
Magistère

informatique

IM2AG

2015 Programme :

Jeudi 27/08 :
- 9h - Lea Albert : Simulation parallèle

de trajectoires sur multi-cœur et

accélérateurs

- 9h45 - Thomas Baumela

- 10h45 - Rémy Boutonnet :

Améliorations de l'analyse de

programmes par interprétation

abstraite

- 11h30 - Raphaël Jakse : Vérification

de propriété à l'exécution avec un

débogueur

- 13h30 - Luc Libralesso

- 14h15 - Lina Marsso

- 15h15 - Quentin Ricard

- 16h – Jules Lefrère : Humanité

Digitale : Soutiens aux chercheurs

helléniste et Latiniste

Vendredi 28/08 :
- 9h - Simon Moura

- 9h45 - Hugo Guiroux

- 10h45 - Antoine Faravelon

- 11h30 - Valentin Prulière : Techniques

d’interaction en réalité augmentée

mobile

- 12h15 Claude Goubet : Détection

de vulnérabilités logicielles : Trouver

des fonctions génératrices de

débordement de buffer

Le magistère est une option pour

les étudiants de L3 à M2

souhaitant avoir de l'expérience

dans le domaine de la recherche.

Le 27 et 28 venez assister à la

présentation de leurs stages

contenant des sujets très divers et

variés autour de l’informatique.

Parallel simulation of trajectories on multi-cores or accelerators

Lea Albert
Supervised by : Florence Perronnin, and Guillaume Huard, and Jean-Marc Vincent

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract

This article speak about the simulation of trajec-
tory. It possible to simulate a trajectory with a se-
quential algorithm. The problem of this version is,
it is too expensive : The backing of the trajectory is
long.
One of solution to resolve this problem is to im-
plement a parallel algorithm. Some versions exist
but have problems with the task distribution and the
trajectory backing.
My aim is to implement here an other version allow
to resolve these problems and to reduce the execu-
tion cost greatly.

1 Introduction
1.1 Context
To estimate the performance of high system and network, it’s
necessary to simulate a long time Markov models.
This simulation allows to analyze the behaviour of some
system, to capture scarce event sequences, to estimate
coverage rates and to recover others information.

In the first part, we will speak about the classic simula-
tion : Generate randomly an event (depending of probability
model) and from a transition function, update the current
state. This version is not too complicated but because of the
long trajectory the execution time is too important.

One of solution to reduce the execution cost is the
parallelization[?].
What we will talk about in the second part, by deviding the
trajectory in intervals, we can compute each part in parallel.
There are some versions of parallels algorithms. One of
them was made, called Catch me if you can[?] but has some
problems of tasks distribution, and drop of efficient .
So, we want to implement an algorithm where the cost of
trajectory backing are depreciated and where the cores are
well allocate. It is we will discuss in the third paragraph.

Figure 1: The sequential algorithm of simulation
[?]

2 The sequential algorithm
First at all, we will explain what is a Markov model to un-
derstand the simulation. A Markov model is a state machine
without memory. It composed of states, events and transition
function.
The sequential algorithm is, from a begin state, we generate
the next state of the trajectory until the certain time(fig. ??).
All future states are computed thanks to the transition func-
tion, the current event and the current state.
A sequential implementation take long time with a important
trajectory and present problem to store the final trajectory.
We want to reduce this cost by using all cores of the machine.

3 The parallel algorithm
The sequential version is too expensive to simulate a long
trajectory.
To reduce the cost, we want to use a parallel version. Some
piece of trajectory will be compute in parallel to produce the
final trajectory.

Before continuing, it is important to introduce the notion
of consistency.
A fragment of trajectory is called consistent if it is a part of
the final trajectory. More, when a fragment trajectory crosses
a consistent trajectory, it becomes consistent.

3.1 The algorithm of Nicol and Al.
[?] This algorithm is a parallel version to simulate a trajec-
tory.

To begin, we have a trajectory of length T.
We will devide the trajectory in part and each core will be

Figure 2: The Nicol and Al’s algorithm

work in the same time on interval.
For sample, we want to execute the simulation with 6 cores
(fig. ??). The trajectory length is 17. The core 1 will be work
on the fragment [0, 3], the core 2 [3, 6], etc...
The simulation setting specify what is the begin state, so we
know where the core 1 begin. We can say that the trajectory
of the core 1 is consistent. The problem is for the others
cores.
The method is for all cores (expect the first), we take
randomly one state according to events. If the final state of a
core i is different of the begin state of the core i-1, the core i
starts again its work. For sample, in the fig. ??, the core 2
begin with a different state than the final state of the core 1.
It must to compute again.
We can note here that in the worst case the cost will be the
same of a cost of an non parallel execution, so T.
The performance decreases because at the moment where
two cores must to verify if the final state of one is the same
of the start state of the other, they must to communicate. This
say at the memory level a synchronisation which need time.
More, for storing the trajectory take also extra time.

3.2 Catch me if you can
[?] This algorithm is an improvement of Nicol and Al’s
implementation.

The principle is the same of the Nicol and Al’s algo-
rithm.
There is a trajectory of length T and we have X cores. There
will compute in parallel the intervals.
The difference is, when two trajectories meet, they will be
mixed up (fig. ??). The meeting between trajectories does
not occur at each front of interval but less frequently. This
allow to cushion the cost of memory access.
As we can see on the figure ??, the core 2 started from an
other state of the core 1. We note that the core 1 go on to
work and meet the trajectory of the core 2. It is at this time
that the core 1 stop to work. The trajectory of the core 2
becomes consistent.
The problem with the implementation has been made is the
improvements are not seen beyond three cores.
It’s important to specify all cores share the same sequence of
event. So, there is too many using of global variables (it must
to use locks when a core wants to access it) and it causes

Figure 3: The Catch Me if You Can algorithm

extra time.
Furthermore, there is a task unbalance when a core is
consistent, it stops. To finish, this implementation utilizes
structures not very effective.
All of these problems don’t resolve the problem of synchro-
nisation, trajectory backing and best efficiency.
These algorithms present synchronisation problems or
redundant computing.

4 Tools
Thanks to the monitoring tools (Oprofile or Likwid), I can
analyze the Catch me if you can or my implementation.
This tools give me information about the memory : the cache
misses, the CPU, the performance counters etc... We can get
full information on the hardware during the execution of the
program.

5 Contribution
5.1 The work performed
First at all, I compare the execution time of this algorithm
with the sequential version. By testing on a set of 16 test,
I notes that for 31%, the parallel implementation generated
segmentation errors. In addition for 80% the sequential
version is more effective. After this testing, I decided to see
the code and to search the reason of these results.

As I said before, the first thing we noted is the high
using of the global variables.
The simulation has parameters such as the number of threads,
the trajectory size, the interval size and all cores must access
at all these information. The problem is this requires the
installation of locks.
The second thing that we observe is the simulation core
was directly in the main function without separation on
functions. There is no modularity in the code and if we want
to implement others algorithms, we need to modify all the
simulation part.

Thanks to this rewriting, following this simple analysis,
I decided to implement a first draft to clean up the code. I
leave out the simulation core for later.
I have seen better the choice of the author. Some variables

Figure 4: The new parallel version

must to stay global due to the using of PSI’s library. For the
rest of variable that I can remove, I put them in intern. If we
need them, just put them in settings.

And then to made a code more clean and readable, I
did structures. It composed for sample of all information
useful for the settings of the simulation (the start states, the
seed, the stop function, the trajectory size ...).
Then, I decided to implement a new parallel version : ??

The trajectory is cut in different part and each part work on
a fragment. There are more fragment than cores. This allow
to resolve the problem of task unbalance : when a core finish
its can work in the other fragment.
The only trajectory to be consistent is the first core.
When an other trajectory of a core i meet the consistent tra-
jectory, the first core copy all states compute by the core i and
the core i now must to compute an other fragment of the tra-
jectory.
If a core has spent too much time to calculate the same inter-
val without ever becoming consistent, so it calculates an other
interval.
The implementation focus essentially on the problem of task
distribution.

5.2 Improvements
Thereafter, I want to test my implementation, see thanks to
profilers, performances loss of points. I want to improve the
code, I want to identify structures which are ineffective and
understand how reduce the cost of the backing trajectory. For
this, I want to try to grow the intervals where we check the
core trajectory or an other possibility is to store less informa-
tion. Also, I want to implement others algorithms and see if
there are differences of performances.

6 Conclusion
The simulation of a long trajectory takes an important time.
For reduce this cost, one of solution is to implement a parallel
algorithm.
Catch me if you can is a parallel implementation but present
some problems. It wasn’t performance compare of the se-
quential version. That’s why I clean up the code in the first
past to eliminate some performance looses.

Figure 5: A parallel algorithm of simulation

By improve the number of fragment, so the amount of work,
we can resolve the task distribution problem. Others imple-
mentations will be interesting to try and test.

Software encapsulation of hardware IPs
Magistère en Informatique de Grenoble 2015

Thomas Baumela
Supervised by : Pr. Olivier Gruber and Pr. Frédéric Pétrot

I understand what plagiarism entails and I declare that this report
is my own, original work.
Thomas Baumela, August 2015

Abstract
Recent studies show that 70% of Linux Kernel
crashes are caused by device driver bugs. This is
explained by several facts: device drivers are hard
to write and new device drivers are needed all the
time. Device drivers are hard to write because they
are highly dependent on both the specifics of each
operating system and the minute details of hard-
ware devices. Furthermore, they are often executed
in privileged mode, hence a bug in a driver usually
means a system crash.
To address these problems, we advocate the fol-
lowing solution: split-drivers as services intercon-
nected through a software bus. With a split-driver,
the complex hardware related part of a driver,
called the back-end part of the driver, can be ex-
ecuted by the device, assuming that devices embed
a small processor—something that is increasingly
true with today’s complex IPs. The other part of a
driver, called the front-end, becomes a simple class-
generic driver that runs as a regular driver in Linux.
The two parts, the front-end and back-end, com-
municate using our software bus, exchanging mes-
sages.
Besides encapsulating bugs on the device itself, al-
lowing to simply reset the device if the back-end
driver was to fail, the proposed approach is quite
important from a business perspective. Device
manufacturers only need to write a single device
driver. Not only they have the skills needed, but
since the back-end driver runs on the device, they
fully control and master the hardware/software en-
vironment. Furthermore, shipping a device means
that it is readily available, no need to wait for the
next Linux update cycle to push the new driver.

1 Introduction
Writing a device driver is hard, some say it is black magic.
Writing a device driver requires a very detailed understand-

ing of the kernel hosting that driver, the Linux kernel in our
case. But writing a device driver also requires a perfect un-
derstanding of the hardware device itself. Not only writing a
device driver is hard, but buggy device drivers usually mean
an unstable machine and most often a brutal kernel crash.
Of course, device drivers become more and more stable over
time, like any other software, but hardware devices constantly
change and new devices appear all the time. Writing device
drivers and getting it right is therefore a never-ending strug-
gle.

Since the 1960’s device drivers are based on writing and
reading values into device registers. But in contrast to user-
space programming, writing and reading regular memory lo-
cations, reading and writing device registers are about com-
municating with the device, following a communication pro-
tocol that is specified for each device. For instance, this im-
plies that some of these operations need to be performed in
a particular order and using a precise timing. The neces-
sary information is of course available in the hardware docu-
mentation, if the device manufacturer provides it, otherwise,
retro-engineering is necessary. Even when available, hard-
ware specifications are complex and notoriously incomplete
from the perspective of device driver writers.

Device drivers are often provided by the manufacturer it-
self, who deeply knows the behavior of its device. However,
the challenge becomes the required knowledge of the host-
ing operating systems, such as Windows, Mac-OS, or Linux.
In the embedded world, many other operating systems exist,
such as WindRiver, eCos, or variants of Linux like uclinux.
In the Linux kernel, device drivers are written as kernel mod-
ules. A kernel module is a program that is dynamically loaded
and unloaded into the kernel at runtime. Writing kernel mod-
ules requires a non-negligible investment and a good over-
all understanding of the Linux kernel. For more informa-
tion on Linux device drivers, please refer to this book [Cor-
bet Jonathan, 2005]. Few developers in hardware shops have
this know-how and therefore drivers remain hard to write.

Our idea to solve these issues is to use the concept of split-
drivers, currently used by Xen [Chisnall, 2007] with para-
virtualized Linux images. The concept of a split-driver is
simple. Encapsulate all the hardware specifics in the back-
end driver that executes on the device. Use front-end drivers
that are generic drivers for different classes of hardware de-
vices, such as mouse, keyboard, or storage. The front-end

and back-end drivers communicate through our software bus.
Each driver is a service, registered or unregistered from the
bus, following a hot-plug model. Once registered, the front-
end and back-end drivers communicate through messages.

The message-oriented protocol is generic, related to the
class of devices, no longer about the hardware specifics of
a given device. Each class of devices, such as a mouse or a
disk, only needs to define one generic protocol for the generic
front-end driver to communicate with any back-end driver of
that class. This is somehow generalizing the popular USB-
style split-drivers. This approach is especially interesting for
System on Chip (SoC) that are increasingly moving towards a
distributed architecture where hardware devices are accessed
through a Network-on-Chip (NoC). It would make then sense
to split all drivers, all relying on the use of our software bus,
interconnecting front-ends and back-ends across the NoC.

This document is structured as follows. First, we will de-
scribe the software bus interface and how it can be used to
set up multiple communicating software modules, from the
user perspective. Then we will define the design of our soft-
ware, how it internally works, the protocols and correspond-
ing automata. Finally we will give the details of the Linux
integration, in a simulation environment.

2 Software Bus
In this section, we will present the software bus API and the
programming concepts from the user perspective.

2.1 Broker API
At the heart of our software bus is the broker, a service-
oriented registry interconnecting front-ends and back-ends.
Front-ends and back-ends are services that can dynamically
register and unregister. Once registered, services can estab-
lish channels in order communicate through messages. Con-
sequently, services are written following an event-driven pro-
gramming style.

The API is object-oriented in style with entities defined
through a state (C structure) and an interface (function point-
ers). The broker interface is given below. The broker func-
tions are called by services to register and connect. Notice
the broker is a singleton accessed through a global variable
(gBroker). Notice also that all broker functions are asyn-
chronous.

s t r u c t s e r v i c e b r o k e r i {
s t a t u s t (∗ r e g i s t e r s e r v i c e) (s t r u c t

s e r v i c e b r o k e r ∗ t h i s ,
s t r u c t s e r v i c e ∗ s e r v i c e) ;

s t a t u s t (∗ u n r e g i s t e r s e r v i c e) (s t r u c t
s e r v i c e b r o k e r ∗ t h i s ,

s t r u c t s e r v i c e ∗ s e r v i c e) ;
s t a t u s t (∗ t r a c k s e r v i c e) (s t r u c t

s e r v i c e b r o k e r ∗ t h i s ,
s t r u c t s e r v i c e t r a c k e r ∗ t r a c k e r) ;

s t a t u s t (∗ u n t r a c k s e r v i c e) (s t r u c t
s e r v i c e b r o k e r ∗ t h i s ,

s t r u c t s e r v i c e t r a c k e r ∗ t r a c k e r) ;
s t a t u s t (∗ pos t) (s t r u c t s e r v i c e b r o k e r ∗

t h i s ,
s t r u c t s e r v i c e ∗ se rv , vo id ∗ e v t) ;

} ;
s t r u c t s e r v i c e b r o k e r {

s t r u c t s e r v i c e b r o k e r i ∗ ops ;
c h a r ∗ name ;

} ;
e x t e r n s t r u c t s e r v i c e b r o k e r ∗ gBroker ;

The service state and interface are given below. Note that
a service is described by a name and properties so that it can
be tracked. The callbacks are used by the broker to notify
the service of various events. For instance, notice the two
notifications confirming that a service is registered or unreg-
istered. Notice the react function for reacting to self-posted
events (via the broker post function). Finally, notice the con-
nected function to be notified that a communication channel
is established from the described service.

s t r u c t s e r v i c e p r o p s {
u i n t 3 2 t s e r v i c e i d ;
u i n t 3 2 t v e n d o r i d ;
c h a r name [MAX NAME LENGTH] ;

} ;
s t r u c t s e r v i c e i {

/∗ Reac t t o a s e l f p o s t e d e v e n t . ∗ /
s t a t u s t (∗ r e a c t) (s t r u c t s e r v i c e ∗ t h i s ,

vo id ∗ e v t) ;
s t a t u s t (∗ connected) (s t r u c t s e r v i c e ∗

t h i s ,
s t r u c t s e r v i c e c h a n n e l ∗ channe l ,

s t r u c t s e r v i c e p r o p s ∗ p r o p s) ;
s t a t u s t (∗ r e g i s t e r e d) (s t r u c t s e r v i c e

∗ t h i s) ;
s t a t u s t (∗ u n r e g i s t e r e d) (s t r u c t s e r v i c e

∗ t h i s) ;
} ;
s t r u c t s e r v i c e {

s t r u c t s e r v i c e i ∗ ops ;
c o n s t c h a r ∗ name ;
s t r u c t s e r v i c e p r o p s ∗ p r o p s ;

} ;

A registered service can track other services through
tracker objects. The concept is that a tracker will be presented
with registered services and asked if they are a match. If they
are a match, the broker will establish a communication chan-
nel.

s t r u c t s e r v i c e t r a c k e r i {
s t a t u s t (∗match) (s t r u c t

s e r v i c e t r a c k e r ∗ t h i s ,
s t r u c t s e r v i c e p r o p s ∗ p r o p s) ;

s t a t u s t (∗ connected) (s t r u c t
s e r v i c e t r a c k e r ∗ t h i s ,

s t r u c t s e r v i c e c h a n n e l ∗ channe l ,
s t r u c t s e r v i c e p r o p s ∗ p r o p s) ;

} ;
s t r u c t s e r v i c e t r a c k e r {

s t r u c t s e r v i c e t r a c k e r i ∗ ops ;
s t r u c t s e r v i c e ∗ s e r v i c e ; / /

t r a c k i n g s e r v i c e
} ;

Channels are the mean for services to communicate by
posting events. There are two sides to a channel, the track-
ing side and the tracked side. This means that there are two

channel objects, created by the broker, that permit posting
events to the other side.

s t r u c t s e r v i c e c h a n n e l i {
s t a t u s t (∗ c l o s e) (s t r u c t

s e r v i c e c h a n n e l ∗ t h i s) ;
s t a t u s t (∗ pos t) (s t r u c t

s e r v i c e c h a n n e l ∗ t h i s , i n t ev t ,
vo id ∗ d a t a) ;

} ;
enum channe l k ind {

TRACKING SIDE ,
TRACKED SIDE

} ;
s t r u c t s e r v i c e c h a n n e l {

s t r u c t s e r v i c e c h a n n e l i ∗ ops ;
enum channe l k ind k ind ;
c o n s t s t r u c t s e r v i c e ∗ s e r v i c e ;
s t r u c t s e r v i c e c h a n n e l l i s t e n e r ∗

l i s t e n e r ;
} ;

To follow what is happening on a channel, a service creates
a channel listener. A channel listener mainly reacts to events
posted by the other side of the channel. A channel listener is
also informed when the channel is disconnected.

s t r u c t s e r v i c e c h a n n e l l i s t e n e r i {
s t a t u s t (∗ r e a c t) (s t r u c t

s e r v i c e c h a n n e l l i s t e n e r ∗ t h i s , i n t
ev t , vo id ∗

d a t a) ;
s t a t u s t (∗ d i s c o n n e c t e d) (s t r u c t

s e r v i c e c h a n n e l l i s t e n e r ∗ t h i s) ;
} ;
s t r u c t s e r v i c e c h a n n e l l i s t e n e r {

s t r u c t s e r v i c e c h a n n e l l i s t e n e r i ∗ ops ;
s t r u c t s e r v i c e c h a n n e l ∗

c h a n n e l ;
} ;

2.2 Standard service interraction
Figure 1 illustrates the standard service interractions via our
Broker :

• Registering a service

• Tracking a service

• Establish a communication channel

• Exchange messages

• Closing the channel

Consider two services A and B. The goal of A is to connect
to B and to send it a message. Each service needs to register
with the broker, using the register service function (1). When
the registration is done, A has been added to the known ac-
tive services and it receives a registered notification (2) that
confirms that it is now registered.

Because A is looking for B, it needs to track it via our bro-
ker. A’s Tracker consists of several callback functions, but the
important one is the match callback, asking the tracking ser-
vice if another service is matching its particular interest. In
the particular case of our service A, the match callback will

A service B service

Broker

(1)
register_service(A)

(2)
registered()

(5) connected()(3)
track_service(T)

(4) match(B)

post

post

A’s tracker
(T)

react()

react()

(5) connected()

Figure 1: Example scenario of how broker can be used

return true only when asked if the service B is a match. Since
our broker knows that A is tracking a service, it will call the
tracker’s match callback of A (4) for every already registered
service (other than A, of course). As new services are regis-
tered, our broker will keep invoking service A for a match.
When the service A declares a match on the service B, our
Broker establishes a connection between A and B through a
channel and notifies both services (5) that the connection has
been established.

The service A then sends a message to B through the chan-
nel using the post channel function. The Broker calls the react
callback on the service B. Communication will continue until
either side closes the channel.

3 Software bus design
The design of our software bus has been influenced by our
assumptions about the hardware. This hardware architecture
is composed of a host system and multiple IP systems. These
systems are connected to a NoC and a Network Interface (NI)
is attached to each IP systems. A Network Interface is a piece
of hardware that handles message transmission between IPs
and host system. When a message needs to be sent from an IP
to the host, the software writes the message in the local mem-
ory. The NI then reads the message and transmit it through
the NoC to finally write it into the host local memory. Sym-
metrically, a NI can transmit messages from the host system
to its IP system.

Software bus instances are running on each IP systems
CPUs and on the host system CPUs. Each instance is ex-
actly the same as the design of the software bus is symmetric.
When a service is registering itself, it is effectively registered
on the local instance running on the same CPU. To perform
the service interactions seen before (channel creation, mes-
sage posting, etc.) broker instances need to exchange control
events, using the NoC. These control messages are used by
the protocols we will now introduce.

Tracking side Tracked side

broker service

tracker

channel

service

channel

broker

Figure 2: Broker data structures

Several elements are influencing our choices for the proto-
cols between bus instances. First, they need to perform the
expected behavior of the software bus, calling the right call-
backs at the right time, in the right order. Also, they need
to ensure that at every time, a data structure reference, sent
by a software bus instance to another, is meaningful. This
means that we need to be careful about when data structures
are disposed. Figure 2 shows these data structures and their
reference relations.

Registering a service: Figure 5 shows the typical steps to
establish a communication channel : Registering a service,
tracking a service and channel communication.

When a service register itself on a broker instance, a bro-
ker service structure is allocated, describing the registered
service structure. This structure is added to a list of regis-
tered services and a control event is broadcast to all broker
instances, notifying that the new service is registered. Other
instances will be able to allowing their services to track this
new service or simply ignore the control event. The control
event contains the new broker service structure pointer and
the service properties. Properties can be used at any time but
broker service pointer act as an unique identifier and should
only be dereferenced on the broker instance that creates it.

