

4.8 Abstraction
The code sample 21 shows the abstraction capabilities of the
language. We can create class that can be instantiated. From
several low level devices, we can make a higher level, more
user friendly virtual device. Advanced user are then able to
build devices that act like applications and then share them
with non experienced users. This, as mention in the section
2, allows users to read other people codes and learn new ways
of using their home automation system.

5 Implementation
We’ve developed a prototype using the NodeJS environment.
This prototype is able to build a coherent system with de-
vices and contexts and to maintain the system in a proper
state depending on the contexts and the input. To simulate
the home environment we’ve simulated 10 lamps than can
be either lit or turned off, 5 boolean switches and 5 buttons
that send punctual events into the system. We’ve also imple-
mented a simple user interface that allows the user to explore
the devices and the contexts to see their status.

The source code is available on at .

5.1 Devices
Devices in the system are abstracted to a class that holds
channels. Each channel represent a value applied to the de-
vice. For example: the device Lamp will have at least 1 chan-
nel : isOn. Depending on the lamp, the device could have

other channels like color, intensity, heat, direction, ... A chan-
nel can be a state (isOn) or an event (incomingMail). Chan-
nels can be either only readable (Calendar.isSummer) by the
system or also writable (Lamp.isOn). Writable channels have
to manage a stack of values that are pushed by contexts that
want to change its value.

5.2 Priority stack, implementation of the cascade
To implement the priority in the prototype, we used an or-
dered stack. Each context which has to act upon a device, sub-
scribes to the device’s stack. The device then process which
context has the priority and then change it’s value accord-
ingly. The same process is done when a context unsubscribes
from the device’s stack. Using the method, the device knows
which devices wish to change its value and can easily adapt
when a contexts is disabled.

5.3 Tests
In order to make a resilient software, we’ve implemented tests
executions that can assert the accuracy of the software. Using
the test framework Mocha and the assertion framework Chai,
we’ve implemented tests for each operator available in the
software. The test, launch a specific set of contexts and then
runs a scenario in which buttons are pressed and lights turn
on and off.

Because the system is strongly dependent of time, we’ve
two clocks for the system. The first one is simply plugged to
the underlying system clock, time is synchronized with re-
ality. The second one is fixed, time doesn’t automatically
flow. The system or the programmer has to manually ad-
vanced in time. To do so he has two method he can call :
step() will leap forward to the next event programmed in
the clock (a selector using the keyword for, for example)
and progress(time) (which take a duration in millisec-
onds) will leap forward the specified amount of time. This
simulated time allow the tests to simulate times and test sce-
narios with big amount of time.

6 Conclusion
In this work we have partially designed a language which is
centered on states and durations. It has a expressiveness at
least a important as ECA languages since it includes the ECA
paradigm. This language is designed around the concept of
contexts which is a direct application of Allen’s interval al-
gebra. By construction it makes explicit non sequitur since
the main way to express contexts is via states. The clear sep-
aration between the several types of actions (maintained, ex-
tended and punctual) and their associations with states and
event, resolve the problems highlighted in [Huang and Cak-
mak, 2015]. It has a low threshold as the simple rules don’t
require handling any complex concepts. It also has a high
ceiling because of its abstraction capabilities.

We’ve implemented a prototype that can operate devices
according to a tree of contexts organized as a cascade and
that have advanced testing capabilities.

Although we thoroughly tested the language capabilities
with a wide variety of use cases, they is still a lot of work
to do to verify its integrity and consistency. We also need

to test this language and its underlying logic with real end-
users. Since in this work we do not provide a preferred way
of representing the language for end-users, this has to be done
and also tested with real end-users.

Acknowledgements
I would like to express my thanks to my intership supervisors
Dr. Alexandre Demeure and Dr. Sybille Caffiau for giving
me the opportunity to work with them and for their constant
support. I would like to thanks Jean-Jacques Parrain for his
useful remarks and insights.

References
[Brush et al., 2011] AJ Brush, Bongshin Lee, Ratul Maha-

jan, Sharad Agarwal, Stefan Saroiu, and Colin Dixon.
Home automation in the wild: challenges and opportuni-
ties. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2115–2124. ACM,
2011.

[Burnett and Scaffidi, 2011] Margaret M Burnett and
Christopher Scaffidi. End-user development. Encyclope-
dia of Human-Computer Interaction, 2011.

[Davidoff et al., 2006] Scott Davidoff, Min Kyung Lee,
Charles Yiu, John Zimmerman, and Anind K Dey. Princi-
ples of smart home control. In UbiComp 2006: Ubiquitous
Computing, pages 19–34. Springer, 2006.

[Demeure et al., 2015] Alexandre Demeure, Sybille Caffiau,
Elena Elias, and Camille Roux. Building and using home
automation systems: a field study. In End-User Develop-
ment, pages 125–140. Springer, 2015.

[Frye et al., 2013] Andrew Frye, Michel Goraczko, Jie Liu,
Anindya Prodhan, and Kamin Whitehouse. Circulo: Sav-
ing energy with just-in-time hot water recirculation. In
Proceedings of the 5th ACM Workshop on Embedded Sys-
tems For Energy-Efficient Buildings, pages 1–8. ACM,
2013.

[Garcı́a-Herranz et al., 2010] Manuel Garcı́a-Herranz,
Pablo A Haya, and Xavier Alamán. Towards a ubiquitous
end-user programming system for smart spaces. J. UCS,
16(12):1633–1649, 2010.

[Holloway and Julien, 2010] Seth Holloway and Christine
Julien. The case for end-user programming of ubiquitous
computing environments. In Proceedings of the FSE/SDP
workshop on Future of software engineering research,
pages 167–172. ACM, 2010.

[Huang and Cakmak, 2015] Justin Huang and Maya Cak-
mak. Supporting mental model accuracy in trigger-action
programming. In Proceedings of the 2015 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous
Computing, pages 215–225. ACM, 2015.

[Lieberman et al., 2006] Henry Lieberman, Fabio Paternò,
Markus Klann, and Volker Wulf. End-user development:
An emerging paradigm. Springer, 2006.

[Lucci and Patern, 2015] Gabriella Lucci and Fabio Patern.
Analysing how users prefer to model contextual event-
action behaviours in their smartphones. In End-User De-
velopment, pages 186–191. Springer, 2015.

[Mennicken et al., 2014] Sarah Mennicken, Jo Vermeulen,
and Elaine M Huang. From today’s augmented houses
to tomorrow’s smart homes: new directions for home au-
tomation research. In Proceedings of the 2014 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous
Computing, pages 105–115. ACM, 2014.

[Patern, 2013] Fabio Patern. End user development: Survey
of an emerging field for empowering people. ISRN Soft-
ware Engineering, 2013, 2013.

[Ur et al., 2014] Blase Ur, Elyse McManus, Melwyn Pak
Yong Ho, and Michael L Littman. Practical trigger-action
programming in the smart home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 803–812. ACM, 2014.

A Benchmark use cases
UC 1 “Notify me every day at 10:03 am.”
UC 2 “When I do a specific action, a specific device turns

on. When I do the action again, the device turns off.”
UC 2.1 “If I push a button turn the lamp on, if I push

it again, turn if off ”
UC 2.2 “When I receive a sms from a specific contact,

turn on WIFI, when I receive another one turn it
off.”

UC 3 “One device should always be off when a second is
on”

UC 3.1 “The TV volume should always be off when the
phone is on.”

UC 4 “One device must only be on when a second is on”
UC 4.1 “The ambilight must only be on when the TV

is on.”
UC 5 “When the temperature goes below 0C for at least

10 minutes, turn the heat system on. When the tempera-
ture goes above 0C for at least 10 minutes, turn the heat
system off.”

UC 6 “Build a Domicube.”

B Figures

Figure 1: Usecase 1 with IFTTT

1 class Domicube(acc, gyro) {
2 States {
3 face: enum{none, 1, 2, 3, 4, 5, 6};
4 rotation: float;
5 isRotating: boolean;
6 isFreeFalling: boolean;
7 }
8
9 Events { }

10 Variables { }
11
12 Instructions {
13 * {
14 face: 0;
15 rotation: 0;
16 isRotating: false;
17 isFreeFalling: false;
18
19 acc.X = 0 and acc.Y = 0 and acc.Z = 0 {
20 isFreeFalling: true;
21 }
22
23 acc.X = 0 and acc.Y = 1 and acc.Z = 0 {
24 face: 1;
25 }
26
27 acc.X = 0 and acc.Y = -1 and acc.Z = 0 {
28 face: 6;
29 }
30
31 acc.X = 1 and acc.Y = 0 and acc.Z = 0 {
32 face: 2;
33 }
34
35 acc.X = -1 and acc.Y = 0 and acc.Z = 0 {
36 face: 5;
37 }
38
39 acc.X = 0 and acc.Y = 0 and acc.Z = 1 {
40 face: 3;
41 }
42
43 acc.X = 0 and acc.Y = 0 and acc.Z = -1 {
44 face: 4;
45 }
46
47 face = 1 or face = 6 {
48 gyro.Y > 10 or gyro.Y < -10 {
49 isRotating: true;
50 rotation: gyro.Y;
51 }
52 }
53
54 face = 2 or face = 5 {
55 gyro.X > 10 or gyro.X < -10 {
56 isRotating: true;
57 rotation: gyro.X;
58 }
59 }
60
61 face = 3 or face = 4 {
62 gyro.Z > 10 or gyro.Z < -10 {
63 isRotating: true;
64 rotation: gyro.Z;
65 }
66 }
67 }
68 }
69 }

Code sample 21: Domicube

⟨stateSel⟩ |= ⟨state⟩ (1)
⟨eventSel⟩ |= ⟨event⟩ do | ⟨state⟩ do | ⟨state⟩ do before (2)

⟨state⟩ |= ⟨event⟩ until ⟨event⟩ | ⟨state⟩ until ⟨event⟩ | ⟨state⟩ until ⟨state⟩ (3)
⟨state⟩ |= ⟨state⟩ or ⟨state⟩ | ⟨state⟩ and ⟨state⟩ | ⟨state⟩ for ⟨time⟩ ⟨unit⟩ (4)
⟨state⟩ |= State of a device (5)
⟨event⟩ |= ⟨state⟩ during ⟨time⟩ ⟨unit⟩ | Event of the system (6)
⟨time⟩ |= N (7)
⟨unit⟩ |= millis | seconds | minutes | hours | days | month | years(8)

⟨instruction⟩ |= ⟨deviceState⟩: ⟨value⟩; (9)
⟨methodCall⟩ |= ⟨device⟩.⟨method⟩(⟨params⟩); (10)

⟨value⟩ |= R | ⟨string⟩ (11)
⟨device⟩ |= ⟨ascii⟩ (12)
⟨string⟩ |= "⟨ascii⟩" (13)
⟨param⟩ |= ⟨ascii⟩ (14)

⟨method⟩ |= ⟨ascii⟩ (15)
⟨deviceState⟩ |= ⟨ascii⟩ (16)

⟨ascii⟩ |= a . . .z (17)
⟨stateBlock⟩ |= ⟨stateSel⟩ { ⟨instructions⟩ ⟨stateBlocks⟩ ⟨eventBlocks⟩ } (18)
⟨eventBlock⟩ |= ⟨eventSel⟩ { ⟨methodCalls⟩ ⟨eventBlocks⟩ } (19)
⟨stateBlocks⟩ |= ⟨stateBlock⟩ ⟨stateBlocks⟩ | ϵ (20)
⟨eventBlocks⟩ |= ⟨eventBlock⟩ ⟨eventBlocks⟩ | ϵ (21)
⟨methodCalls⟩ |= ⟨methodCall⟩ ⟨methodCalls⟩ | ϵ (22)
⟨instructions⟩ |= ⟨instruction⟩ ⟨instructions⟩ | ϵ (23)

Figure 2: BNF Grammar

Méthodologie d’analyse de corpus de flux RSS
multimédia

Baille Mathieu
Supervisé par :

Vincent Jean-Marc
Studeny Angelika

ABSTRACT

Is the propagation of the media information can be
described by a model ? The science of medias can be helped
by different tools : internet and the RSS feed. The goal of
analyzing this data is to create a predictive model to anticipate
the spread of an information.

We usually talk about propagation in epidemiological
domain and there are different ways to modeling the spread
of a virus : deterministic way and stochastic way.

To apply our model, we need to take a sample who
represents a precise event and observe its characteristics. We
chose the Ebola crisis because of his precise localization and
the possibility to base on several other research. And we
chose the Ferguson event because of his precise depart point
in term of time and localization.

Actually, we found a correlation between the propagation
of the Ebola information and an epidemiological deterministic
model, but the experimental protocol needs to be applied in
some other sample to be proved.

In the end, the objective is to compare the deterministic
approach to the stochastic model and define a virality factor
of an event. The concept of rumor and deformation of the
information can be added to this model and the possibility to
find changes in a sample.

I. INTRODUCTION

L’apparition d’internet a permis la propagation de flux
d’information, en particulier ceux générés par les médias.
La science des médias s’intéresse à la description de tel
flux et cherche à comprendre leurs formes et leurs structures
afin d’expliquer les phénomènes sociaux, économiques,
politiques... Le projet Géomédia, composé de chercheurs en
sciences des médias, en géographie et en informatique a pour
objectif de construire des modèles d’événements médiatiques
à partir d’un corpus fourni par les journaux sous forme de
flux RSS. Un flux RSS (Really Simple Syndication) est un
flux au format XML permettant un système d’abonnement
afin de récupérer automatiquement une partie ou la totalité
d’un article nouvellement crée ou mis à jour. La récupération
des données peut se faire à l’aide d’un logiciel agrégateur,

celui-ci nous est fourni par le projet Géomédia sous la
forme d’un serveur TomCat procédant à la captation de
nouveaux articles toutes les heures. L’intérêt de cette méthode
est de permettre de suivre facilement un ou plusieurs flux
d’informations sans devoir se rendre manuellement sur le site
à l’origine de l’article. À partir de ces données, la thématique
établit est l’étude des relations internationales avec un intérêt
particulier pour les structures spatiales (relation de voisinage,
distance, liens culturels, conflits d’intérêt) et temporelles
(aspect historique).

Un événement médiatique est un ensemble de faits
remarquables détectés dans un ensemble de flux média. Il
est décrit comme un point de rupture ou sursaut médiatique
et détaillé chronologiquement avec un avant et un après.
Son importance peut être relevée quantitativement grâce au
changement de médiatisation de l’événement à partir des
relevés journaliers. On peut décrire son ampleur spacio-
temporelle grâce aux zones géographiques touchées (national,
international, mondial) ainsi que la période sur laquelle il
s’étale. Si l’événement est localisé, on parle de voisinage dans
la propagation de l’information. Comme exemples étudiés
dans le cadre de l’ANR, on peut citer la guerre civile en côte
d’ivoire en décembre 2010, l’accident nucléaire du Fukushima
en mars 2011 ou encore plus récemment l’épidémie Ebola en
fin d’année 2014, chacun de ces événements a été fortement
médiatisés dans les pays touchés et relayés par beaucoup de
journaux.

Toutes ces informations médiatiques regroupées constituent
notre corpus d’articles. Ceux-ci proviennent de 300 flux
dans huit langues différentes, ils sont répartis en plusieurs
catégories : général, international, une. Le nombre de
pays représentés est au nombre de 59, étalés sur les six
continents. la plage temporelle couverte par nos articles
est du premier janvier 2014 au premier mars 2016 et
comptabilise trois millions d’articles. On décrit un article
grâce aux caractéristiques suivantes : un identifiant unique,
un titre, une description, un contenu, une catégorie, un lien
url et les dates de récupération et de publication. À cela on
ajoute les caractéristiques du flux à l’origine de l’article : un
identifiant unique, un type de flux et le nom du journal. Un
système de taggage par sujet via des dictionnaires permet de
signaler l’emploi de mots clés, par exemple, le cas Ebola

regroupe 90.000 articles.

Avec une grande quantité de données, on peut utiliser
des méthodes statistiques afin de les analyser. Pour définir
l’environnement de travail, on caractérise les propriétés de
l’échantillon total pour permettre d’avoir un point de vue
global du comportement des données. On choisit ensuite un
sous-échantillon atypique (événement médiatique) sur lequel
on applique les outils statistiques. L’intérêt de ce choix est de
commencer sur une échelle plus petite et d’élargir l’analyse
sur de plus grande quantités de données. Cette approche
permet la création de modèles prédictifs et a pour intérêt
de pouvoir être appliqué sur plusieurs sous-échantillons
différents. Pour créer un modèle, on peut essayer de chercher
des schémas récurrents, effectuer des courbes de tendance,
appliquer une régression linéaire ou se baser sur un modèle
pré-existant.

Afin de trouver un modèle expliquant les données,
nous proposons de les analyser en terme épidémiologique. En
effet, on décrit souvent l’information comme un virus lorsque
l’on parle de sa propagation. Il semble alors intéressant
de savoir si ces dires sont fondés. Il existe deux classes
de modèles épidémiologiques. Les modèles déterministes
cherchent à décrire l’évolution de la population par des
équations mathématiques (équations différentielles, équations
aux dérivées partielles). Les modèles stochastiques quant
à eux, sont basés sur les processus aléatoires (chaı̂ne de
Markov). Un autre mécanisme est basé sur le concept de la
rumeur, soit la déformation et la propagation d’informations
déformées. Dans le cadre de ce travail de Magistère, il a
été décidé de commencer l’étude des modèles déterministes
car la question posée par les thématiciens des modèles
(géographe et sciences des médias) est déterministe. Les
modèles stochastiques seront étudiés ultérieurement.

Est-ce que la propagation de l’information médiatique peut
être décrite par un modèle épidémiologique ?

Les événements constituant les échantillons à analyser sont
l’épidémie Ebola et les manifestations de Ferguson, ce choix
est motivé par une connaissance des bornes temporelles,
de la localisation de sa zone de propagation ainsi que du
travail déjà effectué par des pairs. Pour le cas de l’épidémie
Ebola, l’intérêt second est l’étude de la médiatisation de
la propagation d’un virus, ce qui augmente la facilité de
raisonnement dû à la proximité avec l’épidémiologie. Pour le
cas Ferguson, le fait d’avoir un point de départ clair qui est
le 9 août 2014 dans la ville de Ferguson permet de fixer une
première borne temporelle et géographique claire. Le fait de
choisir deux événements distincts permet de comparer leurs
analyses et d’estimer la différence de leurs propagations.

Notre méthode d’analyse comporte trois étapes. La
première est de trouver une forme de modèle épidémiologique
déterministe. La seconde est de déterminer l’adéquation entre

nos données et le modèle, pour cela il faut définir un critère
de qualité et d’acceptation de l’hypothèse. Enfin, on décide
d’accepter ou de rejeter le modèle.

Actuellement, les résultats semblent montrer une adéquation
entre un modèle déterministe et les jeux de données. Afin
d’accepter l’hypothèse selon laquelle la propagation de
l’information se comporte de la même façon qu’un virus, il
faut appliquer le protocole précédent à d’autres événements
de types et d’envergures différents. De plus, il faut renforcer
le modèle par des contraintes tierces non prises en compte
initialement. On peut par exemple citer la récurrence
d’un événement (coupe du monde, élection), l’imbrication
d’événements similaires (séismes), l’importance relatives des
événements entre eux (séismes et magnitudes), la distance
physique de la propagation ou encore la déformation de
l’information par le mécanisme de la rumeur.

II. DÉFINITION DU CONTEXTE

A. Description globale

Le mécanisme de captation des flux RSS a commencé à
partir de 2014, la base de donnée comprenait alors plus d’une
centaine de flux. Il en a été ajouté par pallier afin d’avoir
un nombre suffisant pour constituer au mieux un résumé du
paysage géopolitique. Le nombre de flux actuel est de 300
dans huit langues différentes.

La base des articles croit de manière linéaire et
comprend actuellement plus de onze millions articles.
L’ajout de nouveaux flux de manière ponctuelle a permis une
augmentation de la pente de la droite décrivant le nombre
d’articles.

L’origine de ces articles nous vient de 59 pays répartis
sur les six continents, le but de cette répartition est d’avoir
plusieurs points de vue sur un événement. On peut alors
observer les différents impacts sur un conflit interne à un
pays et les différents opinions vues de l’extérieur.

Les articles sont compartimentés en plusieurs catégories
qui correspondent à leur orientation : vers l’intérieur du
pays ou vers l’extérieur, informations de dernière minute ou
générales. Il peut toutefois que certains articles se retrouvent
dans plusieurs catégories, ils seront alors considérés comme
deux articles différents.

On peut, grâce aux articles citant les autres pays,
estimer un mapping de l’information donnant un aperçu des
liens entre les pays ainsi que les différentes communautés.
Celles-ci sont définies comme des blocs d’entités connectées
entre elles et faiblement connectées avec le reste du réseau. Le
but de ce mécanisme est de simplifier le réseau et de chercher
à savoir si ces groupes ont du sens dans la thématique ou
d’un point de vue géopolitique.

B. Forme d’un article

Un article est composé de plusieurs champs :
– ID Item : l’identifiant unique de chacun des items
– Titre : le titre de l’article
– Description : l’article avec les liens des images
– Catégorie : indique le contenu général de l’article, référencé
par le journal, par exemple Sport
– Lien : l’url de l’article
– Date Recup : la date de récupération par le serveur
– Date publication : la date que l’éditeur de l’article note (peut
être vide ou un autre format que GMT)
– ID flux : l’identifiant unique du flux RSS
– typeFlux : indique le contenu général du flux RSS, référencé
par le serveur, par exemple International
– Journal : l’identifiant du journal

C. Système de taggage

Le système de taggage est mis à disposition sous forme
de script utilisant un dictionnaire. Celui-ci regroupe plusieurs
mot-clés représentatifs de l’événement en cours d’étude. Par
exemple, pour l’épidémie Ebola, les mots peuvent être : ebola,
ebolafieber, ebolavirus. Pour les manifestations de Ferguson,
les mots peuvent être : Ferguson, Michael Brown, Darren Wil-
son. Le choix de ces mot-clés est important et doit être assez
précis pour ne pas englober d’autres potentiels événements.
Il se peut toutefois arriver qu’un nouveau mot-clé synonyme
arrive en cours d’événement, c’est pourquoi il faut rester

attentif aux changements et ajouter un mécanisme de détection
(voir concept de la rumeur).

III. APPROCHE ÉPIDÉMIOLOGIQUE

Pour rappel, l’épidémiologie est l’étude des facteurs
influant sur la santé et les maladies de populations. Elle se
rapporte à la distribution, la fréquence ainsi que la force des
états pathologiques.

Les approches utilisées en épidémiologie reposent au
départ sur une analyse empirique des données, celle-ci
regroupent les individus d’une population. Puis, des modèles
analytiques sont proposés, en général, basés sur des équations
différentielles ayant des paramètres explicatifs (taux de
natalité, mortalité...). Le livre Epidemic Modelling An
Introduction - D. J. Daley - 2001 regroupe plusieurs modèles
d’analyse de propagation épidémiologique. On va étudier l’un
des modèles dit déterministe.

On va définir trois états pour les éléments de notre
population (on considère qu’un malade se soigne ou meurt
instantanément) :

– susceptible : état de base de la population, permet d’entrer
dans tous les autres états et de contracter la maladie

– immunisé : état potentiellement acquis après s’être soigné
de la maladie, ne peut plus contracter la maladie

– mort : état atteint de manière naturelle ou à cause de la
maladie

On va définir l’évolution de la population avec mort naturelle
de la manière suivante :

⇠̇(t) = �µ(t)⇠(t) (1)

Avec :
- ⇠̇(t) l’évolution de la population en fonction du temps
(dérivée partielle)
- µ(t) le taux de mortalité de base de la population (sans la
maladie)
- ⇠(t) la population à un instant t

On manipule l’équation de la manière suivante :

⇠̇(t) = �µ(t)⇠(t)

�µ(t) =
⇠̇(t)

⇠(t)

�
Z t

0
µ(u)du =

Z t

0

⇠̇(u)

⇠(u)
du

= [ln(⇠(u))]t0
= ln(⇠(t))� ln(⇠(0))

e

(�
R t
0 µ(u)d(u)) = e

(ln(⇠(t))�ln(⇠(0)))

=
e

(ln(⇠(t))

e

(ln(⇠(0))

=
⇠(t)

⇠(0)

Finalement on obtient :

⇠(t) = ⇠(0)e(�
R t
0 µ(u)du)

A partir de cette étape, on introduit M(t) correspondant au
hasard cumulatif, il est définit comme tel :

M(t) =

Z t

0
µ(u)du

On ajoute à la mort naturelle, la mort par la maladie défini
par �, la constante d’infection :

ẋ(t) = (�µ(t) + �)x(t)

Avec :
- ẋ(t) l’évolution de la population en fonction du temps
(dérivée partielle)
- x(t) la population à un instant t
- � la constante d’infection de la maladie, soit la possibilité
de tomber malade, si � = 0, on revient au modèle précédent.

De la même manière que précédemment :

x(t) = x(0)e(�
R t
0 µ(u)du)

e

(��t)

On ajoute maintenant les éléments de la population qui de-
viennent immunisés après avoir été infectés :

z(t) = ⇠(0)e�M(t)(1� ↵)(1� e

�t)

Avec :
- z(t) la population des immunisés à un instant t
- ⇠(0)e�M(t) correspondant à la mort naturelle d’un immunisé
- (1 � ↵)(1 � e

�t) correspondant à la probabilité de devenir
immunisé après avoir survécu à la maladie La population totale
est donc équivalente à x(t) + z(t), on la nomme ⇠�(t) et est
décrite par :

⇠�(t) = ⇠(0)e�M(t)[e(��t) + (1� ↵)(1� e

�t)]

Afin de visualiser le modèle, on
peut le représenter graphiquement :

IV. APPLICATION DU MODÈLE AUX DONNÉES

A. Comparaison du modèle avec les données

Notre objectif est maintenant de relier nos modèles
déterministes à nos données. Pour ce faire, on a tout d’abord
besoin de spécifier à nouveau les variables importantes d’un
modèle épidémiologique :

– l’ensemble de la population
– la population morte
– la population immunisée z(t)
– la population susceptible d’être infectée x(t)
– la population des vivants ⇠�(t)
– le taux de mortalité µ(t)
– la constante de viralité �

– la constante d’immunisation ↵

Il nous faut alors relier ces variables à la propagation de
l’information médiatique et à la base de données des articles
à notre disposition.

L’ensemble de la population correspond à la totalité
des articles. Une population à un instant t est déterminé par à
un nombre d’article sur une période de temps choisie, c’est à
dire, une heure, un jour, un mois... Le choix de la granularité
dépendra de la période sur laquelle s’étale l’événement.
La population morte correspond aux articles ne traitant pas
de l’événement.
La population immunisée correspond aux articles traitant de
l’événement.
La population susceptible d’être infectée correspond aux
articles qui n’ont pas parlé de l’événement mais qui étaient
susceptibles de le traiter.
La population des vivants correspond à la somme des
immunisés et des susceptibles.
La constante de viralité � correspond à la probabilité qu’a un
article dans l’état susceptible d’en parler.
La constante d’immunisation ↵ correspond à la probabilité
de traiter encore du sujet après en avoir déjà parlé.

B. Régression linéaire et corrélation

Étant donné que la population des articles parlant de
l’événement sont les plus simples à détecter, nous allons les
relier à la population des immunisés.

Pour estimer la corrélation entre un modèle épidémiologique
et nos données, nous avons besoin de représenter
graphiquement le nombre d’articles par jour traitant de
l’événement. Ces courbes ont été obtenue grâce à une
méthode de régression linéaire reposant sur la méthode des
k plus proche voisins se nommant LOESS (LOcal regrESSion).

Pour l’épidémie Ebola :

Pour étudier l’intensité de la liaison entre les modèles
épidémiologique et nos données, nous avons utilisé le
coefficient de corrélation linéaire de Bravais-Pearson. Nous
avons chercher à trouver la corrélation maximum en faisant
varier les variables taux de mortalité µ(t), constante de
viralité � et constante d’immunisation ↵. Celui-ci atteint un
maximum de 0.76 avec µ(t) ' 1, � ' 0.515 et ↵ ' 1.92.

Pour les manifestations de Ferguson :

La corrélation pour les manifestations de Ferguson atteint un
maximum de 0.62 avec µ(t) ' 0.6x, � ' 2.52 et ↵ ' 0.01.

C. Conclusion

Le coefficient de corrélation de Bravais-Pearson est compris
entre -1 et 1. On dit qu’une corrélation est faible si elle est
comprise entre -0.5 et 0.5. Si elle est comprise entre -1 et
-0.5, on dit que cette corrélation est fortement négative, dans
le cas où elle se trouve entre 0.5 et 1, on dit qu’elle est
fortement positive.

Dans nos deux jeux de données, la corrélation avec

le modèle est fortement positive, ce qui va dans le sens de
l’argument que la propagation de l’information médiatique
peut être expliquée par un modèle épidémiologique.

Or, le fait que deux variables soient fortement corrélées
ne démontre pas qu’il y ait une relation de causalité entre
l’une et l’autre, il nous faut donc accepter ce modèle jusqu’à
démontrer son inefficacité ou sa désuétude face à un autre
modèle. Il nous faudra donc tester ce modèle sur d’autres
événements afin d’éprouver son efficacité.

V. PERSPECTIVES

Pour rappel, l’intérêt d’expliquer les données par un modèle
est de constituer en cours d’événement, un modèle prédictif
de l’évolution future de la propagation de l’information. Dans
le cas où l’événement serait déjà fini, on peut lui attribuer un
facteur de viralité dépendant des valeurs ↵ et � correspondant
aux taux permettant la corrélation la plus forte. L’intérêt
est alors de pouvoir jauger un événement médiatique et le
comparer à un second, pour ce faire, il est important que les
événements soient indépendants.

En effet, la possibilité de trouver des facteurs de viralités
proches pour des événements identiques récurrents est une
piste à suivre. De même pour des événements similaires
mais ayant des caractéristiques variables, par exemple les
magnitudes sur des séismes.

Par la suite, la comparaison entre les modèles déterministes
et stochastiques pourrait s’avérer utile s’ils sont applicables
ensemble ou en opposition, il est possible qu’un modèle soit
applicable uniquement dans certains types d’événement.

Ensuite, on peut ajouter le mécanisme de la rumeur dans
l’analyse de nos données, en effet de fausses informations
peuvent être propagées dans le monde et un moyen de
l’endiguer pourrait se trouver dans les contrôles d’épidémie.
Les moyens employés sont communément : le système de
quarantaine, l’immunité par le contact et l’éducation. Un
système de quarantaine ne semble pas viable sur internet,
mais l’éducation par la mise en lumière de mécanisme de
désinformation peut être mis en place. Le concept d’immunité
contre les médias reste encore à définir.

De plus, la création d’un programme calculant
automatiquement la corrélation maximum entre la propagation
d’un événement et un modèle épidémiologique faciliterait la
précision des résultats.

Enfin, la comparaison avec les modèles définis par
les pairs permettrait d’améliorer ou de rejeter le modèle
présent.

REMERCIEMENTS

Jean-Marc VINCENT pour son suivi tout au long de ce
Magistère
Alice CHOURY pour la relecture de ce rapport de recherche
Jérôme FERRAFIAT pour son soutien au long de ce
Magistère
François et Françoise BAILLE pour leur soutien et leur
curiosité

RÉFÉRENCES

[1] Epidemic Modelling An Introduction - D. J. Daley - 2001
[2] PtProcess : An R Package for Modelling Marked - Point Processes

Indexed by Time - David Harte -2010
[3] Construire et utiliser un corpus : le point de vue d’une sémantique

textuelle interprétative - Bénédicte Pincemin - 1999
[4] Découverte et caractérisation des corpus comparables spécialisés - Lor-

raine Goeuriot - 2009
[5] Analyse macroscopique des grands systèmes : émergence épistémique et

agrégation spatio-temporelle - Robin Lamarche-Perrin - 2013
[6] Be-CoDiS : A Mathematical Model to Predict the Risk of Human

Diseases Spread Between Countries - Validation and Application to the
2014-2015 Ebola Virus Disease Epidemic - Ivorra, B., Ngom, D. & Ramos,
Á.M. Bull Math Biol - 2015

Composition of Self-Stabilizing Algorithms in Coq

Jules Lefrère

Supervised by: Karine Altisen, Pierre Corbineau, and Stéphane Devismes

Abstract

We are interested in certifying the composition of
self-stabilizing algorithms in Coq. To that goal,
we define a composition operator, which creates
a compound algorithm from two other (simpler)
ones. We want to propose a composition theorem
for this algorithm’s specifications. To illustrate our
purposes, we have created a case-study algorithm
which computes the disjunction of Boolean Inputs,
one per node. We propose two versions of this al-
gorithm: a raw one, which does not use the compo-
sition operator, and another one which is the actual
composition of two simple algorithms. All of this
work has been made in Coq, using the PADEC’s
Library[1].

1 Introduction
1.1 Context
Self-stabilizing algorithms.
If one believes the forecasts, we will count around twenty bil-
lions of objects connected per days in 20201. Such objects are
linked together by different means of communications (e.g.