NOT TRACKING CLOSECONNECTINGTRACKING
match

not matching

Figure 3: Service tracking automaton

Tracking a service: When a service tracks another one, the
local broker instance sends a control event to all other bro-
ker instances, asking them to send all their registered ser-
vice properties (and service pointers used as identifiers). The

tracking service’s broker instance receives these properties
and call the tracker’s match function for each of them. When
there’s a match, a channel connection is initialized. Figure 3
shows the service tracking automaton.

CLOSED CLOSEOPENCONNECTING
connected

CLOSED CLOSEOPEN
connect

Tracking side
Tracked side

refused

refused

Figure 4: Channel creation automaton

registered(A)

registered(B)

track

registered(A)

connect

connected

event ignored

register

register

track

post(event)

post(event)

connected

connected

tracked side
broker

tracking side
broker

Service
A

Service
B

Figure 5: Classic interservice communication

Channel connection: Channel creation is always initiated
tracking side. When a broker instance wants to create a chan-
nel, it first allocates the channel data structures for its side.
Then it sends a channel creation control event to the broker
instance where the tracked service is registered. This con-
trol event contains a channel pointer used to connect the two

sides, the tracker pointer and the tracking service properties.
The tracked-side broker then creates its channel structures
and notify the service that it is connected. It then sends an ac-
knowledgment control event, containing its channel pointer.
Finally, the tracking side broker complete its data structures
and notify the tracker that it is connected. Figure 4 shows the
channel creation automaton.

OPEN CLOSECLOSEDHALF
CLOSED

close || ask_close /
close ack

OPEN CLOSECLOSEDHALF
CLOSED

close / send ask_close close / ack

Tracking side
Tracked side

close / ack

Figure 6: Channel disconnection automaton

close_request

close

closed

close

closed

closed

free channel
structures

message sending allowed
message sending ignored
message sending forbidden

tracked side
broker

tracking side
broker

free channel
structures

Service A Service B

Figure 7: Channel disconnection protocol

Channel disconnection: Channel disconnection is again
always initiated by the tracking side. If the tracked service
wants to disconnect its channel, its instance sends a control
event asking the tracking-side broker to start the disconnec-
tion protocol. Tracking-side broker sends a disconnect con-
trol event to the tracked side (after changing the channel sta-
tus). The tracked-side broker completely removes the chan-
nel (and free memory) and notifies the tracked service that the
channel is closed. It then sends an acknowledgement control
event to the tracker-side broker that will free the channel data
structures. Figure 6 shows the channel disconnection automa-
ton. Figure 7 illustrates the channel disconnection protocol.

REGISTERED CLOSEUNREGISTEREDUNREGISTERING
unregister unregister_ack

Figure 8: Service unregisteration automaton

Service A

unregistered

unregistered_ack

unregister

unregistered

free service
structures

operations allowed
operations ignored
tracking, channel connection or
any operation related to the
unregistering service is forbidden

tracked side
broker

tracking side
broker

Figure 9: Unregistering service protocol

Unregister service: To unregister a service, the local bro-
ker changes the service status to unregistering and broadcast
an event to all other instances. The other instances must an-
swer by sending back an acknowledgement event. When all
acknowledgments have been received, the local broker knows
it is now safe to free the service data structure. Figure 8 shows
the service unregistration automaton. Figure 9 illustrates the
corresponding protocol.

4 Linux Integration
The integration of our software bus in Linux was a crucial
step. We are happy to report that the integration is a success,
even if more testing is still in order. In this section, we will
first briefly recall the basics of device drivers in the Linux
kernel and then discuss how we integrated our software bus.
Finally we will sum-up all the software and simulated hard-
ware prototypes that has been developed and tested as proof
of concepts.

4.1 Linux device drivers
A Linux device driver implements the following four meth-
ods: open, close, read and write. For example a block driver
in Linux is attached to one or multiple block devices. When
a system call is made on a block device, the call is redirected
on the corresponding driver method. A device driver has es-
sentially two primordial roles: (i) drive a specific hardware
and (ii) manage the impedance mismatch between software
and hardware programming models.

Driving a specific hardware is done through reading and
writing device registers, interacting with the finite state au-
tomaton implemented in hardware. This requires in depth
knowledge of the device internals, usually found in more

or less detail in the documentation provided by the manu-
facturer. By essence, the hardware programming model is
event-oriented. The driver requests something, the hardware
will execute the request asynchronously, usually indicating
the completion of the request by raising a hardware interrupt.

In contrast, the Linux kernel is fundamentally thread-
oriented, assuming synchronous operations. For instance, the
open/close and read/write operations are synchronous opera-
tions from the perspective of the user-level thread executing
them. For example, a read operation will block until the read
data is available. It is therefore the responsibility of the de-
vice driver to bridge the software world of blocking threads
and the hardware world of asynchronous events.

The boundary between these two styles appears where the
device needs to block a system call from the user, waiting for
hardware events. On the one hand, the user thread is blocked,
using thread mechanisms (mutex, semaphores, wait-queues,
etc.). On the other hand, interrupt handlers are called with
hardware interrupts, waking up the blocked thread. With our
broker, front-end drivers also use the same mix of thread and
event programming.

4.2 Split-driver
The idea of the split-driver is to split a Linux driver at the
boundary between the OS specific and the hardware specific
part of a driver. The front-end runs the OS specific part. In
Linux, it means that the front-end is interfaced the system
calls. Because the system call functions are synchronous, the
front-end blocks the thread that made the call, while it is com-
municating with the back-end. The back-end driver runs the
hardware specific part. When a front-end request is received
by the back-end, it communicates with the hardware and send
back a response. It also can notify the back-end of some hard-
ware event, sending messages containing the nature of the
hardware events.

Figure 10 shows an example of the split-driver model. The
front-end driver is interfaced with the operating system as a
block driver. The back-end driver drives the hardware, a disk
in our case. Both communicate using our software bus as
front-end and back-end are broker services. The interface of
these services is event-driven. Notice that the front-end fol-
lows a similar model as classic Linux device drivers, using
both threading and event-driven programming. The back-end
is fully event-driven.

Front-end and back-end typically run on different systems.
With one front-end running on the host system and back-ends
running on the device system. Sub-systems are connected
to a Network on Chip (NoC). The software bus situates on
top of that NoC, abstracting it for the broker services. Fig-
ure 11 shows the hardware architecture, several subsystems,
the software bus, and the front-end and back-end drivers com-
municating using the software bus.

4.3 Software bus integration
For our experiments, we use a software functional simulation
of this environment, allowing us to experiment our solution
faster and easier than on a real hardware system. Our ex-
periments are integrated in this simulation environment, writ-
ten using the RABBITS environment developed by the TIMA

Front-end Back-end

open

close

read

w
rite

Broker service
interface

Broker service
interface

Software bus

Linux interface

Block-device interface Hardware interface

Figure 10: Split-driver model

ARM Cores

NI

RAM ARM Cores

RAM

Figure 11: Hardware architecture

laboratory. The simulated hardware architecture (illustrated
by Figure 11) is composed of a host system and an IP system.
Both host and IP system have ARM cores, memory and a se-
rial device used for console access. The IP system has also a
Network Interface (NI) device, abstracting the IP system as a
simple device connected to the host NoC.

The NI is a hardware element, written in a previous work
and integrated as a RABBITS hardware component. The
NI component holds FIFO buffers for receiving and sending
messages, respecting their departure order. It is designed with
ring buffer algorithm that allows to use lock free algorithm to
send and receive messages. NIs reads and writes messages
directly in the ram, using Direct Memory Access (DMA) into
ring buffers that has been initialized by the software running
on the systems.

To integrate our software bus, we first needed to write a
simulation platform, in C++ language, using systemC and the
RABBITS environment. This platform performs a functional
simulation of the described hardware architecture. On both
host and IP systems, a small custom Linux distribution is run-
ning, containing the minimal tools to loading kernel modules.

This solution is faster than developing on a real hardware sys-
tem immediately and accurate enough to demonstrate the be-
havior of our software implementation.

Our broker implementation is wrapped into a kernel mod-
ule, as device drivers are. This module is in charge both to
perform the protocols introduced in the broker design section
and also to use the NoC hardware interface to sends and re-
ceive data over the NoC. To send data overt the NoC, a broker
instance drives the NI hardware. To send a message, the bro-
ker writes the message into the ring buffer and increment its
write ring buffer index. The NI then throws back a hardware
interrupt, notifying the broker that a message is on departure,
and sends it to through the NoC. At the destination, the NI
copy the message into the destination system’s memory and
notify the message arrival with a hardware interrupt.

To show the functional behavior of our software bus, we
have developed a ramdisk split-driver. Back-ends are running
on the IP system and contain all the data storage logic. The
two ends communicates using our software bus, using their
custom read/write request/response protocol. Several back-
end can be dynamically loaded and unloaded. When a back-
end is loaded, it registers a service into the software bus and
tracks the front-end. When connected to the front-end, the
front-end dynamically creates a device file into the host file
system, allowing user to read or write into the device. When
a read or write operation is required, the front-end sends a
appropriated. The back-end process this request, by reading
or writing data into its data storage, and then sends back a
response containing either the required data in the case of a
read operation, or an acknowledgment that the data has been
successfully written. When a back-end is unloaded, the front-
end, notified of the disconnection of a channel, dynamically
removes the corresponding device from the host file system.

5 Conclusion
The work done so far is a proof of concept, demonstrating that
our software bus can be implemented, integrated in Linux,
and used to split-drivers. The software bus allows front-ends
and back-ends distributed communications, taking place of
the Network-on-Chip (NoC). The Linux kernels and our soft-
wares are executed on a simulator of the real target platform.

The further steps will be to improve the Network Interface
model in a continuation to improve its current behavior and
interface, and to run on a real hardware, using an FPGA to
model the SoC and NoC.

References
[Chisnall, 2007] David Chisnall. The Definitive Guide to the

Xen Hypervisor. Prentice Hall Press, Upper Saddle River,
NJ, USA, first edition, 2007.

[Corbet Jonathan, 2005] Kroah-Hartman Greg Cor-
bet Jonathan, Rubini Alessandro. Linux Device Drivers,
3rd Edition. O’Reilly Media, Inc., 2005.

Verifying Good Practice Rules at Runtime with a Debugger
Raphaël JAKSE

Supervised by : Yliès Falcone, Kevin Pouget and Jean-François Méhaut
Laboratoire Informatique de Grenoble, UJF, CNRS, Inria, Corse

raphael.jakse@gmail.com, ylies.falcone@ujf-grenoble.fr,
Jean-Francois.Mehaut@imag.fr, kevin.pouget@imag.fr

Abstract

With the objective to help reducing the impact of
software bugs, we define a way to ease discov-
ery and understanding of a class of bugs related to
good programming practices and good APIs or li-
braries usage. Our idea is to check properties rel-
ative to good practice and good usage at runtime
using a debugger. In this paper, we extend the run-
time property-checking model defined in a previous
work and provide a efficient implementation of this
extension. This extension is based on a trace slicing
mechanism which allows efficient handling of pa-
rameterized properties, common among such good
practice and good library usage properties.

1 Introduction
Writing softwares containing bugs is unfortunately common.
A bug is a flaw preventing a system to behave as intended. By
definition, eliminating bugs is desirable. Bugs can range from
minor to critical. Minor bugs most likely cause annoyances
while critical bugs can cost human lives.

One way of eliminating a software bug is to notice its ex-
istence by observing one of its consequences, find its cause
in the source code and fix it. Fixing a bug is, in many cases,
the easiest step of eliminating it when it is fully understood.
Finding out its existence and fully understanding it, however,
can both be really hard.

Bug discovery by manual testing. Several ways of discov-
ering a bug exist. One of the most obvious ways is observing
one of its consequences by using the software. Most obvious
bugs can easily be spotted this way during the development of
the software by testing manually modifications to the code or
by a team responsible for testing the software Itkonen et al..
Bugs are also spotted by final users of the software, which,
depending on the development model, the kind of software
and the severity of the bug, is more or less undesirable.

Automatic testing. Automatic testing through unit tests can
be used to ensure already fixed bug do not show again, to limit
regressions and to check the code is correct for a restricted

set of inputs Itkonen et al.. Research have been done on au-
tomatic generation of unit tests Cheon and Leavens Cohen et
al..

Preventing bugs with static analysis. Another common
way of discovering bug is using static analysis or abstract
interpretation Cousot and Cousot. With these methods, the
source code of the software is analyzed without being run in
order to find elements which are most likely programming
errors or which might cause maintenance difficulties, raising
the risk of introducing bugs during subsequent modifications.
They can also prove some properties over the software’s be-
havior. Unfortunately, while theses approaches are extremely
valuable, they are not exempt of flaws: they can be really
slow, limited to certain classes of bugs or properties, produce
false positives and false negatives. While static analysis and
abstract analysis can provide certain guaranties by proving
properties over the program, proving correction of a software
by static analysis is unsolvable in the general case Landi.

Theses approaches of finding bugs, as well as other ap-
proaches not covered in this introduction, have their own sets
of drawbacks and benefits, making them all valuable for dis-
covering different sets of bugs in different situations: some
kind of bugs are more easily avoided by analyzing the soft-
ware statically, other bugs are more easily and rapidly spotted
by testing the software directly.

There are, however, bugs that are not discovered or un-
derstood easily or efficiently by aforementioned methods: as
said above, static analysis cannot find every bug in all soft-
wares and some bug are not apparent in an obvious way in all
tests. When a malfunction shows during a test, its cause is
not always easily understandable as the programming error at
its root could be caused far before during the execution of the
software (e.g. a pointer that should contain a valid address
instead of a null or a random address).

Motivations. In this paper, we therefore present a technique
complementing hereinabove methods, trying to gather their
respective advantages, with a different set of benefits and
drawbacks, thus providing a way of finding and understand-
ing a class of bugs more efficiently and more easily in certain
situations.

An entire class of bugs is caused by misuse of Applica-

tion Programming Interfaces (API) or libraries or by breaking
common programming rules such as “do not modify a con-
tainer while you are iterating on it, except under certain doc-
umented specific conditions”. Such rules, as well as “good
API/library usage”, exist because if they are not followed,
undefined or unattended behaviors can occur: while “iterat-
ing over a container in a given order” can be easily defined,
“iterating over a muting container in a given order”, under
certain situations, can be hard, nay impossible to define, re-
sulting in undefined behavior or runtime breakage. In the case
of libraries or APIs, using them in a way that differs from the
intended way can make the library user reach an untested and
unforeseen case which can trigger bugs in the library or the
application. The unintended use can also work, by chance, in
the used version of the library, but the guarantee that it will
work in a future version of the library is inexistent.

Goal. In this paper, we aim to present a method based on
a debugger to verify, during the execution, “good practice”
kind of rules, that is, rules inspired by common programming
rules and properties describing correct API or library use.

We first introduce a simplified model inspired from the one
we introduced in our previous work Jakse et al.. We then
introduce an extension of this model to handle such properties
efficiently. This extension is based on the concept of trace
slicing as described and formalized by Roşu and Chen Rosu
and Chen. We describe an efficient implementation of this
extended model, used in our proof-of-concept.

2 Description of the Existing Property
Checking Model

Debugger-based property checker. Properties described
in this paper are checked over the execution traces of a soft-
ware with the help of a debugger. The property checker is a
whether a part of the debugger or an extension using a pro-
gramming interface this debugger provides.

An execution trace is a sequence of events which can be
monitored by a debugger, ordered by time. Properties are
checked during the execution (“online”), meaning that while
processing an event, the next event is not accessible. Theoret-
ically, nothing prevents the trace from being infinite, though
traces are always finite in practice and some properties might
require the end of the trace to give a verdict.

Events which can be monitored by a debugger mainly in-
clude function calls. A function call event includes any value
which can be accessed by the debugger before the first in-
struction of the function’s body, including its parameters and
the current value of global variables accessible from within
the function. It also includes the return value of the function
if, instead of considering the moment of the call, we consider
the moment when the function returns. In practice, function
calls are monitored through breakpoints. In order to moni-
tor a function call, the property checker sets a breakpoint on
the first instruction of the function’s body and then asks the
debugger for values needed to check the property. As an il-
lustration for this model, see the architecture of our proof of
concept in Figure 1, taken from our previous paper.

GDB Process

Check-exec (inside Python)

Monitor 1

Monitor n

Monitored Process

event
Breakpoint reached

set breakpoints

event
Breakpoint reached

Program execution

Figure 1: Architecture of check-exec, our proof-of-
concept. GDB is the debugger on which we based our imple-
mentation. GDB provides a Python programming interface,
we therefore chose to wrote our proof-of-concept in Python.
A monitor is an instance of the property-checker. A monitor
corresponds to one property.

Other events that can be monitored include syscalls and
memory accesses (read, write or both). Syscalls can most
likely be viewed as regular function calls in our model,
though in practice monitoring syscalls involves different
mechanisms such as catchpoints instead of breakpoints.
Monitoring memory accesses, however, cause important per-
formance issues in practice, thus needing more research in or-
der to take advantage of this possibility. Both kind of events
will be discussed in Section 4.1.

The advantages of basing the property checker on a debug-
ger are discussed in our previous paper. They mainly con-
sist in good performance, as the monitored program runs at
native speed. Performance penalty are mostly caused by han-
dling breakpoint and the time needed to change the property’s
state. Another advantage is that debuggers already are a fa-
miliar tool for developers so they do not need to learn a com-
pletely new tool to adopt this model. Checking properties at
runtime, while limiting verification to tested executions, al-
lows to handle more complex properties and do not require
long code analyses, permitting to adopt the property checker
in a fast modification-test loop based software development.

Automaton-based property description. In our previous
paper, we defined a formalism to describe properties over
execution traces. We designed this formalism with the idea
that it should be efficient and feel as most natural as pos-
sible to developers, and be general or extensible enough to
describe most properties. Therefore, we chosen to build a
formalism inspired by state machines, which can be found
in many computer science areas such as hardware design,
human-computer interfaces and language theory. We here de-
scribe a simplified model which is sufficient for the needs of
this paper but a more complex model is described in our pre-
vious paper, in which more details are given.

In this formalism, an automaton consists in a set of statesQ
which can be accepting or non accepting, a set of transi-
tions δ, an initial state init and a initial variable environ-
ment σ0 representing the initial memory of the automaton.
A variable environment is a mapping from variable names to

init sink

push : queue_start >= queue_end
or

queue_end - queue_start > queue_size

push : queue_start < queue_end
and

queue_end - queue_start ≤ queue_size

Figure 2: Example of a small property checking whether a
queue overflows

variable values. The input symbols of the automaton are the
events of an execution trace of the monitored program. See
Figure 2 from our previous paper for a minimal example of an
automaton in this formalism. In this example, the sink state is
non-accepting while the init state is accepting. The init state
is reached when a queue overflow occurs.

(qk, σk) describes the internal state of the automaton be-
fore the kth event of the trace, including its current state qk
and its current variable environment σk. The property de-
scribed by the automaton is verified at the step k if and only
if the current state is an accepting state.

A transition t consists in a start state start(t), an event
name, a guard guard(t), an action and a destination state
dest(t). For each event concerned by the transition, the guard
of the transition is a function depending on the values of the
parameters values of the event and the current variable en-
vironment σk, returning a value in {true, false}. The guard
decides if the transition must be taken. The action is also a
function depending on the values of the parameters values of
the event and the current variable environment σk, but con-
trary to the guard, it returns a new variable environment con-
taining the same variable names as σk. At the beginning of
the execution trace, the current state of the automaton is the
initial state. For the kth event ek of the trace, transitions from
the current state to a destination state describe the next inter-
nal state (qk+1, σk+1) of the machine. For each transition t
of the current state, if the event is concerned by the transition
(the event name of the transition matches ek), if the guard
returns true, the new environment σk+1 is given by the re-
turn value of the action and the new current state qk+1 is the
destination state of the transition.

3 Extending the Model to Support Trace
Slicing

3.1 Motivations
In this subsection, we briefly introduce trace slicing and we
give examples of properties showing the need for trace slicing
support in our model.

Many properties, including “good practice” and “good us-
age” properties, are to be checked on a per-object, or a per-
family of object basis, rather than at a more global level.
These parameterized properties are not to be checked against
the entire execution trace. They are to be checked against
each part (slice) of the execution trace specific to an instance
of the object, or family of objects to which they relate. In

the next paragraphs, we give examples of such parameterized
properties.

Simple parameterized properties. The simplest parame-
terized properties are those involving one object.

First of such properties are those following the acquire-
release resource model Rosu and Chen, in which each ac-
quired resource must be released and no resource can be re-
leased without being acquired, represented bellow with an
regular expression-like syntax:

∀r, (acquire(r) · release(r))∗

Or, in a negative way:

@r, begin · release(r) | acquire(r) · end

The regular expression, in both cases, is not matched on the
entire execution trace, but it is matched with every slice of the
execution trace corresponding to an instance of the quantified
parameter, that is, for each instance of r, the corresponding
slice of the execution trace contains any event which does not
involve any other instance of r.

Based on the same acquire-release model, any opened file
should be closed:

∀f, (f = fopen() · fclose(f))∗

Reading from or writing to a file can only be done after it
was open and before is was closed:

∀f, (f = fopen() · (fprintf(f)|fread(f))∗ · fclose(f))∗

Any allocated block memory should be freed:

∀p, (p = malloc() · free(p))∗

In C++, any created (“new”d) object should be deleted:

∀obj, (p = new · delete p)∗

Parameterized properties involving several parameters.
There are also more complex properties involving a family
of objects. This typically applies for object which are linked
in one way or another. A good example of such family is col-
lections and iterators. Meaningful iterators are always tied to
a collection, and a corresponding rule is: an iterator must not
be used after a modification of its corresponding collection
if it was created before this modification. See Figure 3 for a
description of this property with an automaton.

An example of slicing a fictive execution trace on this prop-
erty is given in Table 1.

As there can be several iterators over the same collection,
any event involving a collection without any particular itera-
tor, like modify(c), can concern several slices of the execu-
tion trace.

Slice Parameter instances Current state Affected slices
Slice 1 (None, None) init
event: newCollection(c1)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (from slice 1)
event: newIter(c1, i10)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
Slice 3 (c1, i10) iReady (from slice 2)
event: next(i10)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady
Slice 3 (c1, i10) iReady (*)
event: newIter(c1, i11)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
Slice 3 (c1, i10) iReady
Slice 4 (c1, i11) iReady (from slice 2)
event: newCollection(c2)
Slice 1 (None, None) init (*)
.
Slice 5 (c2, None) cReady (from slice 1)
event: modify(c1)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
Slice 3 (c1, i10) invalidated (*)
Slice 4 (c1, i11) invalidated (*)
Slice 5 (c2, None) cReady
event: newIter(c1, i12)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
.
Slice 6 (c1, i11) iReady (from slice 2)
event: newIter(c2, i20)
Slice 1 (None, None) init
.
Slice 5 (c2, None) cReady (*)
Slice 6 (c1, i11) iReady
Slice 7 (c2, i20) iReady (from slice 5)
event: next(i10)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady
Slice 3 (c1, i10) error (*)
.
Slice 7 (c2, i20) iReady
event: next(i20)
Slice 1 (None, None) init
.
Slice 7 (c2, i20) iReady (*)
event: modify(c2)
Slice 1 (None, None) init
.
Slice 5 (c2, None) cReady (*)
Slice 6 (c1, i11) iReady
Slice 7 (c2, i20) invalidated (*)

Table 1: Trace slicing example with a property checking good
usage of iterators and collections.

iReady

newIterator(c, i)

errnext(i)

modifiedmodify(c)

createIterator(c, i)

next(i)

init
newIterator(c, i)

or next(i)
or m

odify(c)

cReady

newCollection(c)

Figure 3: An iterator must not be used after a modification
of its corresponding collection if it was created before this
modification.

3.2 Slicing Automaton Model.
The existing model already handles parameterized properties
like those presented in Section 3.1, being Turing-Complete
thanks to the variable environment, the guard and the action
functions of transition. However, it was designed for proper-
ties checking the state of a program at a global level. Writing
parameterized properties in this model thus involves a lot of
work that is duplicated for each such property and might even
require “bypassing” the model by programming one in the au-
tomaton. The resulting automaton is thus not guaranteed to
look natural and to be easy to understand. As such param-
eterized properties are common, we therefore define, in this
subsection an extension to our model that allows to write pa-
rameterized properties efficiently and more naturally, while
still handling unparameterized properties as a special case of
parameterized properties with 0 parameters. Writing parame-
terized properties in this extension is similar to writing unpa-
rameterized properties in the base model, the only additional
requirement being specifying the slicing parameters.

In the general case, though we know in advance how many
parameters are involved in the trace slicing, as they are de-
clared in the property with a mechanism similar to quanti-
fiers, we do not know how many instances will be encoun-
tered while evaluating the property. We therefore need to be
able to create slice dynamically during the evaluation.

Components of the slicing automaton. The slicing au-
tomaton model is defined by all elements of the base model,
to which we add a tuple S = (P1, . . . , Pm) containing the
list of formal parameters on which the execution trace must
be sliced.

1: Ck+1 ← ∅
2: for all s ∈ Ck do
3: if ∃t ∈ δ, start(t) = q(s) and guard(t) is verified

then
4: Let t be such transition
5: σ′ ← αt(env(s), ek)
6: if inf(I(ek), I(s)) then
7: s′ ← (dest(t), I(s), σ′)
8: else if comp(Ck, I(ek), I(s)) then
9: Ck+1 ← Ck+1 ∪ {s}

10: s′ ← (dest(t),merge(I(s), I(ek)), σ
′)

11: else . This slice is not concerned by the event
12: s′ ← s
13: end if
14: else . This state is not concerned by the event
15: s′ ← s
16: end if
17: Ck+1 ← Ck+1 ∪ {s′}
18: end for
[1]

Figure 4: Computing the next internal state of the slicing au-
tomaton

Before the event ek, the current internal state Ck of the
slicing automaton is a set of slices objects corresponding to
the slices of the execution trace. Each slice object s con-
tains a current state q(s) ∈ Q, a tuple I(s) of parame-
ter instances (I(s)1, . . . , I(s)m) and the variable environ-
ment env(s). For any i ∈ {1, . . . ,m}, I(s)i = None if
the parameter Pi of S is not instantiated in this slice.

The property described by the automaton is verified at the
step k if and only if the current state of every slice of Ck is an
accepting state.

Running the slicing automaton over a trace. At step k =
0, that is, before handling the first event, the internal cur-
rent state C0 of the slicing automaton is the singleton {s0}
with s0 such that q(s0) = init, env(s0) = σ0 and I(s0) =
(None, . . . ,None).

That is, the initial internal current state consists in a single
slice without any instantiated slicing parameter.

The internal stateCk+1 of the slicing automaton at step k+
1 is defined using the internal state Ck at step k and the kth
event, ek, of the execution trace, according to the procedure 4.

We note:

• αt the action function of the transition which, from a
variable environment and the event, returns a new vari-
able environment.

• param(e) the function which maps a formal parameter
of the event e to its instance in e.

• I(ek) the tuple of instances of the property’s slicing
parameters built from the parameter instances of the
event ek. If a slicing parameter instance is not given
by the event, the corresponding component of the tuple
is None.

The expression inf(i1, i2) checks whether each component
of the parameter instance tuple i1 is equal to None or to the
corresponding component of the parameter instance tuple i2.

In the case i1 is an instance tuple derived from an event
and i2 is an instance tuple of a slice, if inf(i1, i2) is true, we
are in the case where the event belongs to the slice: every
parameter instance given by the event is equal to the corre-
sponding instance of the slice. If inf(i1, i2) is false, the event
belongs to another existing slice or a slice which is to be cre-
ated.

The expression comp(C, I(ek), I(s)) checks whether ek
must lead to the creation of a new slice, given existing slices
in C. This is the case if:
• ∀i ∈ {1, . . . ,#(S)}, I(s)i 6= None and I(ek)i 6=
None ⇒ I(s)i = I(ek)i, that is, there are no incom-
patible parameters between parameter instances, and
• ∀s′ ∈ C, inf(I(s), I(s′)) is false or I(ek) and I(s′) are

incompatible, that is, there is no slice at the same time
more specific than s and compatible with the event pa-
rameter instances, “more suitable” for this event.

The expression merge(I(s), I(ek)) gives a tuple of the
same size of I(s) and I(ek), in which the jth component
is equal to the jth component of I(s) if this component is
not None, otherwise to the jth component of I(ek), which
can be None. If both components are not None, by construc-
tion of the procedure, they are equal. merge(I(s), I(ek)) can
be seen as a kind of least upper bound of I(s) and I(ek).

4 Implementation of the Slicing Automaton
Model

In this section, we describe an efficient implementation of
the slicing automaton model defined in Subsection 3.2. A
naive implementation would indeed be inefficient when deal-
ing with execution trace containing a large number of in-
stances of the slicing parameter tuple, as for each event of
the trace, the set of slices would be entirely visited, and for
each slice, this set can be visited a second time. Determin-
ing, at anytime, whether the property holds is also costly as
it merely requires to loop over the set of slices to look for a
non-accepting current state.

Our implementation, inspired by the algorithms described
by Roşu and Chen Rosu and Chen and used in our proof-of-
concept, make use of appropriate data “caching” structures to
avoid looping over the set of slices altogether.

Optimizing access to the set of current states. In order to
make this access efficient, we define CSC, a counter (multiset)
which maps each q ∈ Q to the number of slices of which q
is the current state. Each time a slice is added, removed or
updated, the CSC is updated. The multiset can be efficiently
implemented as a hash table or, even better, by a simple ar-
ray if states are represented by naturals. In both cases, ob-
taining the set of states means iterating over the set of states,
listing each state q for which CSC[q] is not zero. If the set
of state is expected to be large and the property often evalu-
ated, a curStates array of #(Q) cells containing the list
of current states and a curStatesCount natural giving the

number of current states can be maintained next to CSC, thus
reducing the complexity of accessing the set of current states
to a constant time.

Obtaining the set of related slices when an event is han-
dled. The idea behind our implementation is to precompute
the access of slices for future events when information needed
to compute this access is easily accessible rather than when an
event is handled. This information is easily accessible when
we are creating new slices. At this time, it is possible to build
the list of parameter instances tuples which are compatible
with this slice and to connect these instances with this slice
in a global map. These instances can contain wildcards for
parameters which are not instantiated in this slice. When a
event is handled, the parameter instance tuple is used to ask
the global map to get the list of related slices.

We therefore define F , a table which maps a parameter
instance tuple to a list of slices. The purpose of F is to be
used as the global map described in the previous paragraph.

In Figure 5, we describe the procedure our implementation
follows when an event is applied to a slice. instance(P, s) is
the value of the formal parameter P in the slice s. If P is not
instantiated in the slice instance(P, s) = None. Likewise, in
In Figure 6, instance(P, e) is the value of the formal parame-
ter P in the event e, orNone if e does not provide an instance
of P .

The parameter compatSlices of the procedure
APPLYEVENTSLICE contains slices which are compati-
ble with the instances of the event’s parameter instances. It
is used in the expression comp(compatSlices, I(e), I(s))
in order to determine whether a more specific compatible
slice exists. inf and comp have the same meaning as in the
description of the slicing automaton model. However, in this
implementation, we already built a list of compatible slices,
so the implementation of comp does not need to check this
again, only compatible slices are looped over, where a naive
implementation could have made comp loop over the whole
set of slices.

In Figure 6, we describe the procedure in charge
of dispatching events to the right slices. The expres-
sion GETCOMPATIBLEF(p, s) builds, from the table F , the
list of slices having instances p′ which are less specific
than p, where less specific means that each component of p′ is
whether equal to None, or to the corresponding component
of p, that is to say, the slice s is added for all possible instance
tuple that would be compatible with this slice.

In Figure 7, we give an implementation of
GETCOMPATIBLEF which makes no assumptions on
the internal implementation of the table F . Depending on
the data structure used to represent F , this implementation
can be optimized to reduce the number of operations. In
particular, if F is implemented as a trie where components
of tuples are used as its keys, prefix lookups can be gathered
efficiently so the cost of inserting new tuple is reduced.

4.1 Limitations
Benchmark. The implementation described in Section 4
and the corresponding proof-of-concept still lack solid bench-
marks to prove their efficiency. Unfortunately, we still need

1: procedure REGISTER(newQ, σ, i)
2: create s
3: dest(s)← newQ
4: env(s)← σ
5: I(s)← i
6: CSC[newQ]← CSC[newQ] + 1)
7: visitedEvents(s)← eventId(newQ)
8: let p be a tuple with #(S) components
9: i← 1

10: for all P ∈ S in order do
11: p[i]← instance(P, s)
12: end for
13: ADD(F, p, s)
14: end procedure
15: procedure UPDATESLICE(s, newQ, σ)
16: CSC[dest(s)]← CSC[dest(s)]− 1
17: CSC[newQ]← CSC[newQ] + 1
18: dest(s)← newQ
19: env(s)← σ
20: q(s)← newQ
21: end procedure
22: procedure APPLYEVENTSLICE(s, e, compatSlices)
23: if ∃t ∈ δ, start(t) = q(s) and guard(t) is verified

then
24: Let t be such transition
25: σ′ ← αt(env(s), e)
26: if inf(I(e), I(s)) then
27: UPDATESLICE(s, (dest(t), σ′))
28: else if comp(compatSlices, I(e), I(s)) then
29: REGISTER (dest(t),merge(I(s), I(e)), σ′)
30: end if
31: end if
32: end procedure
[1]

Figure 5: Computing the next internal state of the slicing au-
tomaton

1: procedure APPLYEVENT(e)
2: let p be a tuple with #(S) components
3: i← 1
4: for all P ∈ S in order do
5: p[i]← instance(P, e)
6: end for
7: compatSlices← GETCOMPATIBLEF(F, p)
8: for all s ∈ compatSlices do
9: APPLYEVENTSLICE(s, e, compatSlices)

10: end for
11: end procedure
[1]

Figure 6: Procedure to handle an event

1: procedure GETCOMPATIBLEFSTEP(p)
2: if i < #(S) then
3: res← GETCOMPATIBLEFSTEP(p, s, i+ 1)
4: if ith component of p is not None then
5: p′ ← p
6: p′[i]← None
7: res ← res ∪

ADDCOMPATIBLEFSTEP(p′, s, i)
8: end if
9: else

10: res← get(F, p) or default to ∅
11: end if
12: return res
13: end procedure
14: procedure GETCOMPATIBLEF(p)
15: return GETCOMPATIBLEFSTEP(p, s, 0)
16: end procedure
[1]

Figure 7: Mapping a parameter instance tuple to all compati-
ble slices

to build a decent set of good practice and good usage rules to
be able to benchmark correctly. Moreover, an issue is affect-
ing the performance of our proof-of-concept when setting a
finish breakpoint, used to retrieve the return value of the func-
tion. Unfortunately, the return value often gives the addresses
of objects to be checked, as well as failure codes which are
also important elements. This issues needs to be worked out
in order to measure performance correctly. However, we al-
ready have evidences that our optimizations are correct with
our preliminary measures on toy properties1.

Proofs. No proof has been written for algorithms given in
Section 4 as of the writing of this paper. It is therefore un-
known whether these algorithms are formally correct. How-
ever, based on previous proved work, any error in these algo-
rithms should be recoverable.

5 Future Work
Monitoring memory. As mentioned in Section 2, monitor-
ing access to memory in a debugger is likely to cause per-
formance issues. Indeed, monitoring memory access is done
using watchpoints. Watchpoints are efficient only if they
are implemented by the hardware. Software watchpoints are
slow, as they require checking whether monitored addresses
in memory have been accesses after each assembly instruc-
tion. Unfortunately, in common CPU architectures, very few
hardware watchpoints are available. In x86 architectures, a
maximum of 4 hardware watchpoints can be set2.

1we ran a test program opening and closing 1000 fake files along
with a property-checker creating a slice for each such file. On a
modest laptop, switching from a naive slice handling to a a slice
handling using the optimizations described in the paper, we were
able to divide the run time by nearly 10

2https://sourceware.org/gdb/wiki/Internals%
20Watchpoints

This limitation reduces the set of objects which can be
checked. For instance, C++ standard iterators are similar to
pointers, making the property on iterators given in Section 3.1
more difficult to check. This property, however, is suitable for
iterators provided by others libraries3. All the more, in lan-
guages such as C and C++, internal data of containers are
often accessible to the developer, so it is possible to bypass
containers’ method, which can mislead a property checker
which does not monitor memory. Further research is needed
to address this issue.

Method and function overloading. The area of method
and function overloading has not been explored yet in our
model. This exploration is essential to make it useful in lan-
guages supporting overloading like C++.

6 Related Work
JavaMOP Chen and Roşu is the reference implementation by
the authors of the trace slicing method used in the paper. As
our implementation, it can be used to check (parameterized)
properties at runtime. It applies to Java program and makes
use of the monitoring features of the Java Virtual Machine,
contrary to our model, which is based on a debugger and ap-
plies to a set of languages which is not restricted to the set of
languages based on the JVM.

There is also a project aimed at checking good API usage.
This project is SLAM and is restricted to system softwares,
mainly drivers, on Windows. Unlike our work, it is based on
static analyzing.

Valgrind is a framework to instrumentate binaries and
check them for defects. It provides a way to detect mem-
ory related defects by a dynamic binary recompilation and in-
strumentation process of the sofware’s machine code and by
running it on a simulated CPU Nethercote and Seward. It pro-
vides a more comprehensive detection of memory related de-
fects than our approach Nethercote and Seward, however our
approach can be used to detect certain memory leaks more
efficiently by writing a rule which checks that each manually
allocated memory block is freed.

7 Conclusion
With this work, we introduce an extension to our existing
model in the hope it will allow to build solid tools to help
bug discovery and understanding relative to good program-
ming practice. A solid set of properties taking advantage of
this extension is yet to be built. We hope API designers and
library writers will be willing to write rules for their prod-
ucts in order to help softwares using them be more reliable,
with the additional benefits that these rules could be used as
a complement to their documentation and usage examples.

References
[Chen and Roşu, 2007] Feng Chen and Grigore Roşu. Mop:

an efficient and generic runtime verification framework.
3GLib, for instance, provide containers accessible through iter-

ators. https://developer.gnome.org/glib/stable/
glib-Sequences.html

https://sourceware.org/gdb/wiki/Internals%20Watchpoints
https://sourceware.org/gdb/wiki/Internals%20Watchpoints
https://developer.gnome.org/glib/stable/glib-Sequences.html
https://developer.gnome.org/glib/stable/glib-Sequences.html

In ACM SIGPLAN Notices, volume 42, pages 569–588.
ACM, 2007.

[Cheon and Leavens, 2002] Yoonsik Cheon and Gary T
Leavens. A simple and practical approach to unit testing:
The jml and junit way. In ECOOP 2002Object-Oriented
Programming, pages 231–255. Springer, 2002.

[Cohen et al., 1996] David M Cohen, Siddhartha R Dalal,
Jesse Parelius, and Gardner C Patton. The combinatorial
design approach to automatic test generation. IEEE soft-
ware, (5):83–88, 1996.

[Cousot and Cousot, 1977] Patrick Cousot and Radhia
Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or ap-
proximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252. ACM, 1977.

[Itkonen et al., 2007] Juha Itkonen, Mika V Mäntylä, and
Casper Lassenius. Defect detection efficiency: Test case
based vs. exploratory testing. In Empirical Software Engi-
neering and Measurement, 2007. ESEM 2007. First Inter-
national Symposium on, pages 61–70. IEEE, 2007.

[Itkonen et al., 2009] Juha Itkonen, Mika V Mantyla, and
Casper Lassenius. How do testers do it? an exploratory
study on manual testing practices. In Proceedings of the
2009 3rd International Symposium on Empirical Software
Engineering and Measurement, pages 494–497. IEEE
Computer Society, 2009.

[Jakse et al., 2015] Raphaël Jakse, Yliès Falcone, Kevin
Pouget, and Jean-François Méhaut. Verifying properties
at runtime with a debugger. (not published yet), 2015.

[Landi, 1992] William Landi. Undecidability of static analy-
sis. ACM Letters on Programming Languages and Systems
(LOPLAS), 1(4):323–337, 1992.

[Nethercote and Seward, 2007a] Nicholas Nethercote and
Julian Seward. How to shadow every byte of memory used
by a program. In Proceedings of the 3rd international con-
ference on Virtual execution environments, pages 65–74.
ACM, 2007.

[Nethercote and Seward, 2007b] Nicholas Nethercote and
Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices,
volume 42, pages 89–100. ACM, 2007.

[Rosu and Chen, 2011] Grigore Rosu and Feng Chen. Se-
mantics and algorithms for parametric monitoring. arXiv
preprint arXiv:1112.5761, 2011.

Verifying Good Practice Rules at Runtime with a Debugger
Raphaël JAKSE

Supervised by : Yliès Falcone, Kevin Pouget and Jean-François Méhaut
Laboratoire Informatique de Grenoble, UJF, CNRS, Inria, Corse

raphael.jakse@gmail.com, ylies.falcone@ujf-grenoble.fr,
Jean-Francois.Mehaut@imag.fr, kevin.pouget@imag.fr

Abstract

With the objective to help reducing the impact of
software bugs, we define a way to ease discov-
ery and understanding of a class of bugs related to
good programming practices and good APIs or li-
braries usage. Our idea is to check properties rel-
ative to good practice and good usage at runtime
using a debugger. In this paper, we extend the run-
time property-checking model defined in a previous
work and provide a efficient implementation of this
extension. This extension is based on a trace slicing
mechanism which allows efficient handling of pa-
rameterized properties, common among such good
practice and good library usage properties.

1 Introduction
Writing softwares containing bugs is unfortunately common.
A bug is a flaw preventing a system to behave as intended. By
definition, eliminating bugs is desirable. Bugs can range from
minor to critical. Minor bugs most likely cause annoyances
while critical bugs can cost human lives.

One way of eliminating a software bug is to notice its ex-
istence by observing one of its consequences, find its cause
in the source code and fix it. Fixing a bug is, in many cases,
the easiest step of eliminating it when it is fully understood.
Finding out its existence and fully understanding it, however,
can both be really hard.

Bug discovery by manual testing. Several ways of discov-
ering a bug exist. One of the most obvious ways is observing
one of its consequences by using the software. Most obvious
bugs can easily be spotted this way during the development of
the software by testing manually modifications to the code or
by a team responsible for testing the software Itkonen et al..
Bugs are also spotted by final users of the software, which,
depending on the development model, the kind of software
and the severity of the bug, is more or less undesirable.

Automatic testing. Automatic testing through unit tests can
be used to ensure already fixed bug do not show again, to limit
regressions and to check the code is correct for a restricted

set of inputs Itkonen et al.. Research have been done on au-
tomatic generation of unit tests Cheon and Leavens Cohen et
al..

Preventing bugs with static analysis. Another common
way of discovering bug is using static analysis or abstract
interpretation Cousot and Cousot. With these methods, the
source code of the software is analyzed without being run in
order to find elements which are most likely programming
errors or which might cause maintenance difficulties, raising
the risk of introducing bugs during subsequent modifications.
They can also prove some properties over the software’s be-
havior. Unfortunately, while theses approaches are extremely
valuable, they are not exempt of flaws: they can be really
slow, limited to certain classes of bugs or properties, produce
false positives and false negatives. While static analysis and
abstract analysis can provide certain guaranties by proving
properties over the program, proving correction of a software
by static analysis is unsolvable in the general case Landi.

Theses approaches of finding bugs, as well as other ap-
proaches not covered in this introduction, have their own sets
of drawbacks and benefits, making them all valuable for dis-
covering different sets of bugs in different situations: some
kind of bugs are more easily avoided by analyzing the soft-
ware statically, other bugs are more easily and rapidly spotted
by testing the software directly.

There are, however, bugs that are not discovered or un-
derstood easily or efficiently by aforementioned methods: as
said above, static analysis cannot find every bug in all soft-
wares and some bug are not apparent in an obvious way in all
tests. When a malfunction shows during a test, its cause is
not always easily understandable as the programming error at
its root could be caused far before during the execution of the
software (e.g. a pointer that should contain a valid address
instead of a null or a random address).

Motivations. In this paper, we therefore present a technique
complementing hereinabove methods, trying to gather their
respective advantages, with a different set of benefits and
drawbacks, thus providing a way of finding and understand-
ing a class of bugs more efficiently and more easily in certain
situations.

An entire class of bugs is caused by misuse of Applica-

tion Programming Interfaces (API) or libraries or by breaking
common programming rules such as “do not modify a con-
tainer while you are iterating on it, except under certain doc-
umented specific conditions”. Such rules, as well as “good
API/library usage”, exist because if they are not followed,
undefined or unattended behaviors can occur: while “iterat-
ing over a container in a given order” can be easily defined,
“iterating over a muting container in a given order”, under
certain situations, can be hard, nay impossible to define, re-
sulting in undefined behavior or runtime breakage. In the case
of libraries or APIs, using them in a way that differs from the
intended way can make the library user reach an untested and
unforeseen case which can trigger bugs in the library or the
application. The unintended use can also work, by chance, in
the used version of the library, but the guarantee that it will
work in a future version of the library is inexistent.

Goal. In this paper, we aim to present a method based on
a debugger to verify, during the execution, “good practice”
kind of rules, that is, rules inspired by common programming
rules and properties describing correct API or library use.

We first introduce a simplified model inspired from the one
we introduced in our previous work Jakse et al.. We then
introduce an extension of this model to handle such properties
efficiently. This extension is based on the concept of trace
slicing as described and formalized by Roşu and Chen Rosu
and Chen. We describe an efficient implementation of this
extended model, used in our proof-of-concept.

2 Description of the Existing Property
Checking Model

Debugger-based property checker. Properties described
in this paper are checked over the execution traces of a soft-
ware with the help of a debugger. The property checker is a
whether a part of the debugger or an extension using a pro-
gramming interface this debugger provides.

An execution trace is a sequence of events which can be
monitored by a debugger, ordered by time. Properties are
checked during the execution (“online”), meaning that while
processing an event, the next event is not accessible. Theoret-
ically, nothing prevents the trace from being infinite, though
traces are always finite in practice and some properties might
require the end of the trace to give a verdict.

Events which can be monitored by a debugger mainly in-
clude function calls. A function call event includes any value
which can be accessed by the debugger before the first in-
struction of the function’s body, including its parameters and
the current value of global variables accessible from within
the function. It also includes the return value of the function
if, instead of considering the moment of the call, we consider
the moment when the function returns. In practice, function
calls are monitored through breakpoints. In order to moni-
tor a function call, the property checker sets a breakpoint on
the first instruction of the function’s body and then asks the
debugger for values needed to check the property. As an il-
lustration for this model, see the architecture of our proof of
concept in Figure 1, taken from our previous paper.