Wi-Fi, Ethernet, etc...). We can see all these objects as node
of a graph: an interconnected network is usually represented
by a graph. On such networks, particulars algorithms are run-
ning, named distributed algorithms. An interconnected net-
work and distributed algorithms form a distributed system
like Internet, where each site of a distributed system is au-
tonomous, asynchronous, interconnected and only have a lo-
cal vision of the system (as opposed to centralized systems).
The actual size of networks and the distance between each site
usually do not permit human intervention in case of dysfunc-
tion, yet, the more a network is large, the more the probabili-
ties of failure is large. Consequently, the algorithms running
in such system have to be fault-tolerant. There are two main
approaches:

1Gartner (02/05/2016).
URL http://www.journaldunet.com/solutions
/expert/64225/insecurite-des-objets-connectes—-comment-
conjuguer-l-iot-et-la-securite.shtml

Pessimistic approach. This approach favors the correction
and consists to verify that all is well consistent with the spec-
ification given at each step of the algorithm, especially the
different variables, and that the global algorithm follows its
specification. Here, we are talking about robust system, i.e.

that the effect of the faults is hidden. This approach gives to
the user the appearance of a system without failure.This is a
costly approach because a lots of resources are used in order
to control the specification at each node at each new calcula-
tion step. System’s performances can be momentary slowed.
Furthermore, such approach often assumes that the majority
of the system stays correct.

Optimistic approach. In this approach, when a problem
occurs, the algorithm is allowed to deviate of his specifica-
tion, proving that it converges within a finite time to an ex-
pected behavior. To allow this convergence, it is assumed
that failures can affect the entire network, but occur rarely:
between two failures, the algorithm has the time to converge.
One other hypothesis is that faults do not corrupt the code of
the algorithm: only the data can be corrupted but they are cor-
rupted only in their domain of definition. This kind of fault is
named transient fault. This approach is the one we will more
specifically use in this report. According to the hypotheses in
this approach, the self-stabilization is a natural answer to this
kind of problem. A self-stabilizing algorithm is able, in a fi-
nite time and from an incorrect state, to converge to a correct
state, whose behavior will be conformed to its specification.
Moreover, this kind of algorithm does not need any initializa-
tion.

Certification & Coq.

The first self-stabilizing algorithms [4] were short and simple,
they were dedicated to simple environments(e.g. first algo-
rithm of Dijkstra works in a oriented ring with leader); con-
struct and verify its proof was an easily feasible thing for a hu-
man. Nowadays, algorithms progresses lead to take a partic-
ular interest to harder problems (e.g. clustering) dedicated to
more complex environments. Consequently, algorithms cur-
rently developed become harder to write and to prove. Thus,
it is now more complicated to ensure that the algorithm is
correct and that there were no omissions of limit case. The
use of a proof assistant becomes necessarily. We use Coq [2;

8], a tool which aims at helping formal proofs implemented
from a derivative of Ocaml. The PADEC library[1], allows
us to formally describe models of distributed algorithms and
to construct the proof of these models. These models will
be verified mechanically thanks to Coq: this gives us certified
proofs, safer than those wrote manually. We obtain structured
proofs that are both complete and correct.

With the return on experience, recurrent schemes have
been identified automatized thanks to Coq. This automating
allows a reuse and a certification of the currently designed
proofs of algorithms.

Composition.
As the self-stabilized algorithms currently designed are now
more complex, proofs are more complicated to implement.
One classic method consists to split the initial algorithm into
sub-algorithms, each one running one part of the algorithm.
This method follows the abstraction logic of sequential func-
tions and is one method of composition [3]. More precisely,
we will focus on the one called hierarchical collateral com-
position which is a deviate of the collateral composition [7].
There is other techniques of composition [5]. In this intern-
ship, we are focused on one method. the used method simpli-
fies considerably the certification of the algorithm since, with
this split in sub-algorithms, we only need to prove these parts
and to prove that their assembly is correct. Assuming that
the parts have been intelligently created, proving these cor-
rections will be easier because they can be considered as in-
dependents algorithms of one another. So, their proofs can be
done separately. Afterwards, this method requires to exhibit
that the complex algorithm corresponds to the composition
of sub-algorithms previously proved and that the composition
allows to prove in a generic way the composition of specifi-
cations. After that, when parts will all have been proven, and
thanks to the proof of correction of the composition, this will
be the same as having to prove the initial algorithm.

PADEC. [1] The purpose of the internship is to describe in
Coq the hierarchical collateral composition and to construct
the certification in Coq. This composition simplifies the proof
of complex algorithms build according to this method. This
internship is part of the project AGIR PADEC2 whose pur-
pose is to create a library in Coq allowing the certification of
self-stabilizing distributed algorithms.

1.2 Model
Distributed Systems. Distributed systems, that we are us-
ing here, are a finite set of nodes V interconnected via chan-
nels. In these systems, each node executes its own code,
stocks its own state which is a set of variables, and interact
with the others nodes via a shared memory. A node can inter-
act in function of its neighbors’s variables i.e. all nodes that
are connected directly to that node, but without the possibility
to modify them. This model called “the state model” allows
to abstract communications between nodes: rather than dis-
cussing via messages between nodes, one node can read the
variable of its neighbors accordingly, it can modify its own

2Preuves d’Algorithmes Distribués En Coq.

variables. For studying the behavior of an algorithm, it is
necessary to follow the value of the variables of its nodes.
A configuration represents the set of states at a given point.
The trace of an algorithm is a sequence of configurations of
this algorithm: we can follow the behavior of an algorithm by
looking at its traces.

Rules. In our model, an algorithm is defined by a finite set
of rules of the following form: (guard) ! (statement).

• The guard is a Boolean predicate on the values of the
node’s variables and those of its neighbors.

• The statement modifies node’s variables, as said above,
even if a rule can access to its neighbor’s variables, it
cannot modify them.

These rules can vary for each node and a node can have mul-
tiples rules. One rule is said enabled if its guard is evaluated
to True. When a rule is activated, it is done atomically.
A step of the algorithm allows to proceed from one configu-
ration to the next, by applying at most one activatable rule per
node and at least one activatable rule across the network.

Variables. In our model, variables are divided in three
classes: they can be input variables which will not be mod-
ified but which are used by the algorithm’s guards, internal
variables serving to intermediate problems or outputs vari-
ables serving to stock results of the algorithm. Outputs vari-
ables will be modified by the statement part of rules.

Silent algorithms. [6] In the scope of the internship, we are
focusing to a specific class of algorithms: silents algorithms.
In our model, a silent algorithm is deterministic and stop in a
finite number of steps, which means that after this number of
steps, the values of the outputs variables of the nodes will not
be modified anymore. A silent algorithm takes inputs and, in
a finite time, gives a result in its outputs variables in function
of the inputs.

2 Case-study
In the scope of my work, and to rely on a support, I have
created examples allowing me to test my work.

2.1 Full algorithm
The algorithm which is implemented in this example is an
algorithm of value propagation in a network. We follow the
hypothesis that the topology is a spanning tree noted T (r), an
acyclic connected graph which have a specific node named
root (r) and as it exists a unique path from the root to the
given node.

This algorithm, for a Node p, has two inputs: A Boolean
constant (Ip) and a constant which have for value ? if p is
root or which is worth the father of p, that is to say the closest
neighbor of p to the root (parp)

The purpose of the algorithm is to calculate an output (Rp)
which will be equal to the disjunction of the set of inputs:
the algorithm converges to a state from which the following
predicate is checked forever:

8p,Rp =
W

q2V
Iq

For this output, the algorithm uses an internal variable (Sp).
Its value must converge to the disjunction of the inputs of the
sub-tree of p. When the algorithm converges, the following
predicate is verified:

8p, Sp =
W

q2T (p)

Iq

Where T (p) is defined as:

T (p) = p _
W

q2child(p)

T (q)

For the rest of the explanation: child(i) is the set of children
of the node i; the root has the number 0, and S0 refers to the
value S of the root. The objective of this algorithm is that
each node take a value among those which are proposed by
the other nodes.
In a first time, it will be necessary that the values are cal-
culated; in a second time that a choice is made and diffused
among the tree. Each node will have to make its disjunction
going up to ensure the following specification:

8p, Sp = Ip _
W

q2T (p)\{p}
Sq

This comes to an induction on the tree with the case base
being: if the node is a leaf, its sub-tree is empty, so in the
specification, T (p) is equal to {p}, and since q 2 T (p) \ {p}
and {p} \ {p} is the empty set, a leaf will have to ensure:
Sp = Ip. The value will be calculated only one time because
Ip is a constant. For the rest of the tree’s nodes, we apply the
formula. As a node only knows its neighbors, we will only
see the S value of them, its value is itself calculated with the
same formula and this recursively until a leaf (and then it is
the same case as the base case we have seen before). The
sub-tree of the root is equivalent to the whole tree, thus S0 is
equivalent to the disjunction of each value I of the tree. Once
we have this, we only have to spread this value.

Following our model, one rule will have the purpose of
computing the disjunction whereas one other will have to
spread the result of the disjunction.

Rule 1 :

Si 6=

Ii _

W
c2child(i)

Sc

!
! Si :=

Ii _

W
c2child(i)

Sc

!

Rule 2 :
root:

S0 =

I0 _

W
c2child(0)

Sc

!
^R0 6= S0 ! (R0 := S0)

non-root (i 6= 0):

Si =

Ii _

W
c2child(i)

Sc

!
^Ri 6= Rpari ! (Ri := Rpari)

V0 = ?
S0 = ?
R0 = ?

V1 = ?
S1 = ?
R1 = >

V2 = ?
S2 = ?
R2 = >

V3 = >
S3 = ?
R3 = >

V4 = ?
S4 = ?
R4 = >

V5 = >
S5 = >
R5 = >

0

1 2

3 4 5

Figure 1: Scheme of the algorithm at a certain step

V0 = ?
S0 = ?
R0 = ?

V1 = ?
S1 = ?
R1 = ?

V2 = ?
S2 = >
R2 = >

V3 = >
S3 = ?
R3 = >

V4 = ?
S4 = ?
R4 = >

V5 = >
S5 = >
R5 = >

0

1 2

3 4 5

Figure 2: Scheme of the algorithm at the next step

In these scheme, > stands for true and ? for false. The
node 1 is enabled by the second rule and the nodes 2 and 3
are enabled by the first rule. We can see in this example that
both rules can apply simultaneously on different nodes and
that on a step, all nodes are not necessarily activated: here,
nodes 1 and 2 are activated (red star) and the node 3 is enable
but not activated (blue circle). As we can see on the figure 2,
the node 1 has change its value of R for ? and the node 2
its S value for >. From one step to another, we can see that
nodes which have been activated can have three behaviors:

• From enabled to non-enabled:
The node 1 has change its value and both of its guard
can’t be enable.

• From non-enabled to enabled:
Since values on the node 2 have change, and the node
0 is in its vicinity, we have the case where one guard of

this node that has become enable (here, its the first one).
• From enabled to enabled:

We can see this case on the node 2, here, the first rule is
not enable anymore but its the second one which is.
In a more general case, there can be multiples reasons
for this behavior:

– The node had multiples rules enabled but only some
were activated (that is the case here).

– One of the neighbors was activated at the previous
state, which let the node enabled.

– The rules that were activated activate other rules in
the node.

2.2 Splitting in two sub-algorithms
In the writing of the second rule, we can notice that the first
part of the guard (the condition on Si) is only here to give
the priority on the first rule. On the second rule, and in fact
in most of the self-stabilizing algorithms, there are priorities
between rules of a node so that at most only one rule can be
activated for a given state of the algorithm. The different rules
are mutually exclusive. Thereby, the more rules there are, the
bigger their guard are getting: hence the idea to separate the
rules in several algorithms in order to simplify the guards of
these rules.

Afterward, I have created two algorithms which are respec-
tively the first and the second rule described above. Delegat-
ing the priority management to the composition operator.

First algorithm. The first algorithm has to do the disjunc-
tion of the nodes of the tree and to store the result in S0.
Under the hypothesis of having a spanning tree in input, this
algorithm calculates the disjunction between each node of the
tree. After stabilization, it must verify:

S0 =
W

q2V
Iq

Its work the same way as explain in the precedent section, by
an induction on the tree where each node must verify:

8p, Sp = Ip _
W

q2T (p)

Iq

Second algorithm. The second algorithm is only the dif-
fusion of the result through the tree (see Rule 2). The rule
is slightly different if we are in the root or not. The one of
the root is the affectation using only variables of the root.
The other recopies the value of its father. As previously de-
scribed, the algorithm executes itself in a finite time: the num-
ber of nodes is fixed, once the root has made its choice, it will
never change, then its children will choose only one time,
etc. Eventually, the algorithm verifies the following property:
8n,Rn = S0.

Composition. It must be remembered that the two al-
gorithms execute themselves concurrently and Sp has
becommed an output variable of the first algorithm and an
input one for the second algorithm. This means that the sec-
ond algorithm will be able to stabilized only when the first
algorithm will be stabilized.

When the second stabilizes, all nodes will have decided on
the same value, – this value was in the set of the input values
of at least one node of the first algorithm –. We obtain a
specification which is the conjunction of the two algorithms:

8n,Rn = S0 ^ S0 =
W

q2V
Iq

It is equivalent to the specification of the section 2.1, because,
by replacing S0 by its definition, we obtain the initial formula.

The rules are identical with the exception however of the
fact that the first rule must be validated before applying the
rule 2: the rule of the first algorithm has a higher priority than
the rule of the second algorithm and, in a node, the second
algorithm must always wait that the first one ends before ex-
ecuting itself. This priority will be implemented through the
composition operator.

3 Composition
As we have seen in the case-study, splitting in sub-algorithms
allows to simplify the rules and to build more concise proofs
which are less confuse for humans. What interests us is to
go from the cutting to the composition in order to have the
same behavior as the complete algorithm. According to this
case-study, we have constructed a generalization for the com-
position: to do so, we have created an operator.

3.1 hierarchical collateral composition operator
This operator creates, from two given algorithms, the com-
position A1 � A2 = A3 where A1 and A2 are the sub-
algorithms and A3 is the algorithm resulting from the compo-
sition. Variables of A3 are the union of A1 and A2 variables.
A3 have as input variables the ones of A1 and as output vari-
ables the one of A2. All others variables become internal
variables of the algorithm.

This operator is not symmetrical, thus A3 has all rules of
A1 ans A2, to the difference that guards of A2 are slightly
modified in a way that they can only be held if guards of A1
cannot. This results by the conjunction of the negation of
each rules of the first algorithm in guards of each rules of the
second algorithm.

3.2 Composition Theorem.
We now assume two silent self-stabilized algorithms A1 and
A2 and this for their respective specification. The desired
property for the composition operator is that the algorithm A3
is self-stabilized and silent for the conjunction of the specifi-
cations of its subs-algorithms.

4 Contribution
All the work we have done, and the one we will have to do for
this internship, is written in Coq and is based on the frame-
work PADEC[1]. The first step of this internship was to fa-
miliarize myself with Coq[2] and to appropriate myself this
framework. This internship is both a TER and a magistère
internship.

Algorithm1
(State1)

Composed
Algorithm

(State1*State2)

Algorithm2
(State2)

Write1

Write2

Read2

Read1

Figure 3: Scheme of the composition

4.1 Work already done
In order to properly define the composition operator, we had
to formalize the communication between algorithms:

Like indicated on the figure 3, several projections must ex-
ist:
• Read allows to transform from a state of A3 to the corre-

sponding state of one sub-algorithm; one projection for
A1 and one for A2 are necessary.

• Write allows to transform from the state of a subalgo-
rithm to the corresponding state of A3. for the write
functions, we have to reconstitute a state of A3 from a
state of one sub-algorithm which does not contain all
variables of A3. That is why we also need of the current
state of A3 to add to the state of the sub-algorithm, we
will only take the variables which are not in the state of
the sub-algorithm, and all we have to do, is the union
between theses variables and these of the state we want
to transform to create the new state of A3.

Once these projections are defined, we can execute the
three algorithms while working on a state of A3. However
this is not enough, because even if now we know how to exe-
cute them, nothing guarantees that they do not interfere with
themselves to keep going. To do so, we will have to verify the
input hypothesis: the read-only variables of a sub-algorithm
are not modified by this sub-algorithm and the variables mod-
ified by one algorithm must not be modify by a further sub-
algorithm. For example, A2 can accept output variables of
A1 as input variables. But the converse is impossible. A1 has
for input the input of the entire algorithm.

This operator was approximately defined during my TER
internship, its definition has been refined during the rest of
the internship. Once it was fully defined, we were able to
recreate the entire algorithm from the split. There are also
two definitions of the entire algorithm: the first one with just
the algorithm and the second constructed from the two sub-
algorithms which have been composed thanks to the operator
giving an entire algorithm.

It remains to write the composition theorem and to prove it
(c.f.3.2). Once again, to ensure that the composed algorithm
is provably correct, there is some hypotheses that needs to be
verified. Also, since this work is not finished, it is possible
that some hypotheses are not found yet.

A good argument for additional hypotheses is to prevent
the asynchronous daemon from postponing the execution of
A1 steps indefinitely. This may be possible if that at some
point of the program, there are some rules in A2 that enable
divergent behaviors. One way of preventing this from hap-
pening, is to assume that from any configuration of the first

algorithm, the second one will stabilize in a finite time. This
will imply that, in a finite time, any daemon avoiding to exe-
cute A1 steps will run out of options and thus will be forced
to make A1 progress. Such hypothesis is sufficient to ensure
the stabilization of an algorithm.

That is not the only solution, one other is to change the ex-
ecution model by adding a fairness assumption to the sched-
uler. For example, a weakly fair scheduler will have to even-
tually activate any rule that stays enabled for a sufficiently
long time. This is what will make A1 progress in this solu-
tion.

Theses two solutions are not comparable, there may be
cases where will be applicable and not the other.

The formal proof of the composition theorem is not fin-
ished, but before starting to work on it, it has been necessary
to prove the correctness of the sub-algorithms.

4.2 Work to be done

The specification of the example is done, but it is necessary to
verify the composition. The composition theorem is for the
most part already written but most of the proofs are incom-
plete, but we think that with the condition above, the com-
position will work. Once this work is finished, we will have
to apply it on the case-study. An other task will be to prove
that the entire algorithm and the composed one answer to the
same specification: this work is optional and only concern the
example, although its realization will help to understand the
generalization.

5 Conclusion

This internship was about certification of self-stabilized dis-
tributed algorithms in Coq. In this context, we have de-
fined the composition of such algorithms and we have applied
the composition on an example. This whole internship pro-
gressed one step at a time: I started by defining my example
and writing its specification in a modular way. Later I had to
define the composition operator. These were the steps done
in my TER. Next, I had to make sure that the composition
worked, and then I had to completely prove my algorithm.
At each step, I had to understand a new part of the PADEC
library, its concepts and its proof techniques. A little during
the TER and mainly during the magistère, I had to define the
general operator of composition and to write the specifica-
tion and correctness proof of the sub-algorithms, which has
caused some real difficulties.

References
[1] Altisen, K., Corbineau, P., Devismes, S.: A framework

for certified self-stabilization. In: E. Albert, I. Lanese
(eds.) Formal Techniques for Distributed Objects, Com-
ponents, and Systems - 36th IFIP WG 6.1 International
Conference, FORTE 2016, Held as Part of the 11th Inter-
national Federated Conference on Distributed Computing
Techniques, DisCoTec 2016, Heraklion, Crete, Greece,
June 6-9, 2016, Proceedings, Lecture Notes in Computer

Science, vol. 9688, pp. 36–51. Springer (2016)
[2] Bertot, Y.: Coq in a hurry. CoRR abs/cs/0603118 (2006).

URL http://arxiv.org/abs/cs/0603118
[3] Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux,

K., Rivierre, Y.: Self-stabilizing small k-dominating sets.
IJNC 3(1), 116–136 (2013)

[4] Dijkstra, E.W.: Self-Stabilizing Systems in Spite of Dis-
tributed Control. Commun. ACM 17, 643–644 (1974)

[5] Dolev, S.: Self-Stabilization. MIT Press (2000)
[6] Dolev, S., Gouda, M.G., Schneider, M.: Memory Re-

quirements for Silent Stabilization. In: PODC, pp. 27–34
(1996)

[7] Tel, G.: Introduction to Distributed Algorithms, 2nd edn.
Cambridge University Press (2001)

[8] The Coq Development Team: The Coq Proof Assistant,
Reference Manual. URL http://coq.inria.fr/refman/

Distributed Approach of Cross-Layer Resource Allocator in Wireless Sensor
Networks

Franck Rousseau and Olivier Alphand and Rodolphe Bertolini
Grenoble Informatics Laboratory (LIG), France

Karine Altisen and Stephane Devismes
INRIA Grenoble, France

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature: Rodolphe Bertolini, 15/06/2016

Abstract
Wireless Sensor Networks (WSN) are resource-
constrained by their architecture: reduced mem-
ory, powerage, calculation capabilities, connectiv-
ity. Despite those constraints, they need to organize
themselves in a tree-like topology along which all
the data will be relayed towards the root of the net-
work. To increase the life expectancy of the net-
work, nodes should spend most of their time sleep-
ing while still ensuring an acceptable delay for data
to reach the root. In this paper, we present the
sketch of the distributed version of a WSN simula-
tor from the state of the art, that was initally using
centralization. We show that distribution creates
contention in the shared slot, and that increasing
the number of shared slots heals this contention.

1 Introduction
Wired sensor networks installation cost can be up to 10 times
the market share value of sensors. WSN lower this cost, and
can also provide an ubiquity of the information gathering,
that we call the Internet of Things (IoT). Those reasons
among others can explain the growth of WSN usage.

We worked on an open-source simulator, developped at
Berkely University by the 6tisch working group [Palattella
et al., 2016], that focuses on the On-The-Fly (OTF) Band-
with Reservation algorithm implementation [Dujovne et al.,
2014]. OTF is an algorithm that determines how many time
slots are needed for a sensor in order to communicate with its
parent(s) to minimize congestion in its packet queue.

We would like to compare the actual probabilistic approach
of allocation, caused by the random choice of a cell, to a de-
terministic algorithm. But to have interpretable results, we
first need to make the simulator more realistic concerning the
simulated network traffic.

We thus modified the simulator in two main ways:
• so that it also simulates some control traffic (requests

and answers triggered by OTF, and later DIO)

• so that this algorithm operates in a distributed manner:
instead of having an omniscient view of the network
that allows a sensor to get the needed resource instan-
taneously, there are communications that occur between
sensors, and sensors use the information in those com-
munications to make decision about resource allocation.

We start in section 2 by introducing the State of the Art
of WSN simulators, and we continue in 3 with the definition
of the graph generated by the sensors connectivity, and an
overview of TSCH protocol. Then, we present in section 4
the simulator that we made more realistic, and we explain the
modifications that we did. We see in 5 that those modifica-
tions impact the bootstrap duration, and we explain in section
6 some improvements that can be done in order to reduce the
bootstrap duration when using shared slots. In 7 we anal-
yse and discuss the results using improved communication
through shared slot, and we bring in 8 some ideas of what can
be done as further research with the simulator.

In section 9, we finally conclude about the effects of the
decentralization of the overall behavior, and bring ideas on
other improvements to speed up the bootstrap and to reduce
the number of collisions in data packet transmission that oc-
cur more often as the number of node increases.

2 State of the Art
Great effort were made by the IETF to standardize a complete
IP-compliant IoT stack : a specific transport layer (CoAP
[Shelby et al., 2014]) as well as a routing protocol (RPL
[Winter, 2012]) and some specific schemes (6LowPAN [Hui
et al., 2010]) to compress IPv6 addresses. For the physical
layer, the 802.15.4 technology was the most widespread one
because of its low consumption capabilities. However no
MAC layer was clearly supported by the IETF. The WSN we
are interested in this article specifically aim at addressing the
requirements of a harsh industrial environment. Therefore,
beside an enhanced WSN life expectancy achieved by
sleeping as much as possible, robustness and time contraints
are vital requirements. To do so, the MAC layer of the
original 802.15.4 standard was not robust or deterministic
enough. To overcome those problems, additional behaviors
were introduced at the MAC layer in the 802.15.4e standard
[Group and others, 2011]. One important feature is channel
hopping which allows to mitigate multi path fading and

external interferences experienced in 802.15.4 that uses a
unique channel. Several modes were defined, including
synchronous and asynchronous mode.

We focus on Time Slot Channel Hopping (TSCH), a
protocol defined by IEEE 802.15.4e standard [Mirzoev and
others, 2014]. TSCH is a Medium Access Control (MAC)
layer protocol that provides a mean to sensors so that they
can communicate properly.

DeTAS [Accettura et al., 2015] provides an interesting de-
centralized scheduler, but allows only 5 shared slots, which
is a limitation when, as we see in this paper, the network has
more than 10 nodes.

Orchestra [Duquennoy et al., 2015], a routing-aware, au-
tonomous, random-access TSCH allocator, gives a solution
for ressource allocation at MAC layer level: it allocates time
slots to a sensor in order to communicate longer with its par-
ent when the incoming data is too large. But the random-
ness of this algorithm does not prevent from a sensor from
a branch of the graph to allocate the same slot that a sensor
from an other branch of the graph also allocated. Non pre-
venting this would, in some cases, lead to interferences and
collisions. For instance, a sensor can give to its child the
same cell that has been allocated in a close neighborhood. If
they communicate at the same time, and because the medium
used is radio wave, the signal cannot be read by any of both
receivers because collision occurs.

3 Communication between sensors
3.1 Through a DODAG ...
To collect data, sensors need to structure a Destination Ori-
ented Direct Acyclic Graph (DODAG, see Figure 1) that is
built using Routing Protocol for Low-Power and Lossy Net-
works (RPL) among other protocols. The aim of RPL is to
build the shortest route from any sensor to the root gateway
sensor that will transmit information to a server that will pro-
cess this information.

RPL states that a sensor should send broadcast to its neigh-
bors containing at least its own rank in the DODAG (num-
ber in parenthesis in Figure 1). Because the traffic is from
leaf to root (plain lines in Figure 1), the root sets its DODAG
rank to 0 (because there is no hop between the root and the
server) and starts sending the DODAG Information Object
(DIO, plain and dotted lines in Figure 1) [Winter, 2012], in
which its rank information is contained, to all of its neigh-
bors. When a sensor receives a DIO that has a lower rank
than its own, it updates its rank as received rank + 1 and
broadcasts a new DIO containing the updated rank informa-
tion. If the rank in the received DIO is higher, it ignores it. In
the first case, a sensor can also decides to ignore the DIO if
the medium has a poor quality (low RSSI for instance).

To send a data packet towards the root, a sensor has to send
its packet to the sensor that has a lower rank.

Figure 1 shows the different paths (set up by DIO) that data
may follow to reach the root (R). The node rank is put inside
brackets.

C (1)A (2)

R (0)

D (1)B (2)

Figure 1: Example of a DODAG with 5 nodes

Figure 2: TSCH is a MAC layer protocol [Palattella et al.,
2016]

3.2 ... using TSCH

The medium through which sensors communicate is defined
by TSCH, a MAC layer (Figure 2 [Palattella et al., 2016])
protocol first outlined in IEEE 802.15.4e standard. A sensor
X is assigned a time slot and a channel that corresponds to
a specific communication with sensor Y : from X to Y (Tx:
transmission), from Y to X (Rx: reception), or unicast and
broadcast. Let’s take sensor D from Figure 1 and see Table
1. The couple of time slot and channel offset (1,2) and (2,3)
correspond to Rx cells but are Tx cells for respectively A and
B, and (4,0) to a Tx cell for D but Rx cell for the root.

We initially use the couple (0,0) as the mean for unicast
and broadcast informations (DIO messages, control packets).
This cell corresponds to the shared cell.

Time slot
0 1 2 3 4

Channel

0 DIO A ! C D ! R

offset

Control

1 C ! R

2 B ! D

3 A ! D

4

Table 1: Time slot & Channel offset matrix

4 Presentation of the simulator
We have modified an open-source WSN simulator that has
been developped at Berkeley University [Palattella et al.,
2016]. The standard parameters of a simulation follow
the Minimal 6TiSCH Configuration [Vilajosana and Pister,
2016]: a time slot lasts 10 ms, a slot frame contains 101 time
slots , and 16 frequency channels are available. The nodes are
located in a 1km wide square.

This simulator has a centralized view of the network: each
node has the knowledge of neighbors and parents properties.
For instance, to add a cell in its scheduler, a node calls a func-
tion that gets the free cells from its parent and picks randomly
the needed number of slot.

Moreover, the simulated network traffic only consists of
data packets while control packets (request for a new cell,
reply, DIO (see section 3.1) ...) are considered non-existent.
The centralization is made possible with calls from a cell of
its parents’ / neighbor’s function. In addition, the fact that
slots are randomly picked induces the same drawback as the
one Orchestra induces.

4.1 Original simulator
The topology of the network is created randomly: a sensor
is placed at a random position, the number of neighbor(s) is
computed using RSSI calculation, and if there are too few
neighbors, the sensor is replaced until the number of neigh-
bors reaches a certain threshold. The first placed sensor is
the DODAG root, the destination of all the data collected by
the sensors, and is to be at the center of the network: if we
consider that the topology is bordered by a rectangle, then its
coordinates are x = width/2, y = height/2.

The DIO messages are not simulated in the network traffic,
sensor notifies its neighbors of its rank using a centralized
function. This function is called each slot frame by all of the
sensors, whereas they are supposed to be sent depending on
a trickle timer : while a sensor does not receive a DIO that
proposes a lower rank, it doubles its DIO period. When a
lower rank DIO is received, it starts again with a period of 1
slot frame.

When a sensor scheduler activates a cell in the matrix
shown in Figure 1, it gathers information about what to do:
if the cell is Rx then it has to listen for possible incoming
packets; if the cell is Tx then it has to send the first packet in
its data queue.

When a sensor detects that it needs more time slot to
communicate with its parents (thanks to OTF algorithm), it
calls a function of a parent sensor. This parent randomly
selects the needed number of slots that are not used in both
itself’s scheduler and requester’s (child) scheduler, it adds
them into its scheduler as Rx cells, and it tells the requester
to also add them as Tx cells.

Most of the functionalities are using a centralized abstrac-
tion, that permits perfect transactions between nodes. To
bring a more realistic model, we modified this centralized be-
havior for some of the transactions.

4.2 Actual simulator
Modification in the behavior
In order to make the simulator more realistic and to make it fit
TSCH standard, we first added a new type of cell: the shared
cell, that corresponds to the cell (0,0) on which every sensor
can listen to and send information.

This special cell allows us to make the resource allocator
distributed: instead of a parent to get the information of the
slot requester’s scheduler through omniscient function calls,
the requester sends through the shared cell all of the infor-
mation that the parent needs to process the request: MAC
address of the requester, a list of its already used time slots
(so that to compute the available slots, the parent can sub-
tract it from its non-used time slots list), and the number of
needed slots. The parent’s answer is also sent through the
shared cell. We implemented the 3-way transaction [Wang
and Vilajosana, 2016] :

• mote A sends a ”n-cells request” packet to mote B
• mote B receives the packet, adds n cells to its scheduler

(tagged as Rx) and sends the n cells list to mote A
• mote A receives the cells list, adds it to its schedule

(tagged as Tx) and sends a confirmation to mote B
If the answer from mote B does not contain enough slots,

mote A adds the cells and send a new request with the new
needed number of slots and the updated list of slots being in
use by mote A.

To make communications through the shared slot the most
coherent possible, we added a transaction aborting system.
If one of the node is dropped, it aborts the transaction and
reverse the changes that have been done during the aborted
transaction. We also added a sequence number for control
packets. If a mote receives from a neighbor a control packet
that has a different number as it expected, it drops the packet
and aborts the currently handled transaction if any.

To be coherent with the 6top protocol, a node cannot have
two pending transactions at the same time, which means that
it has to wait for the transaction to be completed or aborted
before starting a new transaction.

We modified the simulation engine so that a callback can
take parameters. Thus, the same callback can be used to send
both request and answer in the shared cell.

Modification of the launcher
We modified the simulation launcher as following:

• Addition of parameter queuing: if 0 then the simula-
tion will be as original simulator (nothing through cell
0), 1 then simulation will be as new simulator behavior
(slot request and answer using shared cell)

• Addition of parameter bootstrap: if used with
queuing 0 ! no effect. If used with queuing

1, then the bootstrap of the network will be managed
through shared cell (no Rx / Tx cell at the beginning).
If not used, and queuing 1 is used, then the bootstrap
time slot request and answer will be managed by the om-
niscient function, then use the shared cell.

• Addition of parameter topology: if used, the simula-
tor can save the topology into a file (with parameter rw

w) or read a topology from a file (with parameter rw r).
The file name is topologyX.txt, X being the num-
ber of sensors.

• Addition of parameter numSharedSlots: it deter-
mines the number of shared slots per slot frame. We
quickly understood that only one shared slot restricts the
communications during bootstrap when there are more
than 10 nodes in the square area. The slot number
is given by the following formula : if i is the shared
slot number (from 0 to numSharedSlots excluded), n the
number of shared slots and l the slot frame length, then
i ⇤ bl/nc

As we explain more deeply in 5, the use of this new cell
brings more realism in the simulation, but also brings delay
and latency in the communications.

5 Performance of communication through
shared slot

For all simulations using the new version of the simulator, we
compared the results with the original version using the same
parameters to understand what does distribution change in the
network behavior.

We first used a topology of 10 sensors. The simulation ran
for 200 cycles (slot frame), that is to say 200 ⇤ 101 ⇤ 0.010 =
202 seconds. We wrote dumping of the topology using a first
run, then we read the topology dump for 600 runs: 300 with-
out distribution (parameter queuing 0) and 300 with distri-
bution (parameters queuing 1 and bootstrap). We separated
the results into two categories: without and with distribution.
Then, we calculated mean and confidence interval of: col-
lisions in the shared cell (Figure 3)(does concern only dis-
tributed version); number of Tx cells allocated in all the net-
work (Figure 4).

We then ran 100 times the same protocol but we increased
the number of sensors from 10 to 25.