GDB Process

Check-exec (inside Python)

Monitor 1

Monitor n

Monitored Process

event
Breakpoint reached

set breakpoints

event
Breakpoint reached

Program execution

Figure 1: Architecture of check-exec, our proof-of-
concept. GDB is the debugger on which we based our imple-
mentation. GDB provides a Python programming interface,
we therefore chose to wrote our proof-of-concept in Python.
A monitor is an instance of the property-checker. A monitor
corresponds to one property.

Other events that can be monitored include syscalls and
memory accesses (read, write or both). Syscalls can most
likely be viewed as regular function calls in our model,
though in practice monitoring syscalls involves different
mechanisms such as catchpoints instead of breakpoints.
Monitoring memory accesses, however, cause important per-
formance issues in practice, thus needing more research in or-
der to take advantage of this possibility. Both kind of events
will be discussed in Section 4.1.

The advantages of basing the property checker on a debug-
ger are discussed in our previous paper. They mainly con-
sist in good performance, as the monitored program runs at
native speed. Performance penalty are mostly caused by han-
dling breakpoint and the time needed to change the property’s
state. Another advantage is that debuggers already are a fa-
miliar tool for developers so they do not need to learn a com-
pletely new tool to adopt this model. Checking properties at
runtime, while limiting verification to tested executions, al-
lows to handle more complex properties and do not require
long code analyses, permitting to adopt the property checker
in a fast modification-test loop based software development.

Automaton-based property description. In our previous
paper, we defined a formalism to describe properties over
execution traces. We designed this formalism with the idea
that it should be efficient and feel as most natural as pos-
sible to developers, and be general or extensible enough to
describe most properties. Therefore, we chosen to build a
formalism inspired by state machines, which can be found
in many computer science areas such as hardware design,
human-computer interfaces and language theory. We here de-
scribe a simplified model which is sufficient for the needs of
this paper but a more complex model is described in our pre-
vious paper, in which more details are given.

In this formalism, an automaton consists in a set of statesQ
which can be accepting or non accepting, a set of transi-
tions δ, an initial state init and a initial variable environ-
ment σ0 representing the initial memory of the automaton.
A variable environment is a mapping from variable names to

init sink

push : queue_start >= queue_end
or

queue_end - queue_start > queue_size

push : queue_start < queue_end
and

queue_end - queue_start ≤ queue_size

Figure 2: Example of a small property checking whether a
queue overflows

variable values. The input symbols of the automaton are the
events of an execution trace of the monitored program. See
Figure 2 from our previous paper for a minimal example of an
automaton in this formalism. In this example, the sink state is
non-accepting while the init state is accepting. The init state
is reached when a queue overflow occurs.

(qk, σk) describes the internal state of the automaton be-
fore the kth event of the trace, including its current state qk
and its current variable environment σk. The property de-
scribed by the automaton is verified at the step k if and only
if the current state is an accepting state.

A transition t consists in a start state start(t), an event
name, a guard guard(t), an action and a destination state
dest(t). For each event concerned by the transition, the guard
of the transition is a function depending on the values of the
parameters values of the event and the current variable en-
vironment σk, returning a value in {true, false}. The guard
decides if the transition must be taken. The action is also a
function depending on the values of the parameters values of
the event and the current variable environment σk, but con-
trary to the guard, it returns a new variable environment con-
taining the same variable names as σk. At the beginning of
the execution trace, the current state of the automaton is the
initial state. For the kth event ek of the trace, transitions from
the current state to a destination state describe the next inter-
nal state (qk+1, σk+1) of the machine. For each transition t
of the current state, if the event is concerned by the transition
(the event name of the transition matches ek), if the guard
returns true, the new environment σk+1 is given by the re-
turn value of the action and the new current state qk+1 is the
destination state of the transition.

3 Extending the Model to Support Trace
Slicing

3.1 Motivations
In this subsection, we briefly introduce trace slicing and we
give examples of properties showing the need for trace slicing
support in our model.

Many properties, including “good practice” and “good us-
age” properties, are to be checked on a per-object, or a per-
family of object basis, rather than at a more global level.
These parameterized properties are not to be checked against
the entire execution trace. They are to be checked against
each part (slice) of the execution trace specific to an instance
of the object, or family of objects to which they relate. In

the next paragraphs, we give examples of such parameterized
properties.

Simple parameterized properties. The simplest parame-
terized properties are those involving one object.

First of such properties are those following the acquire-
release resource model Rosu and Chen, in which each ac-
quired resource must be released and no resource can be re-
leased without being acquired, represented bellow with an
regular expression-like syntax:

∀r, (acquire(r) · release(r))∗

Or, in a negative way:

@r, begin · release(r) | acquire(r) · end

The regular expression, in both cases, is not matched on the
entire execution trace, but it is matched with every slice of the
execution trace corresponding to an instance of the quantified
parameter, that is, for each instance of r, the corresponding
slice of the execution trace contains any event which does not
involve any other instance of r.

Based on the same acquire-release model, any opened file
should be closed:

∀f, (f = fopen() · fclose(f))∗

Reading from or writing to a file can only be done after it
was open and before is was closed:

∀f, (f = fopen() · (fprintf(f)|fread(f))∗ · fclose(f))∗

Any allocated block memory should be freed:

∀p, (p = malloc() · free(p))∗

In C++, any created (“new”d) object should be deleted:

∀obj, (p = new · delete p)∗

Parameterized properties involving several parameters.
There are also more complex properties involving a family
of objects. This typically applies for object which are linked
in one way or another. A good example of such family is col-
lections and iterators. Meaningful iterators are always tied to
a collection, and a corresponding rule is: an iterator must not
be used after a modification of its corresponding collection
if it was created before this modification. See Figure 3 for a
description of this property with an automaton.

An example of slicing a fictive execution trace on this prop-
erty is given in Table 1.

As there can be several iterators over the same collection,
any event involving a collection without any particular itera-
tor, like modify(c), can concern several slices of the execu-
tion trace.

Slice Parameter instances Current state Affected slices
Slice 1 (None, None) init
event: newCollection(c1)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (from slice 1)
event: newIter(c1, i10)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
Slice 3 (c1, i10) iReady (from slice 2)
event: next(i10)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady
Slice 3 (c1, i10) iReady (*)
event: newIter(c1, i11)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
Slice 3 (c1, i10) iReady
Slice 4 (c1, i11) iReady (from slice 2)
event: newCollection(c2)
Slice 1 (None, None) init (*)
.
Slice 5 (c2, None) cReady (from slice 1)
event: modify(c1)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
Slice 3 (c1, i10) invalidated (*)
Slice 4 (c1, i11) invalidated (*)
Slice 5 (c2, None) cReady
event: newIter(c1, i12)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady (*)
.
Slice 6 (c1, i11) iReady (from slice 2)
event: newIter(c2, i20)
Slice 1 (None, None) init
.
Slice 5 (c2, None) cReady (*)
Slice 6 (c1, i11) iReady
Slice 7 (c2, i20) iReady (from slice 5)
event: next(i10)
Slice 1 (None, None) init
Slice 2 (c1, None) cReady
Slice 3 (c1, i10) error (*)
.
Slice 7 (c2, i20) iReady
event: next(i20)
Slice 1 (None, None) init
.
Slice 7 (c2, i20) iReady (*)
event: modify(c2)
Slice 1 (None, None) init
.
Slice 5 (c2, None) cReady (*)
Slice 6 (c1, i11) iReady
Slice 7 (c2, i20) invalidated (*)

Table 1: Trace slicing example with a property checking good
usage of iterators and collections.

iReady

newIterator(c, i)

errnext(i)

modifiedmodify(c)

createIterator(c, i)

next(i)

init
newIterator(c, i)

or next(i)
or m

odify(c)

cReady

newCollection(c)

Figure 3: An iterator must not be used after a modification
of its corresponding collection if it was created before this
modification.

3.2 Slicing Automaton Model.
The existing model already handles parameterized properties
like those presented in Section 3.1, being Turing-Complete
thanks to the variable environment, the guard and the action
functions of transition. However, it was designed for proper-
ties checking the state of a program at a global level. Writing
parameterized properties in this model thus involves a lot of
work that is duplicated for each such property and might even
require “bypassing” the model by programming one in the au-
tomaton. The resulting automaton is thus not guaranteed to
look natural and to be easy to understand. As such param-
eterized properties are common, we therefore define, in this
subsection an extension to our model that allows to write pa-
rameterized properties efficiently and more naturally, while
still handling unparameterized properties as a special case of
parameterized properties with 0 parameters. Writing parame-
terized properties in this extension is similar to writing unpa-
rameterized properties in the base model, the only additional
requirement being specifying the slicing parameters.

In the general case, though we know in advance how many
parameters are involved in the trace slicing, as they are de-
clared in the property with a mechanism similar to quanti-
fiers, we do not know how many instances will be encoun-
tered while evaluating the property. We therefore need to be
able to create slice dynamically during the evaluation.

Components of the slicing automaton. The slicing au-
tomaton model is defined by all elements of the base model,
to which we add a tuple S = (P1, . . . , Pm) containing the
list of formal parameters on which the execution trace must
be sliced.

1: Ck+1 ← ∅
2: for all s ∈ Ck do
3: if ∃t ∈ δ, start(t) = q(s) and guard(t) is verified

then
4: Let t be such transition
5: σ′ ← αt(env(s), ek)
6: if inf(I(ek), I(s)) then
7: s′ ← (dest(t), I(s), σ′)
8: else if comp(Ck, I(ek), I(s)) then
9: Ck+1 ← Ck+1 ∪ {s}

10: s′ ← (dest(t),merge(I(s), I(ek)), σ
′)

11: else . This slice is not concerned by the event
12: s′ ← s
13: end if
14: else . This state is not concerned by the event
15: s′ ← s
16: end if
17: Ck+1 ← Ck+1 ∪ {s′}
18: end for
[1]

Figure 4: Computing the next internal state of the slicing au-
tomaton

Before the event ek, the current internal state Ck of the
slicing automaton is a set of slices objects corresponding to
the slices of the execution trace. Each slice object s con-
tains a current state q(s) ∈ Q, a tuple I(s) of parame-
ter instances (I(s)1, . . . , I(s)m) and the variable environ-
ment env(s). For any i ∈ {1, . . . ,m}, I(s)i = None if
the parameter Pi of S is not instantiated in this slice.

The property described by the automaton is verified at the
step k if and only if the current state of every slice of Ck is an
accepting state.

Running the slicing automaton over a trace. At step k =
0, that is, before handling the first event, the internal cur-
rent state C0 of the slicing automaton is the singleton {s0}
with s0 such that q(s0) = init, env(s0) = σ0 and I(s0) =
(None, . . . ,None).

That is, the initial internal current state consists in a single
slice without any instantiated slicing parameter.

The internal stateCk+1 of the slicing automaton at step k+
1 is defined using the internal state Ck at step k and the kth
event, ek, of the execution trace, according to the procedure 4.

We note:

• αt the action function of the transition which, from a
variable environment and the event, returns a new vari-
able environment.

• param(e) the function which maps a formal parameter
of the event e to its instance in e.

• I(ek) the tuple of instances of the property’s slicing
parameters built from the parameter instances of the
event ek. If a slicing parameter instance is not given
by the event, the corresponding component of the tuple
is None.

The expression inf(i1, i2) checks whether each component
of the parameter instance tuple i1 is equal to None or to the
corresponding component of the parameter instance tuple i2.

In the case i1 is an instance tuple derived from an event
and i2 is an instance tuple of a slice, if inf(i1, i2) is true, we
are in the case where the event belongs to the slice: every
parameter instance given by the event is equal to the corre-
sponding instance of the slice. If inf(i1, i2) is false, the event
belongs to another existing slice or a slice which is to be cre-
ated.

The expression comp(C, I(ek), I(s)) checks whether ek
must lead to the creation of a new slice, given existing slices
in C. This is the case if:
• ∀i ∈ {1, . . . ,#(S)}, I(s)i 6= None and I(ek)i 6=
None ⇒ I(s)i = I(ek)i, that is, there are no incom-
patible parameters between parameter instances, and
• ∀s′ ∈ C, inf(I(s), I(s′)) is false or I(ek) and I(s′) are

incompatible, that is, there is no slice at the same time
more specific than s and compatible with the event pa-
rameter instances, “more suitable” for this event.

The expression merge(I(s), I(ek)) gives a tuple of the
same size of I(s) and I(ek), in which the jth component
is equal to the jth component of I(s) if this component is
not None, otherwise to the jth component of I(ek), which
can be None. If both components are not None, by construc-
tion of the procedure, they are equal. merge(I(s), I(ek)) can
be seen as a kind of least upper bound of I(s) and I(ek).

4 Implementation of the Slicing Automaton
Model

In this section, we describe an efficient implementation of
the slicing automaton model defined in Subsection 3.2. A
naive implementation would indeed be inefficient when deal-
ing with execution trace containing a large number of in-
stances of the slicing parameter tuple, as for each event of
the trace, the set of slices would be entirely visited, and for
each slice, this set can be visited a second time. Determin-
ing, at anytime, whether the property holds is also costly as
it merely requires to loop over the set of slices to look for a
non-accepting current state.

Our implementation, inspired by the algorithms described
by Roşu and Chen Rosu and Chen and used in our proof-of-
concept, make use of appropriate data “caching” structures to
avoid looping over the set of slices altogether.

Optimizing access to the set of current states. In order to
make this access efficient, we define CSC, a counter (multiset)
which maps each q ∈ Q to the number of slices of which q
is the current state. Each time a slice is added, removed or
updated, the CSC is updated. The multiset can be efficiently
implemented as a hash table or, even better, by a simple ar-
ray if states are represented by naturals. In both cases, ob-
taining the set of states means iterating over the set of states,
listing each state q for which CSC[q] is not zero. If the set
of state is expected to be large and the property often evalu-
ated, a curStates array of #(Q) cells containing the list
of current states and a curStatesCount natural giving the

number of current states can be maintained next to CSC, thus
reducing the complexity of accessing the set of current states
to a constant time.

Obtaining the set of related slices when an event is han-
dled. The idea behind our implementation is to precompute
the access of slices for future events when information needed
to compute this access is easily accessible rather than when an
event is handled. This information is easily accessible when
we are creating new slices. At this time, it is possible to build
the list of parameter instances tuples which are compatible
with this slice and to connect these instances with this slice
in a global map. These instances can contain wildcards for
parameters which are not instantiated in this slice. When a
event is handled, the parameter instance tuple is used to ask
the global map to get the list of related slices.

We therefore define F , a table which maps a parameter
instance tuple to a list of slices. The purpose of F is to be
used as the global map described in the previous paragraph.

In Figure 5, we describe the procedure our implementation
follows when an event is applied to a slice. instance(P, s) is
the value of the formal parameter P in the slice s. If P is not
instantiated in the slice instance(P, s) = None. Likewise, in
In Figure 6, instance(P, e) is the value of the formal parame-
ter P in the event e, orNone if e does not provide an instance
of P .

The parameter compatSlices of the procedure
APPLYEVENTSLICE contains slices which are compati-
ble with the instances of the event’s parameter instances. It
is used in the expression comp(compatSlices, I(e), I(s))
in order to determine whether a more specific compatible
slice exists. inf and comp have the same meaning as in the
description of the slicing automaton model. However, in this
implementation, we already built a list of compatible slices,
so the implementation of comp does not need to check this
again, only compatible slices are looped over, where a naive
implementation could have made comp loop over the whole
set of slices.

In Figure 6, we describe the procedure in charge
of dispatching events to the right slices. The expres-
sion GETCOMPATIBLEF(p, s) builds, from the table F , the
list of slices having instances p′ which are less specific
than p, where less specific means that each component of p′ is
whether equal to None, or to the corresponding component
of p, that is to say, the slice s is added for all possible instance
tuple that would be compatible with this slice.

In Figure 7, we give an implementation of
GETCOMPATIBLEF which makes no assumptions on
the internal implementation of the table F . Depending on
the data structure used to represent F , this implementation
can be optimized to reduce the number of operations. In
particular, if F is implemented as a trie where components
of tuples are used as its keys, prefix lookups can be gathered
efficiently so the cost of inserting new tuple is reduced.

4.1 Limitations
Benchmark. The implementation described in Section 4
and the corresponding proof-of-concept still lack solid bench-
marks to prove their efficiency. Unfortunately, we still need

1: procedure REGISTER(newQ, σ, i)
2: create s
3: dest(s)← newQ
4: env(s)← σ
5: I(s)← i
6: CSC[newQ]← CSC[newQ] + 1)
7: visitedEvents(s)← eventId(newQ)
8: let p be a tuple with #(S) components
9: i← 1

10: for all P ∈ S in order do
11: p[i]← instance(P, s)
12: end for
13: ADD(F, p, s)
14: end procedure
15: procedure UPDATESLICE(s, newQ, σ)
16: CSC[dest(s)]← CSC[dest(s)]− 1
17: CSC[newQ]← CSC[newQ] + 1
18: dest(s)← newQ
19: env(s)← σ
20: q(s)← newQ
21: end procedure
22: procedure APPLYEVENTSLICE(s, e, compatSlices)
23: if ∃t ∈ δ, start(t) = q(s) and guard(t) is verified

then
24: Let t be such transition
25: σ′ ← αt(env(s), e)
26: if inf(I(e), I(s)) then
27: UPDATESLICE(s, (dest(t), σ′))
28: else if comp(compatSlices, I(e), I(s)) then
29: REGISTER (dest(t),merge(I(s), I(e)), σ′)
30: end if
31: end if
32: end procedure
[1]

Figure 5: Computing the next internal state of the slicing au-
tomaton

1: procedure APPLYEVENT(e)
2: let p be a tuple with #(S) components
3: i← 1
4: for all P ∈ S in order do
5: p[i]← instance(P, e)
6: end for
7: compatSlices← GETCOMPATIBLEF(F, p)
8: for all s ∈ compatSlices do
9: APPLYEVENTSLICE(s, e, compatSlices)

10: end for
11: end procedure
[1]

Figure 6: Procedure to handle an event

1: procedure GETCOMPATIBLEFSTEP(p)
2: if i < #(S) then
3: res← GETCOMPATIBLEFSTEP(p, s, i+ 1)
4: if ith component of p is not None then
5: p′ ← p
6: p′[i]← None
7: res ← res ∪

ADDCOMPATIBLEFSTEP(p′, s, i)
8: end if
9: else

10: res← get(F, p) or default to ∅
11: end if
12: return res
13: end procedure
14: procedure GETCOMPATIBLEF(p)
15: return GETCOMPATIBLEFSTEP(p, s, 0)
16: end procedure
[1]

Figure 7: Mapping a parameter instance tuple to all compati-
ble slices

to build a decent set of good practice and good usage rules to
be able to benchmark correctly. Moreover, an issue is affect-
ing the performance of our proof-of-concept when setting a
finish breakpoint, used to retrieve the return value of the func-
tion. Unfortunately, the return value often gives the addresses
of objects to be checked, as well as failure codes which are
also important elements. This issues needs to be worked out
in order to measure performance correctly. However, we al-
ready have evidences that our optimizations are correct with
our preliminary measures on toy properties1.

Proofs. No proof has been written for algorithms given in
Section 4 as of the writing of this paper. It is therefore un-
known whether these algorithms are formally correct. How-
ever, based on previous proved work, any error in these algo-
rithms should be recoverable.

5 Future Work
Monitoring memory. As mentioned in Section 2, monitor-
ing access to memory in a debugger is likely to cause per-
formance issues. Indeed, monitoring memory access is done
using watchpoints. Watchpoints are efficient only if they
are implemented by the hardware. Software watchpoints are
slow, as they require checking whether monitored addresses
in memory have been accesses after each assembly instruc-
tion. Unfortunately, in common CPU architectures, very few
hardware watchpoints are available. In x86 architectures, a
maximum of 4 hardware watchpoints can be set2.

1we ran a test program opening and closing 1000 fake files along
with a property-checker creating a slice for each such file. On a
modest laptop, switching from a naive slice handling to a a slice
handling using the optimizations described in the paper, we were
able to divide the run time by nearly 10

2https://sourceware.org/gdb/wiki/Internals%
20Watchpoints

This limitation reduces the set of objects which can be
checked. For instance, C++ standard iterators are similar to
pointers, making the property on iterators given in Section 3.1
more difficult to check. This property, however, is suitable for
iterators provided by others libraries3. All the more, in lan-
guages such as C and C++, internal data of containers are
often accessible to the developer, so it is possible to bypass
containers’ method, which can mislead a property checker
which does not monitor memory. Further research is needed
to address this issue.

Method and function overloading. The area of method
and function overloading has not been explored yet in our
model. This exploration is essential to make it useful in lan-
guages supporting overloading like C++.

6 Related Work
JavaMOP Chen and Roşu is the reference implementation by
the authors of the trace slicing method used in the paper. As
our implementation, it can be used to check (parameterized)
properties at runtime. It applies to Java program and makes
use of the monitoring features of the Java Virtual Machine,
contrary to our model, which is based on a debugger and ap-
plies to a set of languages which is not restricted to the set of
languages based on the JVM.

There is also a project aimed at checking good API usage.
This project is SLAM and is restricted to system softwares,
mainly drivers, on Windows. Unlike our work, it is based on
static analyzing.

Valgrind is a framework to instrumentate binaries and
check them for defects. It provides a way to detect mem-
ory related defects by a dynamic binary recompilation and in-
strumentation process of the sofware’s machine code and by
running it on a simulated CPU Nethercote and Seward. It pro-
vides a more comprehensive detection of memory related de-
fects than our approach Nethercote and Seward, however our
approach can be used to detect certain memory leaks more
efficiently by writing a rule which checks that each manually
allocated memory block is freed.

7 Conclusion
With this work, we introduce an extension to our existing
model in the hope it will allow to build solid tools to help
bug discovery and understanding relative to good program-
ming practice. A solid set of properties taking advantage of
this extension is yet to be built. We hope API designers and
library writers will be willing to write rules for their prod-
ucts in order to help softwares using them be more reliable,
with the additional benefits that these rules could be used as
a complement to their documentation and usage examples.

References
[Chen and Roşu, 2007] Feng Chen and Grigore Roşu. Mop:

an efficient and generic runtime verification framework.
3GLib, for instance, provide containers accessible through iter-

ators. https://developer.gnome.org/glib/stable/
glib-Sequences.html

https://sourceware.org/gdb/wiki/Internals%20Watchpoints
https://sourceware.org/gdb/wiki/Internals%20Watchpoints
https://developer.gnome.org/glib/stable/glib-Sequences.html
https://developer.gnome.org/glib/stable/glib-Sequences.html

In ACM SIGPLAN Notices, volume 42, pages 569–588.
ACM, 2007.

[Cheon and Leavens, 2002] Yoonsik Cheon and Gary T
Leavens. A simple and practical approach to unit testing:
The jml and junit way. In ECOOP 2002Object-Oriented
Programming, pages 231–255. Springer, 2002.

[Cohen et al., 1996] David M Cohen, Siddhartha R Dalal,
Jesse Parelius, and Gardner C Patton. The combinatorial
design approach to automatic test generation. IEEE soft-
ware, (5):83–88, 1996.

[Cousot and Cousot, 1977] Patrick Cousot and Radhia
Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or ap-
proximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252. ACM, 1977.

[Itkonen et al., 2007] Juha Itkonen, Mika V Mäntylä, and
Casper Lassenius. Defect detection efficiency: Test case
based vs. exploratory testing. In Empirical Software Engi-
neering and Measurement, 2007. ESEM 2007. First Inter-
national Symposium on, pages 61–70. IEEE, 2007.

[Itkonen et al., 2009] Juha Itkonen, Mika V Mantyla, and
Casper Lassenius. How do testers do it? an exploratory
study on manual testing practices. In Proceedings of the
2009 3rd International Symposium on Empirical Software
Engineering and Measurement, pages 494–497. IEEE
Computer Society, 2009.

[Jakse et al., 2015] Raphaël Jakse, Yliès Falcone, Kevin
Pouget, and Jean-François Méhaut. Verifying properties
at runtime with a debugger. (not published yet), 2015.

[Landi, 1992] William Landi. Undecidability of static analy-
sis. ACM Letters on Programming Languages and Systems
(LOPLAS), 1(4):323–337, 1992.

[Nethercote and Seward, 2007a] Nicholas Nethercote and
Julian Seward. How to shadow every byte of memory used
by a program. In Proceedings of the 3rd international con-
ference on Virtual execution environments, pages 65–74.
ACM, 2007.

[Nethercote and Seward, 2007b] Nicholas Nethercote and
Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices,
volume 42, pages 89–100. ACM, 2007.

[Rosu and Chen, 2011] Grigore Rosu and Feng Chen. Se-
mantics and algorithms for parametric monitoring. arXiv
preprint arXiv:1112.5761, 2011.

Routing OSGi Services Over Multiple Nodes

Luc LIBRALESSO

Supervised by: Bassem DEBBABI

1 Abstract
In a world where application resilience and implementation
simplicity are key factors, service-oriented component model
implementations have a major role.

This paper introduces Cohorte Routing. Cohorte Rout-
ing is an improvement of an OSGi implementation: Cohorte
Framework. It improves the application connectivity. It also
allows new communication ways like Serial or Bluetooth
making it possible to use Cohorte framework on microchips.

For the first time, OSGi applications can run on embed-
ded systems. Cohorte Routing makes the connection between
two different worlds: OSGi and embedded systems on mi-
crochips.

Keywords
SOA, Remote services, routing service

2 Introduction
Increasingly, software needs to run for a long time and with
minimal interruptions. In the case of the Internet of Things,
failures can be very frequent. For instance, Bluetooth con-
nection not available or a wire is unplugged. In this case,
software have to continuously adapt itself to cope with envi-
ronment changes. It can be an exhausting and repetitive task
for the developer to handle all possible cases of failure.

Cohorte framework was designed to answer to this con-
cerns. How to set up a dynamic and service-oriented compo-
nent model that abstracts network layer. Cohorte routing was
build in the aim to enhance Cohorte. It make a better use of
connections between nodes. For instance, it makes it simple
to design nodes on micro-controllers like Cohorte MicroN-
ode. In some cases, it solves connectivity problems transpar-
ently. Cohorte Routing allows more features and improve the
application connectivity.

The routing problem is about to create Path in a network
with the objective to minimize each path between two nodes.

We have a set of peers V where each element v ∈ V
We also have a set of links between peers E where each

element e ∈ E is a couple (v1, v2) ∈ V 2. and a weight
function W : V 2 → R.

Finally, we have a set of communication proto-
cols for each peer p : V → P where P ⊆
{HTTP,XMPP,Bluetooth,Radio, . . . } and P 6= ∅.

Example : In the case we have :
• V = {v1, v2, v3}
• E = {(v1, v2), (v2, v3), (v1, v3)}
• W :

– W (v1, v2) = 1

– W (v2, v3) = 3

– W (v3, v1) = 2

• P = {HTTP,XMPP,Bluetooth}
– p(v1) = {XMPP,HTTP}
– p(v2) = {HTTP,Bluetooth}
– p(v3) = {Bluetooth}

This instance is shown on the figure 1

v1

v2

v3

XMPP,HTTP

Bluetooth,HTTP

Bluetooth

1 3

2

Figure 1: Minimal routing example

This example is very recurring. It happens a lot with Co-
horte Micronode1 because the MicroNode only have a Blue-
tooth connection and is paired with a peer with Bluetooth and
HTTP connection. Without Cohorte Routing. The MicroN-
ode cannot access to the application beyond it’s neighbour.
This is why Cohorte Routing have many applications.

1Cohorte MicroNode is a minimal version of the Cohorte frame-
work on a microship like a STM32

It is also possible to simplify the problem :
As we can see, each peer can communicate with it’s neigh-

bours if and only if they have a common communication pro-
tocol. i.e. for two neighbours u and v, u and v can com-
municate if and only if p(u) ∩ p(v) 6= ∅. This step is called
Protocol Elimination.

In the minimal example, v1 can dialog with v2 because they
have a common protocol, in this case HTTP . But, v1 and v3
cannot communicate because v3 only have a Bluetooth com-
munication and v1 doesn’t have a Bluetooth communication.
Without a routing algorithm, v1 can’t communicate with v3 at
all, but with it, v1 can send messages to v3 by sending them
to v2.

This new representation allows us to simplify the problem
representation and stick to classical routing problems.

Figure 2 shows the instance simplified with the protocol
elimination.

v1

v2

v3

1 3

Figure 2: Minimal routing example after protocol elimination

The network topology can change rapidly. For instance, a
new peer appears, a link between two nodes fall or a protocol
on a node is temporarly unavailable. The algorithms should
be able to cope with this variations and provide a new road in
a short time.

The network can also be arbitrarly huge. So, the routing
algorithm should be distributed.

The quality of the connections is also very variable. For
instance, a Bluetooth connection between a MicroNode is
tremendously slower than a HTTP connection between two
nodes on the same computer2.

Routing Algorithms Taxonomy : There are many routing
algorithm families presented in [7]:

• Distance Vector Algorithms such as RIP3. Those algo-
rithms generally use the Bellman-Ford Algorithm. It
only knows it’s direct neighbours at a first state. During
the execution of the algorihtm, it will send information
about it’s knowledge of the network to it’s neighbours.
When a peer receives a routing information, it will com-
pare it to it’s own knowledge. If the received informa-
tion is better than what it knows, it will keep it in their
routing tables and propagate it to it’s neighbours.

2Almost a x100 factor
3Routing Information Protocol

If a node goes down, it’s neighbours will notice that it is
not responding and will assume it is down.
With this kind of algorithms, each peer have partial
knowledge of the network.
Generally speaking, a routing table contains information
such as :

– Who are my neighbours ?
– Which peer I know ? In this case, by which neigh-

bour can I access it ?

• Link-State Algorithms such as OSPF4. By contrast
with Distance Vector Algorithms, Link-State Algorithms
keep each information about peers and links between
them. Each peer has a global view of the network and
can run a Shortest path algorithm like Dijkstra algorithm
to specify the best next destination for the message.

Routing Metrics: All the routing algorithms choose a met-
ric to base their computations of the best road. It mainly de-
pends on underlaying goals of the routing.

Some examples of metrics :

• Hop Count: Used by RIP. The simpliest metric: it
counts how many peers the message pass through to it’s
destination. It does not include the origin and the desti-
nation.

• latency: Time between the emission and the reception of
the message.

• bandwidth: Data quantity for a fixed amount of time.
It is generally used when someone have a lot of data to
send.

3 Cohorte
Cohorte is a framework that allows to make dynamic dis-

tributed applications. It follows the OSGi specifications [1].
The developper is only interested in writting the component
code. This code is automatically deployed by the framework.
The developper do not have to be preoccupated by the net-
work management and the fault detection which are repetitive
and difficult task to cope with.

A Cohorte application is made by components that pro-
vides and consume services. Those components are executed
in virtual machines called peers. And finally, those peers are
executed in machines called nodes.

Cohorte framework is made of two parts presented in [2]:

• iPOPO: that implement the component system in differ-
ent languages like Python or Java.

• Herald: that is designed to send messages from a com-
ponent to an other. It abstracts all the network preoccu-
pations in the component code. That is abstraction that
allows a faster development of distributed applications
and a better fault resilience.

4Open Shortest Path First

Example of iPOPO components: In this example, we will
define two components: The fist providing a service and an
other that uses this service. All the information needed by the
framework is provided by Python class and method decora-
tors.

Those decorators are explained in [6]

@ComponentFactory("ipopo−test−provides−factory")
@Provides(’TEST SERVICE’)

@Instantiate(’ipopo−test−provides’)
class TestProvides:

def init (self):

[...]

@Validate

def validate(self,):

[...]

@Invalidate

def invalidate(self,):

[...]

def method provided(self):

[...]

This Python code instantiate a simple component that pro-
vides a service called ’TEST SERVICE’. It have :

• Component Factory manipulates the component class
”ipopo-test-provides-factory”

• Provides tells iPOPO that this class of component pro-
vides a service called ’TEST SERVICE’

• Instantiate tells iPOPO to instantiate the component as
soon as it is possible

• a validate method that is called when the component is
ready to start.

• a invalidate method that is called when the component is
invalidate. i.e. when some requirements are missing.

• a method provided that can be called if an other compo-
nent requires a ’TEST SERVICE’ service. This call is
done by Remote Procedure Call.

iPOPO component that use the provided service:

@ComponentFactory("ipopo−test−requires−factory")
@Requires(’ other’, ’TEST SERVICE’)

@Instantiate(’ipopo−test−requires’)
class TestRequires:

def init (self):

[...]

@Validate

def validate(self,):

print(’all requirements are ok’)

self. other.method provided()

@Invalidate

def invalidate(self,):

print(’Some requirements are missing’)

def some method(self):

[...]

self. other.method provided()

[...]

In this component :

• the Requires decorator tells iPOPO that the component
requires a service called ’TEST SERVICE’. When the
requirement is satisfied, the service will be accessible
from the attribute other.

• when some method is called, it will call the method
provided by the distant service ’TEST SERVICE’. This
method is similar to local code but executed on the dis-
tant host of the service provider.

The second component waits receiving a notification that
says the first component have started. Then, the require is
now satisfied and the component can be validated.

When the component is validated, the validate method is
called and the fields required are injected directly in the com-
ponent. So the programmer can now call other component
method.

As we can see in this example, the programmer knows
nothing about where the code is executed. The first compo-
nent can be executed on a STM32 in France and the other on
a supercomputer in the USA.

More operations can be found in the iPOPO documenta-
tion like requiring optional services or aggregating a list of
services accessible in the application.

4 Background & Motivation
Cohorte Routing was introduced in order to integrate Co-

horte MicroNode and to improve an application connectivity.
It was developped with in mind :

Figure 3: Cohorte Routing Use case : Cohorte MicroNode

Cohorte Routing main use case Cohorte MicroNode uses
a bluetooth connection to interact with the application. But,
it can be paired with one and only one peer. For accessing
to other peers, Cohorte Routing is needed for allowing the
router to send the microNode messages to the Common Peer.
This topology is illustrated on figure 3.

• The application can be big (about 106 peers). With this
constrint, the algorithm needs to be scaleable. Hence,
Link-State Algorithms will have a complexity in mem-
ory of N2. N is the number of peers for each peer. In
our case, the algorithm will consume about 1012 Bytes,
which corresponds to 1 teraByte of RAM and 106 ter-
aBytes consumed for all the peers. It is too much, so
we have chosen a Distance Vector Algorithm which has
a complexity in memory of N . So, it will consume 1
megaByte for each peer and 1 teraByte in total which is
much more honorable.

• The convergence time should be the shorter possible. It
is important to detect promptly a connection loss. With
this aim, the application needs a fast convergence.

• The changes must be retrocompatible. In the actual im-
plementation of Cohorte Herald, there is no routing at
all. It is important to preserve the correct execution of
the application if some nodes have Cohorte Herald and
some have not.

• The nodes need to be heterogenous. Some nodes like
Cohorte MicroNode have a very few memory available.
For some nodes less than 1 MB. With this constaint, we
need to have different types of Nodes. Some of them
cannot be routers. The implementation needs to be het-
erogenous and allow some nodes to consume less than 1
MB of RAM.

• Some links cost a lot and should be used in last resort.
For instance, if we have a GSM5 communication, the
user pays for each Mega Byte of data sent. The applica-
tion should be able to avoid the GSM usage if there are
any other ways of communication.

• Because some peers have different computation capac-
ity, some parameters like message frequency should vary
from one peer to an other. Similarly, message frequency
should change in the time. For instance when a conges-
tion is detected on the network.

• The routing operations should be transparent for the ap-
plication developper. The developper should not be con-
cerned by the routing problem.

As we can see, there is a lot of constraints. That is why we
need an other routing algorithm that can cope with all those
needs.

5 Contribution
Cohorte Routing core algorithm is inspirated by Babel al-

gorithm [3]. Due of different concerns, Cohorte Routing have
a much simplier implementation that is component oriented.
This implementation is presended below.

Algorithm 1 is executed at regular intervals defined by the
HELLO TIMER variable.

5Global System for Mobile communication

Algorithm 1 SendHellos : send routing/hello messages
1: function SENDHELLOS
2: for v ∈ directNeighbours do
3: if timer since last message elapsed then
4: Send Routing/hello to v
5: Memorize send date to calculate latency from

v.
6: end if
7: end for
8: for v ∈ peers that did not respond do
9: if timer > HELLO TIMEOUT then

10: for i ∈ peers access is from v do
11: metric[i]←∞
12: nextHop[i]←⊥
13: end for
14: end if
15: end for
16: end function

Algorithm 2 is executed at regular intervals defined by the
variable ROADS TIMER.

Algorithm 2 SendRoads : send messages of type rout-
ing/roads to each neighbour router

1: function SENDROADS
2: for router ∈ neighbour routers do
3: Send all information that is not provided by

router
4: end for
5: end function

Algorithm 3 is executed when a routing/* message is re-
ceived.

Algorithm 3 Handle : handle routing messages
1: function HANDLE
2: if message is routing/hello then
3: send routing/hello/reply to sender
4: end if
5: if message is routing/hello/reply then
6: metric[sender] ← delta between now and send

time of the hello message.
7: end if
8: if message is routing/roads then
9: add changes from message in local routing table

10: end if
11: end function

In figure 4, four components are used by Cohorte Routing
:
Routing Handler: Is used to receive hello messages from a

neighbour and respond to it.
Routing Hello: Is used to send hello messages to the neigh-

bours to measure the metric in the link.

Routing Roads: Is used to send and receive information
about roads. It gives access to a list of accessible peers
through the network.

Routing Json: Is used to display information about routing
table. It is useful for visualization of what is happening
in a routing peer. It display a HTML table of the routing
information. It also provides JSON format for the data
for interaction with the Cohorte debug interface.

A router node must implement the four components and a
non-router node only needs to implement Routing Handler

Figure 4: Component implementation of Cohorte Routing

Cohorte Routing Architecture: The Routing layer of Her-
ald is inserted between the transport layer and the application
layer. For retro-compatibility reasons, if there is a possible
direct communication between two peers, the routing layer is
not used. It is only used if necessary. The figure 5 shows how
the routing layer interacts with Herald.

When a peer wants to send a message : If the sender has
not the destination in its neighbours, it will use the routing
layer. Depending on if the peer is router or none, two actions
can occur :

• If the peer is router : The router will interogate the Roads
component. If the peer exists, the message is sent to the
next hop. It it not exists, an Route Not Found exception
is raised.

• It the peer is not router : The routing layer will send the
message to the last router that send a hello message. If
there are no available roads, the router will notify it.

Wen a peer receives a message : It will check if it is the
final destnation of the message.

• If it is, it will notify the application that a message is
received.

• If it is not, it will try to send it to its final destination
and similarly as previously, raise an error if the message
could not be sent.

Figure 5: Cohorte Routing Implementation Architecture

6 Validation
In this part, we will validate the fact that Cohorte Routing

answers to routing problem requirements.

• Memory usage should be limited :In Cohorte Routing,
there is two types of peers :

– Router nodes: keeps in memory for each of their
neighbours, the metric information. And for each
peer in the network, the next hop6 and the total dis-
tance. The total complexity in memory is O(N).

– Other nodes: keeps only in memory the informa-
tion about the last router that ask information. The
total complexity in memory is O(1).

As said previously, if the application contains 106 nodes,
in router nodes, the memory use will be about 1MB and
not application size dependant on non routers. It is to-
tally acceptable beacause the current memory capacity
of computers now allows it and it is possible to make
microNodes as non-routers.

• Convergence Time should be short : This point will be
developped later.

• Changes must be retrocompatibles :With the Cohorte
Routing architecture presented. The changes are totally
retrocompatible with previous versions of the frame-
work. In a heterogenous composition of nodes with a
routing feature and nodes without routing feature, the
routing nodes will keep in their routing table only nodes

6A next hop is the peer to contact for sending a message to a
destnation. It is on the optimal path between origin and destination.

that are responding to their hello messages. In this case,
nodes with an old version of Cohorte will continue to
be able to communicate with their neighbourhood but
will not be able to dialog with distant peers. Similarly, it
would not be possible for a distant peer to acces to a old
peer because it is not referenced in the routing table of
routers.

• Some nodes should have less work to do : The subdivi-
sion in router nodes and non router nodes is helpful here
too:

– router nodes: will ask or send periodically for in-
formation in their neighbourhood. Moreover this
period is perfectly customizable and heterogenous.
In the same application at a same time, router nodes
can have different parameters for the frequency. It
will work perfectly fine.

– non router nodes: only need to respond to routing
hello messages.

– nodes with a previous version of cohorte: can inter-
act with nodes with a new version of cohorte if they
are neighbours and should not have any additional
work to do.

With Cohorte routing, three different levels of work are
available. Moreover, it is totally possible for an over-
loaded router node to become a non router node during
the execution.

• Some links should be used in last resort : With the metric
measure of Cohorte Routing, if a node has different links
for accessing to a distant peer, it will select that which
has the minimal metric. By setting links that should be
used in last resort with a high metric, we guarantee that
it will not be used if there is a better link for sending the
messages. In the current version of Cohorte Routing,

• Message frequency should vary during the execution :
From the fact that routing message sending is totally
spontaneous, it is very easy to vary the sending fre-
quency without disturb other peers. In the component
oriented modelisation, the frequency factor is imple-
mented as a property of routing components. By simply
changing it, the frequency will automatically change.

• The routing operations should be transparent : The Co-
horte Routing layer is set between the herald layer and
the application layer. If a message is received, it is anal-
ysed and forwarded if the current peer is not the destina-
tion. And the destination of the message is checked and
changed if needed by the routing. In this way, routing
operations are transparent to the component developper
and applications made with an old version of Cohorte
will work fine on the new version.

Use Case: With the idea to test Cohorte Routing implemen-
tation, the following use case have been designed :

• On a Cohorte MicroNode was deployed serveral services
to interact with electronical devices like LEDs or Tem-
perature sensors.

• A gateway peer that is charged of redirecting messages
from HTTP to Bluetooth.

• And finally, a peer with HTTP transport that have a com-
ponent interacting with LEDs and sensors.

This use case is very common because it is the simpliest
use of an electronical device interacting with a distant com-
puter.

7 Related Work
There are many frameworks implementing service based

component systems that allows components to provide re-
mote services such as eclipse remotes services , Apache CXF,
Remote Operations Service Element (ROSE).

All of them provides ways to use remote services but do
not provide a way to forward message through components.
In some cases like using devices with low connectivity, it is a
main feature.

There are also many routing algorithms.

• RIP (Routing Information Protocol) [4] : The RIP algo-
rithm is a distance vector algorithm. It has a few mem-
ory usage but it does not take adventage of the metric. It
uses the hop principle, so it would not privilegiate high
bandwidths.

• OSPF (Open Shortest Path First) [5] : The OSPF al-
gorithm is a link state algorithm. It keeps the network
topology in order to execute a Dijkstra algorithm for the
shortest path.

• Babel algorithm [3] : is a distance vector algorithm. It
never suffers from routing loops and can use a metric
such as the latency. Cohorte Routing protocol is inspi-
rated by babel but it is simpler because it does not re-
quire sequence numbers for road information and Co-
horte routing does not send requests for a new sequence
number. It is a tradeoff that allows to exchange conver-
gence time for less trafic from the routing algorithm. Co-
horte Routing also allows a non-router node to receive
messages from multiple router neighbours nodes with-
out a memory complexity greater than O(1).

8 Conclusion & Perspectives
This paper introduces Cohorte Routing. It allows Cohorte

peers to forward messages from one peer to an other peer.
With this comes a better application connectivity and the abil-
ity to weakly connected devices like Cohorte MicroNode on
STM32 to send message to the whole application through only
one peer. This represents a way to port OSGi applications on
microchips.

Moreover, Cohorte Routing was validated by a use case
that allows distant components to interact with electronical
devices through Cohorte MicroNode.

The choice for implementing Cohorte Routing with com-
ponents is that it is easily extendable simply by instantiate
new components that interacts with the routing components.

As one can see in the perspectives, many improvements can
be implemented by a new component that is added in Cohorte
Routing without changing existing code.

Perspectives:
• links should be underrated : In the current implemen-

tation of Cohorte Routing the link metric is fixed by la-
tency. One would like to have a more customizable rat-
ing system for links. For instance, it is possible with a
few modifications to create a component that provides
a rate for different links. Its parameters can be the la-
tency, the bandswidth, the connection type : i.e. GSM,
Bluetooth, Ethernet, etc.
• Performance Analysis of convergence time: It would

be interesting to compare Cohorte routing convergence
time to other classical routing algorithms. The goal here
is to evaluate the impact of message frequency in the
global convergence time of the algorithm.
• A algorithm that changes the frequency of message

sending. This is interesting because the convergence
time should be augmented if many changes occurs in
the network. Similarly, if there are a few changes in a
large period of time, the algorithm can slow itself the
number of routing message. It allows Cohorte Routing
to adapt to its environement and reduce network traffic
and convergence time when needed.
• Implementing a component that choose the default gate-

way for non-router nodes. With this system, if a non-
router node have multiple router neighbours, it will
change its default gateway only if it is unreachable.

References
[1] TO Alliance. Osgi service platform core specification,

version 4.3, 2011.
[2] Thomas Calmant, Joao Claudio Americo, Olivier Gattaz,

Didier Donsez, and Kiev Gama. A dynamic and service-
oriented component model for python long-lived applica-
tions. In Proceedings of the 15th ACM SIGSOFT sympo-
sium on Component Based Software Engineering, pages
35–40. ACM, 2012.

[3] Juliusz Chroboczek. The babel routing protocol. 2011.
[4] Gary Scott Malkin. Rip version 2. 1998.
[5] John Moy. Ospf version 2. 1997.
[6] Mark Pilgrim and Simon Willison. Dive Into Python 3,

volume 2. Springer, 2009.
[7] Andrew S Tanenbaum. Computer networks, 4-th edition.

ed: Prentice Hall, 2003.

Guide the Simulation to Achieve Functional Coverage

Lina Marsso
Argosim
Grenoble

marssolina@gmail.com.com

Supervised by: Bertrand Jeannet and Etienne Closse

August 21, 2015

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract

Debugging a requirement allows detecting errors
where there are written and not later when the ef-
fective implementation is tested against a require-
ment. Stimulus is a debugging requirement tools,
which allows debugging requirement by simulating
them. A simulation consists in generating random
traces that satisfy the requirement.
In this article, we want to improve the traces gen-
erated by Stimulus by maximizing the functional
coverage of a given requirement. To achieve this,
we first clarify the notion of functional coverage,
then we propose a heuristic to guide the simula-
tion towards the coverage of the property. Finally
we show the applicability of the proposed method
thanks to the production of a prototype.