First of all, we focus on the new shared cell (0, 0), through
which all of the requests and answers are transmitted. We
can see in Figure 3 that at the beginning of the bootstrap,
there is a peak of 8 collisions in one cycle. Then the number
of collisions decreases progressively to tend to 0 after 200
seconds.

Figure 4 shows the difference in the evolution of the num-
ber of cells that are allocated as Tx (transmission cells) with-
out and with distribution. We can see that the steady state of
15 cells, that is reached after the 5th cycle without distribu-
tion, is now reached around the 175th cycle using distribution.

We can see in Figure 5 and 6 that performances decreases
when we increase the number of sensors : even after 200 cy-
cles, there are still around 10 collisions per slot frame in the
shared slot, thus network has trouble allocating more than 15
Tx cells, whereas original simulator allocates 50 cells around
the 10th cycle.

The high number of collisions in the shared cell at boot-
strap is easily explained by the fact that none of the sensors
has Tx cell to communicate with its parent. Thus, OTF algo-
rithm triggers a ”cell add” request, cells use the shared cell to

Figure 3: Collisions in the shared cell (0, 0), 10 sensors

Figure 4: Evolution of cells allocated as Tx, 10 sensors

Figure 5: Collisions in the shared cell (0, 0), 25 sensors

Figure 6: Evolution of cells allocated as Tx, 25 sensors

ask for a cell to their parents, resulting in a heavy contention
in this cell.

The delay that it takes to the network in its globality to
reach a steady state in the distributed version of the simulator
can be explained by the lack of omniscient view of the net-
work. Indeed, instead of a sensor to get all of the resources
needed at the next slotframe, exchanges through the network
have to be done. But the medium used for this resource al-
location request is the same for all of the sensors: the shared
cell. We implemented TSCH CSMA/CA algorithm provided
by IEEE standard, but as we can see it is not enough to allow
a fluent communication in the shared cell.

Indeed, the backoff algorithm is just a window that
increases progressively while the control packets is not
received. When a sensor sends a control packet, it waits
for a random number (picked in the windows) of shared
slots before sending again the packet. At the beginning, the
windows is 2number of try � 1. Thus, it takes at least 4 tries
before having a windows that allows a reasonable collision
probability for 10 sensors to chose the same delay (window
after 4 tries : [0; 15]).

Reducing contention in shared slot would reduce the time
needed for the network to reach a consistent network. It
would also allow us to add other important traffic in the
shared slot such as enhanced beacon [Li et al., 2012], DIO,
and OTF deletion request that is triggered when a sensor con-
siders that it has too many cells that are not used.

To accelerate the process of resource allocation, there
is a priority for answers over queries: if a sensor has both
queries to be sent to a parent and answer to be sent to a child
((i.e. both query and answer are present in the control paquet
queue), then it will send the answer. Indeed, if no priority
is handled, the shared cell would be even more flooded by
request packet. This flood would dramatically increase the
delay for a node to get the answer.

6 Improving communications through shared
slot

6.1 Increasing the number of shared slots
As we showed in previous sections, the shared slot becomes
quickly overloaded as the number of nodes increases. A
study from the Polytechnic Institute of Porto [Koubaa et al.,
2006] showed that increasing macMinBE (the backoff expo-
nent used in the CSMA/CA retransmission algorithm when
collision occurs) enhances the throughput of the network. In
our case, the throughput is limited by the number of shared
slots, that is set to one slot according to Minimal 6TiSCH
Configuration [Vilajosana and Pister, 2016].

We show in this section that the number of shared slots has
a significant influence in the proceedings of transactions.

To have an overview of this impact, we chosed the follow-
ing parameters for the simulations :

• numMotes : 25, 50 and 100
• numSharedSlots : 3, 10 and 20

We kept the slot frame to a length of 101, because even
with 100 nodes the slot frame is not fullfilled thanks to the 16
different channels.

6.2 Inband communication
A 6top cell request transaction can be a 2-way or 3-way trans-
action. We decided to implement the 3-way because it en-
sures a coherent scheduler state on both two nodes.

We implemented inband communication for two of this 3-
way transaction. It means that when a node has a Tx cell
allocated to its parent, the next cell request transaction will
take place in the allocated cell for two packet sending : from
the child to its parent, when it sends the request and when it
sends the confirmation.

A full inband communication cannot be handled by the re-
ceiver of the request. Indeed, in the 6TiSCH matrix, a cell
cannot be tagged as Tx and Rx by the same node, thus the
receiver is not able to send its answer through the allocated
cell to its child. Hence, the answer is sent through a shared
slot.

7 Results and discussions
Figures 7, 8 and 9 show the allocated cells in the 6TiSCH ma-
trix. The most important thing that comes from those figures
is that as the number of shared slots increases, the speed at
which the cells are allocated also increases. An other thing
to notice is the presence of a shared slot number lower bound
depending on the number of nodes. Indeed, we can see that
the 25 nodes topologies reach 60 allocated cells in 100 cycles
or less with 10 and 25 shared slots, while it has a tough time
when there are only 3 shared slots.

We can also point that the cells are allocated in the same
proportion with 50 nodes in a 10 shared slots configuration
and 100 nodes in a 20 shared slots configuration.

This cells allocation pace impacts directly the flows the
data goes through. We saw that the more shared slots are
present, the fastest the cell allocation is proceeded. Now if
we focus on figures 10, 11 and 12, we can see that the more

Figure 7: Evolution of cells allocated as Tx, 3 shared slots

Figure 8: Evolution of cells allocated as Tx, 10 shared slots

Figure 9: Evolution of cells allocated as Tx, 20 shared slots
sensors

Figure 10: Data packet that reaches the dagroot, 25 nodes

Figure 11: Data packet that reaches the dagroot, 50 nodes

Figure 12: Data packet that reaches the dagroot, 100 nodes

Figure 13: Collisions in the Tx cells

shared slots are present, the fastest the data packets are trans-
mitted to the root of the DODAG.

Indeed, we saw in figure 7 that with 25 nodes and 3 shared
slots, some cells are allocated but it grows at a slow pace. We
can see in 10 that in this case, only a few data packets reach
the root of the dag : 0.5 packets per slot frame in average;
while it reaches 2.5 packets per slot frame for the 10 and 20
share slots cases.

We understand from figure 11 that the faster the Tx cells
are allocated, the faster the path from a leaf to the root is
built: there is an average of 5 data packets that reach root of
the dag from the 25th slot frame with 20 shared slots while
this average is reached after 300 slot frames with 10 shared
slots. This is directly linked with the Tx cells allocation
pace. Indeed, from figure 8 and 9 we see that the 25 nodes
topology allocates around 65 cells. This state of 65 allocated
cells is reached faster with 20 than with 10 shared slot.

Figure 13 shows the number of collisions that occur per
cycle, depending on the number of nodes. We see that as
the number of nodes increases, the number of collisions
increases dramaticaly. The collisions are caused by the lack
of knowledge that a node has about its physical neighbors
scheduler. Indeed, there is no control that are broadcasted
to prevent a node to allocate a cell that has already been
allocated by one of its neighbor. It has thus the possibility
to allocate this already allocated cell to a communication
with its child, inducing collisions. There is no CSMA/CA
retransmission algorithm in the allocated slots, so when a
collision occurs, it will keep occuring until one or both nodes
drop the packet.

We saw that to have a distributed behavior of the cell
allocation, the network has to have a medium through which
nodes can all communicate. Since this medium, the shared
slot, is shared between all of the nodes, there is a very high
contention, mostly during network bootstrap. The solution
of this contention we brought is to increase the number of

occurence of this shared medium.

8 Future work
Having a distributed version of the simulator and resource al-
locator might permit further works: implement Lamport Lo-
cal Mutual Exclusion (LLME) algorithm to prevent a node to
start a transaction until all its neighbors transactions ended.
The ”transaction end” broadcast packet would contain the
cells that have been allocated. All the nodes that receive this
packet would tag those cells as ”allocated by neighbor”, and
will not be able to allocate them (or in a last resort : if it has
to allocate a cell and it does not have any free cell). Thanks
to this knowledge, a sensor would give a slot that is not allo-
cated or that has been allocated in a far enough place that has
few probabilities to induce interferences.

We believe that this algorithm would increase the con-
tention in the open slots - that can be solved as we saw in
this paper - but would prevent from most of the collisions in
the Tx slots.

9 Conclusion
Transforming the resource allocator into a distributed version
has needed to add in the simulator the shared cell. This cell is
shared among all nodes to broadcast informations and when
communication has to occur between nodes that do not have
any other communication medium. We saw that the shared
cell is subject to contention, mostly during bootstrap.

This contention induces collisions, that themselves induce
a delay in the request/reply transaction. This delay affects
the time needed for the network to reach its steady state, but
also reduces interferences between sensors during this delay.
We solved the congestion problem by adding more shared
slots, depending on the number of nodes in the network.

We believe that those results are reliable in a 6TiSCH con-
text, but also for any WSN that makes use of open slots on
which a considerable number of nodes can communicate, thus
on which a non negligeable number of collisions may occur.

Acknowledgments
I would like to thanks Mr. Franck Rousseau, Mr Olivier Al-
phan, Ms Karin Alisten and Mr. Stephane Devismes. They al-
ways took time to listen to my questions and answer to them.
They also asked me questions that deepened and widened a
lot my view of the problem.

References
[Accettura et al., 2015] Nicola Accettura, Elvis Vogli,

Maria Rita Palattella, Luigi Alfredo Grieco, Gennaro
Boggia, and Mischa Dohler. Decentralized traffic aware
scheduling in 6tisch networks: Design and experi-
mental evaluation. IEEE Internet of Things Journal,
2(6):455–470, 2015.

[Dujovne et al., 2014] D Dujovne, LA Grieco, M Palattella,
and N Accettura. 6tisch on-the-fly scheduling draft-
dujovne-6tisch-on-the-fly-04 (work in progress). Techni-
cal report, IETF, Internet Draft, Jan. 2015.[Online]. Avail-
able: http://tools. ietf. org/html/draft-dujovne-6tisch-on-
the-fly-04, 2014.

[Duquennoy et al., 2015] Simon Duquennoy, Beshr Al Na-
has, Olaf Landsiedel, and Thomas Watteyne. Orchestra:
Robust mesh networks through autonomously scheduled
tsch. In Proceedings of the 13th ACM Conference on Em-

bedded Networked Sensor Systems, pages 337–350. ACM,
2015.

[Group and others, 2011] IEEE 802 Working Group et al.
Ieee standard for local and metropolitan area networkspart
15.4: Low-rate wireless personal area networks (lr-
wpans). IEEE Std, 802:4–2011, 2011.

[Hui et al., 2010] Jonathan Hui, Pascal Thubert, et al. Com-
pression format for ipv6 datagrams in 6lowpan networks.
draft-ietf-6lowpan-hc-13 (work in progress), 2010.

[Koubaa et al., 2006] Anis Koubaa, Mário Alves, and Ed-
uardo Tovar. A comprehensive simulation study of slotted
csma/ca for ieee 802.15. 4 wireless sensor networks. In 5th

IEEE International Workshop on Factory Communication

Systems, pages 183–192. IEEE, 2006.
[Li et al., 2012] Xiaoyun Li, Chris J Bleakley, and Wojciech

Bober. Enhanced beacon-enabled mode for improved ieee
802.15. 4 low data rate performance. Wireless Networks,
18(1):59–74, 2012.

[Mirzoev and others, 2014] Dr Mirzoev et al. Low rate wire-
less personal area networks (lr-wpan 802.15. 4 standard).
arXiv preprint arXiv:1404.2345, 2014.

[Palattella et al., 2016] Maria Rita Palattella, Thomas Wat-
teyne, Qin Wang, Kazushi Muraoka, Nicola Accettura,
Diego Dujovne, Luigi Alfredo Grieco, and Thomas En-
gel. On-the-fly bandwidth reservation for 6tisch wireless
industrial networks. Sensors Journal, IEEE, 16(2):550–
560, 2016.

[Shelby et al., 2014] Zach Shelby, Klaus Hartke, and
Carsten Bormann. The constrained application protocol
(coap). 2014.

[Vilajosana and Pister, 2016] Xavier Vilajosana and Kris
Pister. Minimal 6TiSCH Configuration. Internet-Draft
draft-ietf-6tisch-minimal-16, Internet Engineering Task
Force, June 2016. Work in Progress.

[Wang and Vilajosana, 2016] Qin Wang and Xavier Vila-
josana. 6top Protocol (6P). Internet-Draft draft-ietf-6tisch-
6top-protocol-02, Internet Engineering Task Force, July
2016. Work in Progress.

[Winter, 2012] Tim Winter. Rpl: Ipv6 routing protocol for
low-power and lossy networks. 2012.

3D kidney motion characterization from 2D+T MR Images

Claude GOUBET and Celine FOUARD
Grenoble, France

claude.goubet@e.ujf-grenoble.fr, celine.fouard@imag.fr

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:
Claude Goubet on june 15th 2016

Abstract

The motion of the kidney hardens the clinicians’
work while performing kidney punctures. TIMC-
IMAG is developing a robot which automatically
performs kidney punctures. In order for the robot
to be able to reach a moving target in the kidney,
it must be able to have a live representation of the
kidney motion. We present in this paper a method-
ology which allows to have a first characterisation
of the kidney motion from 2D+T MR images as
well as a first 3D model of the kidney motion. We
propose to decompose the motion in two charac-
teristics, a translation and a rotation and to define
a model using the amplitude and the instantaneous
phase of the kidney motion predict its 3D motion.
The translation will be estimated thanks to the kid-
ney gravity center displacement. The rotation will
be estimated by comparing the kidney directions.
The 3D model will be built by estimating a 2D b-
spline of the motion. Results allowed us to compute
a 3D model and open a discussion over its accurate-
ness. The complete implementation of the method-
ology will allow us to characterize the kidney mo-
tion and make a 3D model based on these charac-
teristics.

1 Introduction
Computer Assisted Medical Interventions (CAMI) aim at
both reducing intervention time and improving the patient’s
operating conditions. Abdominal organs motion induced by
breathing [St-Pierre, 2012] raises difficulties for the clinicians
during interventions. This affects the patient’s comfort as
well as the quality of the interventions [Bussels et al., 2003].
Among viscera, kidneys happen to be subjected to a clear mo-
tion following the thorax [Giele et al., 2001].

In this context, the TIMC-IMAG laboratory is currently de-
veloping a medical robot aiming to assist clinicians to per-
form kidney punctures [Bricault et al., 2008]. Such opera-
tions are time consuming and difficult for the patient due to
the fact that the clinician often has to perform several times
the punctures before hitting the target.
Today, the practitioner requires the patient to come into apnea
in order to stop the breathing motion and be able to target a
fixed point previously calculated thanks to preliminary MRI
acquisitions. These conditions are not comfortable and may
be difficult to perform for patient that are by definition not in
health. The objective for this robot is to be able to accurately
estimate the position of the kidney at each moment to make it
possible to perform punctures during settled breathing.
Position information can’t be given by live MR imaging,
since the acquisition time is to slow. A 3D model of the kid-
ney motion built prior to the intervention is then necessary for
the robot to predict the kidney’s position.
We decided to develop an approach characterizing the kidney
motion from 2D+T MR images, acquired prior to the inter-
vention, matched to breathing motion information in order to
build a 3D model which will be used to predict the kidney’s
position during the intervention. Under the hypothesis of a
rigid motion of the kidney motion, characterizable from local
translation between planes. 2D+T images allow to display the
organs position through time by representing the same slice of
the body in several images acquired in different time T. From
these we will characterize the motion as solid translation on
x, y, z axes and two rotation angles around x and y axes.
The purpose of this paper is to propose a first solution go-
ing from the characterization of the kidney motion from 2D
+ T MR images to the 3D modeling of this motion. The first
part of this paper will be a presentation of the state of the
art. Secondly we will state the materials used, the framework
on which we are developing, the images and their acquisition.
Then we will present the method used to generate motion vec-
tors, i.e. a description on the pre-processing which consists
in generating the features and a description of the methodol-
ogy for the characterization as well as the building of the 3D
model. Will follow a description of the experiment. And fi-
nally a discussion will be done about the correctness of the
3D model.

2 State of the art
Most of the articles about abdominal organs motions aim to
follow an interest point on the organ, either for observation
or during image guided intervention.
Solution given for the interest point observation include
image registration [Gupta et al., 2003] [Giele et al., 2001].
These solutions correct the translation of the kidney on the
images, but doesn’t characterize this motion.
Solutions for image guided interventions such as radiation
therapy propose to build a motion model of the organs.
Hostler et Al. propose to use a model of the pressure
of the thorax on the organs [Hostettler et al., 2010a;
2010b]. By measuring the the abdominal skin motion they
are able to predict the position of every organs. To apply
this method you first need to make a pressure model on the
organs.
Fayad et Al. propose a solution for building a motion model
using Splines [Fayad et al., 2009]. Although there is no
description for the characterization of the motion.

In this paper we will describe both the characterization of
the motion and build a model of this motion using splines.

2.1 Building the 3D motion model
A great review of respiratory motion models was made by
McClelland et al. [McClelland et al., 2013]. We chose to
focus on Fayad et al.’s work [Fayad et al., 2009] which
builds a direct model of the respiratory motion by estimating
a 2D-Spline of the motion. They use as surrogate data the
amplitude and the phase of the movement and the displace-
ment factors to generate a continuous patient specific model
function. To recover the position one just needs to know the
current phase and amplitude of the breathing and refer to the
2D-Spline.

We will now describe the materials we used in order to
characterize the motion and build our model.

3 Materials
3.1 Camitk
The algorithms presented in this paper (section 4) were im-
plemented on CamiTK [Fouard et al., 2012]. CamiTK (Com-
puted Assisted Medical Intervention Tool Kit) is an open
source framework which regroups all of the projects devel-
oped in this laboratory. In this way, researchers and clinicians
are able to work on the same tools and easily share know-how.
CamiTK can handle medical images, surgical navigation and
bio-mechanical simulations. It is developed in C++ using Qt
libraries for the user interface development and VTK libraries
[Schroeder et al., 1996] for the visualization.
This software features components, which represent data and
actions, which are operations you can perform on a compo-
nent, such as filtering.
As an outcome of this research, a new action will be inte-
grated which will characterize the kidneys motion from 2D+T
MRIs.

3.2 Image acquisition
In order to observe the motion of the kidney we used MR im-
ages from healthy volunteers. They were asked to follow a
specific breathing pattern to allow regularity on the breathing
movement during the acquisition.
The set of data we used for our experiment was acquired with
a Philips 3T MRI scanner (Achieva 3.0T TX Philips, Greno-
ble MRI facility IRMaGE). The dynamic MRI modality al-
lowed us to observe kidney motion by performing acquisition
during time. We used a kt-BFFE (Balanced Fast Field Echo)
machine’s modality with a FOV of 360x360 mm and a slice
thickness of 10 mm. With a dynamic MRI modality and a
resolution of 256x256 pixels as in figure 1.
The experiments were proceeded on 4 subjects with different
time interval between slices.

• Subject 1: dt = 80ms
• Subject 2: dt = 70ms
• Subject 3: dt = 100ms
• Subject 4: dt = 130ms

Figure 1: Motion on the coronal plane

The MR images were taken according to the kidneys planes
as seen in figure 2. Thus, the acquisitions were not done ac-
cordingly to the human planes.

Figure 2: Kidney’s planes
extracted from [Neree PAYAN, 2015]

4 Methods
In order to build a 3D model from 2D+T images we must
specify characteristics of the 3D motion which can be ex-
tracted from the 2D+T data. We decided to take as hypoth-
esis a solid motion of the kidney. Based on the hypothesis
we characterized the kidney motion as a translation in the 3D
space, on x, y and z axes, and a rotation based on the estima-
tion of direction change of the kidney on coronal and sagittal
views. The rotations will occur on z and y axes. It is based
on these motion characteristics that we will build a 3D model

of the kidney motion.
We will now describe the different steps of our methodology.
Two main stages will be described, the data extraction and the
data modelling.

4.1 Data extraction
This phase aims to extract motion characteristics from MR
images. We want to process the displacement and rotation of
the kidney. The whole process is illustrated Figure 3.
We take as inputs raw MR images. in order to focus the image
on the target, we segment the kidney on the images. We then
calculate the gravity center of the kidney and its direction in
order to be able to calculate the displacement and rotations.

Kidney Segmentation
The kidney segmentation on MRIs allows to focus the atten-
tion of the image on the kidney. The automatic segmentation
of viscera is still a challenging subject and is not part of our
objectives. The contours of the kidney in our MRI sets are not
precisly defined and lead both threshold and region growing
segmentation to unsatisfying results. Therefore we decided to
use manual segmentation. The segmentation was performed
on the MR images using ITK-Snap framework [Yushkevich et
al., 2006] in order to get binary segmented images of kidney
used the kidney gravity center and the kidney direction com-
putation. Figure 4 displays a segmented kidney on coronal
and sagittal views.

Kidney gravity centers computation
We chose the gravity center as a marker point since it can
be determined in a robust way on a segmented kidney. Also,
since it is a repetitive feature of the kidney, following our
hypothesis, tracking this point makes it possible to highlight
a translation. Gupta Et Al. already used this characteristic
point on shifted image registration [Gupta et al., 2003].
The input images are segmented binary kidney slices (a kid-
ney is represented with pixels set to 1 while background is set
to 0). The gravity center of the kidney corresponds to the sum
of non zero pixels’ position divided by the number of pixels.
Gravity center = (M

x

,M

y

) with:

M

x

=

P
j

P
i

I(i, j)x
ijP

j

P
i

I(i, j)

where x

i,j

= i ⇤ voxelSizeX

M

y

=

P
j

P
i

I(i, j)y
ijP

j

P
i

I(i, j)

where y

i,j

= j ⇤ voxelSizeY

Each slice represent a time instant t of MRI acquisi-
tion. Since there is only one gravity center per slice, each
couple of indexes are stored in a list, respectively to the
acquisition time of acquisition of the MRI slice they were
computed from.

Kidney directions computation
The kidney directions will be used for finding rotations. The
directions can computed the PCA algorithm [Tipping and
Bishop, 1999]. PCA algorithm finds the directions of the

Figure 3: Characterization methodology Diagram.
Inputs are 2D+T images. Pre-processing consists in the kidney seg-
mentation, followed by the calculation of the gravity center and di-
rection of the kidney on each slice. Processing contains two loops
done on a set of images. The image n is the search image when the
image n+1 represents the reference image. The outputs are two lists
of translation vectors and rotation.

(a) Coronal view (b) Sagittal view

Figure 4: Coronal and sagittal view of segmented kidney

maximal variance of data. It is actually the eigenvector of
the covariance matrix. Finding an angle between two vectors
is preformed using the dot product of vectors [Banchoff and
Wermer, 2012].
We used the implementation of the PCA from the VTK li-
brary [VTK.org, 2016]. VTK is highly convenient for this
task. Using the ”vtkPCAStatistics” we have a complete ab-
straction of the algorithm.
For the same reason as for the gravity centers, the angles are
stored in a list, respectively to the acquisition time of the im-
ages they were extracted from.

Gravity centers displacement
Gupta Et Al. propose to perform image registration by mea-
suring the displacement between two successive masked kid-
ney gravity center [Gupta et al., 2003]. They obtain the shift
values which enables them to translate a masked image of the
kidney over the next image. We will base our method this
algorithm to find the displacement coordinates which will be
saved as motion vectors.
Under the hypothesis of local translation between pairs, our
algorithm consists in the evaluation of the gravity center dis-
placement between the reference and the search segmented
images. The reference image being the first image of the ac-
quisition and the search image being the current image. For
each couple reference (r) and search (s) gravity center the rel-
ative displacement �X , �Y will be calculated as:

�X = M

0
x

�M

s

x

�Y = M

0
y

�M

s

y

The result vect = (�X, �Y) will represent the estimated vec-
tor of displacement between the two images.
In order to make this model more informative, we decided
to add to the displacement, data related to the rotation of the
kidneys. The rotation will be computed using directions vari-
ation. It is hence necessary to compute the direction of each
kidney segment.

Rotation
Under the hypothesis of local rotation between pairs, we also
calculate an angle of rotation between kidney directions.
The direction of each kidney was previously done done and
stored in a list. We follow the same process of comparison

between reference (initial) and search directions. Supposing
the 2D slice axis (x,y), the angle ✓

i

is defined as

cos(✓
i

) =
(~v0 • ~vi)
||~v0||||~vi||

with (~v0 • ~v

i

) the dot product of ~v0 and ~v

i

[Banchoff and
Wermer, 2012]:

~v0 • ~vi = v

x

0 ⇥ ~v

x

i

+ ~v

y

0 ⇥ ~v

y

i

+ ~v

z

0 ⇥ ~v

z

i

We now characterized the kidney motion. We will next make
a model which estimates the position and direction of the kid-
ney.

4.2 3D model
We focuses our model on Fayad et al.’s work [Fayad et al.,
2009] which builds a direct model of the respiratory motion
by estimating a 2D-Spline of the motion. They use as surro-
gate data the amplitude and the phase of the movement and
the displacement factors to generate a continuous patient spe-
cific model function. To recover the position one just needs
to know the current phase and amplitude of the breathing and
refer to the 2D-Spline.
This 3D model is based on Lee et al. algorithm for Scattered
Data Interpolation with B-Splines [Lee et al., 1997]. The B-
spline is generated using surrogate data (amplitude and phase
of the motion) matched to the induced displacement/rotation
computed in the previous part. Control points of the B-spline
are represented as a function �(i,j).
3D positions displacement on axes x, y and z will be recov-
ered using respectively the functions p

x

, p
y

and p

z

.
The 2D direction rotation on y and z will be recovered using
the functions d

y

and d

z

.
These functions are defined as bellow:

p

x

(r,') =
3X

k=0

3X

k=0

�

k

(s)�
l

(t)�x

(i+k)(j+l)

p

y

(r,') =
3X

k=0

3X

k=0

�

k

(s)�
l

(t)�y

(i+k)(j+l)

p

z

(r,') =
3X

k=0

3X

k=0

�

k

(s)�
l

(t)�z

(i+k)(j+l)

d

y

(r,') =
3X

k=0

3X

k=0

�

k

(s)�
l

(t)�
dy

(i+k)(j+l)

d

z

(r,') =
3X

k=0

3X

k=0

�

k

(s)�
l

(t)�dz

(i+k)(j+l)

(1)

with i = brc � 1, j = b'c � 1, s = r � brc, t = ' � b'c
and �

k

(t) and �

l

(t) the uniform cubic B-spline basis function
defined as:

�0(t) =
1� t

3

6

�1(t) =
3t3 � 6t2 + 4

6

�2(t) =
3t3 + 3t2 + 3t+ 1

6

�3 =
t

3

6

We will first describe our surrogate data then present the
B-spline generation method.

Surrogate data
By using the estimation functions (1) we will recover the kid-
ney displacement from 1st image of the kidney on a specific
axis.
In order to use these functions, we need to have the r and
' values, which in our case will be the amplitude and phase
of the breathing movement. But we also need to determine
a learning method taking the gravity center displacement
matched with the Amplitude and the phase of the breathing
movement at the time of the image acquisition in order to
compute �

ij

.
Our Surrogate data will be the amplitude and phase of the
breathing movement and the kidney gravity center displace-
ment.

• z: The displacement or rotation of the kidney will be
extracted as showed in section 4

• r: The amplitude of the breathing movement was
recorded by a belt during the image acquisition. Al-
though, since there is a correlation between the breath-
ing movement and the kidney motion, during our exper-
iments we used the amplitude of the position set of the
kidney gravity center on a given axis as the amplitude of
the breathing movement.

• ': The phase which was extracted from the amplitude
set using the Hilbert Transform [Freeman, 2007].

For the learning process, a subset of these surrogate values
will be scaled and put together in order to make a proximity
set of control point �

i,j

is represented as

P

ij

= {(r
c

,'

c

, z

c

) 2 P |i�2 r

c

< i+2, j�2 '

c

< j+2}
(2)

Spline estimation
With P we can now estimate a B-splane defined by control
points � so that �

ij

satisfies:

z

c

=
3X

k=0

3X

l=0

!

kl

�

kl

for each point c = (r
c

,'

c

, z

c

) in P

ij

we then build �

c

as:

�

c

=
!

c

z

cP3
a=0

P3
b=0 !

2
ab

with !

c

= !

kl

= �

k

(s)�
l

(t) and k = (i + 1) � br
c

c,
l = (j + 1)� b'

c

c, s = r

c

� br
c

c, t = '

c

� b'
c

c

An example of learning set is plotted in figure 5

Figure 5: Learning set example

5 Experiments
5.1 Experiments setup
We experimented this model on four subjects performing
deep breathing. The first step of the experiment is to com-
pute the motion characteristics (x, y, z position and rotation
angles) for each subject, as an example the subject 3 in figure
6.
Then, their breathing motion amplitude and phase and the
kidney gravity center displacement are computed for the
whole acquisition. Although, only image 5 to 25 data are
used for the learning (as in figure 5). The rest of the data will
be subject to the same scaling as the training set which was
imposed by (2) and used for the estimation of the movement
and for its validation.
As you can notice from figure 4, coronal and sagittal views
share the z axis. We will use for the model the z axis with the
best correlation with the actual values.
One model will be made per subject.

Figure 6: Subject 3 motion characteristics

5.2 Model performances evaluation
The covariance correlation between the estimation derived
from the estimation functions (1) and will be used to eval-
uate the similarity of their behaviour. The correctness of the
estimations will be evaluated in terms of their mean squared
difference.

5.3 Results
Figure 7 regroups the results in terms of performance of the
estimation compared to the actual results.
Figure 8 displays the averages of performances.
Figure 9 represent the results on axial plan.

Subject axis Correlation Squared difference
1 x 0.9684 0.3222

y 0.9780 1.1786
z 0.9862 4.3213

S. Rotation 0.5179 6.1753E-05
C. Rotation 0.5861 0.0009

2 x 0.9977 0.3222
y 0.9780 0.7522
z 0.9894 4.6199

S. Rotation 0.6264 8.8814E-05
C. Rotation 0.5315 0.0006

3 x 0.9826 3.7626
y 0.9805 2.3272
z 0.9761 12.9134

S. Rotation 0.9252 0.0004
C. Rotation 0.9607 7.7086E-05

4 x 0.8529 8.0733
y 0.7373 0.1348
z 0.9629 11.0296

S. Rotation 0.6512 0.0001
C. Rotation 0.5390 0.0005

Figure 7: Model performances

Average correlation 0.8371
Average difference 2.4782
Displacement Average correlation 0.9503
Displacement Average difference 4.1301
Rotation Average correlation 0.6673
Rotation Average diffrence 0.0003

Figure 8: Mean performances

Subject axis Correlation Squared difference
1 x 0.7308 1.5102

y 0.8176 0.4749
Rotation -0.0648 6.1753E-05

2 x 0.9851 0.9272
y 0.9593 0.2020

Rotation 0.6660 0.0013
3 x 0.9791 4.2678

y 0.9692 0.2130
Rotation 0.6910 0.0058

Figure 9: Axial model performances

6 Discussion
The four subjects had different breathing characteristics.
Their breathing motion was more or less settled, only sub-

ject 3’s kidney seemed to have a notable kidney rotation (as
you can tell with the example of the comparison between the
subject 2 Figure 10 and subject 3 Figure 11).
Although, Figure 8 shows that with this model, the estimation
has a high global correlation of coefficient 0.84 and a low av-
erage squared difference of coefficient 2.48.
These results show that this model allows to estimate the kid-
ney’s motion. We may also note that the average correlation is
lowered down by the rotation prediction of the 3 subject who
don’t have a rotating Kidney. These prediction try to predict
noise, not performing rotation prediction on such subject will
allow to have even better results.

Figure 10: Estimation of rotation on subject 2

Figure 11: Estimation of rotation on subject 2

We can notice some irregularity in the efficiency for the
displacement prediction, in terms of correlation for subject 3
x and y axes, and in terms of squared difference for subject 2
z axis with the highest coefficient of 12.91.
These irregularity highlight two conditions that must be
avoided while using this model.

Subject 4 was having the less settled breathing during the
acquisition (which does not respect our objective acquisition
during regulated breathing). Figure 13 highlights these
irregularities. Although the estimation seems to follow the
the actual value, by having pikes at the same time, there is
a non significant loss of precision. This imprecision comes
from the fact that the learning set is built with higher values
amplitudes than the data used for the prediction. Which is
getting the average of the proximity control points higher
than it should be.
This model must then be performed on settled breathing.
This does fit our requirements.

Subject 3 has a really high correlation coefficient, al-
though it seems to suffer from a lack of precision regarding
its squared difference from the actual data.
This case is the opposite to the previous one, higher am-
plitude in the predictions input than the values used in the
learning provoke a going out of bound of the model and
induces lower estimation. This highlights that a specific care
must be taken to make sure that the floor value of the scaled
amplitude and phase of the recovering set does not exceed
the maximal value for the floor of the training set.