1 Introduction
Building a computer software is a complex task divided in
different phases. The first ones consist in specifying the re-
quirements and designing the architecture, the middle ones
consists in effectively developing the software, and the last
phases consist in validating the project by setting up and ap-
plying different test suites: unit, integration tests, In this
paper we will focus on the first phase. This phase consists
in deriving the requirements of the system from its informal
specification. In this paper we focus on functional require-
ments of real-time systems.

Real-time systems are characterized by the fact that they
continuously interacts with their environments. A typical ex-
ample is a cruise control system of a car: this system periodi-
cally samples inputs from its environment, namely the desired
speed required by the driver and the actual speed of the car,
it performs computations and then issues commands to the
motor. The functional requirements of such systems describe
what they should do, but abstracts away how they should per-
form it. For instance, a requirement for a cruise control may
be:

“When active, the cruise control shall not permit
actual and desired speeds to differ by more than 3
kilometers/hour during more than 10 seconds.”

Observe that this requirement mixes a logical condition
(“when active”), a numerical condition (“to differ by more
than”) and time (“during more than 10 seconds”).

What are the actual, industrial practices regarding require-
ments? Most often, they are written in a natural language
and validated by iterative reviews. This process can result
in ambiguous or incorrect requirements. Furthermore, these
problems are generally detected later in the test phases. The
experience shows that the later the error is detected, the more
expensive it is to fix the bug. Nowadays there exist tools to
formalize and write the requirements of a project, like the B
method [Hoang et al., 2013]. One of them, Stimulus [Jean-
net and Gaucher, 2015], enables in addition to simulate these
requirements. We will focus more specifically on this last
functionality.

Stimulus allows modeling real-time requirements with a
formal yet close to natural language, in order to make mod-
els easy to write and to read. Its major feature however is to
provide a simulation engine for generating execution traces
that satisfy these requirements. Stimulus has its roots in the
test modeling environments Lutin [Pascal et al., 2008] and
reactive programming languages Lustre [Halbwachs, 2005],
Scade [Caspi et al., 2003] and LucidSynchrone [Caspi et al.,
]. The principle behind the simulation of requirements is
to view requirements as constraints and to solve these con-
straints in order to generate execution traces which satisfies
the requirements.

In this work we want to improve the traces generated by
Stimulus. The idea is to guide the simulation and to select
traces that maximize the functional coverage of a given re-
quirement.

1

Functional coverage consists in covering a property. It dif-
fers from structural coverage which consists in ensuring test
a piece of code has been activated during the execution of the
program. Intuitively, in a simulation, a property is covered
when it could have been violated. For instance, if the con-
sidered property is “A ⇒ B” and if in the simulation A is
always false, the property cannot be violated, as it does not
enforce any behaviour in such a context. Coming back to the
cruise control example mentioned above, if we never have
“active” then the requirement does not enforce anything, To
really cover the property, a simulation should produce two
speeds differing by more than 3 km/h, which gives the oppor-
tunity to check that such a situation does not last more than 10
seconds. In this example, interesting traces are traces which
reach some covered configurations, in which the property is
effectively tested.

The first objective of this paper is to clarify the notion of
functional coverage of a property in the context of Stimulus.
Ideally, we would like to automatically equip any property
with an oracle indicating whether such an covered configura-
tion has been reached during the execution.

Now, there are two options to effectively obtain execution
traces which covers a given property: either one manually de-
fines a specific scenario which will guide the simulation, or
we design a method which automatically guides the simula-
tion towards the coverage of the property. The second option
is of course preferable as it is less demanding for the user.
Such a guiding feature has already been investigated in black-
box testing of reactive systems, for instance in the TGV [Jard
and Jéron, 2005], STG [Ployette et al.,] and Gatel [Marre
and Arnould, 2000] tools. Its use in the Ludic debugger for
the Lustre synchronous language has also been investigated in
[Gaucher et al., 2003]. The approach proposed in [Ployette
et al.,],[Gaucher et al., 2003] to achieve this goal basically
consists of

1. computing the set S of interesting configurations that
can lead to one covered configuration (the ones in which
the coverage oracle becomes true);

2. exploiting the knowledge about S to maintain the simu-
lation as long as possible in S and to stop it if for some
reason one do not succeed to maintain it within S;

3. at last, effectively guiding the simulation towards an
covered configuration with some heuristics.

The second objective of the paper is to adapt the approach
developed in [Gaucher et al., 2003] to the context of Stimulus.

The rest of the paper is organized in the following way: we
first present in section 2 an example of real-time functional
requirement and how it is formalized with Stimulus. In sec-
tion 3 we define a notion of functional coverage in the context
of Stimulus. Then we explain in section 4 the approach we
want to follow in order to achieve functional coverage of a
property in a simulation. We terminate with a description of
our realisations and experiments.

2 Stimulus on an example
In this section we use an example of automatic headlight re-
quirements to describe the simulation process of Stimulus. .

If the switch is in the AUTO state then the head-

Figure 2: Environment assumptions

lights turn on or off, depending on the ambient light
intensity, with a defined hysteresis to prevent blink-
ing.

• REQ 003Aa: if the switch is turned to AUTO, and the
light intensity is at or below 70% then the headlights
should stay or turn immediately ON. Afterwards the
headlights should continue to stay ON in AUTO as long
as the light intensity is not above 70%.

• REQ 003Ab: if the switch is turned to AUTO and the
light intensity is 70%, then the headlights should stay or
turn immediately OFF. Afterwards the headlights should
continue to stay OFF in AUTO as long as the light in-
tensity is not below 60%.

These two requirements are formalized by using the library
of predefined sentence templates provided by Stimulus. The
resulting Stimulus model is depicted in figure 1. These two
requirements use four sentence templates: When, DoAfter-
wards, Initially and If. Their definition will be described in
the next section.

Simple assumptions on the environment of the system are
formalized and shown in figure 2. The assumptions can be
part of the requirements or are used to improve readability of
the simulation results. They are a mix of standard patterns
(domain range, stability property) and user-defined proper-
ties. In case of these two requirements, we are interested in
testing the crossing of the “lightIntensity” barrier.

(a) sequential behaviour

(b) cyclic behaviour

Figure 3: Graph generate

Figure 1: Two requirements formalised with Stimulus

Finally we generate traces, shown in the graph (a) in the
figure 3, and observe manually if they satisfy the require-
ments. We observe in the traces this graph that after the
headlights have been set to “OFF” the first time, the head-
light behavior becomes random. Thanks to the result of the
simulation, we know the existence of a problem, now we have
to fix it. Effectively the requirement REQ 003Aa is ambigu-
ous because we use the operators “as long as”, that can mean
“as long as condition, something [afterwards nothing]”, a se-
quential behaviour or “[always] when condition, something”,
a cyclic behaviour. Graph (b) in the figure 3 confirms that
here the second definition of as long as in the requirement
REQ 003Aa have to be used.

3 Clarify functional coverage
Requirements are edited and formalized thanks to the library
of macros provided with Stimulus. We first give an intuition
for each of these macros of what is the relevant coverage cri-
teria. We then infer a general criteria which can apply to all
library macros and user macros.

3.1 Simple macros
In order to propose a criteria, we need to introduce some no-
tion. Each macro is associated with an automaton A. The
notion of termination of an automaton will be exploited. Ba-
sically, an automaton A is terminated when the control is in a
sink state (this means that there is no outgoing transition from
this state) and the content of this sink state is itself terminated.
This notion of termination will be used to decide whether a
property specified with a macro is covered or not.

Now we present the most common macros used for spec-
ifying properties and we will discuss for each of them the
relevant coverage criteria that applies.
OnceBefore is associated with the sentence template “En-

sure 〈condition〉 once before 〈event〉” and the macro is
defined by the automaton

This sentence template enforces the behaviour: ”the
condition must be true at least once before or at the first
occurrence of the event”. An example of use is: “Ensure
PlaneIsReady once before TakeOff”. In this automaton,
the “last condition” refers to the value of “condition”

at the previous execution step. The automaton, hence
the sentence template, terminates the step after the event
condition occurs.

It is clear that to decide whether such a property is sat-
isfied or not, one has to wait for the occurrence of the
“condition”, which is implied by the termination of the
automaton. Hence the relevant coverage criteria consists
in saying that the property is covered when its corre-
sponding automaton terminates.

From is associated with the sentence template “From
〈condition〉, do 〈BODY〉” and is defined by the automa-
ton

This sentence template enforces the behaviour: as
soon as “condition” is true, enforce the behaviour of
“BODY”. An example of use which also exploits the
previous template is: From alarm, do Ensure acknowl-
edge once before not alarm.

To decide whether this example property is covered, one
has to wait for the occurrence of “alarm”, and from there
for the first occurrence of “not alarm”. This is implied by
the termination of the automaton associated with From,
which occurs when the control in the state “Body” and
its content “BODY” (here another sentence) is termi-
nated.

At first glance the criteria for this sentence is the same
as the criteria found for the previous one: the property
is covered when the associated automaton terminates.
However, the content of “BODY” might specify a cyclic,
non-terminating behaviour, as we will see later.

Hence, our definition of coverage here will rather
be: “From 〈condition〉, do 〈BODY〉” is covered when
“BODY” is covered.

3.2 Cyclic macros

Repeat is associated with the sentence template “Repeat
〈BODY〉” and is defined by the cyclic automaton

This sentence template allows to repeat a sentence once
it is terminated. An example of use which also exploits
the previous template is: Repeat (From alarm, do Ensure
acknowledge once before not alarm). To decide whether
this example property is covered, one has to wait when
the control in the state “Body” and its content 〈Body〉 is
terminated once.
Hence, our definition of coverage here will rather be:
“Repeat 〈BODY〉” is covered when “BODY” is covered
once.
If we cover “Repeat” when we cover the body once, then
there are no differences between in body inside the “Re-
peat” and the body alone. With other words if we cover
only one time the body, we can not check the fact that
this pattern is cyclic. The second idea is to cover the
body. Covering the body twice and not thrice or N times
is a choice totally arbitrary. That is one of our opened
questions: Should coverage imply covering 〈BODY〉
once or N times ?

When is associated with the sentence template “When con-
dition, 〈BODY〉” and is defined by the cyclic automaton

This sentence ensures a certain statement. The associ-
ated automaton has two transitions to ensure the con-
dition. For instance the following requirement: When
alert (From alarm, do Ensure acknowledge once before
not alarm). To decide whether this example property is
covered one has to wait for the occurrence of “alert”, and
from there wait like in the previous macro “Repeat” the
control in the state “Body” and its content 〈Body〉 are
terminated twice.
Hence, our definition of coverage here is the same that
the previous one (“Repeat”).

3.3 Specifics cases
IfThenElse is associated with the sentence template “If con-

dition then 〈THEN〉 else 〈ELSE]〉 and is defined by the
automaton

This sentence template allows to choose a statement be-
tween two statements according to a condition. An ex-
ample of use is: if alert then damage = 0 else damage =
damage + 1
In this case we have to reach two final states if we want
to cover all the properties, i.e. to terminate one time with
damage = 0 when alert is fired and in a second time to
terminate with damage = damage + 1 when alert is not
fired.

Until is associated with the sentence template “〈Body〉 until
event ” and is defined by the automaton

This sentence template ensures a statement until an event
happens. It uses the notion of a previous value of the
variable that we saw with the operator “OnceBefore”.
An example of use is “ (When alert (From alarm, do
Ensure acknowledge)) until not alarm”
To decide whether this example property is covered one
has to wait for the occurrence of “alert”, from there wait
until the content 〈BODY〉 is terminated and then wait for
the occurrence of 〈event〉 (here not alarm).
Hence, our definition of coverage here will rather be:
“〈Body〉 until event ” is covered when 〈BODY〉 is cov-
ered and then 〈event〉 occurred.

The common principles of comparative template definition
of coverage is to give and maintain values to cover all prop-
erties and the entire body. For the acyclic pattern, covering
implies termination. We don’t know if cyclic patterns cover-
age imply covering 〈BODY〉 once or N times.

For the sentence templates provided by Stimulus, we gave
an definition. We didn’t give one general intuition that works
for all patterns. The future users have to give definitions for
their added patterns.

To implement template definitions of coverage in stimulus
is currently not possible. The main issue is that it is not possi-
ble to know if we cover the whole 〈BODY〉 in Stimulus. The
idea is to complete the return value “True” with the last trace
generated.

4 Guiding the test to achieve functional
coverage

After defining the functional coverage, we adapt the approach
developed in [Gaucher et al., 2003] to the context of Stimulus
to design a method which automatically guides the simula-
tion towards the coverage of the property, in this section we
describe this approach. It is divided into three steps:

1. computing the set Sinteresting of interesting configura-
tions, i.e. the set of a configuration allowing to reach a
final configuration;

2. maintaining the simulation if and only if we can reach
an interesting configuration; and

Figure 4: Example A: Flat automaton

3. guiding the simulation towards an covered configura-
tion.

We illustrate this approach with the following requirement
example A.

From fire,
Do (if d ≤ 0 then t := 0 else t := −1))
Afterwards

Do ((from (alert ∧ t ≥ 0), t := t+ 1),
until t >= 10)

Afterwards (from t ≤ 10, ensure acknowl-
edgement)

We represent the causal chain corresponding of the require-
ment example in the flat automaton in the figure 4. The goal
of this approach is to reach one cover state (green states).

4.1 Computing the set Sinteresting of interesting
configurations that can reach a coverage
criteria

In order to define this approach, we need to introduce a pre-
liminary notion. Each configuration is a control state s in an
automaton A and the set of possible values for all variables at
this current control state s.

The goal is to find necessary condition to stay in an inter-
esting configuration. To compute an exact the set Sinteresting

of configurations, we need to manipulate sets of Boolean and
numerical relations. However numerical values are infinite
and computing an exact set is an undecidable problem. We
need to approximate these sets, that is why we use abstract
interpretations to compute the sets of configurations.

To find an interesting configuration we need a co-reachable
analysis and an reachable analysis. A co-reachable analysis
gives the successor state s and a reachable analysis gives a
predecessor of a state s. For each state s we compute the
approximation of possible valuations for all variables thanks

Figure 5: Flat automaton with for each state a set of approx-
imation variables values, in red by forward analysis and in
blue it is by back analysis.

to a abstract interpretation tool. An instance of result of such
an analysis is illustrated in figure 5.

4.2 Maintaining the simulation in Sinteresting
The simulation have to continue if and only if we can reach an
interesting state sinteresting to give the chance to terminate in
a covered state scovered. A path could end up in a sink and
in this case we can never terminate. For instance in the last
example (figure 5), if we have fire and damages, such as fire
= true and d > 0, we reach a sink. During the simulation if
we reach a state which leads to a sink then we stop this simu-
lation. However during the simulation we can still encounter
a cycle, that is why need to guide the simulation towards a
covered configuration.

4.3 Guiding the simulation towards a covered
configuration

In order to define our approach to guide a simulation, we need
to introduce two notions. The distance δ(s) for a state s is the
minimum number of intermediary states before reaching one
of the covering states and the weight is the likelihood to go
from one state to another. Our approach combines these two
notions.

The approach to guide the simulation, increases our
chances to reach a state that can lead to a covering state. Con-
cretely we associate a likelihood to each state s. The larger
the chances are for a state to lead to interesting state, the
greater the likelihood will be (figure 6).

Figure 6: Flat automaton with likelihoods for each edges
added in green

5 Realisation and experiments
After defining the approach to guide the simulation, we de-
scribe the corresponding implementation in this section. It is
divided into three steps:

1. generating automatically a flat automaton corresponding
of programs written in Stimulus;

2. optimizing the automatons generated;
3. applying the analysis tools on this automaton.
The generation of flat automaton took more time than we

thought because of the complexity of the language. The pro-
totype is yet to be finished, therefore we only present a pre-
liminary experimental report.

5.1 Generation of flat automaton
In order to explain how we generate the flat automaton, we
need to explain how the Stimulus compiler is working thanks
to the schema in figure 7. The compiler of Stimulus com-
pile the program (.stim) to a Bytecode file. Then the simula-
tor generates traces by interpreting the Bytecode and using a
solver.

Because Stimulus is a complex language, we decided to
construct the automaton by interpreting the Bytecode pro-
duced by its compiler instead of starting from relatively
scratch. An interesting consequence is that our interpreter
is independent from the semantics of Stimulus. It depends
only on the semantics of the Bytecode. Also note that the
interpreter performs a partial evaluation since it ignores com-
plicated cases, for instance the notion of termination or the
nested automatons.

As presented in section 3, each macro in Stimulus corre-
sponds to an automaton A. For instance, the automaton cor-
responding to the macro “When”, has one state “ON” and one
state “OFF”. Each automaton A has its corresponding vari-
able called clock in the synchronous world by M. Pouzet in
[Colaço and Pouzet, 2003]. Each states sa in the automaton
A correspond to a clock value ckvalue.

Figure 7: The functioning of Stimulus

We write a new interpreter and partial evaluator in order to
generate the flat automaton. First, the interpreter computes
the initial clock. Then the successor clocks, constraint labels
and assignments are recursively computed by interpretation
and partial evaluation of the Bytecode. After interpreting and
partial evaluating we build the automaton such as:
• each state s is identified by a set of clock values ckvalue;
• each state s contains a list of statements;
• each edge e is a list of constraints and reset values.
For instance, the automaton shown in figure 8 is the re-

sult of the interpretation of the requirement From alarm, do
Ensure acknowledge once before not alarm. In this automa-
ton, the vertices contain values of clock variables ck and the
assignments whereas the edges contains the constraints and
values of reset variables r.

5.2 Optimizations
The analysis of an automaton has a cost proportional to the
number of edges and vertices of the automaton. To prevent
this cost from becoming too large, we optimize the automa-
ton before beginning the analysis. All our optimizations are
performed directly when building the automaton. The most
important optimizations are the following:
• Some vertices can be deleted when one constraint c1 is

included in another constraint c2, such as x ≥ 5 and x ≥
10. For instance the automaton in figure9 written with
Stimulus and its corresponding flat automaton optimised
(figure 10).
• Unreachable edges, i.e. edges with contradicting con-

straints, can be deleted. For instance, ¬x ∧ x.
• The values of the resets are propagated forward, allow-

ing to simplify the contents of the state, and to simplify
the expressions processed during the analysis

The previous optimisation have certain limitations. For in-
stance, the optimisation such as one condition c1 is included
in a other condition c2 do not work in the case where we have
a time value. Indeed, in Stimulus we do not know the equality

Figure 8: Exemple of flat automaton generated

Figure 9: Two automatons in parallel using input variables

Figure 10: Flat automaton generated corresponding to the au-
tomaton in figure 9

Figure 11: Two automatons in parallel using time variables

of the time in two different automatons in parallel. We illus-
trate this case in the two following automatons. The first one
is the automaton written in Stimulus in the figure 11, and the
second one is the automaton generated in the figure 12.

We observe that the number of vertices and edges is larger
than in last example (figure 9). The only differences between
the two examples is that the constraints concern the time and
not a simple variable.

5.3 Experiments
Our interpreter is able to automatically generate an automaton
corresponding to a program written in Stimulus. They are
only two unsupported structures: arrays and iterators from
Stimulus.

Since Stimulus is an industrial tool, its language is quite
complex and implementing the generation of automaton was
tedious.

We did not tackle the automation the guiding of the simula-
tion towards a configuration. However, it is already possible
to apply certain analysis tool on the automaton, provided that
the tool supports Boolean and numerical variables.

Today, we can guide the simulation in the automaton by
adding likelihoods manually on ours automatons.

6 Conclusion and Further work
Debugging requirements by simulation is the goal of Stimu-
lus. Simulating a requirement consists in generating random
traces that satisfy the requirement. In this paper we presented
how to improve the traces generated by Stimulus. Our ap-
proach consists in guiding the simulations towards a coverage
goal.

For this purpose, we first clarified the functional coverage
by giving descriptions of how to cover the sentence templates
provided by Stimulus. This clarification highlighted a lack in
Stimulus. It is not possible to know what we exactly cover
in Stimulus. We need to add more information in the return
value of a simulation. The solution will be to allow to give an
argument 〈BODY〉 of a macro in the language Stimulus.

Secondly, we described precisely our methods to guide the
simulation towards the coverage of the property thanks to the
approach developed in [Gaucher et al., 2003] .

Figure 12: Flat automaton generated corresponding to the automaton in figure 11

Finally we began the implementation of these methods in
Stimulus. Concretely we implemented an interpreter to gen-
erate a flat automaton of the system. Working at the Bytecode
level allows to be independent from the semantic of Stimulus.

In its current state, we can apply existing analysis tools
on our automaton as long as the tool supports Boolean and
numerical variables.

We identify two main directions to explore as future work:
• apply more complete analysis technique on the automa-

tons generated;
• automate the detection of cover states and the delivery

of likelihoods

Acknowledgments
First of all, I thank Bertrand Jeannet, my internship super-
visor and co-founder of ARGOSIM. I am extremely grateful
and indebted to him for his expertise, sincere and valuable
guidance and encouragement extended to me. I take this op-
portunity to record my sincere thanks to Etienne Closse, my
second supervior and also co-founder of ARGOSIM and all
other members of Argosim for their help and encouragement.
Finally, I place on record, my sense of gratitude to one and
all who, directly or indirectly, have lent their helping hand in
this project.

References
[Caspi et al.,] Paul Caspi, Grégoire Hamon, and Marc

Pouzet. Lucid synchrone, un langage de programmation
des systèmes réactifs. Systèmes Temps-réel: Techniques
de Description et de Vérification-Théorie et Outils, pages
217–260.

[Caspi et al., 2003] Paul Caspi, Adrian Curic, Aude Maig-
nan, Christos Sofronis, Stavros Tripakis, and Peter
Niebert. From simulink to scade/lustre to tta: a layered
approach for distributed embedded applications. In ACM
Sigplan Notices, volume 38, pages 153–162. ACM, 2003.

[Colaço and Pouzet, 2003] Jean-Louis Colaço and Marc
Pouzet. Clocks as first class abstract types. In Embedded
Software, pages 134–155. Springer, 2003.

[Gaucher et al., 2003] Fabien Gaucher, Erwan Jahier, Flo-
rence Maraninchi, and Bertrand Jeannet. Automatic state
reaching for debugging reactive programs. In the Fifth In-
ternational Workshop on Automated Debugging (AADE-
BUG 2003), 2003.

[Halbwachs, 2005] Nicolas Halbwachs. A synchronous lan-
guage at work: the story of lustre. In Third ACM and IEEE
International Conference on Formal Methods and Mod-
els for Co-Design, 2005. MEMOCODE’05., pages 3–11,
2005.

[Hoang et al., 2013] Thai Son Hoang, Andreas Fürst, and
Jean-Raymond Abrial. Event-b patterns and their tool sup-
port. Software & Systems Modeling, 12(2):229–244, 2013.

[Jard and Jéron, 2005] Claude Jard and Thierry Jéron. Tgv:
theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer, 7(4):297–315,
2005.

[Jeannet and Gaucher, 2015] Betrand Jeannet and Fabien
Gaucher. Debugging real-time systems requirements :
Simulate the ”what” before the ”how”. Embedded-World,
2015.

[Marre and Arnould, 2000] B. Marre and A. Arnould. Test
sequences generation from lustre descriptions: Gatel.

In IEEE Int. Conf. on Automated Software Engineering
(ASE’0). IEEE Computer Society Press, September 2000.

[Pascal et al., 2008] Raymond Pascal, Roux Yvan, and
Jahier Erwan. Lutin: A language for specifying and exe-
cuting reactive scenarios. EURASIP Journal on Embedded
Systems, 2008, 2008.

[Ployette et al.,] Florimond Ployette, Bertrand Jeannet, and
Thierry Jéron. Stg: a symbolic test generation tool for
reactive systems.

Algorithmic Complexity Attacks : the case of sorting
Quentin Ricard
Magistère student
Grenoble, France
qricard@inria.fr

Supervised by: Cédric Lauradoux and Jean-Louis Roch.

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
We investigate on algorithmic complexity at-
tacks on sorting algorithms to mount denial-of-
service.We focus on sorting algorithms and we
show how difficult it is to generate worst case input
for several sequential and distributed algorithms
including heapsort, introspective sort,
hyper quicksort. Then, we quantify the im-
pact of algorithmic complexity attacks in terms of
CPU consumption, number of comparison and per-
mutation.

1 Introduction
A denial-of-service (DoS) attack is an attempt to disrupt

services or networks connected to the Internet so they re-
main unavailable for their users. There are many ways to
perform DoS but we focus on studying algorithmic complex-
ity attacks. Complexity attacks consists in forcing the worst
case execution of an algorithm by controlling its inputs. Do-
ing so, an adversary can force an algorithm to consume an
excessive amount of resources (CPU time or memory). Algo-
rithmic complexity attacks were formally introduced and put
into practice in [Crosby and Wallach, 2003]. In their paper,
they present new attacks on hash table implementations for
two versions of Perl and for the SQUID web proxy. McIl-
roy’s paper [McIlroy, 1999] is often considered to be the first
paper which have initiated algorithmic complexity attack. He
presents an attack on the standard C’s quicksort which is the
starting point of our work. We decided to go further and in-
vestigate on distributed sorting algorithm.

Qsort is known to be O(n log n) in average but the worst
case is O(n2). McIlroy [McIlroy, 1999] explains a simple
adversary on the standard C quicksort function based on
a deterministic pivot choice. In fact recall that the three steps
of quicksort are as follows:

- Pick an item as pivot (generally the median-of-three val-
ues in the input)

- Split the array into three parts that contain respectively
all items less than the pivot, the pivot, and all items
greater than the pivot.

- Recursively call quicksort on the sub-arrays
Standard C’s quicksort takes an input and a comparison
function as parameters, the comparison function is used to
sort the input. McIlroy engineered a special comparison func-
tion that computes an input on the fly depending on how the
standard quicksort behave. Sorted with quicksort the
input obtained force quicksort to run in quadratic time.

In fact, the worst case of quicksort is when the pivot is
always compared smaller against the items of the input. At
initial state, the input contains n items evaluated to the same
value. Those items as referred as ”gas” in the original pa-
per. The goal is to freeze each items into a definite ”solid”
value by calling quicksort with the special comparator.
The comparator takes two input items and return weather one
of them is greater or equal than the other. When the compara-
tor is asked to compare two ”gas” items, it chooses one of the
items and freezes it into a value larger than all the previous
frozen values and returns the comparison result of the two
items (see fig. 1). At phase c), two gas items are compared,
one is frozen. The other item is kept and considered as a
pivot candidate: if the next comparison uses the same item
as the candidate it freezes the pivot into a definitive value
(phase d)). Finally, the algorithm ends and the initial input
is now an input that forces quicksort to run on its worst
case. Thus, when running quicksort with this input (fig. 1
from e) to h)) we can see that the maximum amount of com-
parison is done (exactly 5 comparisons) which correspond to
the 0.25 × n2 in [McIlroy, 1999]. It’s worth to mention that
McIlroy is a main contibutor for sorting algorithms in popu-
lar software libraries and was the first to exhibit an algorithm
to build quicksort worst case and programming it. The
purpose of this paper is to provide the same sort of tool for
other sorting algorithms.

2 Sequential sorting algorithms
Many sorting algorithms have been proposed in the past

(see [Cormen et al., 2001] for more details). We fo-
cus in this section on two sequential algorithms such as
heapsort and introspective sort. We also worked

a) Passe 3 b) Passe 4 d) Final statec) Passe 5

e) iteration 1 f) iteration 2 g) iteration 3 h) Final permutation

: Values compared : Gas value : Solid value

Qsort on the input

Worst input construction

Figure 1: Killer adversary construction and execution

previously on others sequential algorithm like bucketsort
and mergesort (see [Q. Ricard, 2015]). The attack on
bucketsort helped us realize that sometimes the num-
ber of comparisons or permutations is not the good metric
when considering DoS. In fact, for bucketsort growing
the tree of recursive calls was more efficient than focusing on
the number of comparison. For mergesort, it was really
difficult to find a good adversary because the merging phase
takes multiple steps and it is hard to know which combina-
tion is the most costly. The idea of this paper is to find new
metrics by studying others algorithms. We do not give all
the details of the algorithms. We briefly overview them, their
pseudo-code can be found in appendices A and B.

2.1 The algorithms

Heapsort
We introduce heapsort as it is mandatory to under-

stand introsort. Heapsort is a classic sorting algo-
rithm first due to Williams [Williams, 1964] and improved by
Floyd [Floyd, 1964]. The idea is to sort an input viewed as
a complete binary tree by maintaining it heap ordered. Heap
order is defined by the fact that for an input a[1..n] each
item a[i] is greater a[2i] and a[2i+1]. Those posi-
tions corresponds to indexes of the children of a[i] when
representing a tree into an input. Heapsort is performed
in place so the input is divided in two parts one is the heap
and the other represents the sorted input. Therefore, the algo-
rithm sorts the input by removing the largest item (which is
a[1]) of the heap by switching its position in the input with
the last item. Thus, the heap is shrunk and the sorted input
grows starting from its end. When moving an item outside
the heap, it is possible that the new item in a[1] does not
respect the heap order. To deal with this eventuality, the algo-
rithm starts a repairing phase to restore the heap order (often
called siftdown phase). Those two steps are repeated until
the heap is empty and then the input is sorted.

Introspective sort
Introspective sort or introsort is an amelio-

ration to quicksort due to Musser [Musser, 1997]. In fact
quicksort worst-case complexity is O(n2) and Musser
determined that it is due to the depth of the recursive calls
to quicksort. Therefore, Musser defined a depth thresh-
old (2× log(n)) where the algorithm switches to heapsort
whose worst case is in O(nlog(n)). Thus, Musser added to
quicksort a simple test on the current depth, when this
value is zero, the subarray is sorted using heapsort. By
adding this threshold the complexity in the worst case of
introspective sort becomes O(nlog(n)) and it keeps
the average-case complexity of quicksort. It is an inter-
esting sort to study because of the combination of two differ-
ent algorithm. This technique is often used to provide good
running time. For example, in practice quicksort calls
insertion sort when the number of items left in a par-
tition is less than 15. It is due to the fact that the average
case of insertion sort when considering little inputs has a bet-
ter running time than quicksort. Thus, we though that it
will be a great idea to study a combined sort and see if the
worst case of such a sort can be engineered considering only
the worst case of the sorts used in the combination.

2.2 Worst case datasets
Our goal is to find a list of integers such that the compu-

tation time of the algorithm is maximized. In Appendix ap-
pendix C, we provide examples of such lists for the consid-
ered sorting algorithms. Moreover, our adversaries are com-
puted 100 times with inputs containing 1million integers on
c programs compiled using gcc (4.4.7) on a virtual 32 cores
CentOS(6.6)x86 machine.

Heapsort
Heapsort has the interesting property that its worst case

and best case are in O(nlog(n)) [Schaffer and Sedgewick,
1993]. Therefore, one may asks why trying a denial of ser-
vice against a non quadratic algorithm. The point is that even

if both cases are in the same complexity the actual number
of comparisons can vary by a certain factor. When consid-
ering large amount of data this factor can have a huge im-
pact on performance. Sedgewick and Schaffer [Schaffer and
Sedgewick, 1993] established that the worst case depended
on the distance that the siftdown operation has to travel to
restore the heap order. They quantified the maximum amount
of data moves to be no larger than O(nlog(n)) + O(n). Be-
cause each moves involves two comparisons (one for picking
one of the children, and one against the selected child and the
integer to siftdown). The idea of the adversary is to in-
ductively build the input from n integers to n+1. We use the
property that to restore heap order the siftdown step keeps
traveling down the heap until the order is restored. Thus, we
can construct recursively the heap so that each time we swap
two integers during the first phase the siftdown travels the
heap until the last integer is reached. The only way to ensure
this property holds, is that each node of the tree has to be in-
ferior to one of its children. Once done with these phases, we
invert the input so that the heap order is not respected. Doing
so heapsort has to do an heapification phase before start-
ing the sorting phase. The following schemes table 1 and ta-
ble 2 explain how the scenario is built and executed by the
algorithm.

Value to insert SiftDown SiftDown Final State
0 0
1 1 0 1 0
2 2 1 0 2 1 0
3 3 2 1 0 3 1 2 0 3 0 2 1
4 4 3 0 2 1 4 3 0 2 1

Table 1: Design of a bad input.

Heap SiftDown SiftDown SiftDown input Comments
1 2 0 3 4 1 2 0 3 4 2 1 0 3 4 2 4 0 3 1 Empty heapification
4 2 0 3 1 4 2 0 3 1 4 sorting
1 2 0 3 1 2 0 3 2 1 0 3 2 3 0 1 4 heapification
3 2 0 1 3 2 0 1 1 2 0 3 4 sorting
1 2 0 1 2 0 2 1 0 3 4 heapification
2 1 0 0 1 2 3 4 sorting
0 1 0 1 1 0 0 1 2 3 4 Heapification and sorting

Table 2: Sorting an adversary input. The boxes around
the integers represents the comparisons between the first
integer and the two others. The bold integers represent
the integers that have been swapped after the comparison
(heapification phase) or the integers that are swapped
(sorting phase).

The results – Unfortunately our adversary led the algo-
rithm to approximately do only 1.003 times more compar-
isons than a randomly chosen inputs table 3 but the randomly
chosen input do way more permutations. Moreover the time
consumption of the random input is greater than our adver-
sary. Therefore, we can conclude that the number of com-
parison is not the good metric for heapsort. A good idea
would be to try to maximize the number of permutations. A

recent work of [Suchenek, 2015] presents a complete analy-
sis of the worst case of heapsort. His paper contains an al-
gorithm to produce the worst case in terms of number of com-
parisons. The idea is to produce the worst case of heapsort
by decomposing its operations. In fact he discovered that the
sift down and the removeMax operations can be reversed
in order to produce a bad input. He also mention strategies in
order to produce bad cases for the operations that cannot be
reversed. We did not manage to implement his work in order
to compare with our attack.

Adversary Random
Average number of comparisons 3029860 3019663
Average number of permutations 1557728 1574620

Average CPU time spent (ms) 10.02 15.1

Table 3: Experimentations with an adversary input.

Introspective sort
Introsort is designed to switch to heapsort when

the worst case of quicksort is reached. Since that
quicksort performs better in average than heapsort
the first thing we need to do to slow introsort down is
to force the bad case of quicksort early in the partition
phases so that it switches to heapsort. Then if we apply
the worst case we found on heapsort we obtain an adver-
sary for introsort. To do so we implemented a function
like McIlroy’s [McIlroy, 1999] killer for heapsort based
on our attack on heapsort.

Therefore, since introsort switches to heapsort
when the height of the recursive calls to quicksort reaches
2 × log(n). Thus, we added a parameter to killqsort
which corresponds to the depth where we our algorithm
switches from building the input according to the worst case
of quicksort to building the worst case of heapsort.

The results– Even if our attack on heapsort was not ef-
ficient it turned out to be efficient against introsort. The
table 4 holds the results of our tests. We tested Mc Ilroy’s in-
put and also our attack without the part attacking heapsort.
It showed good results in terms of denial of service. In fact
we manages to consume almost 4 times more CPU and did 2
calls to heapsort where one was really expensive because
it contained 99696 elements. Which means that almost all
the input was sorted by heapsort whose average case has
a greater running time than quicksort. The Mc Ilroy’s at-
tack only consumed twice CPU as a randomly chosen input.

3 Distributed sorting algorithm
We now discuss about a distributed sorting algorithm due

to [Wagar, 1987]. There exist two improvements of this sort-
ing algorithm. The first is the sample sort [Shi and Schaeffer,
1992] and the second hyksort [Sundar et al., 2013]. They will
be part of a future work and won’t be discussed in this paper.

Adversary (with heap) Adversary (w/o heap) McIlroy’s Random
Average number of comparisons 6601630 4289030 1864120 1915074
Average number of permutations 4949828 2352699 806802 829510

Average call to quicksort 164 13778 20624 20659
Average call to heapsort 2 113 0 0

Average CPU time spent (ms) 52.3 23.5 24.1 13.34

Table 4: Experimentations for different adversaries.

3.1 Hyper Quicksort
Hyper quicksort is a distributed version of the

quicksort algorithm designed to run on D-dimensional
hypercube system architecture due to [Wagar, 1987]. Ini-
tially the host processor splits the integers to all the 2D nodes
of the system. Each node sorts their N sized chunks using
quicksort. Then the leader (node 0) pick a pivot (the me-
dian of its values) and broadcast it to the nodes in the hyper-
cube. At this point the Hypercube is split into two equal sub-
cubes, thus the nodes 0 to 2D−1−1 are neighbor to the nodes
2D−1 to 2D − 1. The lower half sub-cube (0 to 2D−1 − 1)
sends its integers that are greater than the pivot to their neigh-
bor while the upper half sub-cube (2D−1 to 2D − 1) sends
its integers that are lesser than the pivot. This process is re-
peated recursively on the two sub-cubes until the sub-cubes
are 0-dimensional (one single node). It has the complexity of
O(NlogN + D(D+1)

2 +DN) [Wagar, 1987], where N is the
initial number of integers per node, and D the dimension of
the hypercube. The figure fig. 2 exposes the behavior of the
algorithm.
• At iteration 1 the leader is the node A and elect 3 as

pivot. As a result the hypercube splits in two and ex-
change happens between the nodes that are neighbors to
each other. Therefore at iteration 1, A exchange with E,
B with F and so on.
• Thus at iteration 2 we now have two hypercube (A, B,
C, D) and (E, F , G, H) and the leaders are respectively
A and E. At this stage the exchanges happen between A
and C, B and D and so on.
• Finally at iteration 3, there are four leaders (A, C, E, G)

with the corresponding hypercubes (A, B), (C, D), (E,
F), (G, H). After the exchange phase the nodes send
their items to the initial node (A).

3.2 Worst case dataset
When considering hyper quicksort one may con-

sider the fact that the goal of distributed algorithms is to do as
much instructions as possible concurrently. Thus, we design
our attack with the idea to lead the algorithm to do most of
the work serially. Recall that at each stage a node sends its
integers to its neighbor according to whether they are greater
or lesser than the pivot it received. Therefore, we designed an
algorithm that, given a target T corresponding to an index of
a node in a hypercube Hyc of dimension D. The algorithm
builds an input of (2D ×N) unique integers so that, at stage
D, hyper quicksort drives a maximum amount of inte-
gers to the node T .

A B

DC

E F

HG

Final state

Iteration 3

Iteration 1

Iteration 2

1

10

2 3

4 56

7 8

11

12

1314

15

16

9

2

6 153
164 5

1

108 139
7 1211 14

2

7 111214

3 6 15

1

4 5 16

108 1396 157 111214

3 4 5

16

2

1

3 4 5

1

6 7 111214

2

108 139 1615 12 1415108 96 7 11 13 16

2

1

3 4 5

12 141513 16108 96 7 112 3 4 51

Pivot

Pivots

Pivots

A

E F

B

G

C D

H

A

E F

B

G

C D

H

A

E F

B

G

C D

H

A

E F

B

G

C D

H

A

E F

B

G

C D

H

A

E F

B

G

C D

H

Figure 2: Hyper quicksort

Proposition 1 – The maximal number of integers in a hy-
percube of dimension d, where each node is initiated with N

integers, is defined as follows:

W (1) =
1

2
×N +N

W (d) =
W (d− 1)

2
+ 2d−2 ×N

=
W (1)

2d−1
+N ×

(
2d+1 − 23−d

3

) (1)

Proof 1 – Consider the case of a one-dimensioned hyper-
cube Hyc where the two nodes (A and B) are initiated with N
integers. Therefore the total number of integers in the hyper-
cube is 21 ×N .

∀a ∈ A, ∀b ∈ B, a > b (2)
∀a ∈ A,∀b ∈ B, a < b (3)

Then, at stage 1 of hyper quicksort, which is the last
stage of the sort in a one-dimensional hyper-cube, there are
two possibilities :

2 ⇒ The number of integers in A is : N
2 +N

3 ⇒ The number of integers in B is : N + N
2

Because in either case A will chose a pivot and therefore, A
must send to B half of its integers. But B will send all its
integers (if (1)), or none of them (if (2)). Thus we can deduce
that W (1) = N

2 +N .

To ease understanding our proof, we consider now the
same function but for a two-dimensional hyper-cube. Thus
we have four nodes A, B, C and D. And the following,
where ∀Ii, I ∈ {A, B, C, D}, and i ∈ {1, 2} correspond
to the number of integers in I at stage i. :

- At the beginning, ∀a ∈ A, ∀b ∈ B, ∀c ∈ C, ∀d ∈ D :

a > c > b > d (4)
d > b > c > a (5)
c > b > d > a (6)
b > d > c > a (7)

- At stage 1 :

(4) ⇒ A1 = N
2 +N ; B1 = 2×N ; C1 = N

2 ; D1 = 0

(5) ⇒ A1 = N
2 +N ; B1 = 2×N ; C1 = N

2 ; D1 = 0

(6) ⇒ A2 = N
2 ; B1 = 0; C1 = N + N

2 ; D1 = 2×N

(7) ⇒ A2 = N
2 ; B1 = 0; C1 = N + N

2 ; D1 = 2×N

- At stage 2 :

(4) ⇒ A2 = A1

2 +B1; B2 = A1

2 ; C2 = C1

2 ; D2 = C1

2

(5) ⇒ A2 = A1

2 ; B2 = B1+
A1

2 ; C2 = C1

2 ; D2 = C1

2

(6) ⇒ A2 = A1

2 ; B2 = A1

2 ; C2 = C1

2 +D1; D2 = C1

2

(7) ⇒ A2 = A1

2 ; B2 = A1

2 ; C2 = C1

2 ; D2 = D1+
C1

2

Thus, by simplification, whether (4), (5), (6) or (7), the
nodes A2, B2, C2, D2 contain the same amount of integers
which is :W (1)

2 +D ×N , where D = 2. We just proved that
W (1) = N

2 +N and W (2) = W (1)
2 +2×N . Let us suppose

that this property holds true for W (d−1). Therefore we shall
demonstrate that W (d) = W (d−1)

2 + 2d ×N is true.

W (d) =
w(d− 1)

2
+ 2d−1 ×N

=
1

2

[
W (d− 2)

2
+ 2d−2 ×N

]
+ 2d−1 ×N

=
1

22

[
W (d− 3)

2
+ 2d−3 ×N

]
+N ×

(
2d−3 + 2d−1

)
(8)

Thus, if we continue to get back to W (1) we will have the
following :

W (d) =
W (1)

2d−1
+N ×

(
2d−1 + 2d−3 + ..+ 2n−(2×n−3)

)
=

W (1)

2d−1
+ 2dN ×

(
1

2
+

1

23
+ ...+

1

2d−3

)
=

W (1)

2d−1
+ 2dN × 2− 23−2d

3
(9)

Thus, 1 holds true and the maximum amount of integers that
can be driven in a node at iteration is W(d) where N is the
amount of integers initially contained by the nodes in the hy-
percube of dimension d. Now, we need to prove that it is
possible to create an input of unique integers that respects the
formula 1. Thus, we need to prove the following:

Proposition 2 – For any D-dimensional hyper-cube and for
any node T in the hyper-cube, it exists an input Adv that at
stage D of hyper quicksort the number of integers con-
tained in T is maximum.

∀D ∈ N and ∀T ∈ 2D

∃Adv such that at stage D

|T | = W (1)

2D−1
+N ×

(
2D+1 − 23−D

3

) (10)

Proof 2 – Consider a 3-dimensional array
run[node][stage][neighbor] where ∀node ∈ 2D,
∀stage ∈ D and ∀neighbor ∈ 2D. Given a target,
run contains for each node, the list of neighbors at each
stage of the execution of hyper quicksort. Thus, we
can build the input according to the behavior of hyper
quicksort. In fact, given a pivot p and two neighbors
A(half with highest values) and B(half with lowest values)
we have the following :

if ∀i ∈ NA[i] < p then A sends all its values to B (11)
if ∀i ∈ NB[i] > p then B sends all its values to A (12)

Therefore, if we have 11 and not 12, then, after the
send/receive operations, A will be empty and |B| = 2 × N .

The following example of the 3-dimensional hypercube in
fig. 2 with the node A as target. Thus we establish the cor-
responding receive links at each stage. Applying hyper
quicksort behavior we can create those links. We rep-
resent them on the following table :

Stage A B C D E F G H
1 E F G H ∅ ∅ ∅ ∅
3 C, G D, H ∅ ∅ ∅ ∅ ∅ ∅
3 B, F, D, H ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 5: Table representing the list of the node from where
the integers need to come to maximize the amount present in
target A.

Since we focus A the sub-cube of interest is the lower half
(A,B,C,D), thus we are interested on sending only to those
nodes that is why we have they are linked to E,F,G,H at
stage 1 and E,F,G,H are not linked. In fact we focus here
only on the sending operations that help the sub-cube of the
target to get more integers. Then at stage 2 our target is again
in the lower half. Thus, we are interested only on sending
to A,B. Thus C,D send their initial integers and the inte-
gers they received at anterior stages. Finally we reach the last
stage where B sends to A its integers. Once we have this
linked list we are able to order the values that nodes must
hold thanks to the position of the target and its leader at each
stage. For our example this is how it works :
s1: A is in the lower half, therefore the leader of A must

hold the greatest integers⇒ A = max,max−−
s2: A is in the lower half, therefore the leader of A must

hold the greatest integers, and at stage 1 A is neighbor
to E therefore⇒ E = max,max−−

s3: A is in the lower half, therefore the leader of A must
hold the greatest integers, and at stage 2 A is neighbor
to C therefore⇒ C = max,max−− but C at stage 1
was neighbor to G therefore⇒ G = max,max−−

Thus we have the following order that must be respected for
any integers in A,B,C,D,E, F,G,H we must have :

A > E > C > G > {B,D,F,H} (13)

And we store them in an array of size 8 where each item rep-
resent the index of the chunk to allocate to a specific node at
the beginning of the algorithm. For our example the alloca-
tions of the maximum gives an array like this one :

Index 0 1 2 3 4 5 6 7
index of chunk 7 ∅ ∅ 5 6 ∅ 4 ∅

Table 6: Table representing the array of allocations of the
maximum chunks of the input. The target node is A

The integers contained in B,D,F,H just have to be infe-
rior to G. Thus it exists 4! different inputs that lead a max-
imum integers in A. The 23 × N sized inputs are con-
structed simply by generating an array from 1 to 23 × N

and dividing it in 23 chunks then allocate the highest chunk
to A then to E and so on. The problem was to prove that,
for any D-dimensional hypercube an input can be generated
like the example above. In fact, we need to prove that it
is impossible that our method leads to a contradiction like
A > E > C > F > A.... Which means that at initial state
the node A has to hold integers strictly greater than those in
E,C, F but also strictly inferior. We prove now that it is im-
possible given the behavior of hyper quicksort and our
algorithm.