We may also notice from Figure 9 that axial view mod-
els suffer from lower correctness efficiency. We may point
out that the axial results are not taken into account in Figure
7 nor 8. Indeed, if subject 1 has estimations on x, y and z
axes in Figure 7 for which the correlations with actual values
don’t go bellow 0.96, the x and y axis correlations with the
actual values of the axial view don’t go above 0.8. Also
it’s rotation has a negative correlation coefficient. We may
also notice that most of the rotation squared differences have
significantly higher values on axial view than the other view.
These irregularities also come from the nature of the breath-
ing motion and the shape of the kidney. Referring to Figure
2, the axial view is taken from above the kidney. Knowing
that the kidney is more or less to the craniocaudal direction
and that the major part of the kidney motion is on that same
direction [Neree PAYAN, 2015], each image acquisition
represent a different slice of the kidney and sometimes
disappears from the MRI slice (which is noticeable Figure
?? where the cycle is truncated). Which is against our
objective to characterize the motion of the kidney from a
rigid translation through 2D+T images. Hence, the kidney
displacement acquired is not necessarily due to the motion,
but rather to the irregularity of the kidneys shape. The
rotation prediction lack of precision comes from the shape of
the kidney which is, from the axial view, a circular shape and
may varry along the kidney. The PCA variation then does
not necessarily give us information about the rotation.
Although, coronal and sagittal characterisation giving us
information about x, y and z position, and two rotation
angles, it is possible to generate a 3D model of the motion
from both of these views.

Under the conditions of settled breathing our model
shows good results. A condition which is less invasive than
the current methods which requires unwell patients to go into

apnea in order to stop the breathing motion.

Figure 12: Estimation of z axis on subject 3

Figure 13: Estimation of x axis on subject 4

Figure 14: Subject 3 phase and amplitude

7 Conclusion
The kidney motion characterization is a crucial step for au-
tomatizing the kidney punctures. In this paper we expressed
a methodology which allows to have a first characterization
of the kidneys motion and we were able to build a 3d model
of this motion with satisfying results.
We characterized the motion with a translation and a rotation
per 3D direction. Two algorithms were presented In order to
estimate them. One using the kidney gravity centers to find
the kidney’s translation and and the other which using the di-
rection generated with the PCA algorithm to find the rotation
of the kidney through time. We used a 2D B-spline to build
a model for each axis of the 3D space and for the rotations.
This model has had good results but we were able to highlight
some weakness, coming from both the nature of the kidney
motion and the model itself.
One first downside of the model is that not all kidneys happen
to have a clear rotation, if we stated in the discussion that the
estimation of the rotation on the non rotating kidneys were
less noisy than the acquisition by performing a mean value
filter, our data set doesn’t allow us to evaluate the accurate-
ness of this estimation.
The second issue with this model is that the breathing move-
ment is not naturally settled. A breathing cycle different from
the training set will damage the precision of this model.
We also noticed that this motion characterisation can’t use
all of the coronal, sagittal and axial views as input, the axial
view not being appropriate to our kidney motion character-
ization algorithm. Although, corronal and sagittal view are
suffishent to characterise the 3D motion. Careful care must
be taken to make sure that the subject is breathing regularly
and preliminary check weather the subject’s kidney rotates
during the breathing movement.

References
[Banchoff and Wermer, 2012] Thomas Banchoff and John

Wermer. Linear algebra through geometry. Springer Sci-
ence & Business Media, 2012.

[Bricault et al., 2008] Ivan Bricault, Nabil Zemiti, Emilie
Jouniaux, Céline Fouard, Elise Taillant, Frédéric Doran-
deu, and Philippe Cinquin. Light puncture robot for ct and
mri interventions. IEEE Engineering in Medicine and Bi-
ology Magazine, 27(3):42–50, 2008.

[Bussels et al., 2003] Barbara Bussels, Laurence Goethals,
Michel Feron, Didier Bielen, Steven Dymarkowski, Paul
Suetens, and Karin Haustermans. Respiration-induced
movement of the upper abdominal organs: a pitfall for the
three-dimensional conformal radiation treatment of pan-
creatic cancer. Radiotherapy and Oncology, 68(1):69–74,
2003.

[Fayad et al., 2009] Hadi Fayad, Tinsu Pan, Christian Roux,
Catherine Cheze Le Rest, Olivier Pradier, and Dimitris
Visvikis. A 2d-spline patient specific model for use in radi-
ation therapy. In 2009 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages 590–
593. IEEE, 2009.

[Fouard et al., 2012] Céline Fouard, Aurélien Deram, Yan-
nick Keraval, and Emmanuel Promayon. Camitk: a modu-
lar framework integrating visualization, image processing
and biomechanical modeling. In Soft tissue biomechanical
modeling for computer assisted surgery, pages 323–354.
Springer, 2012.

[Freeman, 2007] W. J. Freeman. Hilbert transform for brain
waves. 2(1):1338, 2007. revision 91355.

[Giele et al., 2001] ELW Giele, JA De Priester, JA Blom,
JA Den Boer, JMA Van Engelshoven, Arie Hasman,
and M Geerlings. Movement correction of the kidney
in dynamic mri scans using fft phase difference move-
ment detection. Journal of Magnetic Resonance Imaging,
14(6):741–749, 2001.

[Gupta et al., 2003] Sandeep N Gupta, Meiyappan Solaiyap-
pan, Garth M Beache, Andrew E Arai, and Thomas KF
Foo. Fast method for correcting image misregistration due
to organ motion in time-series mri data. Magnetic Reso-
nance in Medicine, 49(3):506–514, 2003.

[Hostettler et al., 2010a] Alexandre Hostettler, Daniel
George, Yves Rémond, Stéphane André Nicolau, Luc
Soler, and Jacques Marescaux. Bulk modulus and volume
variation measurement of the liver and the kidneys in vivo
using abdominal kinetics during free breathing. Computer
methods and programs in biomedicine, 100(2):149–157,
2010.

[Hostettler et al., 2010b] Alexandre Hostettler, SA Nicolau,
Y Rémond, Jacques Marescaux, and Luc Soler. A real-
time predictive simulation of abdominal viscera positions
during quiet free breathing. Progress in biophysics and
molecular biology, 103(2):169–184, 2010.

[Lee et al., 1997] Seungyong Lee, George Wolberg, and
Sung Yong Shin. Scattered data interpolation with mul-
tilevel b-splines. IEEE transactions on visualization and
computer graphics, 3(3):228–244, 1997.

[McClelland et al., 2013] Jamie R McClelland, David J
Hawkes, Tobias Schaeffter, and Andrew P King. Respi-
ratory motion models: a review. Medical image analysis,
17(1):19–42, 2013.

[Neree PAYAN, 2015] Celine FOUARD Neree PAYAN,
Julie FONTECAVE. Grenoble alpes university, timc-
imag. Master’s thesis, Grenoble Alpes University, 2015.

[Schroeder et al., 1996] William J Schroeder, Kenneth M
Martin, and William E Lorensen. The design and im-
plementation of an object-oriented toolkit for 3d graphics
and visualization. In Proceedings of the 7th conference
on Visualization’96, pages 93–ff. IEEE Computer Society
Press, 1996.

[St-Pierre, 2012] Christine St-Pierre. Évaluation des impacts
anatomique et dosimétrique des mouvements induits par la
respiration. PhD thesis, Université Laval, 2012.

[Tipping and Bishop, 1999] Michael E Tipping and Christo-
pher M Bishop. Probabilistic principal component anal-
ysis. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(3):611–622, 1999.

[VTK.org, 2016] VTK.org. VTK examples pcademo, 2016.
[Online; accessed 7-June-2016].

[Yushkevich et al., 2006] Paul A. Yushkevich, Joseph Piven,
Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho,
James C. Gee, and Guido Gerig. User-guided 3D active
contour segmentation of anatomical structures: Signifi-
cantly improved efficiency and reliability. Neuroimage,
31(3):1116–1128, 2006.

Integrating Split Drivers in Linux

Tima Laboratory, Grenoble, France

Magistère Informatique de Grenoble

Thomas Baumela
Supervised by:

Pr. Olivier Gruber, Pr. Frédéric Pétrot

Abstract

Recent studies show that 70% of Linux Ker-
nel crashes are caused by device driver bugs.
Device drivers are hard to write because they
are highly dependent on both the specifics of
each operating system and the minute details of
hardware devices. Furthermore, since improved
or new devices constantly hit the market, pro-
viding safe drivers is a never-ending struggle.
Also, device driver developers are under time
pressure because new devices must have their
driver to be usable. This is of course something
important for hardware manufacturers but it is
also important for operating system providers
if they want their operating system to be able
to run on the latest hardware.
To address these problems, we advocate that
split drivers is a promising direction. The con-
cept of split drivers has been popularized by the
USB standard [21], with a convenient plug-and-
play experience for many hardware devices.
With a split-driver, the usual device driver is
split in two parts, a front-end driver and a back-
end driver. The back-end driver is the complex
hardware-related part of the driver, but it now
executes on the device, not on the host. The
front-end driver executes on the host, loaded by
the operating system, but it is now a simpler
and safer class-generic driver. The two parts,
the front-end and back-end drivers, communi-
cate using messaging, which provides the nec-
essary failure isolation.
We have extended the device driver bus frame-
work of Linux to integrate the concept of split
drivers. The Linux bus framework is modeled
after the PCI hardware bus [12], assuming a
plug-and-play approach where newly plugged-
in devices are matched with compatible drivers.
Once a driver is matched to a device, it is as-
sumed that the driver interacts with its device
through memory-mapped input-output regis-
ters, interrupts, and direct memory transfers.
Through our extension, drivers and devices

communicate through message-oriented chan-
nels.
This assumes that devices are self-described
and implements message-oriented interfaces.
This rely on the idea of standardized classes
of devices, defining the messaging protocol for
each class. We argue this trend is the right di-
rection, but the class standardization must be
independent from the hardware specifics of the
underlying bus technology. Our work is a first
step in that direction.

1 Introduction
Writing a device driver is hard, some say it is black
magic. Writing a device driver requires a very detailed
understanding of the kernel hosting that driver, the
Linux kernel in our case. But writing a device driver
also requires a perfect understanding of the hardware
device itself. Not only writing a device driver is hard,
but buggy device drivers usually mean an unstable ma-
chine and most often a brutal kernel crash. Of course,
device drivers become more and more stable over time,
like any other software, but hardware devices constantly
change and new devices appear all the time. Writing
device drivers and getting it right is therefore a never-
ending struggle.

Since the 1960’s device drivers are based on writing
and reading values into device registers. But in contrast
to user-space programming, writing and reading regular
memory locations, reading and writing device registers
are about communicating with the device, following a
communication protocol that is specified for each device.
For instance, this implies that some of these operations
need to be performed in a particular order and some-
times using precise timing. The necessary information
is of course available in the hardware documentation,
if the device manufacturer provides it, otherwise, retro-
engineering is necessary. Even when available, hardware
specifications are complex and notoriously incomplete
from the perspective of device driver writers. The work
of [9] and [11] shows well how complex drivers are and
how difficult it is when it comes to update them because
of the huge proliferation and interaction of them.

1

Device drivers are often provided by the manufac-
turer itself, who deeply knows the behavior of its device.
However, the challenge becomes the required knowledge
of the hosting operating systems, such as Windows,
Mac-OS, or Linux [10]. In the embedded world, many
other operating systems exist, such as WindRiver [22],
eCos [4], or variants of Linux like uClinux [19]. This is
a challenging situation since it is hard to find developers
that are both hardware and software experts. Further-
more, drivers must be maintained as both the hardware
and software evolve, either because new versions of de-
vices hit the market or because new versions of the op-
erating system are released. It is therefore challenging
for device driver developers to stay current and deliver
up-to-date and safe device drivers.

To make things worse, device drivers must be avail-
able in a timely manner. This is obviously important for
device manufacturers since devices can only be used if
they have available drivers in the mainstream operating
systems. In the embedded world, the situation is even
worse with the wide diversity of proprietary operating
systems. Therefore, driver availability also becomes im-
portant for operating systems if they want to be able run
on the latest hardware, being able to manage the latest
hardware devices. This issue of the availability of device
drivers has been plaguing the industry for decades now.

In that respect, the USB standard [21] has been a
game changer, providing a successful plug-and-play ex-
perience for a wide variety of devices. The key con-
cept is the concept of split drivers, with both parts com-
municating through messaging. In the USB world, de-
vices belong to standardized classes, each class of de-
vices defining message-based interfaces. For instance, a
mass storage understands SCSI [16] commands. Simi-
larly, they are interfaces defined for different media de-
vices (sound, video) as well as human interface devices
(HID) [5]. In this world, operating systems can host
class-generic drivers, communicating with devices by ex-
changing standardized messages.

This means no more black magic, no more complex
technical reference manuals that are thousands of pages
long. Drivers are just exchanging messages, something
that any software developer knows how to do. Drivers
become easy to write. More importantly, drivers become
safer. First, they only use messaging, no more playing
around with hardware registers, interrupts, and direct
memory transfers. Second, they are class-generic drivers
that will last, allowing them to become safer over time
as bugs are ironed out.

Unfortunately, the USB revolution has been perceived
by the operating system community as only yet another
bus technology. For instance, Linux has integrated sup-
port for the USB bus, like it did for other bus tech-
nologies such as I2C [7], PCI, or Thunderbolt. While
the approach certainly did the job of allowing the use
of USB devices on machine running Linux, it failed to
foresee the potential of the approach as a game changer
for the operating system community. Of course, the
USB standard is about a single bus technology, but it

shows a path to solve the driver challenge by evolving the
software-hardware frontier. Moving away from memory-
mapped registers, interrupts, and direct memory trans-
fers towards messaging changes everything.

Unfortunately, the USB specification has been lacking
the necessary separation of concerns, mixing the stan-
dardization of device classes along with the standard-
ization of a message-oriented bus technology. The USB
standard covers everything from define what a mouse
is, down to the bus technology, and even the wire and
plug formats. The SCSI standard made the same mis-
take early on but corrected it early on. Indeed, the SCSI
standard started with mixing the definition of a paral-
lel bus and the SCSI messages. Today, the SCSI mes-
sages can flow through many different bus technologies,
such as PCI, USB, fiber optics, and the Internet. We
therefore believe it is important to push towards split
drivers, based on standardized messaging, but indepen-
dently from any bus or network technologies.

This work is a first step in that direction, looking
at how to extend the Linux device-driver bus frame-
work, including the concept of split drivers communicat-
ing through messages. This document is structured as
follows. First, we will discuss the related state of the art
in Chapter 2. Second, we will present the current design
for the Linux device driver bus framework in Chapter 3.
Third, we will present our split-driver extension to that
Linux framework in Chapter 4 Fourth, we will discuss
our validation and experiments in Section 5. Finally, we
will conclude in Section 6.

2 State of the Art
This section is about the state of the art related to de-
vices, buses, and device drivers. Since the dawn of our
industry, the software-hardware frontier has been based
on memory-mapped input-output registers (MMIO), in-
terrupts, and direct memory access transfers (DMA). As
a result of this frontier, operating systems must include
dynamically loaded modules that act as device drivers.
As the name suggests, these modules drive hardware de-
vices, reading and writing MMIO registers, responding
to interrupts, and controlling DMA transfers.

As bus technologies evolved, two schools of thought
appeared. One school fought to preserve this software-
hardware frontier, thereby preserving existing drivers,
while the other pushed for a change based on messaging.
The PCI bus is the most successful champion of preserv-
ing the software-hardware frontier. In contrast, the I2C
bus is advocating messaging through a serial bus. To-
day, even though most bus technologies adopted serial
technologies for faster bandwidth, including PCI, these
two schools of thoughts are still very present. The mod-
ern USB and Thunderbolt[18] standards are illustrative
of these two schools of thoughts. The USB follows in the
I2C footsteps, pushing for messaging, while the Thun-
derbolt pushes to retain a PCI interface.

Along with pushing for messaging, the USB standard
has been pushing for split drivers based on the stan-

2

CPU

Switch

MemoryRoot complex

PCIe
bridge to
PCI/PCI-X

PCIe
endpoint

PCIe
endpoint

PCIe
endpoint

Legacy
endpoint

PCI/PCI-X

Figure 1: Example of PCIe Topology (Wikipedia Com-
mons)

dardization of device classes, each class implementing
message-oriented interfaces. This is important as this
permits operating systems to host class-generic devices.
This means that a driver is no longer a driver of a specific
device, it is the driver of any device belonging to a given
class. This changes everything. For instance, a single
driver is necessary to drive all USB mass storage, that
they are simple USB keys or that they are full external
disks, no matter the vendor, and no matter the internal
technology (flash, SSD, or traditional disk).

As a side note, this state of the art is mostly based
on specifications and available documentations from the
Web, from Wikipedia to various corporation announce-
ments. The descriptive parts of the sections are freely
inspired from those sources. Most of the figures are bor-
rowed from the same sources. However, the analysis and
comparison of the presented technologies represent our
own personal evaluation and opinions; they do not nec-
essarily represent the evaluation and opinions of the as-
sociated trademark owners.

2.1 PCI Bus
PCI bus is a board-local bus for attaching hardware de-
vices. The PCIe [13] stands for PCI-express and is a
serial replacement of the older parallel PCI bus. PCIe
is based on point-to-point topology, as depicted in Fig-
ure 1, with separate serial links connecting every de-
vice to the root complex (host). PCIe bus link supports
full-duplex communication between any two endpoints.
PCIe communication between two PCIe devices is en-
capsulated in bus transactions, allowing both devices to
send and receive ordinary PCI requests (configuration,
I/O or memory read/write) and interrupts.

PCIe supports read/write requests over three address
spaces: memory, I/O address, and configuration. Mem-
ory addresses are 32 bits or 64 bits and support caching.
I/O addresses are for compatibility with the Intel x86 ar-
chitecture’s I/O port address space. The configuration
space provides access to 256 bytes of special configura-
tion registers per each device. These registers are used to
configure devices when hot plugged, assigning to them
memory and I/O address ranges. Overall, a host con-

troller can configure a network with up to 256 buses,
each with up to 32 devices, each supporting eight func-
tions. For each device, as depicted in Figure ??, the first
64 bytes of its configuration space are standardized; the
remainder are available for vendor-defined purposes.

Our analysis of the PCIe bus technology is that it
marked a turning point for device driver management
because of its configuration feature. The configuration
feature of PCIe is fundamental not only in supporting
hotplug devices but also in helping with matching the
correct driver with a device. It is important to note
that PCIe devices are required to be self-described and
configurable. The approach was clever though to avoid
over specification; the PCIe specification standardizes
only a minimum, mostly about devices describing what
they are. This minimum permits a safer matching of
drivers onto devices. From that point on, the dialog be-
tween a driver and its device is a classical one, it is based
on MMIO registers, interrupts, and DMA transfers. In
other words, drivers remain entirely device specific.

2.2 Universal Serial Bus
The USB technology was standardized in the mid-1990s
with the intent to define the cables, connectors, and
communication protocols used for connecting peripher-
als such as keyboards, pointing devices, digital cameras,
printers, portable media players, disk drives and network
adapters.

The goal was to make it fundamentally easier to con-
nect external devices, replacing the chaotic jungle of con-
nectors at the back of the personal computers in the mid-
1990s. This explains that the USB standard is about
wires, plugs, and electrical specifications. But the USB
standard is also about simplify software configuration of
connected devices, always striving for greater data rates
for external devices that could benefit from it.

A physical USB device may consist of several logical
sub-devices that are referred to as device interfaces. For
example, a web-cam with a built-in microphone would
provide two interfaces, one video function and one au-
dio function. Communications to and from a interface
is based on messages flowing through pipes. A pipe is
a logical communication channel from the host to an
endpoint on a device. Such endpoints are attributed to
interfaces. Four types of pipes are defined by the USB
standard: control, interrupt, bulk, and isochronous.

• A control pipe is bi-directional and used for send-
ing short and simple commands and receiving sta-
tus responses—hence the name control pipe as they
serve to control devices.

• Interrupt pipes are about devices that are sources
of data such as keyboards, mice, or ethernet cards.

• Bulk pipes are about large sporadic transfers, they
are typically used for mass storage devices.

• Isochronous pipes have guaranteed data rate, but
with possible data loss. Isochronous pipes are typi-
cally used for realtime audio or video.

3

These four types are related to the complex schedul-
ing of data frames over the wire. Since the early version
of the USB technology had low bandwidth, multiplexing
pipes over shared wires was challenging. It was impor-
tant that devices could always be controlled, no matter
if there were other pipes with high bandwidth require-
ments. So the scheduling of frames always reserves a
percentage of the physical bandwidth for control frames.

The introspection of devices is interesting to detail.
The USB technology requires each device to be fully self-
described, via messages on the endpoint 0 (the only end-
point not associated to an interface). In other words, a
USB device always supports the endpoint 0 and always
understands the basic configuration messages defined by
the USB specification. Through such messages, the host
can obtain a complete description of a device, from that
device. The description is mostly about the device inter-
faces and endpoints. That way, the host operating sys-
tem can discover which devices are plugged in and safely
match corresponding drivers. Furthermore, drivers know
about the available endpoints and their type.

Device interfaces are meant to be standardized, that
is, their message-oriented protocols must be defined in-
dependently from any specifics of any particular device.
Accordingly, the USB promotes the concept of device
classes, with interfaces being standardized for each class
of devices. For instance, a mass storage device would
implement the SCSI standard (both commands and sta-
tus). This standardization permitted the implemen-
tation of class-generic front-end drivers as opposed to
device-specific front-end drivers. As a result, the avail-
ability and quality of front-end drivers dramatically im-
proved, leading to a satisfactory plug-and-play experi-
ence for end users and consequently a very attractive
technology for device manufacturers—quite a win-win
situation that ensured the USB success.

It is our analysis that although the USB technology
is inspirational about split drivers based on class-generic
message-oriented interfaces, the USB technology is also
an example not to follow in that it binds together differ-
ent specifications that ought to be independent. In that
regard, the SCSI specification ought to be an inspira-
tion as an SCSI driver can drive an SCSI device across a
wide variety of buses and networks, such as PCIe, USB,
fiber optics, and IPv6. We ought to define a software
bus that can host and match front-end and back-end
drivers, while fully abstracting away any specifics of the
underlying bus or network.

The concept of message-oriented communication chan-
nels delivers just that. This is fact quite similar to tradi-
tional sockets or message queues in software middleware,
providing hardware-independent communication chan-
nels. But just like the Internet differentiate between
TCP and UDP on their properties, the USB specifi-
cation has introduced different semantics for endpoint
pipes (control, interrupt, bulk, and isochronous). But
are these distinct semantics still necessary or are they
leftovers from early versions of the USB specification?

It would be wise to preserve as much as possible of the

Figure 2: USB Serial Interface Engine (Intel USB spec-
ification)

USB specification of device classes and their correspond-
ing message-oriented interfaces. Linux has done exactly
that when it adopted the HID specification from USB. As
it will be clear later, our approach has been designed in
order to be able to wrap a USB network, protecting the
overall investment that the industry made in USB soft-
ware and hardware stacks. But longer term, we would
expect a better layering to happen, both in software and
hardware.

Device side, the situation is more delicate to handle.
The USB specification has put a lot of effort in making
sure that device manufacturers could easily and cheaply
move their devices to the USB technology. First, this
means that the extra hardware cost induced must be
low. Second, the complexity of managing endpoints and
messages must be also be low. In particular, it was im-
portant that USB devices could still be simple hardware
automata. Requiring even a small microcontroller per
device would have been catastrophic.

Figure 21 presents the USB solution, device side.
First, to preserve slow ASIC (around 40MHz to 60MHz),
the PHY layer of the USB stack was moved to a inde-
pendent transceiver macrocell, running at 480MHz at
USB 2.0, even faster for newer releases of USB. Second,
a VHDL drop-in module was provided that encapsulates
the management of endpoints and pipes. The SIE Con-
trol Logic contains the USB address recognition logic,
and other sequencing and state machine logic to han-
dle USB packets and transactions. The Endpoint Logic
contains the endpoint specific logic: endpoint number
recognition, FIFOs and FIFO control, etc.

In order to preserve the investments made in USB by
our industry, we must consider solutions that preserve
most of the USB bus technology at an hardware level,
which means preserving both the host controller and Se-
rial Interface Engine control logic. Our solution should
permit exactly that, while also permitting to use split

1
http://www.intel.fr/content/dam/www/public/us/en/documents/technical-

specifications/usb2-transceiver-macrocell-interface-

specification.pdf

4

drivers over other bus and network technologies.

3 Linux Device Driver Bus Framework
This section gives an overview of the Linux driver model.
We will see how Linux organizes drivers and devices and
discuss the corresponding programming model given to
kernel developers.

3.1 Linux Bus Model
Device drivers are organized in Linux following the con-
cept of hierarchical buses. Some of these buses are
matching hardware buses, such as PCI or USB. Other
buses are about software abstraction such as the bus
grouping devices that are Human Interface Devices. For
each bus, three steps are important—reified devices, reg-
istered drivers, and matching.

First, for each bus, devices must be reified. This can
happen as the result of processing a given description
of which devices are plugged on that bus. An example
of such description is the device tree given to the ker-
nel on ARM that describes the different hardware buses
and the hardware devices that they host. A bus can also
support hot plugging of devices, such PCI buses, allow-
ing to enumerate hardware devices. The enumeration
is used by the bus implementation to reify devices that
represent on the bus at any given time.

Second, for each bus, the necessary device drivers must
be registered. In Linux, each device driver is written to
register to a given bus, something that happens when the
module containing the device driver is loaded. Modules
can be pre-loaded or they can be loaded on demand as
the result of enumerating new devices. This is the case
for example with the USB bus, looping back to the udev
mechanism that controls which modules are loaded for
driving devices.

Third, each bus matches locally drivers to devices. To
do this matching, the bus relies on devices describing
what they are and on drivers describing which devices
they can driver. This is typically done through different
identifiers such as device IDs and vendor IDs.

Then, Linux supports stacking buses, where device
drivers in one bus reifies themselves as devices in other
buses. For instance, the driver of a USB mouse, on the
USB bus, might reify itself as an Human Interface De-
vice (HID) in the HID bus. Stacking buses help organize
the overwhelming number of devices and their drivers
into a hierarchy of concepts that separate concerns, en-
capsulate details, and help the necessary composition.
For instance, the HID bus can compose different point-
ing devices as a single pointer that can be used by the
window manager to drive the mouse icon on the screen.

3.2 Device, Drivers, Buses
Linux bus model articulates three core concepts: drivers,
devices, and buses. Each device represents a software
view of an hardware device such as a PS/2 mouse, an
Ethernet controller, an audio controller, or a USB con-
troller. Devices can be very close to their hardware de-
vice or very abstract, or even software devices with no

corresponding hardware device. Drivers are pieces of
software that bind to devices they can handle and co-
municate with them using the bus programing model.

The Linux bus model offers a generic way to orga-
nize devices and drivers, but it does not get in the way
of drivers interacting with their devices. In fact, some
details of this interaction are often bus specific. For in-
stance, drivers often need more details on their devices
than a generic framework can provide. PCI drivers need
to access device configurations. USB drivers need to list
device interfaces and endpoints. Moreover, traditionally,
drivers communicate directly with their devices through
I/O ports, I/O memory, and interrupts. This is what
makes drivers so hard to write and utterly device spe-
cific. The PCI bus is a typical example of this philoso-
phy. Other buses, such as USB or I2C, have adopted a
different philosophy based on messages, yielding simpler
and safer drivers.

4 Split Driver Bus Extension
We propose to extend the Linux device driver frame-
work with the concept of split drivers based on messag-
ing and the definition of device classes and interfaces.
Our work was inspired by both the USB specification
and the Linux HID framework, yielding a proposal for a
Split-Driver Bus (SDB). Our extension is optional. In-
deed, some extisting buses might not be able to support
a message based communication. This section first de-
scribe the programming model of our extension, and its
internals.

4.1 Programming Model
The programming model is described in three steps.
First, we presents the data structures and functions.
Then, we discuss the management of the buffers. Fi-
nally, we discuss an example, a mouse driver.

Data Structures and Functions
Devices are identified using an ID data structure de-
scribed by the Listing 1. This ID contains various iden-
tification numbers such as the vendor and the product
numbers of a device, its class and the protocol it uses,
and finally the Bus Controller Driver that created it.
This ID data structure will be used by the bus to bind
devices with drivers.

To send and receive messages, devices have ports (in-
spired from USB endpoints). Ports will be used by
drivers to connect channels used to exchange messages
between devices and drivers. A port has a number identi-
fying it, protocol and class IDs allowing to attach them
a semantic, and a type. Port types are the messaging
scheme a driver must use when sending and receiving
messages through the port. We defined two port types:
• Symmetric port: Drivers and devices can send and

receive messages at any time. This is typical of
master-master relationship.

• Asymmetric port: Drivers can send messages but
must request to receive messages from a device. It

5

means a device must wait for the driver to request
data, before sending a message. This is typical of a
master-slave relationship.

Ports are bundled into interfaces (inspired by USB
interfaces). An interface is identified by its inter-
face number, protocol and class IDs, and the list of
ports they hold. New devices are registered using the
msg_register_device(). Listing 2 shows the full data
structures a device hold.

Listing 1: Device ID Structure
struct msg_device_id {

/⇤ Flags used to match i d s ⇤/
int match_flags ;

/⇤ Product s p e c i f i c matching ⇤/
int vendorId ;

int productId ;

/⇤ Class and p ro t o co l matching ⇤/
int c l a s s I d ;

int pro to co l I d ;

/⇤ Bus Con t ro l l e r Driver matching ⇤/
int bcdId ;

} ;

Listing 2: Device Data Structure
/⇤ Port t ype s ⇤/
struct msg_port {

int port_number ;

int t rans f e r t_type ;

int port_c las s ;

int port_protoco l ;

struct msg_inter face ⇤ i n t f ;

} ;

struct msg_inter face {

int intf_number ;

unsigned int num_ports ;

struct msg_port⇤ por t s ;

int i n t f_ c l a s s ;

int i n t f_pro to co l ;

struct msg_device⇤ dev ;

} ;

struct msg_device {

char⇤ name ;

struct dev i ce dev ;

struct msg_device_id id ;

unsigned int num_interfaces ;

struct msg_inter face ⇤ i n t e r f a c e s ;

struct msg_low_level_driver⇤ l l d ;

} ;

Listing 3 shows the data structure defining a driver.
Drivers must define an ID table containing ID structures
(identical as the ID structure contained in the device
structure), it is used by the bus to match drivers to de-
vices as follows. Each entry of its ID table is compared
with the device’s ID. If at least one of them matches, the
driver will be bound with this device. When a driver is
bound to a device, its probe() callback is invoked. From
this call, a driver can analyze the interface of the device
it has been bound with, and connect channels with de-
vice’s ports. When a module is about to be unloaded,

the driver is informed through its disconnected() call-
back. The probe() and disconnect() functions must never
sleep as they are executed in an event handling context.
For the explanation of the low-level driver concept, see
Section 4.2.

Listing 3: Driver Data Structure
struct msg_driver {

const char⇤ name ;

struct dev ice_dr iver d r i v e r ;

const struct msg_device_id⇤ id_table ;

int (⇤ probe) (struct msg_device ⇤) ;

void (⇤ d i s connec t) (struct msg_device ⇤) ;

} ;

Channels are communication pipes through which
messages are traveling from and to drivers. A chan-
nel can be connected and disconnected to a device port.
Channel structures, see Listing 4, belong to drivers.
When a driver wants to connect a channel, it must allo-
cate one (either dynamically or statically), and call the
asynchronous connect_channel() function. A channel
must be connected to at most one port and one port must
not be connected to more than one channel. Channels
ensure a First In First Out (FIFO) and lossless proper-
ties. When a driver wants to close a channel it calls the
asynchronous function close_channel().

Listing 4: Channel Data Structure
struct msg_buffer {

struct msg_channel⇤ channel ;

void⇤ bu f f e r ;

s i ze_t l ength ;

s i ze_t capac i ty ;

void (⇤ r e l e a s e) (struct msg_buffer ⇤) ;

} ;

struct msg_channel {

int s t a t e ;

struct msg_port⇤ port ;

struct msg_device⇤ dev ;

void (⇤ connected) (struct msg_channel ⇤) ;

void (⇤ r e c e i v e) (struct msg_buffer ⇤) ;

void (⇤ c l o s ed) (struct msg_channel ⇤) ;

} ;

All operations on channels are asynchronous
operations—they never block, respecting our event-
oriented programming model. Therefore, drivers need
to set the following callbacks for each channel. The
connected() callback, invoked when a channel is fully
connected, allowing the driver to start sending and
receiving messages through it. The receive() callback,
invoked when a message is delivered from a channel.
The closed() callback invoked when a channel is fully
disconnected, allowing the driver to deallocate its
channel data structure. All callbacks are called from an
event handling context and must not sleep.

Drivers can perform two operations on a connected
channel, given in Listing 5. The channel_send() op-
eration is used to send a message to a device. It can
be used with channels connected to either symmetric or

6

Mouse Driver

Split Driver Bus

1. driver_register()

2. probe()

channel end

3. connect()

7. receive()

mouse report

Bus Controller
Driver

Mouse
Device

0

interface

Hardware
Mouse

0

0. device_register()

8. release
buffer

6. Receive Report
from hardware

(allocate a message buffer)

4. Negociate port
connection

5. connected()

Figure 3: A Mouse Driver Example

asymmetrical ports. The channel_receive() operation is
used to request a message from a device. This operation
can only be used with channels connected to asymmetric
ports.

Listing 5: Channel Operations
int msg_connect_channel (struct msg_channel ⇤) ;

int msg_close_channel (struct msg_channel ⇤) ;

int msg_channel_send (struct msg_buffer ⇤) ;

int msg_channel_receive (struct msg_buffer ⇤) ;

Mouse Driver Example
A simple mouse driver illustrates the use of the above
functions and data structures. It is an interesting ex-
ample as it shows that our approach permits interrupt-
based devices, something that the USB specification also
supports, but via polling. To this end, the mouse device
contains one interface holding a single symmetric port.

Figure 3 shows all the steps, from the perspective of
the driver. First, the probe function is called, telling the
driver that it has been matched to a device. The driver
connects to that device, potentially exchanging initial-
ization messages with that device. Whenever the mouse
is moved or clicked by the end user, the device sends a
report of the user activity as a message through the es-
tablished channel with its driver. The reception of the
message acts as an interrupt, telling the drive that the
device needs attention. In this case, the message is self-
contained, but a driver could send messages if necessary
to inquiry or reconfigure the device at that point.

But it is also interesting to discuss the use of an
asymmetrical port. Indeed, some mouse devices are
designed as slave devices, which is typically the case
for USB mouses. By a slave design, we mean that a
mouse cannot send a message, like an interrupt, but
it must be polled for a report. Remember that this is
the standard USB behavior with interrupt devices; such
devices are not using interrupts, they are polled regu-
larly. This behavior is supported through asymmetrical
ports in our programming model, via an explicit call of
msg_channel_receive() when the device must be polled.

4.2 Internals
Implementing our proposal is mostly about implement-
ing a Linux software bus. We will first recall briefly what
it means to implement a Linux software bus for a hard-
ware bus. Then, we will discuss how Linux buses can
be used as aggregator for devices from across different
buses.

Implementing a Linux Bus
All Linux bus internals are quite similar, leveraging a
shared implementation provided as a core of functional-
ities by the Linux kernel. This shared implementation
is essentially a working bus that can be tailored to one’s
needs. The idea is that an external agent will manage
the bus, registering devices and drivers to the bus, the
bus taking care of the logic of matching devices with
drivers and then calling the drivers’ probe functions for
binding drivers to devices.

Our bus is a classical linux bus, but it belongs to the
category of buses that act as brokers between drivers and
devices. In our case, our bus provides message-oriented
channels, very much like the USB bus. This means driver
developers use the programming model we described ear-
lier to use channels to send and receive messages. This
in turn means that our implementation is responsible for
the management of channels and the routing of messages.

Let’s illustrate how this would be done over an I2C
bus, a bus that natively supports messaging, but just
sending or receiving uninterpreted payloads to or from a
device, known by its address on the bus.

With an underlying I2C bus, our Bus Controller
Driver would be a driver for the underlying I2C bus
controller. Once the hardware controller of the bus is
discovered and managed, it is business as usual for our
bus, just sending and receiving messages across the I2C
bus, like it would over any other networking technology
like an Ethernet network for example. It is on the device
side that the changes occur since devices need to under-
stand our messaging format, using two possible designs.
Some devices will have a small microcontroller and run
a lightweight version of our bus software. Other devices
will have a Serial Interface Engine à la USB, see Sec-
tion 2.2, a small VHDL module along with a macrocell.

Implementing an Aggregator Bus
Many Linux software buses are just about managing one
hardware bus, but other software buses are about aggre-
gating functionally-related devices into one place, where
relevant drivers could be registered. A perfect example
of this is the HID software bus in Linux. It is a bus
where all devices for human interactions must appear.
For instance, all forms of pointing devices would appear
there, such as mice, joysticks, or touch screens. From
there, these different hardware devices could be aggre-
gated in the concept of a single pointer that the window
manager can use in moving the cursor on the screen.

We have the same challenge with our bus, we would
like to aggregate the various devices that understand our
split driver model, irrespective of the actual bus they are

7

plugged in. This suggests to introduce the concept of
Low-Level Drivers (LLD) to our bus. The concept was
invented by Linux developers for the HID bus for the
same purpose. The purpose was to help reify an HID
devices in the HID bus from other devices plugged in
other buses. For instance, a mouse device on an I2C bus
that would be reified as a HID mouse in the HID bus.
The mean to do this is to add a driver to the I2C bus
that will bind to the mouse. It is called a low-level driver
because it is assumed that the HID bus is a parent of the
I2C bus, in terms of the Linux bus hierarchy. That low-
level driver will wrap the mouse device and present itself
as an HID mouse device in the HID bus. The wrapping
done by the low-level driver is bus-specific as it depends
on what can be done with a device in the upper-level
bus, in this case the HID bus.

In our case, the wrapping is about our message-
based channels. Earlier, we have mentioned that
each device has a corresponding low-level driver since
the struct msg_device has a pointer to a struct
msg_low_level_driver. The details of that struct are
given Listing 6. The declared functions can be grouped
in two groups: the downcall and upcall groups. The
downcall group is about the functions that are imple-
mented by the low-level driver and called by the bus
implementation. The upcall group is about the func-
tions that are implemented by the bus and called from
the low-level driver.

Listing 6: Low-level Driver Definition
struct msg_ll_driver {

struct {

int (⇤ channel_connect) (msg_channel ⇤) ;

int (⇤ channe l_close) (msg_channel ⇤) ;

int (⇤ channel_send) (msg_channel ⇤ ,

msg_buffer ⇤) ;

int (⇤ channe l_rece ive) (msg_channel ⇤ ,

msg_buffer ⇤) ;

} downcal l s ;

struct {

int (⇤ channel_connected) (msg_channel ⇤) ;

int (⇤ channel_sent) (msg_channel ⇤ ,

msg_buffer ⇤) ;

void (⇤ channel_rece ived) (msg_channel ⇤ ,

msg_buffer ⇤) ;

int (⇤ channel_closed) (msg_channel ⇤) ;

} up c a l l s ;

} ;

These functions are the very functions that neces-
sary to have an abstract implementation of our channels.
Nothing fancy here, just a regular separation of concerns,
allowing our bus to rely on low-level drivers for providing
different implementations suited for different buses.

5 Validation
In order to validate our model, we implemented two
proof-of-concept prototypes. The first was a Hardare/-
Software implementation running on a Xilinx ZYBO
board. The second was an integration of the USB bus.

Programmable Logic

Processing System

Bus Controller

Bus
Interconnect

Device Hardware
Interface

Device Hardware
Interface

Bus Signals

Bus Signals

Bus Signals

AXI interface

AXI interface

AXI interface

Figure 4: Hardware Bus Architecture

5.1 ZYBO implementation
In this experiment, we designed and implemented the
whole split-driver model from hardware to software ele-
ments. The hardware part is a custom bus implemented
into the Programmable Logic of the ZYBO ZYNQ Sys-
tem on Chip. It is split into the following pieces. The
Bus Controller managing the whole bus, an intercon-
nect, allowing to add multiple hardware devices on the
bus, and hardware devices. Figure 4 show an overview
of the hardware design. The bus controller contains two
hardware FIFOs used to send and receive messages from
the host perspective. When a message has to be sent to a
device (called a descending transmission), the BCD put
it into a memory buffer and ask the controller to start
the transmission of that buffer. Using one of the two FI-
FOs, the controller execute the transmission of the data
on the bus lines to the device, passing through the in-
terconnect. The interconnect’s primary role is to arbiter
the bus, limiting the transmission of ascending messages
from devices to host to only one device at a time. In
our design, descending messages are broadcasted to all
devices, meaning that they must check the destination
of an incoming message before processing it. Future up-
grades of the prototype would use a switch mechanism
to avoid this if necessary (USB 2.0 also use broadcast-
ing). Our devices are partially hardware implemented.
Only the interface with the hardware bus is made out of
pure hardware. The logic part is implemented in soft-
ware that send and receive messages using the hardware
part.

The software implementation consists of the following
elements. The whole split-driver extension, introduced
in the previous section, the Bus Controller Driver of our
custom Bus Controller that reifies devices on the hard-
ware bus into the split-driver bus, the logic part of our
devices, and the front-end drivers.

To test this framework, we implemented a ramdisk de-
vice, which is a block device with its storage in memory.
The disk device has only one port, used to receive read
or write requests and send related responses. The hard-
ware part of the device, receives requests, taken by the
software logic part. These requests are then processed

8

by reading or writing into the memory storage (a mem-
ory buffer in the RAM) and sending back the response to
the device’s hardware interface that will in turns trans-
mit them over the hardware bus. The disk buffer is al-
located at device startup time, and used to store data.
The buffer is divided into sectors of fixed size, like a real
hardware disk. The BCD will reify that disk in the SDB,
as a disk device with one interface and one port. The
driver on the SDB will be a Linux block device driver,
from the surrounding Linux perspective, that is, it ex-
ports a a regular block device interface. Consequently,
end users can manipulate our disk as any regular storage
device, using standard utilities such as mkfs and mount
to create and mount a file system from a block device.
This Linux block device interface is created by the driver
when it probes the device and connects to device’s port.
Once connected, the driver can handle block requests
from Linux file system by sending messages to the disk,
either to read or write sectors.

Listing 7 shows the structure of the messages ex-
changed with the block device. A write request is pro-
cessed by the disk by writing the incoming request pay-
loads in the disk buffer, at the location stored in the re-
quest, then send a confirmation response. A read request
is processed by reading into the disk buffer, and send a
response with the requested payload after it. When a
response is received, the driver uses the req_number
to retrieve the related request. If the request was a
read, the blocks to read, stored in the response payload,
are written in the request buffer. The driver then calls
the blk_end_request_cur() function, notifying the ker-
nel that the request is completed.

Listing 7: Disk Request Structure
struct ramdisk_message {

unsigned long req_number ;

unsigned long s e c t o r ;

unsigned long nsec t ;

int operat i on ; // READ or WRITE

uint8_t payload [0] ;

} ;

Figure 5 gives the numbers of lines of code that were
implemented. Thanks to extending the Linux bus frame-
work, our implementation of the SDB is relatively small,
at around 600 lines of code. The BCD for the hardware
bus is naturally larger because it is directly interacting
with the hardware, as the disk device logic. Note that
a disk driver in a split-driver model is relatively small
with only 400 lines of code. All the software here is im-
plemented in the Linux kernel as kernel modules.

5.2 USB HID Integration
The next implementation integrates HID class USB de-
vices in our model. It shows that USB devices can be
supported, allowing to preserve the huge investments
that went to the USB specifications, the USB host con-
trollers, and of course in the USB devices. Wrapping
USB devices is also interesting because it illustrates the
use of class-generic low-level drivers. Indeed, we did not

Kernel Module Line of C
Split-Driver Bus API 600
Bus Controller Driver 1300
Disk Driver module 400
Disk Device Logic 600

VHDL HW implementation Line of VHDL
Bus Controller 4500

Bus Interconnect 120
Device Hardware Interface 4500

Figure 5: ZYBO Implementation Volumes

choose to wrap the USB host controller directly, taking
control of the USB bus at the hardware level. Rather, we
decided to exercise our low-level driver capability at the
granularity of classes. This means that each USB device
class is individually wrapped by one low-level driver.

We chose to wrap a USB optical mouse, a device class
that has an input interrupt endpoint, used by the mouse
to send input reports containing data related to the state
of mouse buttons and motion. Our low-level driver is
therefore a USB driver, matching our optical mouse as an
HID class. In fact, it is interesting to point out that the
Linux bus for the USB reifies individual USB interfaces
as devices and not the actual USB devices that could
have multiple interfaces. For instance, this would mean
that a device having both a HID interface and a mass
storage interface, would be reified as two distinct devices
by Linux. Rather than modifying the Linux USB core
support, we designed our low-level driver to match USB
interfaces rather USB devices. The approach shows the
versatility of the low-level driver concept.

Figure 6 shows an overview of the implementation ar-
chitecture. The low-level driver implements the oper-
ations defined on low-level drivers using USB Request
Blocks (URBs). In fact, the operations of low-level
drivers have a pretty straightforward mapping on URBs,
thanks to the event-oriented nature of using URBs. The
delicate part is the mapping from the USB HID mouse
device to a device in our SDB. When the low-level driver,
as a USB driver, is bound to a HID USB interface, it
turns around and reifies a device in the SDB. To do
that, the low-level driver fills the device ID structure,
that happens to be very similar to the USB ID structure
it obtains from the USB interface. This stretch of that
mapping will depend on how much the specification of
the original USB classes and interfaces will be preserved
when adopted by the open source domain. In the case
of the HID classes, the Linux adoption was pretty much
a global adoption and therefore the translation is rather
immediate.

The translation is of course concerned with the map-
ping of endpoints to our concept of device ports. In
particular, we translate the well-known USB endpoint 0
into an official endpoint of the interface2. A HID mouse

2
The USB specification as made a special case of the end-

point 0 that all devices must have and that does not belong

9

USB Bus

Mouse Driver Module

USB Driver

HID Bus

HID DriverHID Device

SPD Bus

Mouse Driver Mouse Device

USB Low Level Driver

USB Mouse
Interface Device

Is a

Is a

Creates a

Creates a

Figure 6: USB Mouse Integration Architecture

Module Line of Code
USB Driver (SPD LLD) 300

Mouse Driver (HID LLD) 300

Figure 7: Implementation Volumes

defines four endpoints that are mapped to four distinct
asymmetric ports. Using asymmetric ports means that
the drive in our SDB will use the the channel_receive()
function to receive reports from the mouse. The driver
can also use channel_send() function to control the
mouse configuration. This choices of asymmetric ports
matches the slave design of a USB HID mouse.

Figure 7 shows the volume of the implemented pro-
grams and modules.

6 Conclusion
The work done so far is a proof of concept. Our main
goal is to evangelize the idea that split drivers are a path
to reduce the device driver struggle that has been plagu-
ing the industry since it began. We demonstrated that
the concept of split drivers can be successfully integrated
within Linux bus framework for matching drivers to de-
vices, independently from any specific bus or network
technologies. We believe this first step opens up a world
of interesting opportunities.

The best way to look at it is to consider it as open
sourcing the USB concept of split drivers, based on the
definition of message-based interfaces. Linux has done it
already with the HID framework, starting from the HID
specification defined by the USB standard and making
it a Linux framework. The same could be done with all
device classes defined by the USB standard. We strongly
feel that it would be in the best interest of the industry

to any interface.

that the USB standard body would spin off the device
class standardization through a bus-independent stan-
dard body, following in the footstep of the SCSI stan-
dard.

As a consequence, the industry could develop class-
generic drivers. These drivers are usually really simple, a
few hundreds of C lines, with most of the complexity be-
ing the integration in the surrounding operating systems.
This means that each operating system community could
quickly develop such class-generic drivers. For the Linux
community, this would probably start with porting the
existing USB drivers to our framework. From there, it
would be easy for the industry to leverage existing bus
technologies to connect devices, using bus and network
technologies as conduits for messages of uninterpreted
payloads.

This represents a fundamental change of the interface
between the software and hardware. It is about consider-
ing device interfaces as message-based interfaces rather
than register-based interfaces. Of course, this would not
apply to all devices, some devices that are the system bus
would certainly not be impacted, like the memory con-
troller, the programmable interrupt controller, or timers.
But most devices are attached today on secondary buses,
whom could become serial buses, suited for supporting
a message-based interface. This hardware change could
be mirrored in software with our split-driver approach,
finally offering a path out of struggle for the availability
of safe drivers.

Such an evolution would have great potential. It would
help device manufacturers with reduce driver develop-
ment costs, shorter time to market, and wider availabil-
ity across operating systems and across hardware. It
would help operating system teams to reduce the driver
code base and the never-ending stream of related bugs.
Open-source operating systems would especially benefit
from this approach, since proprietary drivers have been
a long standing issue. Here, the back-end drivers would
remain proprietary while the front-end drivers would be
open-source implementation and that easily portable.

The split-driver model is just safer and simpler than
preserving the software-hardware interface across serial
buses, like Thunderbolt is proposing. While we under-
stand the desire to preserve existing drivers, preserv-
ing huge investments, we feel it is the wrong direction
to take. Through serial buses, our hardware platforms
are changing, they are evolving towards distributed sys-
tems. We all know that distributed systems are best ap-
proached via a message-based programming model. We
believe that it is time to face forward and embrace this
evolution towards distributed systems.

Fortunately, this does not have to be a brutal change,
the evolution can be incremental, evolving bus technolo-
gies, devices, and drivers incrementally in the right di-
rection. But research has to show the path, has to ex-
periment both on the software and hardware evolutions,
demonstrating their feasibility, and evangelizing the ben-
efits. This work is a first step in that direction, a promis-
ing one.

10

References
[1] ATCA. Advanced Telecommunications Computing

Architecture. https://en.wikipedia.org/wiki/
Advanced_Telecommunications_Computing_
Architecture.

[2] DMA Attack. https://en.wikipedia.org/wiki/
DMA_attack.

[3] DDC. Display Data Channel. https://en.
wikipedia.org/wiki/Display_Data_Channel.

[4] eCos. Free open source real-time operating system.
http://ecos.sourceware.org.

[5] USB HID. USB Human Interface Device.
https://en.wikipedia.org/wiki/USB_human_
interface_device_class.

[6] Xen Hypervisor. http://www.xenproject.org.
[7] I2C. Inter-Integrated Circuit Specification. http:

//i2c.info/i2c-bus-specification.
[8] IPMI. Intelligent Platform Management Interface.

https://en.wikipedia.org/wiki/Intelligent_
Platform_Management_Interface.

[9] Asim Kadav and Michael M. Swift. Understanding
modern device drivers. SIGARCH Comput. Archit.
News, 40(1):87–98, March 2012.

[10] Linux Kernel. https://www.kernel.org.
[11] Yoann Padioleau, Julia L. Lawall, and Gilles Muller.

Understanding collateral evolution in linux device
drivers. SIGOPS Oper. Syst. Rev., 40(4):59–71,
April 2006.

[12] PCI. Peripheral Component Interconnect Specifica-
tion. https://pcisig.com/specifications.

[13] PCIe. Peripheral Component Interconnect Express.
https://en.wikipedia.org/wiki/PCI_Express.

[14] PMBus. Power Management Bus. http://www.
pmbus.org/Home.

[15] Display Port. https://en.wikipedia.org/wiki/
DisplayPort.

[16] SCSI. Small Computer System Interface. https:
//en.wikipedia.org/wiki/SCSI.

[17] SMbus. System Management Bus. https://en.
wikipedia.org/wiki/System_Management_Bus.

[18] Thunderbolt technology. https://
developer.apple.com/library/mac/
documentation/HardwareDrivers/Conceptual/
ThunderboltDevGuide/Introduction/
Introduction.html.

[19] uClinux. Embedded Linux/Microcontroller project.
http://www.uclinux.org.

[20] udev Device Manager. https://en.wikipedia.
org/wiki/Udev.

[21] USB. Universal Serial Bus 3.1 Specification. http:
//www.usb.org/developers/docs/.

[22] WindRiver. Free embedded operating system.
http://rocket.windriver.com.

11

Relational Summaries for Interprocedural Analysis and Modular
Verification of Synchronous Reactive Systems

Rémy BOUTONNET
VERIMAG - UGA

remy.boutonnet@imag.fr
Supervised by: Nicolas Halbwachs.

I understand what plagiarism entails and I declare that

this report is my own, original work.

Abstract
Abstract interpretation is a theory of the safe
approximation of the behavior of dynamic dis-
crete systems. It is applied in static analysis
to the automatic discovery of invariant prop-
erties on program variables. Linear Relation
Analysis, based on abstract interpretation, dis-
covers at each point of a sequential program
a system of linear relations which are satisfied
by the numerical variables in every execution.
Despite being one of the most powerful rela-
tional analyses, it is rarely used in industrial
static analysis tools due to its complexity. We
propose a new approach, called relational proce-
dure summaries, to enable the modular analysis
of programs using Linear Relation Analysis.

1 Introduction
We are living in a world in which a growing number of
critical systems are based on software components. Any
software defect can lead to catastrophic events, massive
injuries or deaths. The criticality of these systems is only
matched by their pervasiveness and gives to software ver-
ification and static analysis a major importance.

Abstract interpretation [Cousot and Cousot, 1977] is
a theory of the safe approximation of the behavior of dy-
namic discrete systems. It is especially applied in static
analysis to the automatic discovery of invariant proper-
ties on program variables. The discovery of invariant
properties can be used for proving safety properties, like
the detection of arithmetic overflows and array bounds
checking, for the optimization of control and memory re-
quirements in compilation, and for the evaluation of the
worst-case execution time (WCET) of programs by the
discovery of loop bounds and unfeasible paths.

Linear Relation Analysis [Cousot and Halbwachs,
1978], based on abstract interpretation, discovers at each
point of a sequential program a system of linear relations
which are satisfied by the numerical variables in every
execution. Although it is now classical, Linear Relation

Analysis remains one of the most powerful analysis tech-
niques for numerical variables. Furthermore, it is in par-
ticular one of the few existing relational analyses, which
are able to discover relations among numerical variables.

However, it is rarely used in industrial static anal-
ysis tools, like Polyspace [MathWorks, 2016] or Astrée
[Blanchet et al., 2003], due to its cost. The algorithms
that it depends on have an exponential worst-case com-
plexity in the number of numerical variables. Moreover,
industrial programs can have typically thousands of pro-
cedures, each one being analyzed by static analysis tools
for each call context in very large variable environments.

Critical systems software, like in avionics and trans-
portation systems, are often compiled from high-level
declarative languages such as synchronous languages
[Halbwachs, 1998] and their modular verification is hin-
dered by this scalability problem.

The aim of this work is to address this scalability chal-
lenge, by exploiting the structure of programs to reduce
analysis complexity.

Interprocedural analysis have been the subject of nu-
merous studies since the early works [Allen, 1974] of
Frances E. Allen in 1974. Several approaches have been
proposed for the analysis of programs with procedures,
we can classify them into four broad families.

Procedure inlining Procedure inlining replaces call
sites by the body of the called procedure which is ana-
lyzed in the context of the caller. This results in very
large contexts, containing both variables of the caller
and variables of the called procedure. Inlining can po-
tentially cause an exponential blow-up of the program
size and it is not usable for the analysis of recursive
procedures. It does not comply with our goal of tak-
ing advantage of programs structure in order to reduce
analysis complexity.

Top-down analysis Top-down analyses reanalyze
each procedure for every call site in the context of the
caller. This is acceptable for procedures which are called
once or very few times, but it is detrimental to analysis
scalability for library procedures which are called a large
number of times. Top-down analyses are also hindered

by their bad reuse of analysis results, if any. The func-
tional approach described in [Sharir and Pnueli, 1978] is
representative of this family.

Bottom-up analysis Bottom-up analyses analyze
each procedure only once and produce a procedure sum-
mary independently of a particular call context. This
summary is then adapted to the analysis of a given call
site. The analyses described in [Ancourt et al., 2010] and
[Yorsh et al., 2008] are representative of this family

Hybrid analysis Hybrid analyses are top-down anal-
yses which are able to reuse analysis results of other
procedure calls in similar contexts. This family is repre-
sented by [Zhang et al., 2014].

We have designed a new bottom-up interprocedural
analysis to automatically construct relational procedure
summaries using Linear Relation Analysis. These sum-
maries are termed relational because they are able to
express linear relations between procedure parameters,
between the values of the actual parameters before and
after a procedure call. This paper describes the ex-
ploration, formalization and experimentation of our ap-
proach.

2 Contributions
We have made the following contributions

• We present a new program analysis technique for
building relational procedure summaries using Lin-
ear Relation Analysis. We formally describe the
construction of procedure summaries and their ap-
plication to specific call contexts. Our presentation
is grounded on the structural operational semantics
of a simple imperative language, featuring all the
programming constructs which are relevant to our
approach.

• We describe an application of our approach to sum-
maries of synchronous reactive programs.

• We experiment our approach on meaningful exam-
ple programs to illustrate its key aspects all along
this report.

The aliasing problem is a well-studied problem
[Steensgaard, 1996] and we consider all the necessary
analyses to be available [Shapiro and Horwitz, 1997],
[Emami et al., 1994].

Due to the time investment needed to design and im-
plement a good interprocedural static analyzer for a real
world language, we have left the proper implementation
of our approach to a future work. All the examples given
in this work have been computed using the facilities of
existing static analyzers, such as PAGAI [Henry et al.,
2012] and Interproc [Jeannet, 2010].

3 Relational Procedure Summaries
We are interested in the automatic construction of rela-
tional procedure summaries. We want these summaries
to be able to capture linear relations between the state
of the parameters of a procedure before a call and their
state after the call. Such a summary is intended at cap-
turing an abstraction of the behavior of a procedure in
an over-approximate fashion.

3.1 Introductory example
We will illustrate our approach on the div procedure
which computes the euclidean division of a and b by the
method of successive subtractions, as first presented by
Euclid around 300 BC in [Euclid, c 300 BC]. The quo-
tient is stored in q and the remainder in r.
-- require a >= 0 and b >= 1
procedure div(a, b, q, r)
begin

r := a;
q := 0;

while r >= b
r := r - b;
q := q + 1;

end;
end;

We give preconditions to procedures denoted by spe-
cial require comments. The div procedure implements
euclidean division only for positive integers with a non-
zero divisor. Its precondition A ™ N 4 is such that

A = {(a,b,q,r) œ N 4 | a Ø 0 · b Ø 1}

We are only interested in the e�ect of the div proce-
dure on its parameters, its behavior regarding our con-
siderations is

I
q = 0 · r = a if a < b

q = 1 · r = 0 if a = b

q Ø 1 · 0 Æ r Æ b≠1 if a > b

We accept to loose the property a = bq + r which is
non-linear, and which can’t be represented in the convex
polyhedra abstract domain.

We first analyze the div procedure with standard Lin-
ear Relation Analysis and only the information given by
its precondition A. The analysis is started on the initial
abstract state a Ø 0 · b Ø 1. The following invariant is
obtained at the end of the div procedure.

0 Æ r Æ b≠1 · q Ø 0 · a Ø 0 · b Ø 1

This invariant is too coarse, it does not capture the be-
havior that we have previously described. It is character-
ized by a disjunctive property and classic Linear Relation
Analysis is not able to discover such a property.

Procedures having a behavior characterized by a dis-
junctive property are very common. Thus our procedure
summaries must be able to express disjunctive properties
on procedures parameters.

Regarding the div procedure, we analyze separately
the cases where a < b, a = b and a > b. For a < b with
initial abstract state

a < b · a Ø 0 · b Ø 1
We obtain the invariant

q = 0 · r = a · a < b · a Ø 0 · b Ø 1
For a = b with initial abstract state

a = b · a Ø 0 · b Ø 1
We obtain the invariant

q = 1 · r = 0 · a = b · a Ø 0 · b Ø 1
For a > b with the initial abstract state

a > b · a Ø 0 · b Ø 1
We obtain the invariant

q Ø 1 · r Ø 0 · r Æ b≠1 · a > b · a Ø 0 · b Ø 1
We can observe that by distinguishing di�erent cases

relative to the possible values of the parameters and by
analyzing them separately, we obtain for each of them
the property of the procedure behavior that we previ-
ously identified.

The concrete values of the parameters corresponding
to the cases we have considered are a partition ” of the
precondition A ™ N 4.

” =
{{(a,b,q,r) œ N 4 | a < b · a Ø 0 · b Ø 1},

{(a,b,q,r) œ N 4 | a = b · a Ø 0 · b Ø 1},

{(a,b,q,r) œ N 4 | a > b · a Ø 0 · b Ø 1}}
It ensures that we have analyzed the procedure div for
all its valid parameters. Thus, we can analyze a pro-
cedure more precisely, by considering a partition of its
precondition and by analyzing the procedure separately
for each member of this partition.

We denote by (D˘

,ı) the convex polyhedra abstract
domain and (–,“) the Galois connection between the
concrete domain P(N n) and the abstract domain D

˘.
We can design relational procedure summaries for

a given partition ” of the precondition as functions
S : D

˘ æ D

˘, associating to an abstraction d œ D

˘ of a
member of the partition, the invariant at the end of the
procedure obtained as a result of the analysis with initial
abstract state d.

An example of such a summary is S

div

: D

˘ æ D

˘ the
summary of div which is

S

div

=
I

a < b·a Ø 0· b Ø 1 ‘æ q = 0· r = a

a = b·a Ø 0· b Ø 1 ‘æ q = 1· r = 0
a > b·a Ø 0· b Ø 1 ‘æ q Ø 1·0 Æ r Æ b≠1

Each member x œ ” of the partition ” is abstracted by a
convex polyhedron d œ D

˘ such that –(x) = d and S

div

(d)
is the invariant at the end of div which is obtained by
analyzing div with the initial abstract state d using a
standard Linear Relation Analysis.

Summarizing a procedure is a tradeo� between the
precision of the summary, its size and the cost of anal-
ysis. We are not interested in an exact characterization
of procedures but only in a safe approximation of their
behavior.

3.2 Definition of procedure summaries
Before showing how the partition of the precondition can
be chosen, we give first a definition of relational proce-
dure summaries.
Definition 3.1 (Procedure summary) Let
form

p

œ Id

ú be the list of the formal parameters of
p, N m the concrete domain restricted to the parameters
of p, where m =| form

p

| is the length of form
p

. The
summary S

p

of a procedure p with precondition A ™ N

m

is a partial function S

p

: D

˘ æ D

˘ with a finite domain
Dom(S

p

) such that ” = {“(x) | x œ Dom(S
p

)} is a
partition of A.

€

xœDom(Sp)
“(x) = A

’x1,x2 œ Dom(S
p

), “(x1)fl“(x2) = ÿ
Definition 3.2 (Domain of a summary) We denote
by Dom(S

p

) the domain of the summary S

p

of a proce-
dure p such that

Dom(S
p

) = {x œ D

˘ | ÷y œ D

˘

,S

p

(x) = y}
Each polyhedron P

i

in the domain Dom(S
p

) can be
seen as an hypothesis on the parameters of the procedure
p.
Example 3.1 We choose the domain Ï

div

for the sum-
mary S

div

of div to be such that
Ï

div

= {(a < b · a Ø 0 · b Ø 1),
(a = b · a Ø 0 · b Ø 1),
(a > b · a Ø 0 · b Ø 1)}

The domain of the summary S

div

covers the precondition
A of div.

3.3 Construction of procedure summaries
We describe in this section how to construct relational
procedure summaries using Linear Relation Analysis.
Several functions on identifiers that will be used for sum-
mary construction are defined.

We need a way to denote the initial values of procedure
parameters before a call. The initial value of a parameter
x œ Id will be represented by x0, the zero-indexed version
of this parameter.

We denote by Id0 an infinite set of identifiers disjoint
from Id, in which every identifier is indexed by zero such
as x0 œ Id0. The set of the finite lists of identifiers in Id0
is denoted by Id

ú
0.

The function eq : Id

ú ◊ Id

ú
0 æ D

˘ defined below gives
a polyhedron of the form
x1 = y

1
0 · ...· x

n

= y

n

0 for two lists of identifiers
Èx1, ...,x

n

Í œ Id

ú and Èy1
0 , ...,y

n

0 Í œ Id

ú
0.

Definition 3.3 (Function eq) The function eq : Id

ú ◊
Id

ú
0 æ D

˘ gives a polyhedron representing pairwise equal-
ities between two lists of identifiers in Id

ú and in Id

ú
0

such that
eq(‘,‘) = €

’x œ Id, ’x0 œ Id0, ’l1Id

ú
, ’l2 œ Id

ú
0,

eq(x.l1,x0.l2) = {x = x0}Ùeq(l1, l2)

The function z : Id æ Id0 is the one-to-one function
associating to an identifier x œ Id its zero-indexed version
x0 œ Id0. The function Z : Id

ú æ Id

ú
0 associates to a list

of formal parameters the list of the identifiers in Id0
representing their initial values.

Definition 3.4 (Function Z) The function
Z : Id

ú æ Id

ú
0 associates to a finite list of identi-

fiers in Id a list of identifiers in Id0 having the same
length.

Z(‘) = ‘

’x œ Id, ’l œ Id

ú
, Z(x.l) = z(x).Z(l) where z(x) = x0

Definition 3.5 (Substitution on list of identifiers)
We define the function l1/l2 : Id æ Id for two lists of
identifiers l1 œ Id

ú and l2 œ Id

ú having the same length
such that

’v1,v2 œ Id,’x œ Id,

(v1.‘/v2.‘)(x) =
;

v2 if x = v1
undefined otherwise

’v1,v2 œ Id,’l1, l2 œ Id

ú
,’x œ Id,

(v1.l1/v2.l2)(x) =
;

v2 if x = v1
(l1/l2)(x) otherwise

If P œ D

˘ is a convex polyhedron, P [l1/l2] is the appli-
cation of the substitution l1/l2 in the system of inequal-
ities representing P .

Example 3.2 Let P = (x Æ n · y = 100) be a convex
polyhedron. The application P [x ‘æ a,y ‘æ b] to P of the
substitution [x ‘æ a,y ‘æ b] is such that

P [x ‘æ a,y ‘æ b] = (a Æ n · b = 100)

We denote by � : Stmt◊D

˘ æ D

˘ the forward analysis
function such that �(S,D) is the forward analysis of a
statement S starting in an initial abstract state d œ D

˘.
The function F

˘

S

: D

˘ æ D

˘ is the abstract semantics as-
sociated to statement S. We compute an ascending se-
quence (x

n

) defined as

x0 = d

x

n+1 = x

n

O(x
n

ÛF

˘

S

(x
n

))

and a descending sequence (y
n

) starting on the limit x

˘

of the ascending sequence

y0 = x

˘

y

n+1 = F

˘

S

(y
n

)

Let y

˘ be the limit of the descending sequence. We de-
fine �(S,d) to be such that �(S,d) = y

˘. For a statement
S œ Stmt and d œ D

˘, �(S,d) is the abstract state reach-
able after S when starting the analysis with abstract
state d.

Definition 3.6 (Summary construction) Let
Ï = {P1, ...,P

n

} be a finite set of convex polyhedra
on the formal parameters of a procedure p such that
” = {“(P

i

) | P

i

œ Ï} is a partition of A. Let B

p

œ Stmt

be the body of procedure p, lv

p

œ P(Id) the set of the
local variables of p and A ™ N m the precondition of p.

The summary S

p

of procedure p over the domain Ï is

’P

i

œ Ï, S

p

(P
i

) = �(B
p

,P

i

[form
p

/Z(form
p

)]
Ù eq(form

p

,Z(form
p

))) ¿ lv

p

Z(form
p

) represent the initial values of the formal pa-
rameters of p.

P

i

[form
p

/Z(form
p

)] denotes the substitution in the
convex polyhedron P of the formal parameters of p by
their zero-indexed version.
Example 3.3 If the formal parameters of p

are form
p

= Èx,yÍ and P

i

= x Ø 0 · y Ø x, then
P

i

[form
p

/Z(form
p

)] = x0 Ø 0·y0 Ø x0.
eq(form

p

,Z(form
p

)) denotes the polyhedron defined
by equality constraints between the formal parameters
of the procedure p and the identifiers representing their
initial values.
Example 3.4 If the formal parameters of p are
form

p

= Èx,yÍ, then

eq(form
p

,Z(form
p

)) = (x = x0 ·y = y0)
Example 3.5 If the formal parameters of p are
form

p

= Èx,yÍ and P

i

= x Ø 0·y Ø x, then

P

i

[form
p

/Z(form
p

)]Ùeq(form
p

,Z(form
p

)) =

(x0 Ø 0 · y0 Ø x0 · x = x0 · y = y0)
P

i

[form
p

/Z(form
p

)]Ùeq(form
p

,Z(form
p

)) is the trans-
formation of the polyhedron P

i

on the formal parameters
of p into a polyhedron on the initial values of the formal
parameters of p. The equality constraints between the
identifiers in form

p

and those in Z(form
p

) are added to
the previous result by computing the intersection.

Precondition ”

Partition ” of A

P

i

œ D

˘

�(B
p

,P

i

[form
p

/Z(form
p

)]
Ù eq(form

p

,Z(form
p

))) ¿ lv

p

–

summary S

p

Figure 1: The construction of the summary S

p

of a pro-
cedure p with a precondition A.

As an illustration, we will construct the summary of
the div procedure.

Example 3.6 (Summary of the div procedure)
We use the domain Ï

div

to construct the summary S

div

of div.

Ï

div

= {(a < b · a Ø 0 · b Ø 1),
(a = b · a Ø 0 · b Ø 1),
(a > b · a Ø 0 · b Ø 1)}

The formal parameters of div are form
div

= Èa,b,q,rÍ
and the identifiers denoting their initial values are
Z(form

div

) = Èa0, b0, q0, r0Í. The div procedure has no
local variables. We compute S

div

for each element of the
domain Ï

div

.

P1 = (a < b · a Ø 0 ·b Ø 1)
For P1 = (a < b · a Ø 0 ·b Ø 1), we compute

S

div

(P1) such that

S

div

(P1) = �(B
div

,P1[form
div

/Z(form
div

)]
Ù eq(form

div

,Z(form
div

))) ¿ lv

div

P1[form
div

/Z(form
div

)] =
(a < b · a Ø 0 · b Ø 1)[form

div

/Z(form
div

)] =
(a < b · a Ø 0 · b Ø 1)[a ‘æ a0, b ‘æ b0] =
(a0 < b0 · a0 Ø 0 · b0 Ø 1)

We analyze B

div

using Linear Relation Analysis with
the initial abstract state I1

I1 = (a0 < b0 · a0 Ø 0 · b0 Ø 1
· a = a0 · b = b0 · q = q0 · r = r0)

S

div

(P1) = �(B
div

, I1)
= q = 0 · r = a · a = a0 · b = b0

· a0 < b0 · a0 Ø 0 · b0 Ø 1

P2 = (a = b · a Ø 0 ·b Ø 1)
For P2 = (a = b · a Ø 0 · b Ø 1), we compute

S

div

(P2)

S

div

(P2) = �(B
div

,P2[form
div

/Z(form
div

)]
Ù eq(form

div

,Z(form
div

))) ¿ lv

div

P2[form
div

/Z(form
div

)] =
(a = b · a Ø 0 · b Ø 1)[form

div

/Z(form
div

)] =
(a = b · a Ø 0 · b Ø 1)[a ‘æ a0, b ‘æ b0] =
(a0 = b0 · a0 Ø 0 · b0 Ø 1)

We analyze B

div

using Linear Relation Analysis with
the initial abstract state I2

I2 = (a0 = b0 · a0 Ø 0 · b0 Ø 1 · a = a0 · b = b0
· q = q0 · r = r0)

S

div

(P2) = �(B
div

, I2)
= (q = a · r = 0 · a = a0 · b = b0

· a0 = b0 · a0 Ø 0 · b0 Ø 1)

P3 = (a > b · a Ø 0 ·b Ø 1)

For P3 = (a > b · a Ø 0 ·b Ø 1), we compute
S

div

(P3) such that
S

div

(P3) = �(B
div

,P3[form
div

/Z(form
div

)]
Ù eq(form

div

,Z(form
div

))) ¿ lv

div

P3[form
div

/Z(form
div

)] =
(a > b · a Ø 0 · b Ø 1)[form

div

/Z(form
div

)] =
(a > b · a Ø 0 · b Ø 1)[a ‘æ a0, b ‘æ b0] =
(a0 > b0 · a0 Ø 0 · b0 Ø 1)

We analyze B

div

using Linear Relation Analysis with
the initial abstract state I3

I3 = (a0 > b0 · a0 Ø 0 · b0 Ø 1 · a = a0 · b = b0
· q = q0 · r = r0)

S

div

(P3) = �(B
div

, I3)
= (q Ø 1 · 0 Æ r Æ b≠1 · a = a0 · b = b0

· a0 > b0 · a0 Ø 0 · b0 Ø 1)
Finally, we obtain the following summary for div

P1 = (a < b · a Ø 0 · b Ø 1)
P2 = (a = b · a Ø 0 · b Ø 1)
P3 = (a > b · a Ø 0 · b Ø 1)
S

div

(P1) = (q = 0 · r = a · a = a0 · b = b0
· a0 < b0 · a0 Ø 0 · b0 Ø 1)

S

div

(P2) = (q = a · r = 0 · a = a0 · b = b0
· a0 = b0 · a0 Ø 0 · b0 Ø 1)

S

div

(P3) = (q Ø 1 · 0 Æ r Æ b≠1 · a = a0 · b = b0
· a0 > b0 · a0 Ø 0 · b0 Ø 1)

It is nearly the same summary as the one we have
given earlier, the initial values of the parameters have
just been denoted by a zero-indexed identifier.
Example 3.7 (Counters) The counter_update pro-
cedure comes from the field of reactive programming. It
increments a counter represented by the variable cnt if
an event occurs signaled by event = 1 and if cnt is lower
than its maximum value max. The counter is set to zero
when reset = 1 and keeps its previous value otherwise.
-- require reset >= 0 and reset <= 1
-- require event >= 0 and event <= 1
-- require cnt >= 0 and max >= 0
procedure counter_update (reset, event, cnt, max)
begin

if reset = 1 then

cnt := 0;
else

if event = 1 then

if cnt < max then

cnt := cnt + 1;
end;

end;
end;

end;
For the sake of simplicity, all the parameters of

counter_update are integers. The precondition A of
the procedure is

A = {(reset,event,cnt,max) œ N 4 |
0 Æ reset Æ 1 · 0 Æ event Æ 1 · cnt Ø 0 · max Ø 0}

We can construct di�erent summaries of
counter_update by choosing di�erent domains, bring-
ing various levels of precision. The convex polyhedron
abstracting the precondition is

P = (0 Æ reset Æ 1 · 0 Æ event Æ 1 · cnt Ø 0 · max Ø 0)

With a coarse domain Ï1 = {P} containing only P , we
obtain the summary S1 such that

S1(P) = (0 Æ cnt Æ max +cnt0 · cnt Æ event+cnt0
· 0 Æ reset0 Æ 1 · 0 Æ event0 Æ 1
· max0 Ø 0 · reset = reset0
· event = event0 · max = max0 · cnt0 Ø 0)

We have discovered that cnt is bounded, as described by
the constraint 0 Æ cnt Æ cnt0 + max. However, when
reset = 1, we do not have cnt = 0.

We now use the domain Ï2 which splits the param-
eters space by distinguishing two cases, reset = 0 and
reset = 1, corresponding to the condition reset = 1 and
its negation, taking into account the precondition in
which we have 0 Æ reset Æ 1.

Ï2 = {(P · reset = 0),(P · reset = 1)}

S2(P · reset = 1) = (cnt = 0 · reset0 = 1
· 0 Æ event0 Æ 1 · max0 Ø 0
· reset = reset0 · event = event0
· max = max0 · cnt0 Ø 0)

S2(P · reset = 0) = (cnt < cnt0 +max
· cnt < cnt0 +event · cnt Ø cnt0
· 0 Æ event0 Æ 1 · max0 Ø 0 · cnt0 Ø 0
· event = event0 · max = max0
· reset = reset0 · reset = 0)

Thus by splitting the parameters space according to the
condition reset = 1 we have obtained a summary S2
which is more precise than S1. It ensures that cnt = 0
when reset = 1.

S2 can still be seen as an intermediate step on the
road of precision. We want to refine Ï2 by splitting it
according to the condition cnt < max and its negation
cnt Ø max. We will call this refined domain Ï3 and S3
the obtained summary.

Ï3 = {(P · reset = 1),
(P · reset = 0· cnt < max),
(P · reset = 0· cnt Ø max)}

We do not need to split the case where reset = 1 because
Ï3 already gives a partition of the precondition, thus sat-
isfying what we have required for the domains of proce-

dure summaries.

S3(P · reset = 1) = (cnt = 0 · reset0 = 1
· 0 Æ event0 Æ 1 · max0 Ø 0
· reset = reset0 · event = event0
· max = max0 · cnt0 Ø 0)

S3(P · reset = 0· cnt < max) = (cnt = cnt0 +event
· cnt0 < max · reset0 = 0
· 0 Æ event0 Æ 1 · max0 Ø 0
· reset = reset0 · event = event0
· max = max0 · cnt0 Ø 0)

S3(P · reset = 0· cnt Ø max) = (cnt = cnt0
· cnt0 Ø max · reset0 = 0
· 0 Æ event0 Æ 1 · max0 Ø 0
· reset = reset0 · event = event0
· max = max0 · cnt0 Ø 0)

S3 is the most precise summary of the
counter_update procedure that we have computed. It
ensures that cnt = 0 when reset = 1 which is a property
we had in S2, but now we have that cnt = cnt0 +1 when
an event occurs and that event = 1 and cnt0 < max.

When no event occurs, cnt = cnt0 when event = 0.
S3 also ensures that cnt = cnt0 when cnt0 = max and
reset = 0. It ensures that the counter remains to its
maximum value when it has reached it, until it is reset.

We can therefore see some possible tradeo�s in our
approach, from S1 to S3, between the precision, the size
of the summary and the cost of analysis.

3.4 Application of procedure summaries
We focus our interest in this section on the application
of procedure summaries, which is the transformation of
a convex polyhedron on the actual parameters by a call
statement using the summary of the called procedure.

Example 3.8 (Detector) The detector procedure
counts the number of events per second occurring in
its environment until it reads a stop signal. When an
event is read, event is set to 1 and otherwise to 0. The
number of events per second is stored in cnt. When
a second is read from the clock, sec is set to 1 by the
read procedure. Similarly, the stop variable is set to 1
when the stop signal is received.

-- require max >= 0
procedure detector (max : int)

event, sec, cnt, stop : int;
begin

cnt := 0; stop := 0;

while stop = 0 do

read(sec, event, stop);
counter_update(sec, event, cnt, max);
write(cnt);

end;
end;

1

2

cnt := 0

stop := 0

7

[stop = 1]

3

[stop = 0]

4

read(sec,event,stop)

5

counter_update(sec,event,cnt,max)

6

write(cnt)

The precondition A of the detector procedure is

A = {max œ N | max Ø 0}

We compute the summary of the detector procedure us-
ing the domain Ï1

Ï1 = {(max Ø 0)}

We construct the summary of the procedure using Ï1.

X1 = (max0 Ø 0 · max = max0)

X2 = (max0 Ø 0 · max = max0 · cnt = 0
· stop = 0 · event = 0 · sec = 0)

X4 = (max0 Ø 0 · max = max0 · cnt = 0
· 0 Æ stop Æ 1 · 0 Æ event Æ 1
· 0 Æ sec Æ 1)

The current value of X4 gives us a relation on the initial
values of the parameters of counter_update. We sub-
stitute the actual parameters of counter_update in X4
by the zero-indexed version of its formal parameters.

X

Õ
4 = X4[sec ‘æ reset0, event ‘æ event0,

cnt ‘æ cnt0, max ‘æ max0]
= (max0 Ø 0 · cnt0 = 0 · 0 Æ stop Æ 1

· 0 Æ event0 Æ 1 · 0 Æ reset0 Æ 1)

We want to compute the value of X5, which is the ab-
stract state reachable at program point 5. We will use the
summary S

cu

of counter_update that we have obtained
previously. We perform an intersection between X

Õ
4 and

each convex polyhedron of the summary S

cu

.
X

Õ
4 ÙS

cu

(P · reset = 1) =
cnt = 0 · reset0 = 1 · 0 Æ event0 Æ 1 · max0 Ø 0
· reset = reset0 · event = event0 · max = max0
· cnt0 = 0 · 0 Æ stop Æ 1

X

Õ
4 ÙS

cu

(P · reset = 0· cnt < max) =
cnt = cnt0 +event · cnt0 < max · reset0 = 0
· reset = reset0 · event = event0
· max = max0 · cnt0 = 0
· 0 Æ stop Æ 1 · 0 Æ event0 Æ 1 · max0 Ø 0

X

Õ
4 ÙS

cu

(P · reset = 0· cnt Ø max) =
cnt = cnt0 · reset0 = 0 · 0 Æ event0 Æ 1 · max0 Ø 0
· reset = reset0 · event = event0
· max = max0 · cnt0 = 0
· 0 Æ stop Æ 1 · cnt0 Ø max

We compute the convex hull of those 3 convex polyhedra
and we denote by X

ÕÕ
4 this value.

X

ÕÕ
4 = (cnt Æ event · cnt+ reset Æ 1

· cnt Æ max · cnt0 = 0
· event = event0 · max = max0
· reset = reset0 · event Æ 1
· 0 Æ stop Æ 1 · cnt Ø 0
· reset Ø 0 · max Ø 0)

Our aim is to have the e�ect of the call to
counter_update on the variables of the caller, the
detector procedure. We replace in X

ÕÕ
4 the formal pa-

rameters of counter_update by the corresponding actual
parameters. This value is denoted by X

ÕÕÕ
4 .

X

ÕÕÕ
4 = X

ÕÕ
4 [reset0 ‘æ sec0, event0 ‘æ event0,

cnt0 ‘æ cnt0, max0 ‘æ max0
reset ‘æ sec, event ‘æ event,

cnt ‘æ cnt, max ‘æ max]

X

ÕÕÕ
4 = (cnt Æ event · cnt+sec Æ 1
· cnt Æ max · cnt0 = 0
· event = event0 · max = max0
· sec = sec0 · event Æ 1
· 0 Æ stop Æ 1 · cnt Ø 0
· sec Ø 0 · max Ø 0)

X5 is obtained by projecting out the zero-indexed ver-
sions of the actual parameters, denoting their state be-
fore the call to counter_update.

X5 = X

ÕÕÕ
4 ¿ {sec0,event0, cnt0}

X5 = (cnt Æ event · cnt+sec Æ 1 · 0 Æ event Æ 1
· 0 Æ stop Æ 1 · cnt Ø 0
· cnt Æ max · sec Ø 0
· max = max0 · max0 Ø 0)

We have X6 = X5 and we compute the current value of
X2 by applying widening.

X2 = (max0 Ø 0 · max = max0 · 0 Æ cnt Æ max

· 0 Æ stop Æ 1 · 0 Æ event Æ 1 · 0 Æ sec Æ 1)

X4 = (max0 Ø 0 · max = max0 · 0 Æ cnt Æ max

· 0 Æ stop Æ 1 · 0 Æ event Æ 1 · 0 Æ sec Æ 1)
We compute similarly the current value of X5.

X

Õ
4 = X5[sec ‘æ reset0, event ‘æ event0,

cnt ‘æ cnt0, max ‘æ max0]
= (max0 Ø 0 · 0 Æ cnt0 Æ max · 0 Æ stop Æ 1

· 0 Æ event0 Æ 1 · 0 Æ reset0 Æ 1)
We perform an intersection between X

Õ
4 and each convex

polyhedron of the summary S

cu

.
X

Õ
4 ÙS

cu

(P · reset = 1) =
cnt = 0 · reset0 = 1 · 0 Æ event0 Æ 1 · max0 Ø 0
· reset = reset0 · event = event0 · max = max0
· 0 Æ cnt0 Æ max · 0 Æ stop Æ 1

X

Õ
4 ÙS

cu

(P · reset = 0· cnt < max) =
cnt = cnt0 +event · 0 Æ cnt0 < max · reset0 = 0
· reset = reset0 · event = event0 · max = max0
· 0 Æ stop Æ 1 · 0 Æ event0 Æ 1 · max0 Ø 0

X

Õ
4 ÙS

cu

(P · reset = 0· cnt Ø max) =
cnt = cnt0 · reset0 = 0 · 0 Æ event0 Æ 1
· max0 Ø 0
· reset = reset0 · event = event0 · max = max0
· cnt0 = max · 0 Æ stop Æ 1

We compute the convex hull of those 3 convex polyhedra
and we denote by X

ÕÕ
4 this value.

X

ÕÕ
4 = (0 Æ cnt Æ max · cnt+ reset0 Æ cnt0 +1

· cnt Æ cnt0 +event· 0 Æ cnt0 Æ max

· 0 Æ reset0 Æ 1 · 0 Æ event0 Æ 1
· 0 Æ stop Æ 1· max0 Ø 0
· reset = reset0 · event = event0 · max = max0)

X

ÕÕÕ
4 = (0 Æ cnt Æ max · cnt+sec0 Æ cnt0 +1

· cnt Æ cnt0 +event· 0 Æ cnt0 Æ max

· 0 Æ sec0 Æ 1 · 0 Æ event0 Æ 1
· 0 Æ stop Æ 1· max0 Ø 0
· sec = sec0 · event = event0 · max = max0)
X5 = X

ÕÕÕ
4 ¿ {sec0,event0, cnt0}

X5 = (0 Æ cnt Æ max · cnt+ sec Æ max +1
· cnt Æ max +event· 0 Æ stop Æ 1
· 0 Æ event Æ 1 · 0 Æ sec Æ 1
· max0 Ø 0 · max = max0)

We compute one term of the descending sequence and we
obtain at program points 2

X2 = (0 Æ cnt Æ max · cnt+ sec Æ max +1
· cnt Æ max +event· 0 Æ stop Æ 1
· 0 Æ event Æ 1 · 0 Æ sec Æ 1
· max0 Ø 0 · max = max0)
X8 = (0 Æ cnt Æ max · cnt+ sec Æ max +1
· cnt Æ max +event· stop = 1
· 0 Æ event Æ 1 · 0 Æ sec Æ 1
· max0 Ø 0 · max = max0)

We have discovered in this program using the summary
of counter_update that the variable cnt, which counts
the number of events per second, remains always between
0 and max at program point 2.

Definition 3.7 (Summary application) Let f be a
procedure calling a procedure g in a call statement
g(act

g

) where act
g

œ Id

ú is the list of the actual param-
eters of g and R œ D

˘ is the abstract state reachable in
f before the call statement to g. Let S

g

: D

˘ æ D

˘ be the
summary of g and A ™ N m its precondition.

The abstract state reachable after the call statement
to g in f is

if “(R[act

g

/form

g

]) ™ A

R[act
g

/Z(act
g

)]Ùh

PiœDom(Sg)
S

g

(P
i

)[Z(form
g

)/Z(act
g

)][form
g

/act
g

] ¿ Z(act
g

)

otherwise error

We denote by app(S
p

,R) the application of the summary
S

p

: D

˘ æ D

˘ of a procedure p in the abstract state
R œ D

˘.
procedure f(form

f

)

g(act
g

)
R œ D

˘

The actual parameters of g in act
g

are either formal
parameters of f or local variables of f . The zero-indexed
version Z(act

g

) of the actual parameters of g are vari-
ables representing the values of actual parameters before
the call to g.

R[act
g

/Z(act
g

)] is the substitution of the actual pa-
rameters act

g

by their zero-indexed version Z(act
g

) in
R, the abstract state reachable before the call. This
gives a linear relation on the initial values of the actual
parameters before the call to g.

For a convex polyhedron P

i

œ Dom(S
g

),
S

g

(P
i

)[Z(form
g

)/Z(act
g

)] denotes parameter pass-
ing. It is the substitution in S

g

(P
i

) of Z(form
g

) the
zero-indexed formal parameters of g by Z(act

g

) the
zero-indexed actual parameters of g.

S

g

(P
i

)[Z(form
g

)/Z(act
g

)] is thus a linear relation be-
tween Z(act

g

) the zero-indexed actual parameters of g

and form
g

the formal parameters of g.
To capture the e�ect of the call statement, we

want a linear relation between Z(act
g

) and act
g

only,
between the actual parameters of g and their zero-
indexed version. Therefore we need to substitute the
formal parameters form

g

of g by the actual param-
eters act

g

of g in the polyhedron obtained before.
S

g

(P
i

)[Z(form
g

)/Z(act
g

)][form
g

/act
g

] is then a linear
relation between act

g

the actual parameters of g and
Z(act

g

) their zero-indexed version.
We then compute the intersection R[act

g

/Z(act
g

)] Ù
S

g

(P
i

)[Z(form
g

)/Z(act
g

)][form
g

/act
g

]. The result is

still a linear relation between Z(act
g

) and act
g

. Because
we want the abstract state after the call, which must
be a relation between act

g

, lv

f

and form
g

, we eliminate
Z(act

g

), the zero-indexed version of the actual parame-
ters of g.

Finally, we compute the join for all the polyhedra P

i

in the domain of the summary of g. This gives us the
abstract state after the call to g.

4 Summary semantics
We discuss in this section the semantics and correctness
of procedure summaries.
Definition 4.1 (Summary semantics) The sum-
mary S

p

of a procedure p represent the relation R
p

defined as

R
p

=
fl

P œDom(Sp)
P (X0)·S

p

(P)(X0,X)

X0 = Z(form
p

) X = form
p

with X0 = Z(form
p

) representing the initial values of the
formal parameters of p and X = form

p

representing the
final values of the formal parameters of p. We call the
relation R

p

the summary semantics of summary S

p

.
R

p

is a relation between the initial values of the
parameters of p, represented by the variables in
X0 = Z(form

p

), and their final values, represented by
the variables in X = form

p

.
Proposition 4.1 (Summary correctness) The sum-
mary S

p

is a correct summary of a procedure p if and
only if for every initial variable environment fl0 œ Env,
every procedure environment fi œ PEnv and every ini-
tial memory ‡0 œ Mem, the execution of the body d

v

S

of procedure p produces a variable environment fl and a
memory ‡ giving a final value ‡(fl(x)) to every variable
x œ X and satisfying the relation R

p

for every variable
x0 œ X0 and x œ X such that

’fl0 œ Env, ’fi œ PEnv, ’‡0 œ Mem,

fi,fl0,‡0 „ d

v

S : fl,‡ ∆ R
p

[’x0 œ X0,x0/‡0(fl0(x0))]
[’x œ X,x/‡(fl(x))]

5 Summaries of synchronous reactive
programs

We describe in this section an application of our ap-
proach to the verification of synchronous reactive pro-
grams. Synchronous programming [Halbwachs et al.,
1991], [Halbwachs, 1998] has been proposed as a way
to describe reactive systems such as automatic control
systems. A synchronous program is assumed to react
instantly and deterministically to events from its envi-
ronment. Synchronous languages like Lustre [Halbwachs
et al., 1991] [Caspi et al., 1987] have precise formal se-
mantics and allow an especially eleguant programming
style. They are used in industry for the development
of critical systems, especially for avionics and nuclear
control systems.

Lustre is a well-known data flow synchronous lan-
guage, in which programs are directed graphs of compo-
nents communicating using flows of values. Each com-
ponent is defined by a system of equations in which each
variable describes a flow, which is an infinite sequence
of values. The counter component in Example 5.1 is a
typical Lustre component.

Example 5.1 (The counter node)
node counter (reset, event : bool; max : int)
returns (cnt : int);
let

cnt = 0 ->
if reset then

O
else if event and pre(cnt) < max then

pre(cnt) + 1
else

pre(cnt);
tel;

Lustre programs can be compiled into sequential code
using an automata-based technique or by generating a
single infinite loop and a step procedure for each com-
ponent, implementing the inputs-to-outputs transforma-
tion performed during one cycle. The counter compo-
nent of Example 5.1 is compiled into the counter_step

procedure, shown in Example 5.2. The main proce-
dure contains an infinite loop reading inputs, calling the
counter_step procedure and writing outputs.

The pre operator in Lustre denotes the previous value
of a flow. It is implemented using special pre_id vari-
ables, like pre_cnt in Example 5.2. Hence, the step pro-
cedure of a Lustre component takes not only parame-
ters corresponding to input and output flows, but also
parameters like pre_cnt used to hold the state of the
component.

Existing approaches [Halbwachs et al., 1997], [Jeannet,
2000] for the verification of synchronous data flow pro-
grams using Linear Relation Analysis are non-modular.
The approach described in [Halbwachs et al., 1997] is
based on the automata representation of synchronous
programs. In both approaches, the main component
must be fully expanded in order to obtain a flat Lus-
tre program.

We want to apply our relational procedure summaries
approach to the verification of Lustre programs using
Linear Relation Analysis in a modular fashion. This is
only a preliminary assessment of our approach for the
modular verification of synchronous programs. The sum-
mary of the step procedure of each component is com-
puted only once, and applied in each call context, using
summary application as previously defined.

Example 5.2
init : int;
procedure counter_step (reset, event : bool;

max, pre_cnt, cnt : int)
begin

if init then

cnt := 0;
else

if reset then

cnt := 0;
else

if event and pre_cnt < max then

cnt := pre_cnt + 1;
else

cnt := pre_cnt;
end if;

end if;
end if;

end;

procedure main ()
reset, event : bool;
max, pre_cnt, cnt : int;

begin

init := true;

while true do

read(reset, event, max);
counter_step(reset, event, max,

pre_cnt, cnt);
write(cnt);

pre_cnt := cnt;
init := false;

done;
end;
We want to compute a summary of the counter_step

procedure. We choose the domain Ï of the summary
such that

Ï = {P1,P2,P3}
The summary S of the counter_step procedure is such
that S = [P1 ‘æ Q1,P2 ‘æ Q2,P3 ‘æ Q3,P4 ‘æ Q4].

P1 = (init‚ reset)·n Ø 0
P2 = ¬init·¬reset·event·pre_cnt < n ·n Ø 0

P3 = ¬init·¬reset·¬(event·pre_cnt < n)·n Ø 0
Q1 = (init‚ reset)·n Ø 0· (cnt = 0)

Q2 = ¬init·¬reset·event·pre_cnt < n ·n Ø 0
· cnt = pre_cnt+1· (pre(Q1)‚pre(Q2)‚pre(Q3))
Q3 = ¬init·¬reset·¬(event·pre_cnt < n)
· n Ø 0· cnt = pre_cnt· (pre(Q1)‚pre(Q2)‚pre(Q3))

We use an increasing and decreasing sequence in order
to compute Q1,Q2,Q3, defined as follows.

Initialization Q

0
1 = ‹ Q

0
2 = ‹ Q

0
3 = ‹

Iteration 1
Q

1
1 = (init‚ reset)·n Ø 0· (cnt = 0)

Q

1
2 = ‹

Q

1
3 = ‹

Iteration 2
Q

2
2 = ¬init·¬reset·event·pre_cnt < n

· n Ø 0· cnt = pre_cnt+1·pre_cnt = 0
Q

2
3 = ¬init·¬reset·¬(event·pre_cnt < n)

· n Ø 0· cnt = pre_cnt·pre_cnt = 0

Iteration 3
Q

3
2 = ¬init·¬reset·event·pre_cnt < n

· n Ø 0· cnt = pre_cnt+1·0 Æ pre_cnt Æ 1
Q

Õ3
2 = Q

2
2ÒQ

3
2

= ¬init·¬reset·event·pre_cnt < n

· n Ø 0· cnt = pre_cnt+1·0 Æ cnt Æ n

Q

3
3 = ¬init·¬reset·¬(event·pre_cnt < n)

· n Ø 0· cnt = pre_cnt

·(pre_cnt = 0‚0 Æ pre_cnt Æ n)
= ¬init·¬reset· (¬event‚pre_cnt = n)·n Ø 0
· cnt = pre_cnt·0 Æ pre_cnt Æ n

Q

Õ3
3 = Q

2
3ÒQ

3
3

= ¬init·¬reset· (¬event‚pre_cnt = n)·n Ø 0
· cnt = pre_cnt·0 Æ pre_cnt Æ n

Results
Q1 = (init‚ reset)·n Ø 0· (cnt = 0)

Q2 = ¬init·¬reset·event·pre_cnt < n

· n Ø 0· cnt = pre_cnt+1·0 Æ cnt Æ n

Q3 = ¬init·¬reset· (¬event‚pre_cnt = n)·n Ø 0
· cnt = pre_cnt·0 Æ cnt Æ n

We have succeeded to find a summary of the step pro-
cedure associated to the counter component. This sum-
mary is constructed in order to take into account the
cyclic behaviour of synchronous programs.

6 Conclusion
Linear Relation Analysis is one of the most powerful
analysis based on abstract interpretation which is able to
discover automatically linear relations between the vari-
ables of a program at each program point. Its complexity
is the price to pay for its power, it hinders its scalability
to large real-world software. This is why existing indus-
trial static analysis tools usually implements weaker, but
less complex static analysis techniques.

We proposed in this work a new program analysis to
address this scalability challenge, by automatically con-
structing relational procedure summaries in a sound and
safe fashion, using Linear Relation Analysis. We shown
that summarizing procedures by a finite disjunction of
linear relations between the initial and final values of
the parameters is both feasible and expressive enough
to enable a modular analysis. We discussed the correct-
ness of procedure summaries and introduced summary
semantics. We gave several heuristics enabling di�er-
ent tradeo�s regarding the precision and complexity of
analysis. Finally, we described an extension of our ap-
proach, opening the way to the modular verification of
synchronous reactive systems.

References
[Allen, 1974] Frances E. Allen. Interprocedural data

flow analysis. In IFIP Congress, pages 398–402, 1974.
[Ancourt et al., 2010] Corinne Ancourt, Fabien Coelho,

and François Irigoin. A modular static analysis ap-
proach to a�ne loop invariants detection. Elec-
tron. Notes Theor. Comput. Sci., 267(1):3–16, Octo-
ber 2010.

[Blanchet et al., 2003] Bruno Blanchet, Patrick Cousot,
Radhia Cousot, Jérome Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. A
static analyzer for large safety-critical software. In
ACM SIGPLAN Notices, volume 38, pages 196–207.
ACM, 2003.

[Caspi et al., 1987] P. Caspi, D. Pilaud, N. Halbwachs,
and J.A. Plaice. Lustre: A declarative language for
programming synchronous systems. In Proceedings of
the 14th Annual ACM Symposium on Principles of
Programming Languages (14th POPL 1987). ACM,
New York, NY, volume 178, page 188, 1987.

[Cousot and Cousot, 1977] Patrick Cousot and Radhia
Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages, pages 238–252. ACM,
1977.

[Cousot and Halbwachs, 1978] Patrick Cousot and
Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceed-
ings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’78,
pages 84–96, New York, NY, USA, 1978. ACM.

[Emami et al., 1994] Maryam Emami, Rakesh Ghiya,
and Laurie J Hendren. Context-sensitive interproce-
dural points-to analysis in the presence of function
pointers. In ACM SIGPLAN Notices, volume 29,
pages 242–256. ACM, 1994.

[Euclid, c 300 BC] Euclid. Euclid’s elements, Book VII,
Proposition 1. c. 300 BC.

[Halbwachs et al., 1991] Nicholas Halbwachs, Paul
Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data flow programming language lustre.
Proceedings of the IEEE, 79(9):1305–1320, 1991.

[Halbwachs et al., 1997] Nicolas Halbwachs, Yann-Erick
Proy, and Patrick Roumano�. Verification of real-time
systems using linear relation analysis. Formal Methods
in System Design, 11(2):157–185, 1997.

[Halbwachs, 1998] Nicolas Halbwachs. Synchronous pro-
gramming of reactive systems. In Computer Aided
Verification, pages 1–16. Springer, 1998.

[Henry et al., 2012] Julien Henry, David Monniaux, and
Matthieu Moy. PAGAI: a path sensitive static an-
alyzer. In Tools for Automatic Program Analysis
(TAPAS), 2012.

[Jeannet, 2000] Bertrand Jeannet. Partitionnement dy-
namique dans l’Analyse de Relation Linéaire et ap-
plication à la vérification de programmes synchrones.
PhD thesis, 2000.

[Jeannet, 2010] Bertrand Jeannet. Interproc ana-
lyzer for recursive programs with numerical vari-
ables. INRIA, software and documentation are avail-
able at the following URL: http://pop-art. inrialpes.
fr/interproc/interprocweb. cgi. Last accessed, pages
06–11, 2010.

[MathWorks, 2016] MathWorks. Polyspace, 2016.
[Shapiro and Horwitz, 1997] Marc Shapiro and Susan

Horwitz. Fast and accurate flow-insensitive points-to
analysis. In Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, pages 1–14. ACM, 1997.

[Sharir and Pnueli, 1978] Micha Sharir and Amir
Pnueli. Two approaches to interprocedural data
flow analysis. New York University. Courant In-
stitute of Mathematical Sciences. ComputerScience
Department, 1978.

[Steensgaard, 1996] Bjarne Steensgaard. Points-to anal-
ysis in almost linear time. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 32–41. ACM, 1996.

[Yorsh et al., 2008] Greta Yorsh, Eran Yahav, and
Satish Chandra. Generating precise and concise pro-
cedure summaries. In ACM SIGPLAN Notices, vol-
ume 43, pages 221–234. ACM, 2008.

[Zhang et al., 2014] Xin Zhang, Ravi Mangal, Mayur
Naik, and Hongseok Yang. Hybrid top-down and
bottom-up interprocedural analysis. SIGPLAN Not.,
49(6):249–258, June 2014.

Scat : Function prototypes retrieval inside stripped binaries

Christopher Ferreira

Magistère L3 - Supervised by Franck de Goër

1 Context

Some software systems either are or rely on closed-source
code. This is problematic when security is an important con-
cern because security analysis often needs high level infor-
mation about the program which are mostly lost during the
compilation process. At the extreme end, binaries called
“stripped” only contain the bare minimum for the program
to run.

Several approaches have been designed to address this
problem, using static ([1; 3; 5]) or dynamic ([2; 6]) analysis
and with different accuracy and execution time constraints de-
pending on the use case. Scat is one of these systems, it uses
a lightweight instrumentation with some heuristics to recover
program informations. It is divided in several tools (arity,
type, coupling, ...), each one of them achieving its purpose in
one single instrumented execution.

Scat already provided accurate results for prototype detec-
tion, 93.8% accuracy for the arity detection tool and 89.4%
for the type tool on a set of four programs. But there was still
room for improvements.

Our work ranges from bug fixes and heuristics fine-tuning
to removal of some implementation limitations. After our
modifications the results were globally improved : 97.7% for
arity and 95.9% for type using the same set of programs. Only
some of these improvements will be detailed here, in order to
highlight how scat manages to provide accurate results while
remaining lightweight.

2 Call stack tracking

In order to detect the arity of functions and the type of pa-
rameters, scat requires a method to keep tracks of the call
stack. Before our work, an ad-hoc solution was used which
caused some functions to be simply ignored. But solving this
problem was not as simple as using an automatically growing
stack because that would mean a lot of work and memory in
case of a substantial amount of recursive calls.

We devised a new call stack tracking system to solve this
problem while staying true to scat lightweight goal. It is
based on a simple assumption. Keeping track of all the call
stack in the case of a recursion is unnecessary because the
call stack contains mostly the same function and that we only
need a reasonably sized sample of the function calls to de-
duced our results. The new system, that we named “hollow

stack”, only stores a fixed number of functions at the bot-
tom (with a straightforward stack) and at the top (using a
ring buffer) of the stack, thus forgetting the functions in the
middle (replaced by an integer counter) in case of an over-
flow/recursion. This effectively guarantees, given a suitable
fixed size, that the analysis will detect all functions before/at
the end of the recursion and a sufficient number of the func-
tions involved in the recursion.

3 Stack parameters detection

Another contribution of our work was to add support for stack
parameters (scat was limited to the first 6 parameters before).
As opposed to more involved analysis like the one proposed
in [4], our solution is quite straightforward and only assumes
the SystemV x86 64 call conventions12.

Every time a function is called the stack pointer at this ex-
act moment is stored. It delimits the portion of the stack per-
taining to the calling function (before the pointer) and the por-
tion pertaining to the called function (after the pointer). The
stack parameters are stored in the last part of the caller stack
(i.e: just before the pointer). Then, each time a memory read
relative to the stack pointer (or the base/frame pointer) occurs,
recognizing a stack parameter is only a matter of comparing
the read address to the stack pointer stored for the current
function.

4 Results

The following table sums up our results.
The Functions entry shows that the number of functions

detected increases. This is mostly thanks to the added sup-
port for indirect calls which were not detected before and to
a lesser extent the call stack tracking improvements.

The percentages give, for each entry, the number of func-
tions or parameters detected by scat accordingly to the in-
formations extracted from the source code. All results are
improved and more consistent with a minimum of 92%.

The increase execution time for the detection of arity is re-
ally negligible given the new features. For the type detection,
on the other hand, the increase is more significant but remains
in accordance with our expectations.

1The first 6 parameters are passed using dedicated registers, re-
maining parameters are passed via the stack

2The register %sp always contains the stack top address

bash grep mupdf git
Functions # 53 +8% 77 +7% 569 +19% 476 +21%

Arity
Time sec 3.6 +12% 3.8 +8% 22 +22% 60 +13%

Params % 94.3 +24% 94.8 +17% 95.0 +0.8% 98.8 +8.2%

Return % 100 +2% 98.7 +0.1% 99.5 +1.8% 98.1 +2.4%

Type
Time sec 3.2 +100% 3.1 +82% 21 +150% 68 +74%

Params % 94.8 +8.4% 94.4 +1% 97.1 +2.1% 93.5 +1.6%

Return % 92.5 +14% 93.5 +8.5% 96.8 +7.7% 97.1 +15.1%

Table 1: Results after the improvements and comparison with
previous results (omitted for brevity) for 4 programs

References

[1] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael
Turner, and David Brumley. Byteweight : Learning to
recognize functions in binary code. In Proceedings of the

23rd USENIX Security Symposium, 2014.
[2] Juan Caballero, Noah M. Johnson, Stephen McCamant,

and Dawn Song. Binary code extraction and interface
identification for security applications. Technical Re-
port 2, Electrical Engineering and Computer Sciences
University of California at Berkeley, April–June 2009.

[3] Emily R. Jacobson, Nathan Rosenblum, and Barton P.
Miller. Labeling library functions in stripped binaries.
Technical report, Computer Sciences Department Uni-
versity of Wisconsin, 2011.

[4] Arun Lakhotia and Uday Eric. Stack shape analysis to
detect obsfucated calls in binaries. In Source Code Anal-

ysis and Manipulation, 2004.
[5] JongHyup Lee, Thanassis Avgerinos, and David Brum-

ley. Tie: Principled reversed engineering of types in bi-
nary programs. Technical report, Carnegie Mellong Uin-
versity, 2011.

[6] Asia Slowinska, Traian Stancescu, and Herbert Bos.
Howard: a dynamic excavator for reverse engineering
data structures.

Formal proofs for an activation model of real-time systems
Lina Marsso

Spades, INRIA/Lig
marssolina@gmail.com

Supervised by: Sophie Quinton and Pascal Fradet
August 25, 2016

I understand what plagiarism entails and I declare that this paper
is my own, original work.
Name, date and signature:

Abstract
Because real-time systems are often safety-critical,
the analysis techniques used in this field should be
sound and complete. However the real-time sys-
tems community has recently identified many un-
sound results due to human errors in their proofs.
In particular, the well-known general event load
model is ill-defined and leads to unsound analy-
ses. This paper proposes formalized definitions
and proofs related to this model using the Coq
proof assistant. First, we revisit and formalize
the definition of the general event load model. It
mainly involves the identification of the needed hy-
potheses on traces in order to state theorems about
this model. Then we generalize, formalize and
prove the two fundamental theorems which allow
switching between two representations of the gen-
eral event load model. This work is entirely im-
plemented and proved with Coq and will soon be
integrated into an open-source library.

1 Introduction
The particularity of real-time systems is that they are con-
strained by timing requirements. Classical examples of such
systems are aerospace, aircraft, automotive and medical sys-
tems. An example of timing requirement is a bound on the
duration between the instant the pilot applies a command and
the instant the aircraft changes directions. Real-time systems
are often safety-critical systems: a malfunction in a real-time
system may have serious consequences. As a glaring exam-
ple, on June 4, 1996, the Ariane 5 spacecraft launch ended in
a failure. Consequence includeded ecological and economi-
cal disasters. Clearly, such complex and safety-critical sys-
tems ask for rigorous and formal analysis.

Recently, the real-time systems analysis community has
observed an important number of errata papers and un-
sound results, caused by a lack of formalization and hand-
written proofs. To address this issue, there is a trend to-
wards formalized and mechanized proofs using computer-
verification tools. However, the few existing papers have

each their own formalization, and use different computer-
verification tools. This makes it impossible to compose re-
sults. Very recently, F. Cerqueira et al. [Cerqueira et al.,
2016] have proposed a unified formalization and proofs in an
open source library called Prosa using the Coq proof assis-
tant [The Coq development team, 2004]. Our final objective
is to integrate the work presented here in Prosa. Real-time
systems consist of software tasks executing on (possibly sev-
eral) hardware resources. The activation frequency of each
task is modeled by a so-called activation model. Several ac-
tivation models exist. In this paper, we focus on one of them
called the general event load model. This model describes
scenarios of task activations by constraining the maximum
number of activations in a given time duration, or dually the
minimum duration containing a given number of task activa-
tions. Both representations are used by schedulability analy-
ses. The general event load model is particularly useful for
task activations which arrive in bursts, i.e., arrive by group
of close activations. Conversion functions permit switching
from the time-based view to the event-based view and back.
The general event load model is an input of the analysis of
the system. An incorrect input to the analysis would make the
analysis unsound. The literature highlights contradictory def-
initions and a lack of proper formal proofs for general event
load model. In this work, we provide a formal treatment of
the event model definition and conversion functions.

The contributions of this paper are the following:
1. In order to get computable functions we revisit and for-

malize the general event load model definitions and the-
orems.

2. We identify the needed hypotheses and lemmas on traces
in order to formalize and prove the theorems.

3. We prove the correctness of conversion functions be-
tween the two representations.

Our formalization and proofs are described using standard
mathematical notions in this document. Some proofs writ-
ten in Coq are illustrated in the appendix. The finality of this
work is to contribute to the open source real-time system li-
brary Prosa [Cerqueira et al., 2016].

The paper is organized as follows: Section 2 presents the
background of this work. Section 3 presents the motivation
and the problem statement of this thesis. In Section 4, we
define formally the general event load model, and we discuss
similarities and differences compared to the initial event load

1

model. Then, we explain how we proved and completed our
specification in Section 5. Finally, we will presents the related
work on mechanized proofs of real-time system analysis, sug-
gests some research directions to explore and concludes.

2 Activation Model
The execution of a task is triggered by an input event called
activation. An activation trace describes the set of instants1

at which a given task is activated. Formally, an activation
trace can be defined as a function mapping every instant to
the number of activations occurring at that instant. An activa-
tion trace corresponds to a specific scenario of activations of
a task.

An activation model is an abstraction of all possible traces.
Each trace should respect the activation model. An activation
model is used to define the input of the system and defines
when an instance of a task may arrive. Its main application
is the computation of the WCRT as proposed by Tindell [Tin-
dell et al., 1994]. Each task has an activation model, which
defines the possible scenarios of activations. There exists sev-
eral well-known activation models used in the literature. We
focus on the general event load model [Henia et al., 2005]
(also known as arbitrary event model). The general event
load model applies to activations but it can also be used for
other events (e.g., start, finish, . . .).

The general event load model describes the maximum and
minimum number of event occurrences that may occur in
a duration �t, denoted ⌘

+(�t) and ⌘

�(�t) respectively.
Alternatively, this model describes the functions �

�(n) and
�

+(n) that represent the minimum and maximum duration
where n events occur. Each one of these two representations
can be computed from the other one thanks to conversion
functions.

3 Motivation and Problem Statement
Real-time systems are often safety-critical systems. There-
fore, the analysis techniques used in the field should be rigor-
ous and correct. However, the real-time systems community
has recently identified several unsound results.

As a glaring example, Ken Tindell et al. proposed in
1994, an extension of the response-time analysis of the Con-
troller Area Network bus to static priority premptive schedul-
ing [Tindell and Burns, 1994]. Only after 12 years did they
notice that their work was partially incorrect [Davis et al.,
2007]. However, in the meantime the response-time analy-
sis has been largely used in critical systems in the automotive
industry and other commercial tools.

A second example relates to the general event-load model.
There are contradictory definitions of the conversion func-
tions, even in papers from the same team and on the same year
[Axer et al., 2013],[Neukirchner et al., 2013]. For instance,
there exists two distinct definitions of the same function:

⌘

+(�t) = max

n2N+
{n | ��(n) 6 �t}

1Throughout this document, we assume a discrete representation
of time, where instants are natural numbers.

and
⌘

+(�t) = max

n2N+
{n | ��(n) < �t}

The first one in [Axer et al., 2013] states that ��(n) should
be only smaller than or equal to �t, whereas �

�(n) should
strictly below �t in the second one state that [Neukirchner
et al., 2013]. With high probability, at least one of these two
papers is incorrect. In the state of the art, we found a lack
of proper formal event model definition. For instance, in the
thesis of S.Schliecker [Schliecker, 2010], the minimum event
distance is defined informally by the sentence:

�

�(n), the size of the smallest time window within which n
or more events may occur,

whereas the function conversion is defined formally as

�

�(n) = inf
�t60,�t2R

{�t | ⌘+(�t) > n}

Its not possible to prove the correctness of a function par-
tially formalized.

It appears that even the formal definition of the conver-
sion is limited. Indeed, the function conversion supposes that
respectively the minimum or maximum is reached, whereas
with infinite traces a lower bound or upper bound seem to be
more appropriate. Since the general event load model is an
input of the system, an uncorrect event load model results in
an erroneous schedulability analysis.

All these observations highlight a lack of rigor in a field
whose applications are safety-critical. Even when the pro-
posed techniques are guaranteed by pen-and-paper proofs,
human errors show up. In this paper, we tackle this prob-
lem by formalizing the general event-load model and the as-
sociated conversion functions in the Coq proof assistant. The
related work using a proof assistant for real-time analysis can
be found in Section 6.

4 Timing Analysis with General Load Event
Models

In this section, we present our revisited definitions for gen-
eral event load models. We define the types and functions
of the general event load models and discuss the differences
between the initial models and ours.

Initially, the general load event model was defined in [He-
nia et al., 2005]. Then a first definition based on traces and
using two functions � and ⌘ was proposed by [Quinton et al.,
2012]. These two functions simplify the definition of ⌘+ and
�

� as well as the conversion functions. The notion of trace
was defined as an increasing function taking an event occur-
rence and returning its instant. Since functions are usually
defined as function of time, we decided to follow the most
common trace version which has the added advantage to be
coherent with [Cerqueira et al., 2016]. Inspired by this work,
in this section we propose our general event model defini-
tions.

4.1 Type Definitions
We consider discrete time as a succession of instants. The
instant where an occurrence of an event takes place and time
duration are represented by natural numbers. To improve the
readability of our definitions, we use the following types:

(i) An INSTANT is the timestamp when some events may
take place.

(ii) A DURATION expresses an interval of time between two
instants.

(iii) NB OCCURRENCES denotes a number of occurrences of
an event at an instant or during a duration.

(iv) ID OCCURRENCE identifies uniquely one occurrence of
an event by its rank. The instant where an occurrence n

takes place is lower or equal to the instant of the occur-
rence (n+ 1).

The five previous types are represented by natural numbers.

4.2 Function Definitions
Trace
A trace is an infinite sequence of event occurrences. To sim-
plify, we consider traces of occurrences of a single event.
This definition can be generalized to more than one event. In
practice, a trace is a file obtained by measuring event occur-
rences and the timestamps indicating at which instants they
take place.
Definition 1. A trace �:type INSTANT !
NB OCCURRENCES is a function taking an instant and
returning the number of occurrences of the event at this
instant.

NB OCCURRENCES

INSTANT

1 2 1 1 3 1 1

2 3 4 5 9 13 19�

Figure 1: Example of a representation of a trace, the number
of occurrences are in blue and instants are in gray.

For instance, in the trace � represented in Figure 1, two oc-
currences (of the event under consideration) occur at instant
3 so �(3) = 2.

All the following definitions are done relatively to a unique
and implicit trace �.

Event Distance Function (�)
For a given trace �, the event distance function � defines for
any occurrence n in �, and a given number of occurrences k,
the duration between the instant where the n-th occurrence
takes place and the instant where the (n + k)-th occurrence
takes place.

The event distance function � definition is based on the in-
termediate function iof, which computes the instant when a
given event occurrence takes place, iof : ID OCCURRENCE !
INSTANT and is defined as

iof(n) = iof’(n, 0)

where iof’: NB OCCURRENCES ! INSTANT ! INSTANT is
defined recursively as

iof’(n, t) =
⇢
t� 1 if n = 0
iof’((n� �(t)), (t+ 1)) otherwise

Definition 2. The event distance function �:
ID OCCURRENCE ! NB OCCURRENCES ! DURATION is
defined as

�(n, k) = iof(n+ k � 1)� iof(n)

If �(n, k) = x then the duration between the n-th and the
(n+ k � 1)-th occurrence in the trace is x.

NB OCCURRENCES

INSTANT

1 2 1 1 3 1 1

2 3 4 5 9 13 19�

Figure 2: Example of a trace �, with �(2, 8) in purple.

For instance, d(n, k) = x means that the duration between
the n-th occurrence and the (n+k)-th occurrence in the trace
is x. Figure 2 illustrates the function on an example.

Minimum Event Distance Function (��)
In real-time systems, the worst-case response time, that is,
the maximum response time, must be evaluated to ensure that
the system can meet its deadline. As we saw in Chapter ??,
the computation of the worst-case response time in a real-time
system model is based on the minimum distance between two
task activations.

A minimum event distance function
�

�: NB OCCURRENCES ! DURATION returns a lower
bound of the distance between a number of occurrences in
the trace �.

Definition 3. A minimum event distance function �

� is a
function that verifies the two following properties:

• pseudo-super-additivity, i.e, 8a b, ��(a + b + 1) >
�

�(a+ 1) + �

�(b+ 1)

• �-minimal, i.e, 8k n, �(n, k) > �

�(k)

NB OCCURRENCES

INSTANT

1 2 1 1 3 1 1

2 3 4 5 9 13 19�

Figure 3: Example of a trace �, with �

�(3) in orange.

Event Load Function (⌘)
The event load function ⌘ returns for any occurrence n, the
number of occurrences that appear in a given time window of
duration �t starting at the instant where occurrence n takes
place.

For instance, ⌘(t,�t) = x means that they are x occur-
rences of events in the half-open interval [t, t + �t[. For
example in Figure 2, there is one occurrence of event in the
purple duration, i.e, ⌘(2, 1) = 1. Note that ⌘ does not count
the two occurrences which occur at instant 3.

Maximum Event Load Function ⌘

+

A maximum event load function ⌘

+: DURATION !
NB OCCURRENCES returns an upper bound of the number of
occurrences in a time window �t.
Definition 4. A maximum event load function ⌘

+ is a function
that verifies the two following properties:
• sub-additivity, i.e, 8a b, ⌘+(a+ b) 6 ⌘

+(a) + ⌘+(b)

• ⌘-maximal, i.e, 8�t n, ⌘(n,�t) 6 ⌘

+(�t)

Definition 5. The event load function ⌘: INSTANT ! DURA-
TION ! NB OCCURRENCES is defined recursively as

⌘(t,�t) =

⇢
0 if �t = 0
�(t) + ⌘(t+ 1,�t� 1) otherwise

NB OCCURRENCES

INSTANT

k

k1 k2 k3 k4 k5 k6

�

a+ b b

Figure 4: Example of a trace �, with ⌘

+(a + b) is the (k +
k1 + k2 + k3) occurrences of the event that happened in the
duration a+ b.

Our definitions of the event minimum distance and the
event maximum load function are different from the littera-
ture [Henia et al., 2005]. In the initial definitions, the event
minimum distance function returns the minimum distance
and the event maximum load function returns the maximum
number of occurrences. The problem is that traces being infi-
nite, this definition is not constructive: the functions �� and
⌘

+ cannot be defined as fixpoints.
We therefore propose definitions that can be defined con-

structively where the minimum and the maximum may not be
reached. The new definitions allow several possible event dis-
tance minimum functions or event load functions for the same
trace �. They only have to be respectively pseudo-supper-
additive or sub-additive and to respect the �-minimality (Def-
inition 3) or ⌘-maximality (Definition 4). In other words, our
model is more general than the initial one.

4.3 Conversion Functions
The minimum distance function �

� and the maximum event
load function ⌘

+ are strongly related. In this section, we pro-
vide conversion functions between �

� and ⌘

+. Their correct-
ness are proved in the next chapter.

Minimum Event Distance to Maximum Load Conversion
(�� ! ⌘

+)
The function ⌘

+ is defined from �

� by returning for each
interval �t the maximal number of occurrences k such that
�

�(k) < �t.
Theorem 1. Let �� be a minimum event distance function
(Definition 3) then the function ⌘

+ defined as

⌘

+(�t) =

⇢
0 if �t = 0
max{k | k 2 N, ��(k) < �t} otherwise

is a maximum load function.

In other words, Theorem 1 entails that ⌘

+(�t) is sub-
additive and ⌘-maximal.

In Section 3, we saw two contradictory definitions of Theo-
rem 1. Actually, we now know that the correct definition was
given by M. Neukirchner et al. in [Neukirchner et al., 2013].
Indeed, ��(k) must be strictly smaller than �t because ⌘

+

uses a half-open duration �t. However, we should discern
the case where the duration �t is null, to avoid �

�(k) < 0.

Maximum Event Load to Distance Minimum Conversion
(⌘+ ! �

�)
The function �

� is defined from ⌘

+ by returning for each
number of occurrences k the minimal duration �t such that
⌘

+(�t+ 1) > k.
Theorem 2. Let ⌘+ be a maximum event load function (Def-
inition 4) then the function �

� defined as

�

�(k) = min{�t |�t 2 N, ⌘+(�t+ 1) > k}

is a minimum distance function.
In other words, Theorem 2 entails that ��(k) is pseudo-

super-additive and �-minimal (Definition 3).
In the standard general event load model the minimum

and maximum are reached by the minimum event distance
or maximum event functions respectively. The conversions
between these two functions also reach the minimum or the
maximum.

Since our definitions are slightly more general, we convert
respectively sub-additive and ⌘-maximal functions (Defini-
tion 4) into pseudo-super-additive and vice-versa.

5 Proofs of Correctness of the Conversion
Functions

In this Section we provide the proofs for the main results re-
lated to the conversion of maximum event load and minimum
distance functions stated in Section 4. However, before prov-
ing Theorems 1 and 2 we must adapt some definitions pro-
vided in Section 4 in order to make them computable.

The specification and proofs have been done within the
Coq proof assistant. For convenience, we present them here
using standard mathematical notions. (See the appendix for
an illustration of the Coq implementation).

5.1 A Revisited Notion of Trace
In Chapter 4, the definition of the event distance function �

is based on the intermediate function iof (from Section 4.2),
which computes the instant when a given event occurrence
takes place.

iof(n) = iof’(n, 0)
where

iof’(n, t) =
⇢
t� 1 if n = 0
iof’((n� �(t)), (t+ 1)) otherwise

Unfortunately Coq refuses this definition of iof for two rea-
sons.

The first issue with our definition is that iof is a partial
function, which may not terminate on all inputs. For instance,

iof(2) is undefined for a trace containing only one event occur-
rence. This highlights the fact that Definition 1 is too general.
In addition to being infinite in time, traces must also guar-
antee that events keep occurring. In other words, the trace
function � must not, even after a certain instant, be forever
null. Formally, we only consider traces satisfying the follow-
ing property:
Hypothesis 3. For all instant t1, there exists an instant t2
such that

t2 > t1 ^ �(t2) > 0
Thanks to this hypothesis, iof is now a total function.

However, because Coq’s “termination analysis” is not very
sophisticated, it still refuses our new definition of iof. Indeed,
iof is defined in terms of iof’ whose termination is not obvi-
ous: to conclude that a recursive function is terminating, Coq
needs a structurally decreasing argument. In consequence,
from the definition of iof’, Coq must be able to infer that
n � �(t) < n, or equivalently, �(t) > 0. However, Hy-
pothesis 3 only guarantees that � will be eventually non-null;
therefore, �(t) may be temporarily null.

To provide an argument that is structurally decreasing, we
must redefine iof’ such that it only “iterates” on the instants
where an event occurs. Hence, there will only be recursive
calls to iof’(n, t) such that at least one event occurs at instant
t. Thus, �(t) will always be strictly positive as required.

The standard library of Coq provides a module called Con-
structiveEpsilon which from a property P : N ! Prop, allow
defining a function finding a natural number that satisfies P .
Based on Hypothesis 3, we can easily show that for all t1,
there exists a smaller t2 such that t2 > t1 ^ �(t2) > 0. We
therefore have the property
P (t1) = (9t2, t2 > t1^�(t2) > 0) ^ (8t3. t3 > t1 ^ t3 < t2

=) �(t3) = 0)
This property allows the definition of the function
next(t): INSTANT ! INSTANT which returns the first instant
t

0 after a given instant t such that an event occurs at t0:
next(t) = min{t0 | t0 2 N, t0 > t ^ �(t0) > 0}

We can now redefine iof’ in terms of next: iof’(n, t) =
⇢
t� 1 if n = 0
iof’(n� �(next(t)), next(t) + 1) otherwise

Because of the definition of next, �(next(t)) is strictly pos-
itive. Therefore, the first argument is strictly decreasing at
each recursive call

n� �(next(t)) < n

and Coq accepts the definition of iof’ (and iof) as terminating.
Since, the number of occurrences happening at an instant

is not a priori bounded, we can not write in Coq Theorem 1
defined as

⌘

+(�t) =

⇢
0 if �t = 0
max{k | k 2 N, ��(k) < �t} otherwise

Indeed, consider the trace such that �(t) = t, there is no max-
imum number of occurences happening at an instant and ⌘

+

is not computable. We consider only traces with a bounded
number of occurrences and we make the assumption that such
a maximum number of occurrences k max exists.

Hypothesis 4. For all instant t, �(t) < k

max

Thanks to this hypothesis, Theorem 1 is now well-defined.

5.2 Properties of the General Event Load Model
In order to prove the conversion theorems between the min-
imum distance and maximum event load functions, we first
formalize and prove four lemmas between the four functions
�, ⌘, �

� and ⌘

+. For conciseness we omit the proofs here
which can be found in the appendix.

Since �� and ⌘

+ are defined based on � and ⌘ respectively,
we describe the relation between � and ⌘; �� and ⌘; and ⌘

+

and � in order to relate �

� and ⌘

+.
By definition, �(n, k) returns the duration containing k

event occurrences starting from the n-th event occurrence.
Furthermore, ⌘(t,�t) returns the number of event occur-
rences happening in the interval semi-open [t, t+�t[.

A first property relating � and ⌘ is that the duration con-
taining ⌘(t,�t) events starting from the first occurrence at or
after t must be less than �t.

NB OCCURRENCES

INSTANT

1 2 2 1 3 1 1

2 3 4 5 9 13 19�

�(1, 4)

Figure 5: Example of a trace �, with
�(first occ after(1), ⌘(1, 2)) in purple and �t in or-
ange.

Figure 5 illustrates this on an example for t = 1 and �t =
2: The duration in purple is strictly smaller than the duration
in orange. Formally,
Lemma 5. For all instant t and non null duration �t,

�(first occ after(t), ⌘(t,�t)) < �t

where first occ after: INSTANT ! ID OCCURRENCE is de-
fined as follows:

first occ after(t) = sob(t, 0, 0) + 1.

with sob: INSTANT ! NB OCCURRENCES ! instant de-
fined as

sob(t, k, c) =
⇢
k + �(c) if t = 0
sob((t� 1), (k + �(c)), (c+ 1)) otherwise

Proof By induction on k. see Appendix B.
A second property relating �

� and ⌘ that the duration con-
taining ⌘(t,�t) events from the first occurrence after t must
be less than �t. Formally,
Lemma 6. For all instant t and non-null duration �t

�

�(⌘(t,�t)) < �t

Proof trivial, by transitivity of �-minimality. This follows
easily from the fact that �� �-minimal (Definition 3). Figure 5
illustrates this on an example for t = 1 and �t = 2: where
⌘(1, 2) = 1 and �

�(⌘(1, 2)) = 0.

Thirdly, we can bound the result of ⌘ in function of �. By
definition, ⌘(t,�t) returns the exact number of event occur-
rences happening in the interval [t, t + �t[. Furthermore,
�(n, k) returns the duration containing at least k event oc-
currences from the n-th event occurrence2. The number of
occurrences happening in the duration �(n, k) + 1 from the
instant of the n-th occurrence must be bigger or equal to k.
Formally,

Lemma 7. For all occurrences n, number of occurrences k

and duration �t,

⌘(iof(n), �(n, k) + 1) > k

The proof structure is quite similar to the one proposed in
Appendix B.

NB OCCURRENCES

INSTANT

n

t�

�(n, k)

Figure 6: Example of a trace �, with (�(1, 2) + 1) in orange
and �(1, 2) in purple.

Figure 6 illustrates this relation with ⌘(iof(2), �(1, 2) +
1) = 4 number of occurrences in the half-open orange dura-
tion.

Finally, because ⌘

+ is ⌘-maximal (Definition 4), it follows
that the number of occurrences happening in the duration
�(n, k)+1 from the instant of n must be bigger than or equal
to k. Formally,

Lemma 8. For all occurrences n and number of occurrences
k,

⌘

+(�(n, k) + 1) > k

Proof trivial, by transitivity of ⌘-maximality. Figure 6 il-
lustrates this on an example for n = 1 and k = 2: where
�(1, 2) = 1 and ⌘

+(�(1, 2) + 1) = 3.

5.3 Correctness of the Conversions
In this section we first prove the correctness of the conversion
from the event distance to the event load function. Then we
prove the conversion from the event load to the event distance
function.

Minimum Event Distance to Maximum Event Load
(�� ! ⌘

+)
An event maximum load function is by definition a sub-
additive ⌘-maximal function. We want to prove that the func-
tion ⌘

+ defined by Theorem 1 is a sub-additive ⌘-maximal
function (Definition 4).

We first prove the part of Theorem 1 restricted to sub-
additivity:

2There may be several occurrences at the same instant as the k-th
occurrence of the interval.

Lemma 9. Let �� be a pseudo-super-additive function, then
the function

⌘

+(�t) =

⇢
0 if �t = 0
max{k | k 2 N, ��(k) < �t} otherwise

is sub additive.

Proof. By cases.
Case �t = 0. Trivial because ⌘

+(0) = 0, thus
⌘

+(0) 6 ⌘

+(0) + ⌘

+(0).

Case �t > 0. By definition of ⌘+ we have forall x > 0,

⌘

+(x) = max{k | k 2 N, ��(k) < x}

and by definition of max

�

�(⌘+(x) + 1) > x ^ �

�(⌘+(x)) < x.

Therefore, by taking x = a, x = b and x = a+ b we have

�

�(⌘+(a)+1)+�

�(⌘+(b)+1) > a+b and �

�(⌘+(a+b)) < a+b

By transitivity,

�

�(⌘+(a) + 1) + �

�(⌘+(b) + 1) > �

�(⌘+(a+ b))

The pseudo-super-additivity of �� (Definition 3) entails

�

�(⌘+(a) + ⌘

+(b) + 1) > �

�(⌘+(a) + 1) + �

�(⌘+(b) + 1)

and by transitivity

�

�(⌘+(a) + ⌘

+(b) + 1) > �

�(⌘+(a+ b)).

Since �

� is increasing (as a direct consequence of pseudo-
super-additivity), we deduce

⌘

+(a) + ⌘

+(b) + 1 > ⌘

+(a+ b)

and since ⌘

+ is a function from N to N

⌘

+(a) + ⌘

+(b) > ⌘

+(a+ b)

To complete our proof, we now prove the part of Theorem 1
restricted to �-minimal functions.
Lemma 10. Let �� be a �-minimal function, then the function

⌘

+(�t) =

⇢
0 if �t = 0
max{k | k 2 N, ��(k) < �t} otherwise

is ⌘-maximal

Proof. By cases.
Case �t = 0. Trivial: 8t, ⌘(t,�t) = 0 and ⌘

+(0) = 0,
then 8t, ⌘(t,�t) 6 ⌘

+(0).
Case �t > 0. By definition of ⌘+

⌘

+(�t) =

⇢
0 if �t = 0
max{k | k 2 N, ��(k) < �t} otherwise

we have for all x 2 DURATION+,

⌘

+(x) = max{k | k 2 N, ��(k) < x}

and by definition of max

�

�(⌘+(x)) < x ^ �

�(⌘+(x) + 1) > x.

By Lemma 6 8t �t, �

�(⌘(t,�t)) < �t

By transitivity 8t �t, �

�(⌘(t,�t)) < �

�(⌘+(�t) + 1).
The function �

� is increasing so we can deduce

8t �t, ⌘(t,�t) < ⌘

+(�t) + 1.

and since ⌘

+ is a function from N ! N

8t �t, ⌘(t,�t) 6 ⌘

+(�t).

Since we proved the sub-additivity and the ⌘-maximality,
⌘

+ is a maximum event load function and Theorem 1 follows.

Maximum Event Load to Minimum Event Distance
(⌘+ ! �

�)
A event minimum distance function �

� is by definition a
pseudo-super-additive and �-minimal functions. We want to
prove that the function defined by Theorem 2 is pseudo-super-
additive and �-minimal (Definition 3).

We first prove Theorem 2 restricted to sub-addtive func-
tions is
Lemma 11. Let ⌘+ be a sub-additive function, then the func-
tion

�

�(k) = min{�t |�t 2 N, ⌘+(�t+ 1) > k}
is pseudo-super-additive

Proof. By definition of �

� we have for all x 2
NB OCCURRENCES,

�

�(x) = min{�t|�t 2 N, ⌘+(�x+ 1) > x}
and by definition of the max

⌘

+(��(x)) < x ^ ⌘

+(��(x) + 1) > x.

Therefore by taking, x = a+ b+1, x = a+ b and x = b+1
we have

a+ b+ 1 6 ⌘

+(��(a+ b+ 1) + 1)

and

⌘

+(��(a+ 1)) + ⌘

+(��(b+ 1)) < a+ b+ 1.

By transitivity

⌘

+(��(a+ 1)) + ⌘

+(��(b+ 1)) < ⌘

+(��(a+ b+ 1) + 1).

The sub-additivity of ⌘+ (Definition 4) entails

⌘

+(��(a+1)+�

�(b+1)) 6 ⌘

+(��(a+1))+⌘

+(��(b+1)).

and by transitivity

⌘

+(��(a+ 1) + �

�(b+ 1)) < ⌘

+(��(a+ b+ 1) + 1).

Since ⌘

+ is increasing, we can deduce

�

�(a+ 1) + �

�(b+ 1) < �

�(a+ b+ 1) + 1.

and since �

� is a function from N to N
�

�(a+ 1) + �

�(b+ 1) 6 �

�(a+ b+ 1) + 1.

To complete our proof, we prove the Theorem 2 restricted
to �-minimal functions.
Lemma 12. Let ⌘+ be a ⌘-maximal function, then the func-
tion

�

�(k) = min{�t|�t 2 N, ⌘+(�t+ 1) > k}

is �-minimal.

Proof. By definition �

� and by definition of min

⌘

+(��(k)) < k ^ ⌘

+(��(k) + 1) > k.

By the Lemma 8

8n k 2 N, ⌘+(�(n, k) + 1) > k.

By transitivity,

8n k, ⌘

+(�(n, k) + 1) > ⌘

+(��(k)).

Since ⌘

+ is increasing, we can deduce

8n k, �(n, k) + 1 > �

�(k).

and since �

� is a function from N to N
8n k, �(n, k) > �

�(k).

Since we proved the pseudo-super-additivity and the �-
minimality, �� is a minimum distance function and Theo-
rem 2 follows.

As a conclusion, it is interesting to note that the proofs of
the main theorems are not very complex. The actual chal-
lenge was to find the additional lemmas and the missing hy-
potheses on the trace.

6 Related work: Formal Proofs for Real-Time
Our proofs have been completed using the proof assistant
Coq. A proof assistant is a software tool assisting the de-
velopment of formal proofs via human-machine collabora-
tion through an interactive editor. The development en-
vironment provides a step-by-step verification of proofs.
Some famous examples of proof assistants include Coq
[The Coq development team, 2004], Prototype Verification
System (PVS) [Owre et al., 1992] and Isabelle/HOL [Nip-
kow et al., 2002].

Mechanized proofs of real-time system analysis have al-
ready been proposed in the literature. The uniprocessor Pri-
ority Ceiling Protocol and the corresponding schedulability
analysis has been proved correct by Dutertre using the PVS
proof assistant [Dutertre, 1999]. Zhang et al. proved the cor-
rectness of the blocking bound for the Priority Inheritance
Protocol with the Isabelle/HOL proof assistant [Zhang et al.,
2012]. The Network Calculus also has been formalized with
Isabelle/HOL, with certification of bounds on the message de-
lay in a toy network in [Mabille et al., 2013a]. Using Coq,
De Rauglaudre proved a schedulability condition for periodic
tasks based on their phases and hyper period [De Rauglau-
dre, 2012]. Recently, Zhang et al. implemented Earliest
Deadline First in a verification language based on Proposi-
tional Projection Temporal Logic and provided an optimality

proof using Coq [Zhang et al., 2014]. The real-time com-
munity also employed other verification techniques to mech-
anize proofs such as model checking [Guan et al., 2008;
2007] or abstract interpretation [Lv et al., 2010; ?]. Unfor-
tunately, all these papers have their own formalization, which
is not extendable and often not maintained.

Very recently, to avoid duplication of work, [Cerqueira
et al., 2016] proposes an extendable and maintainable open
source library of formalisation and proofs. This library,
Prosa, allows writing readable and formal proofs of schedu-
lability analyses. Prosa uses the Coq proof assistant and
the SSreflect extension library [Gonthier and Le, 2009]. It
provides definitions and modular lemmas about arrival se-
quences, schedules, jobs, tasks. . . The usability of the frame-
work is demonstrated through a case study, namely the mul-
tiprocessor response-time analysis of Bertogna and Cirinei
for global fixed-priority and earliest-deadline first schedul-
ing [Bertogna and Cirinei, 2007]. In this study, F. Cerqueira
et al. successfully extend, formalize and prove Berogna and
Critnei’s analysis.

In the context of my thesis, we collaborate with the team
of F. Cerqueira et al. and the team of Marc Boyer and project
to integrate our work in Prosa. We develop this in the next
section.

7 Future Work
Mechanized proofs for schedulability analysis is a complex
task, which provides several possibilities of future extensions.
In this section we present these possible developments by or-
der of priority.

We have presented two conversion functions, between the
minimum-event-distance function �

� and maximum-event-
load function ⌘

+. These two functions are composable. And
we expect the composition of the two conversions F : ⌘+ !
�

� and G : �� ! ⌘

+ to satisfy

�

� = F (G(��)) and ⌘

+ = G(F (⌘+))

These properties of the round-trip conversions remain to be
proven.

In the context of our collaboration with F. Cerqueria et al.,
we want to realise the three follows works.

1. To improve and validate the readability of my proofs in
order to integrate them into Prosa.

2. Several activation models exist, the most popular is the
PJd. We want to generalize the existing algorithms using
the PJd model for sporadic and periodic tasks to the gen-
eral event load model. F. Cerqueira et al [Cerqueira et
al., 2016] used the PJd model and a dedicated algorithm
in their work. We are interested in the generalization of
the algorithms that were proved and formalized in Prosa.
Because their definitions are modular, we think that we
can find easily where the PJd is used to replace it by the
general event model.

3. The response-time bound for uniprocessor systems with
arbitrary deadlines by Tindell et al uses the PJd model.
One of the applications of the general event load model
is to adapt this response-time bound to the general event

model. The logical follow-up would be to formalize and
prove this bound in a modular format in order to redo it
with the initial response-time bound.

Our work is based on discrete time, whereas Marc Boyer
et al. [Mabille et al., 2013b] work on the network calculus
which is based on continous time. An interesting research
axis is to investigate the validity of our results in continous
time.

8 Conclusion
The validation of critical real-time systems requires that to
prove that they respect real-time constraints. To do so, the
analysis techniques used in this field should be rigorous and
sound. However, the real-time systems community has re-
cently identified many unsound results. Even when the pro-
posed techniques are guaranteed by pen-and-paper proofs,
human errors show up. An example of a lack of rigor can
be found in the general event-load model where we observe
contradictory and informal definitions.

In this thesis, we have responded to this problem by first
formalizing the general event load model and the associated
conversion functions with the Coq proof assistant. We had to
redefine a generic trace model. Then, we proposed a com-
puter verified formal proof of conversion functions.

Computer verified formal proofs for real-time system can
be found. Unfortunately, existing papers use their own for-
malization and are not composable. The objective of the
open-source real-time system analysis library Prosa is to mo-
tivate the real-time system analysis community to collaborate
on a single formalisation and write computer-verified proofs
of well-known as well as novel schedulability analysis ap-
proaches. This thesis is a contribution to that ambitious ef-
fort.

Appendix

A General Event Model Definitions in Coq
The following listing contains the most relevant parts of our
Coq implementation. The missing proofs are deliberately
omitted for brevity.

(*
???

*)
(** * Types Definitions *)
(*

???
*)

Definition instant := nat.

Definition duration := nat.

Definition nb_occurrences := nat.

Definition id_occurrence := nat.

Definition trace := instant! nb_occurrences.

(*
???

*)
(** * Assumptions *)
(*

???
*)

(* One given trace *)
Variable sigma: trace.

(* Event at an instant bounded by *)
Variable k_max : nb_occurrences.

(* At any instant there is an event occuring later *)
Definition Later_event t1 t2 :=
t2 >= t1 ^ sigma t2 > 0.

(* By hypotheis the trace sigma has that property
*)
Hypothesis AE_Events_occur :
forall t1, exists t2, Later_event t1 t2.

(* By hypothesis the number of occurrences
in an instant in the trace is bounded *)
Hypothesis E_bounded_event_at :
forall t, le (sigma t) k_max.

(*
??????????????????????????????????

*)
(** * The event load function *)
(*

??????????????????????????????????
*)

(** The event load function *)
Fixpoint eta (t : instant) (dt : duration) :
nb_occurrences :=
match dt with
| 0) 0
| S dt’) sigma t + eta (S t) dt’
end.

Definition subadditive (f : nat! nat)
: Prop :=
forall (x y : nat), f (x + y) <= f x + f y.

Definition max_eta_trace (f : duration!
nb_occurrences)
: Prop :=
forall t dt, eta t dt <= f dt.

(** The event load maximum function *)
Definition eta_max (f : duration!
nb_occurrences)
: Prop :=
max_eta_trace f ^ subadditive f.

(*
???????????????????????????????????????

*)
(** * The event distance function *)
(*

???????????????????????????????????????
*)

(* compute the instant
after an number of occurrence *)
Program Fixpoint instant_of’
(remaining : nb_occurrences) (curr : instant)
{measure remaining} : instant :=
match remaining with
| 0) curr � 1
| _) instant_of’ (remaining � sigma (next curr))

((next curr) + 1)
end.

Obligation 1.
set (N := next_prop curr).
destruct N as [? [? ?]].
omega.
Defined.

(* return the instant of an id of occurrence *)
Definition instant_of (n : id_occurrence)
: instant := instant_of’ n 0.

(** The event distance function *)
Definition delta
(n : id_occurrence) (k : nb_occurrences)
: duration :=
instant_of (n + k � 1) � instant_of n.

Definition superadditive (f : nat! nat)
: Prop :=
forall (x y : nat), f (x + y) >= f x + f y.

Definition pseudo_superadditive (f : nat! nat)
: Prop :=
forall (x y : nat), f (x + (y + 1)) >= f (x + 1) + f (y + 1).

Definition min_delta_trace (f : nb_occurrences!
duration)
: Prop :=
forall n k, delta n k >= f k.

(** The event distance minimum function *)
Definition delta_min (f : nb_occurrences!
duration)
: Prop :=
min_delta_trace f ^ pseudo_superadditive f.

(*
???

*)
(** * Conversion Functions *)
(*

???
*)

(* max {k | f(k) < dt} *)
Fixpoint max_k_in_dt (k: nb_occurrences)
(f: nb_occurrences! duration) (dt: duration)
: nb_occurrences :=
match k with
| 0) k
| S x) if ltb (f x) dt then x

else max_k_in_dt (x�1) f dt
end.

Definition max_nb_occ_in_dt :=
max_k_in_dt k_max.

(* min {dt | g(dt + 1) >= k} *)
Program Fixpoint min_dt_with_k’ (dt: duration)
(g: duration! nb_occurrences) (k: nb_occurrences)
{measure k }: duration :=
match k with
| 0) dt
| S x) if leb x (g (dt+1)) then dt

else min_dt_with_k’ (dt+1) g (k�1)
end.

Obligation 1. omega.
Defined.

Definition min_dt_with_k :=
min_dt_with_k’ 0.

(* ⌘+(dt) = max {k | f(k) < dt} *)
Definition conversion_delta_eta

(f: nb_occurrences! duration)
: duration! nb_occurrences :=
fun (dt : duration)) max_nb_occ_in_dt f dt.

(* ��(k) = min {dt | g(dt + 1) >= k} *)
Definition conversion_eta_delta
(g: duration! nb_occurrences)
: nb_occurrences! duration :=
fun (k: nb_occurrences)) min_dt_with_k g k.

Definition conversion_round_trip
(f: nb_occurrences! duration)
: nb_occurrences! duration :=
fun (k: nb_occurrences))

conversion_eta_delta (conversion_delta_eta f) k.

(*
???

*)
(** * Conversion Proofs *)
(*

???
*)

(* delta_eta_max respect
the max_eta_trace property *)
Property conversion_delta_eta_max_eta_trace :
forall (f : nb_occurrences! duration),

delta_min f
! max_eta_trace (conversion_delta_eta f).

Property conversion_delta_eta_sub_additive :
forall (f : nb_occurrences! duration),

delta_min f
! subadditive (conversion_delta_eta f).

(* delta_eta_max is an eta_max *)
Property conversion_delta_min_eta_max:
forall (f : nb_occurrences! duration),

delta_min f
! eta_max (conversion_delta_eta f).

intros.
unfold eta_max.
split.

+ apply conversion_delta_eta_max_eta_trace. easy.
+ apply conversion_delta_eta_sub_additive. easy.

Qed.

(* eta_delta_min respect
the min_delta_trace property *)
Property conversion_eta_delta_min_delta_trace :
forall (g: duration! nb_occurrences),

eta_max g
! min_delta_trace (conversion_eta_delta g).

(* eta_delta_min respect is
pseudo_superadditivity *)
Property conversion_eta_delta_min_superadditive:
forall (g: duration! nb_occurrences),

eta_max g
! pseudo_superadditive (conversion_eta_delta g).

(* eta_delta_min is an delta_min *)
Property conversion_eta_max_delta_min:
forall (g: duration! nb_occurrences),

eta_max g
! delta_min (conversion_eta_delta g).

Proof.
intros.

unfold eta_max.
split.

+ apply conversion_eta_delta_min_delta_trace. easy.
+ apply conversion_eta_delta_min_superadditive. easy.

Qed.

B Proof of the Lemma 5
We want to prove by induction on �t the Lemma 5 defined
as

for all instances of t and non null duration �t,

�(first occ after(t), ⌘(t,�t)) < �t

We first prove the Lemma 5 restricted to �t = 1 is
Lemma 13.

for all instances of t and duration equal to 1,

�(first occ after(t), ⌘(t, 1)) < 1

Proof. Case �t = 1.
By definition of ⌘

⌘(t,�t) =

⇢
0 if �t = 0
�(t) + ⌘(t+ 1,�t� 1) otherwise

we can deduce that ⌘(t, 1) = �(t).
Then either �(t) = 0 or �(t) > 0,

Case �(t) = 0.
We can deduce that

�(�(first occ after(t), ⌘(t, 1))), �(�(first occ after(t),�(t)))

and
�(�(first occ after(t), 0))

By definition of � (Definition 2) and A = first occ after(t)

�(A, 0) = instant of(A+ 0� 1)� instant of(A)

and since �

� is a function from N to N
(�(first occ after(t), ⌘(t, 1)) = 0) < 1

Case �(t) > 0.
We can deduce by the definition of � and A =
first occ after(t) that

�(A,�(t)) = instant of(A+ �(t)� 1)� instant of(A)

Because �(t) > 0 we can deduce

instant of(first occ after(t)) = t

and because �(t) occurrences at the instant t

instant of(first occ after(t)) = instant of(first occ after(t+�(t)�1))

we deduce with A = instant of(first occ after(t))

�(A,�(t)) = instant of(A+ �(t)� 1)� instant of(A) = 0

and
�(instant of(first occ after(t)), ⌘(t, 1)) = 0

then for �(t) > 0

(�(first occ after(t), ⌘(t, 1)) = 0) < 1

We proved the base case, let us suppose the following in-
duction hypothesis
Hypothesis 14.

for all instances of t and non null duration �t,

�(first occ after(t), ⌘(t,�t)) < �t

Then we prove the induction step, Lemma 5 restricted to
�t+ 1:
Lemma 15.

for all instances of t and duration equal to �t+ 1,

�(first occ after(t),�t+ 1) < �t+ 1

We prove by 3 cases, the first one consist on �(t)+�(�t+
1) = 0

instantt

�t+ 1

Proof. Case 1
We can deduce from �(t) + �(�t+ 1) = 0

instant of(first occ after(t)) > (t+�t+ 1)

and ⌘(t,�t+ 1) = 0
By defintion of � (Definition 2), 8n, �(n, 0) = 0 then

�(first occ after(t), ⌘(t,�t+1)) = �(first occ after(t), 0) = 0

Because �t+ 1 > 0, we can conclude

�(first occ after(t), ⌘(t,�t+ 1)) < �t+ 1

Then we prove the case 2, which consist on �(t) = 0

instantt

�t+ 1

Proof. Case 2
We can deduce from �(t) = 0

instant of(first occ after(t)) > t

By definition of ⌘ (Definition 5)

⌘(t,�t+ 1) = �(t) + ⌘(t+ 1,�t) = 0 + ⌘(t+ 1,�t)

then can deduce

⌘(t,�t+ 1) = ⌘(t+ 1,�t)

By induction hypothesis for t = t+ 1 (Hypothesis 14)

�(first occ after(t), ⌘(t+ 1,�t+ 1)) < �t

Since �t+ 1 > �t we conclude

�(first occ after(t), ⌘(t+ 1,�t+ 1)) < �t+ 1

Finnaly, we prove the case 3, which consist on �(t) > 0

instantt

�t+ 1

Proof. Case 3.
By definition of ⌘ (Definition 5)

⌘(t,�t+ 1) = �(t) + ⌘(t+ 1,�t)

By induction hypothesis for t = t+ 1 (Hypothesis 14)

�(first occ after(t+ 1), ⌘(t+ 1,�t)) < �t (1)

and by base case

�(first occ after(t), ⌘(t+ 1, 1)) < 1 (2)

and also
�(first occ after(t),�(t)) < 1

By transitivity (1 + 2)

�(first occ after(t+ 1), ⌘(t+ 1,�t))+

�(first occ after(t), ⌘(t+ 1, 1)) < �t+ 1

By definition ⌘(t, 1) = �(t) then �(first occ after(t +
1), ⌘(t, 1)) = 0,

⌘(t + 1,�t) > 0, ⌘(t + 1, 1) > 0 and first occ after(t +
1) > first occ after(t).

By Lemma 16 with F () = first occ after()

�(F (t), ⌘(t, 1)+⌘(t+1,�t)) < �(F (t+1), ⌘(t+1,�t))+�(F (t), ⌘(t, 1)) < �t+1

By definition of ⌘ we have ⌘(t,�t + 1) = ⌘(t, 1) + ⌘(t +
1,�t),
we can deduce

�(first occ after(t), ⌘(t,�t+ 1)) < �t+ 1

Let us prove the following intermediary lemma:
Lemma 16. For all n 2 N and for all k, k0 2 N+,
if �(n, k) = 0 and instant of(n + k � 1), instant of(n + k)
then

�(n, k + k

0) < �(n+ k, k

0) + �(n, k)

Proof. By definition of Lemma 16

�(n, k) = instant of(n+ k � 1)� instant of(n) = 0

and since k > 0

instant of(n+ k � 1) = instant of(n) (3)

By definition of �

�(n+k, k

0) = instant of(n+k+k

0�1)� instant of(n+k)

and

�(n, k+k

0) = instant of(n+k+k

0�1)� instant of(n) (4)

since we work with a discret time

instant of(n+ k � 1) + 1 = instant of(n+ k)

We rewrite (4) by using (3)

�(n, k+k

0) = instant of(n+k+k

0�1)�instant of(n+k�1)

By transitivity

instant of(n+ k + k

0 � 1)� instant of(n+ k � 1) + 1

= instant of(n+ k + k

0 � 1)� instant of(n+ k)

that corresponds to

�(n, k + k

0) + 1 = �(n+ k, k

0)

Since �(n, k) = 0 we have

�(n, k + k

0) + 1 = �(n+ k, k

0) + �(n, k)

and since �

� is a function from N to N
�(n, k + k

0) < �(n+ k, k

0) + �(n, k)

References
[Axer et al., 2013] Philip Axer, Sophie Quinton, Moritz

Neukirchner, Rolf Ernst, Dobel Bjorn, and Hartig Her-
man. Response-time analysis of parallel fork-join work-
loads with real-time constraints. pages 215–224, 2013.

[Bertogna and Cirinei, 2007] Marko Bertogna and Michele
Cirinei. Response-time analysis for globally scheduled
symmetric multiprocessor platforms. In Proceedings of the
28th IEEE Real-Time Systems Symposium (RTSS 2007), 3-
6 December 2007, Tucson, Arizona, USA, pages 149–160,
2007.

[Cerqueira et al., 2016] Felipe Cerqueira, Felix M Stutz, and
Björn B Brandenburg. Prosa: A case for readable mecha-
nized schedulability analysis. 2016.

[Davis et al., 2007] Robert I Davis, Alan Burns, Reinder J
Bril, and Johan J Lukkien. Controller area network (can)
schedulability analysis: Refuted, revisited and revised.
Real-Time Systems, 35(3):239–272, 2007.

[De Rauglaudre, 2012] Daniel De Rauglaudre. Vérification
formelle de conditions d’ordonnancabilité de tâches temps
réel périodiques strictes. In JFLA-Journées Francophones
des Langages Applicatifs, 2012.

[Dutertre, 1999] Bruno Dutertre. The priority ceiling proto-
col: formalization and analysis using PVS. In Proc. of the
21st IEEE Conference on Real-Time Systems Symposium
(RTSS), pages 151–160, 1999.

[Gonthier and Le, 2009] Georges Gonthier and
Roux Stéphane Le. An ssreflect tutorial. 2009.

[Guan et al., 2007] Nan Guan, Zonghua Gu, Qingxu Deng,
Shuaihong Gao, and Ge Yu. Exact schedulability analy-
sis for static-priority global multiprocessor scheduling us-
ing model-checking. In Software Technologies for Embed-
ded and Ubiquitous Systems, 5th IFIP WG 10.2 Interna-
tional Workshop, SEUS 2007, Santorini Island, Greece,
May 2007. Revised Papers, pages 263–272, 2007.

[Guan et al., 2008] Nan Guan, Zonghua Gu, Mingsong Lv,
Qingxu Deng, and Ge Yu. Schedulability analysis of
global fixed-priority or edf multiprocessor scheduling with
symbolic model-checking. In Object Oriented Real-Time
Distributed Computing (ISORC), pages 556–560. IEEE,
2008.

[Henia et al., 2005] Rafik Henia, Arne Hamann, Marek Jer-
sak, Razvan Racu, Kai Richter, and Rolf Ernst. System
level performance analysis-the symta/s approach. In Com-
puters and Digital Techniques, IEE Proceedings-, volume
152, pages 148–166. IET, 2005.

[Lv et al., 2010] Mingsong Lv, Wang Yi, Nan Guan, and
Ge Yu. Combining abstract interpretation with model
checking for timing analysis of multicore software. In
Real-Time Systems Symposium (RTSS), 2010 IEEE 31st,
pages 339–349. IEEE, 2010.

[Mabille et al., 2013a] Etienne Mabille, Marc Boyer, Loic
Féjoz, and Stephan Merz. Certifying network calculus in a
proof assistant. In EUCASS-5th European Conference for
Aeronautics and Space Sciences, 2013.

[Mabille et al., 2013b] Etienne Mabille, Marc Boyer, Loı̈c
Fejoz, and Stephan Merz. Certifying network calculus in a
proof assistant. In Proceedings of the 5th European Con-
ference for Aeronautics and Space Sciences (EUCASS),
2013.

[The Coq development team, 2004]
The Coq development team. The Coq proof assistant
reference manual. LogiCal Project, 2004. Version 8.0.

[Neukirchner et al., 2013] Moritz Neukirchner, Sophie
Quinton, Tobias Michaels, Philip Axer, and Rolf Ernst.
Sensitivity analysis for arbitrary activation patterns in
real-time systems. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 135–140.
EDA Consortium, 2013.

[Nipkow et al., 2002] Tobias Nipkow, Lawrence C Paulson,
and Markus Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[Owre et al., 1992] Sam Owre, John M. Rushby, and Natara-
jan Shankar. PVS: A prototype verification system. In Au-
tomated Deduction - CADE-11, 11th International Con-
ference on Automated Deduction, Saratoga Springs, NY,
USA, June 15-18, 1992, Proceedings, pages 748–752,
1992.

[Quinton et al., 2012] Sophie Quinton, Matthias Hanke, and
Rolf Ernst. Formal analysis of sporadic overload in real-
time systems. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012, pages 515–520.
IEEE, 2012.

[Schliecker, 2010] Simon Schliecker. Performance analysis
of multiprocessor real-time systems with shared resources.
2010.

[Tindell and Burns, 1994] Ken Tindell and Alan Burns.
Guaranteeing message latencies on control area network
(can). In Proceedings of the 1st International CAN Con-
ference. Citeseer, 1994.

[Tindell et al., 1994] Ken W Tindell, Alan Burns, and
Andy J. Wellings. An extendible approach for analyz-
ing fixed priority hard real-time tasks. Real-Time Systems,
6(2):133–151, 1994.

[Zhang et al., 2012] Xingyuan Zhang, Christian Urban, and
Chunhan Wu. Priority inheritance protocol proved correct.
In Interactive Theorem Proving, pages 217–232. Springer,
2012.

[Zhang et al., 2014] Nan Zhang, Zhenhua Duan, Cong Tian,
and Ding-Zhu Du. A formal proof of the deadline driven
scheduler in PPTL axiomatic system. Theor. Comput. Sci.,
554:229–253, 2014.

Factorization for sat-solving

Delise Antoine, Maréchal Alexandre, Périn Michaël

24 Août 2016

1 Polynomial constraint in

SMT-solving

The second goal of a solver after finding the
solution is being the faster.
To achieve that a solver can invoke many
methods. for the purpose of prospecting new
methods which make solver faster, we are
proposing to study the ability of solver to take
advantages of factorization.

Intuitively a polynomial in-equation should be
simpler, and faster to solve, once factorized.
For instance take the following in-equation:
�X

10 � 4 ⇤X9 ⇤ Y + 24 ⇤X7 ⇤ Y 3 + 42 ⇤X6 ⇤
Y

4 � 84 ⇤X4 ⇤ Y 6 � 120 ⇤X3 ⇤ Y 7 � 81 ⇤X2 ⇤
Y

8 � 28 ⇤X ⇤ Y 9 � 4 ⇤ Y 10
> 0

It is be a bit harder to decide the existence
(or not) of its solutions in comparison to the
factorized form:
�(x+ y)8 ⇤ (2 ⇤ y � x)2 > 0
The constraint has trivially no solution since
it is the negation of a product of two squares
polynomials.

We develop an algorithm that factorizes
a given list of polynomial and replace all
occurrences of a factor by a reference to a
uniquely defined polynomial. This algorithm
reveals the structure of the problem and the
question is: can the current solvers exploit
that structure to be more efficient ?
For instance the original list:
P0 = (x+ 1)3 ⇤ (y � 2) ⇤ (x+ 3)
P1 = (x+ 1)3 ⇤ (y � 2) ⇤ (z � 1)
Will be rephrased as:
P0 = P2 ⇤ (x+ 3)
P1 = P2 ⇤ (z � 1)
P2 = (x+ 1)3 ⇤ (y � 2)

1

Figure 1: Tool’s connections

2 Experimentation

For testing the efficiency of factorization on
solver we developed a platform that analyzes a
smt problem, retrieves some structure (like in
the previous example) and generates a equiv-
alent and simpler smt problem. Once the col-
lections of problems have been rephrased we
can compare the time taken by a sat-solver
to resolve it for the original problem and the
rephrased one.

The interface of the platform is a bash
script, it make up the working environment
and initialize the other tools.
The main program consists in a Ocaml parser
and printer of smt problem in the smt2 format.
It exchange polynomial list with the "sage

server" to simplify them and build the new
equivalent problem.

The factorisation algorithm is developed in
python and it is builds on top of a existing
algorithm of the SageMath library for fac-
torisation of multivariate polynomials. The
Sage part is a server running a infinite loop
reading a list of polynomial in a file, writing
the rephrased smt-problem in a file, and then
suspending itself.

Like the python machine, and the SageMath
library take a long time to start (a few seconds
if python is already started), the python script
have been turn in a "server" kind one. Like

2

describe in the previous paragraph, waking up
the sage program by sending a SIGCONT is
instantly and allow us to plot only the true ex-
ecution time with the ocaml program.

3 Results

The figure is a cactus plot representing the
time taken by z3 solver to solve a control assay
(in Blue color) and the "simplied" one by the
method explained in Context part (in Red).
We can see both curves are the same. However,
according the theory, the test with factorization
should be faster than the normal one. This re-
sult

reveal that a SMT-solver like Z3 — one
of the most efficient ones — do not take
advantages of simplification like factorization.
As a consequence, there is room for methods
exploiting factorization.

4 Perspectives

We developed a modular platform which can
be reused for further experiments. Each part
are dedicated to specific task:
The BASH interface allow to manage test sets
and offer parameter to fragment them and pro-
ducing control assay. More it build up the
working environment by making different tools
of the platform communicate.
The ocaml program is the core of the platform,
it parse, analyse, modify, build and print smt
problem and invoke the dedicated script of the
sage server.
The solver is a external tool that is ran on a
smt-file. Thus, it is possible to change a pa-
rameter for testing with any other sat-solver.
The SageMath script make some transforma-
tion on and mathematical operations (like fac-
torization) on the given list of polynomial. So
it’s possible to experiment others decomposi-
tion algorithm. For instance, when a polyno-
mial P is irreducible, the euclidian division by
the polynomials of the problem can reveal rela-
tions such as P = P1 ⇤P2+P3 which is another
exploitable structure.

Figure 2: Solving time (factorized and devel-
oped)

0 200 400 600 800 1,0001,2001,400

10�2

10�1

100

101

102

References

[VMCAI]L Bernardin. Efficient Multivariate
Factorization Over Finite Field. Algorithm
used by SageMaths
[SMT-lib standard
]http://smtlib.cs.uiowa.edu/language.shtml
[SageMath]http://www.sagemath.org
[Z3]SAT-Solver used for the plot fig-
ure 2: http://research.microsoft.com/en-
us/um/people/leonardo/strategy.pdf

3

4

Magistère Internship Report
Boyan MILANOV

Université Grenoble Alpes
Grenoble, FRANCE

boyan.milanov@imag.fr

Supervised by: Josselin FEIST.

Abstract
Manually building an ROP exploit is a heavy
and time-consuming task, of which every attacker
would like to get rid of. Several tools based on sym-
bolic execution and SMT-Solvers have been devel-
oped so as to help building payloads, or to do it
automatically. However, their efficiency is chal-
lenged by two main issues caused by the exclusive
use of SMT format to model gagdets. In the fol-
lowing paper we expose those issues and propose
a slightly different approach that might enable to
bypass those difficulties.

1 Introduction : The Chaining Challenge
When exploiting a security flaw against a system whose secu-
rity have been increased, building a ROP exploit is a common
thing to do. This type of attack is difficult to set up and a tool
helping it permits a precious gain of time. Nevertheless, au-
tomation of gadgets chaining is far for being trivial[1]. Such
a process leans on multiple strategies, of whom the most im-
portant is the ability to make a ’semantic request’ for a gad-
get. That is to say, the tool must be able to seek for a gadget
that would perform certain actions on the processor and/or the
memory, among all the available gadgets.
To do so, the tool must dispose of a semantic representation
of the gadgets. This way, it can compute whether each gadget
suits a request or not, and build a ’bank’ of available actions.
The question of the semantic representation of a gadget have
so far been solved almost only by using a SMT-LIB model
of the piece of code. Running a SMT-Solver and adding con-
straints enables indeed to make semantic requests and com-
pute the possible effects of a gadget. However, in practice,
this representation encounters limitations that prevents the
development of a truly efficient tool.
Consequently, the need for a tool using a not necessarily com-
pletely different but alternative representation have become
apparent.

2 SMT-Solvers limitations
The use of SMT-LIB format to model the gadgets have several
drawbacks, in terms of relevance and efficiency. They are
listed in this section.

1. Running a SMT-Solver is not made at a negligible cost.
Insofar as the number of gadgets is often very high (sev-
eral thousands), and given the tremendous amount of
possible requests, using a solver directly will result in
way too numerous calculations, which can not be per-
formed in acceptable time[2].

2. SMT-Solvers are seeking for models which satisfies for-
mulas. Those models are a numeric assignation of con-
crete values to registers and memory : they do not permit
to use abstract values to represent registers and memory.
As a result, the treatment of semantic queries is often bi-
ased by ”false positives” due to models that correspond
to particular, fancy, and unlikely states of the proces-
sor/memory.

3 Proposed solution
The use of a different way to represent the gadget’s semantic
leads to more precise and flexible informations about it’s
potential effects. This representation have been implemented
during the internship in a tool named ROPGenerator

To start with, an enhanced implementation of Data-
Dependence-Graphs enables to compute the effects of a
given gadget. For each register and each octet in memory,
it is possible to give their ”final values” (values after the
gadget was executed), depending on the initial values, and
with almost no use of SMT-Solvers.

Moreover, the dependencies computed by the tool are
conditional : a gadget can have multiple effects, depending
on the initial state of the computer. Those effects are all
calculated with their corresponding conditions. This process
gives the opportunity to enlarge the range of usable gadgets,
and opens the door towards automatic chaining of gadgets.

4 Further work
Some enhancements can still be made on the tool. First of all,
detecting of identical/similar gadgets could reduce the com-
putation time. Then, using a small database of gadget’s se-
mantics could help the dependency computation. Eventually,
developing dedicated algorithms and heuristics would enable
automatic generation of a ROP-Chain.

References
[1] Nguyen Anh Quynh. Optirop : the art of hunting rop

gadgets. 2013.
[2] Edward SCHWARTZ, Thanassis AVGERINOS, and

David BRUMLEY. Q : Exploit hardening made easy.
2011.