Algorithm 1 anti-hyper quicksort

Require: A D-dimensional hypercube
Require: A 3-dimensional array hist initialized as explained
Require: A target tar
Require: A array ord with 2D elements

1: for st = 1 to D do
2: lead = getleader(tar, st)
3: if inlowhalf(tar, st) then
4: max = allocateMaxto(ord, hist[lead][st],max)
5: else
6: min = allocateMinto(ord, hist[lead][st],min)
7: end if
8: end for

Algorithm 2 allocateMax/Minto

Require: A array nodes containing the index of the nodes to
allocate

Require: A array ord with 2D elements
Require: A max/min

1: for i = 1 to |nodes| do
2: ord[nodes[i]] = max/min
3: max++ / min−−
4: end for
5: return max/min

In fact such a contradiction means that a node must appear
two times in a column of the table produced by our algorithm
(see table 5). In other words it means that a node can be
neighbor to another node more than one time. Or this is im-
possible given the behavior of hyper quicksort. In fact
the hyper quicksort algorithm splits an initial hyper-
cube in two at each stage of iteration. The links of communi-
cation of two nodes are always from a node in a sub-cube and
a node in the opposite sub-cube. Once split the nodes never
get in contact afterwards because the algorithm always split
the sub-cubes in two and never merge two sub-cubes (except
at the end of the algorithm when all the integers are sent to
the node 0).

Thus, our algorithm provides a (2D × N) sized input that
will lead hyper quicksort to send the maximal amount
of integers in a single node given in parameter. We decided to
go a little further so we modified the killqsort function
of [McIlroy, 1999] so that it orders a N sized array to force
the worst case of quicksort. The goal is to force the worst

Number of nodes 8 16 32
Input type Adversary Random Adversary Random Adversary Random

Number of comparisons 34037976 33650154 8402447 81592596 202661375 192160816
Maximal size of the messages 134039 62503 213322 60039 355136 58475

CPU time spent (ms) 263.2 246.1 509.3 477.7 1697.2 1459.1

Table 7: Experimentations of the adversary input. The nodes are initiated with 100K integers. All the number correspond to
average calculated over 100 run of the algorithm on the same input.

Number of nodes 8 16 32
Input type Adversary Random Adversary Random Adversary Random

Number of comparisons 515103187 513966538 603345621 588774866 687958619 652206714
Maximal size of the messages 1675488 779860 1333265 374839 1109800 182594

CPU time spent (ms) 3327.5 3103.9 3405.5 3071.1 4625.8 3977.8

Table 8: Experimentations of the adversary. The initial input holds 10M integers.All the number correspond to average calcu-
lated over 100 run of the algorithm on the same input.

case of quicksort on each node at the first stage (because
afterwards the arrays are always sorted).

The results – We tested our algorithm on three hypercubes
(8, 16 and 32 nodes) and two different size of initial input.
The table 7 presents the results of the attack where the nodes
are initiated with 100K integers each. The table 8 presents
the results of the attack where the nodes are initiated with
10M
2D

where D is the dimension of the hypercube (3, 4 or 5).
We noticed that the difference between the maximal size of
the messages that are sent between the nodes stay approxi-
mately the same regardless of the number of nodes. We also
observed that the messages length was always maximal when
the considered node it the node that has been targeted by the
attacker. This observation derives from the fact that at the last
stage all the nodes sends their integers to the initial leader and
since the target will hold most of the integers the last message
sent from the node will be greater than the others messages.

4 Conclusion

We described algorithmic complexity attacks on different
sorting algorithms. We have shown how certain algorithms
behave when confronted with adversaries inputs. Thus, cer-
tain attacks can be used for denial of service purposes while
others, for example with heapsort, cannot or are very dif-
ficult to attempt.

In this paper, we explored on sequential and distributed al-
gorithms, an interesting area for future research will be to
study sorting algorithms used in libraries for embedded sys-
tems. In fact embedded systems (sensors) have limited re-
sources making the choice of sorting algorithms limited and
therefore they are prone to algorithmic complexity attacks.
This is where DoS attacks are interesting for the attacker be-
cause the impact will affect significantly people.

References
[Cormen et al., 2001] Thomas H. Cormen, Clifford Stein,

Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edi-
tion, 2001.

[Crosby and Wallach, 2003] S. Crosby and D. Wallach. De-
nial of service via algorithmic complexity attacks. In Pro-
ceedings of the 12th USENIX Security Symposium, pages
29–44, August 2003.

[Floyd, 1964] Robert W. Floyd. Algorithm 245: Treesort.
Commun. ACM, 7(12):701, 1964.

[McIlroy, 1999] M. Douglas McIlroy. A killer adversary for
quicksort. Softw., Pract. Exper., 29(4):341–344, 1999.

[Musser, 1997] David R. Musser. Introspective sorting and
selection algorithms. Software: Practice and Experience,
27(8):983–993, 1997.

[Q. Ricard, 2015] C. Lauradoux Q. Ricard. Algorithmic
complexity attacks: the case of sorting. TER Masters 1
IM2AG, 2015.

[Schaffer and Sedgewick, 1993] Russel Schaffer and Robert
Sedgewick. The analysis of heapsort. J. Algorithms,
15(1):76–100, July 1993.

[Shi and Schaeffer, 1992] Hanmao Shi and Jonathan Schaef-
fer. Parallel sorting by regular sampling. Journal of Par-
allel and Distributed Computing, 14(4):361 – 372, 1992.

[Suchenek, 2015] Marek A. Suchenek. A complete worst-
case analysis of heapsort with experimental verification of
its results, A manuscript (MS). CoRR, abs/1504.01459,
2015.

[Sundar et al., 2013] Hari Sundar, Dhairya Malhotra, and
George Biros. Hyksort: A new variant of hypercube quick-
sort on distributed memory architectures. In Proceed-
ings of the 27th International ACM Conference on Inter-
national Conference on Supercomputing, ICS ’13, pages
293–302, New York, NY, USA, 2013. ACM.

[Wagar, 1987] Bruce Wagar. Hyperquicksort: A fast sort-
ing algorithm for hypercubes. Hypercube Multiprocessors,
1987:292–299, 1987.

[Williams, 1964] J.W.J. Williams. Algorithm 232 (heapsort).
Communications of the ACM, 7:347–348, 1964.

A Complexities
The complexities are expressed in terms of number of com-

parisons. For hyper quicksort since the algorithm is
distributed we consider only one node. The nodes are initi-
ated with n values and the hypercube is of dimension D.

Algorithm Time complexity Space complexity
Best case Average case Worst case Worst case

Heapsort O(nlog(n)) O(nlog(n)) O(nlog(n)) O(1)

Introsort O(nlog(n)) O(nlog(n)) O(nlog(n)) O(n)

hyper quicksort
O(2D × n2

+ D(D+1)
2

+ Dn)

O(n logn

+ D(D+1)
2

+ Dn)

O(n logn

+ D(D+1)
2

+ Dn)

O(W (1)
2d−1

+ n×
(

2d+1−23−d

3

)
)

B Algorithms

Algorithm 3 Heapsort
Require: input array with n elements
Require: Heap size H ← n
Require: Index i child parent
Require: Parent save node tparent
Require: i← H/2

1: while H > 0 do
2: if i > 0 then
3: i← i− 1
4: tparent← array[i]
5: else
6: H ← H − 1
7: tparent← array[H]
8: array[H]← array[0]
9: end if

10: parent← i
11: child← i ∗ 2 + 1
12: while child < H and arr[child] <= t do
13: if child + 1 < H and array[child + 1] >

array[child] then
14: child← child+ 1
15: end if
16: if array[child] > tparent then
17: array[child]← tparent
18: parent← child
19: child← child ∗ 2 + 1
20: end if
21: end while
22: array[parent]← tparent
23: end while

Algorithm 4 Introspective sort

Require: input array with n elements
Require: threshold← 2× log(n)
Require: last,first

1: if threshold == 0 then
2: heapsort(array[first], last− first)
3: else
4: part← partition(first, last)
5: introsort(part, last, threshold−−)
6: introsort(first, part, threshold−−)
7: end if

Algorithm 5 Hyper quicksort

1: Distribute the integers evenly among the nodes.
2: Each node sorts the integers it has using quicksort.
3: Node 0 broadcast its median key K to the rest of the hy-

percube.
4: Breakup the hypercube into two subcubes. Each node

in the lower sub-cube sends its integers whose keys are
> K and the nodes in upper sub-cube send their integers
whose keys are ≤ K.

5: Each node merges the integers it just received with the
ones he kept so that its integers are once again sorted.

6: Repeat Step 3 to 6 on each of the two sub-cubes.
7: Keep repeating step 3 to 7 until the sub-cubes consists

of one single node. At that point the hypercube will be
sorted.

C Worst cases
Here are the figures representing the worst case of the

algorithm that we presented.

Figure 3: Heapsort

0 10 20 30

0

10

20

30

Index

V
al

ue

Figure 4: Introsort

0 10 20 30

0

10

20

30

Index

V
al

ue

Figure 5: Hyper quicksort (8 nodes target=7)

0 10 20 30

0

10

20

30

Index

V
al

ue

Digital Humanities : computer engineers helping
hellenists and latinists

HOMERICA is a website created around 1998 and
developped by Françoise Létoublon (URG 3, RARE) to

gather scientific books and articles related to Homer
and Ancien Greek civilization.

I was supposed to update it through addition of several
database. I was especially supposed to help users to

get it proper functioning.

As part of digital humanities, the Moschopoulos Project
is a teamwork gathering hellenists, librarians and

computer engineers around a volume published in 1719.
This intricated book is composed of greek commentaries

of Iliad written by the Byzantine linguist Moschopoulos
and of a traduction with latine notes.

Some hellenist and latinist students subjected the
volume to Optical Character Recognition. Then, I had to
convert it into XML in order to get a smart document.

I was supposed to subjected it to Text Encoding
Initiative but it was finally removed due to technical

issues. Though, I worked on post-editing, an additional
way to correct the remaining errors of the document.

My placement was divided into 2 different projects : HOMERICA and MOSCHOPOULOS

Digital Humanities : computer engineers helping
hellenist and latinist researchers

HOMERICA is a website created around 1998 and
developed by Françoise Létoublon (URG 3, RARE) to
gather and disseminate scientific books and articles
related to Homer and the ancient Greek civilization.

I was supposed to update it through addition of several
databases. I was especially supposed to help users to

let it fonction properly.

As part of digital humanities, the Moschopoulos
project(an AEIR project of 2013) is a teamwork

gathering hellenists, librarians and computer engineers
around a volume published in 1719. This intricated book
is composed of commentaries in Greek of the Iliad edited

by the Byzantine linguist Moschopoulos and of a
translation in Latin, also accompagned by notes in Latin.

Some hellenist and latinist students subjected the
volume to Optical Character Recognition. Then, I had to
convert it into XML in order to get a smart document.

I was supposed to transform it into an XML format
conforming to the Text Encoding Initiative(TEI) but
could not finalize that part due to technical issues.

Though, I worked on post-editing, an additional way to
correct the remaining errors in the “OCRed” document.

My placement was divided into 2 different projects : HOMERICA and MOSCHOPOULOS

Lefrère Jules – Magistère L3 internship with Christian Boitet

Linear Models sparsification for Large-Scale Text Classification

Simon Moura∗†, Ioannis Partalas∗, Massih-Reza Amini†

Grenoble, France

Supervised by: Ioannis Partalas, Massih-Reza Amini.

Abstract
In this work we propose a simple yet effec-
tive method for sparsifying a posteriori lin-
ear models for large-scale text classification.
The objective is to maintain high performance
while reducing the prediction time by produc-
ing very sparse models. This is especially im-
portant in real-case scenarios where one de-
ploys predictive models in several machines
across the network and time constraints apply
on the prediction task. We empirically eval-
uate the proposed approach in a large collec-
tion of documents from the Large-Scale Hi-
erarchical Text Classification Challenge. The
comparison with feature selection methods and
LASSO regularization shows that we achieve
to obtain a sparse representation improving in
the same time the classification performance.

1 Introduction
With the increasing growth of data available, the need
of methods to extract automatically meaningful informa-
tion becomes more and more crucial. A typical example
of fast growing resources is the free online encyclopedia
Wikipedia. In 2011, Wikipedia contained about 2,8 mil-
lions articles. Since then, it received 50,000 new articles
every month and exceeded 4,5 millions articles in early
2015.1

Similarly, PubMed contains more than 24 millions
of medical and biomedical articles.2 This free medical
search engine receives about 500,000 new articles ev-
ery year which are assigned to one or more categories
of the medical taxonomy MeSH (Medical Subject Head-
ings). The classification of articles is still partially made
by human curators. However, as an increased number
of documents becomes available, the manual annota-
tion becomes cumbersome. Towards the minimization
of human effort, recent challenges focused on pushing

∗VISEO R&D
†Universitè Joseph Fourier
1en.wikipedia.org/wiki/Wikipedia:Statistics
2http://www.ncbi.nlm.nih.gov/pubmed

the state-of-the-art of automatic semantic annotation of
biomedical articles. BioASQ challenge is one of these
initiatives3 where participants were asked to classify new
PubMed documents as they become available online, be-
fore PubMed curators classify them manually [26].

In industry, e-commerce websites such as eBay.com
or Amazon face the same type of problems [9; 22]. Each
day, they receive hundreds or thousands of products de-
scriptions that should be organized in categories in order
to ease the browsing in their catalog of products and al-
low the users to reach easily the desired information.

For browsing and accessing efficiently this large amount
of collections, one needs to automatically classify these
documents into a predefined ensemble of classes. In
this context, the problematic of automatic classification
is omnipresent. In the applications described above, one
has to deal with millions of new documents every day
that need to be processed in real time and to be anno-
tated in one of the thousands of available categories. Or-
ganizing efficiently this large amount of data poses sev-
eral challenges for the traditional frameworks in machine
learning.

Machine learning & Classification
The task of classifying objects in a set of predefined cat-
egories has been treated thoroughly in the framework of
machine learning which concerns the development of al-
gorithms that can leverage past data for solving specific
tasks.

In text classification the purpose is to automatically as-
sign a set of articles into one of the predefined categories.
As an example, consider the problem depicted in Figure
1 of classifying articles in Wikipedia .4 Imagine that one
needs to assign articles from Wikipedia in one of the fol-
lowing categories: Sports, Technology or Entertainment.
To do so, one would design an algorithm that learns to
categorize documents on a subset of Wikipedia articles
using the statistical information it contains such as the
number of words per article or the number of occurrence
of each word. The collection of articles used for learning

3http://www.bioasq.org/
4Source: www.kdnuggets.com/2015/01/text-analysis-101-

document-classification.html

is called the training set. In order to evaluate the perfor-
mance of the algorithm designed, one would compare its
classification decisions with the manual annotations on
another dataset containing unseen articles called test set.
We say that a method which classify properly unseen ex-
ample generalizes well.

Figure 1: Document classification.

In machine learning, different classification tasks can
be studied. We distinguish among them two main cases:

1. Single label classification: when it is possible to
assign only one label to an object. This type of clas-
sification can itself be divided in two different cases:
binary classification and multi-class classification.
If there are only two possible labels for an object,
the task concerns binary classification. A classical
case is the classification of emails into spam or non-
spam.
On the other hand, if there are more than two pos-
sible labels for an object, it falls to the multi-class
classification case. For instance, one could classify
a news article about a Football Player into one of
the following categories: Sports, Hobby or People.

2. Multi-label classification: when it is possible to as-
sign more than one label to the same object. For
example, a news article about Economic crisis can
belong to both categories, Economics and Politics.

In this work we focus on single label multi-class clas-
sification.

Large-scale learning
While traditional classification tasks concerned problems
with relatively few categories, in recent years new ap-
plications appeared containing tens or hundred of thou-
sands of target classes. The inherent size of these ap-
plications poses problems for the usual machine learning
algorithms.

In the context of large-scale applications, classifica-
tion algorithms need to balance a trade-off among multi-
ple factors that one seeks to optimize:
• The training of the model: large-scale learning in-

volves thousands of classes and millions of char-
acteristics. The more parameters considered, the

longer will be the training phase. The main chal-
lenge here is to build algorithms that can learn on
large-scale problems and produce efficient models.
• The required memory for storing the model. Mod-

els size have to be kept low in order to be able to
process them efficiently. For instance, if models
do not fit in memory, the inference time to clas-
sify unseen examples for large-scale problems can
be largely impacted. The inference time, also called
prediction time, is influenced my many parameters
that one seek to narrow: the number of characteris-
tics and the number of classes considered, the size
of the model and the prediction algorithm used;
• The quality of the model, in terms of precision: that

is how well the model performs in classifying un-
seen examples.

Due to the increasing amount of data available and the
large number of possible categories to assign them, the
problem of automatic classification of documents turns
out to be difficult or even intractable in some cases. Ac-
tually, large-scale applications can cover multiple types
of problems that need to be differentiated:
• Problems with many documents;
• Problems with a large number of characteristics;
• Problems with a large number of categories;

In this work, we focus on classification tasks which con-
tains a large amount of characteristics and categories.

In document classification, the analysis is based on the
characteristics of each document of the training set. In
the general case, a characteristic, usually called feature,
is any information that describes the object to be classi-
fied. For text classification, these features are the words
contained in the collection of documents studied. A prac-
tical way to represent these features is to create a vector
for each document where a coordinate corresponds to the
number of occurrences of a word [21].

In a large-scale context, as the ones presented in Table
1, models can be too heavy to fit in memory. Actually,
the more features and possible classes, the more compu-
tations are needed to classify an unseen example. Usu-
ally, one stores the information about each feature for
each class as a real value in a huge matrix where rows
represent the features and columns the categories.

Table 1 presents different statistics of the benchmark
datasets from the Large Scale Hierarchical Text Chal-
lenge (LSHTC). 5

If we consider the DMOZ-2011 dataset which con-
tains more than 27,000 categories and almost 600 thou-
sand features, one would need to store about 27,875×
594,158 ≈ 16 billion parameters. This translates to
123Gb of memory to represent the classification model.

As models of these size are hardly manageable, one
needs a method to produce efficient and lightweight pre-
diction models. There are many advantages to small
models that need to be taken into account. First, they

5http://lshtc.iit.demokritos.gr/

2

Table 1: LSHTC datasets and their properties.

#Categories #Features #Documents Parameters (in GB)
DMOZ-2010 12,294 381,580 128,710 34.9
DMOZ-2011 27,875 594,158 394,756 123.4
DMOZ-2012 11,947 348,548 383,408 31
Wiki Small 36,504 346,299 538,148 94.2
Wiki Large 325,056 1,617,899 2,817,603 3918.3

are cheap to store and easier and faster to transmit for
distributed prediction systems. Furthermore, the size of
the model and the prediction time are closely related. In
short, larger models are need more time during inference.
In section 5 we compare different classification methods:
while a model of 4Gb will take about 0,15 seconds to
classify an example, a model of 1,1Gb would only take
0,04 seconds.

Purpose of this work & Contributions
This work focuses on the development of novel methods
for producing sparse lightweight models for a particular
set of machine learning algorithm called linear models
that will be detailed in Chapter 2.

More specifically, we consider large-scale text classi-
fication (LSTC) tasks and target a method that should:

• Provide a similar or better performance to L2-norm
regularization for classification tasks;

• Produce very sparse models.

The size of models can be reduced using many dif-
ferent methods. A first idea is to reduce the size of the
feature space by removing irrelevant attributes. Feature
selection techniques exploit this idea by selecting a sub-
set of relevant attributes regarding their score obtained
via a given evaluation measure [14]. By reducing the
number of features, we reduce the number of parameters
that should be learnt and thus the size of the model.

Another possibility could be to simply remove some val-
ues in models by setting them to a null value, for instance
zero. A model filled with these null values is called
sparse. For accomplishing this, we propose a new al-
gorithm for sparsifying a posteriori linear models. The
proposed method achieves to produce very sparse mod-
els which reduces the required storage space and im-
proves inference time. This is especially important in
large-scale problems where predictive models are de-
ployed in several machines and constraints apply on pre-
diction time. While, such rounding techniques are not
well suited for on-line methods we find that they are ef-
fective in the case of batch methods and text applications
[17].

We empirically evaluate the proposed approach on a
large dataset from the LSHTC [20] competition achiev-
ing not only to produce sparse models thus reducing
memory requirements, but also to improve the predic-
tive performance. We also highlight important factors
for sparse models in text classification by analyzing the
obtained solutions.

Part of this work has been accepted for publication and
presentation in the French machine learning conference
CAP (Conférence sur l’APprentissage automatique).

Organisation of the remaining of this work
Section 2 presents notation and background needed in
this work. Then, in Section 3, we position our work with
respect to the state of the art. In Section 4, we present
the a posteriori pruning approach for large-scale linear
models. In Section 5, we present experimental results
obtained with our approach on a large collection of doc-
uments. In Section 6 we discuss the outcomes of this
study and give some pointers to further research.

2 Challenges & Background
This section provides the theoretical background that
will be used in this work. First, we define the notation
and explain the challenges brought by the power-law dis-
tribution in document classification. Then, we describe
the process of multi-class classification for linear models.
Finally, we explain how we represent models in memory
and define formally the notion of sparsity.

Framework
In the rest of this dissertation, X denotes the examples
of a training set and Y = {1, . . . ,K} the set of all possi-
ble outputs. x∈Rn represents an input example obtained
with the vector space model as defined by Salton [21] and
y ∈ Y its associated class label, where n is the number
of features and K the number of possible outputs. A doc-
ument is represented by a vector in which a coordinate
represents the number of occurrences of this word in the
text. wi denotes a classifier for class i.

2.1 Challenges of Large-Scale Multi-class
Classification

Large document collections exhibit a particular property
that one needs to consider in order to design efficient
text classification algorithms. Specifically, it has been
show that the distribution of text documents among cate-
gories is unbalanced and follow a power-law distribution
[18]. In short, this law state that, in one hand, many cate-
gories have very few documents assigned to them while,
in other hand, few categories have most of the documents
assigned to them. This property brings particular chal-
lenges that are discussed we discuss in the following sec-
tion.

3

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

#
 o

f
c
a
te

g
o
ri
e
s
 w

it
h
 N

i>
N

category size N

β = 1.1

(a) Distribution of 394,756 instances among 27,875 categories in
LSHTC-2011. While the dataset contains less than 10 examples
for more than 15,000 categories, a few categories correspond to
1000 instance or more. X axis represents the number N of doc-
uments assigned to a category. Y axis represents the number of
categories with more than N documents.

-1

 0

 1

 2

 3

 4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

lo
s
s

y.h(x)

Quadratic hinge loss

Hinge loss

0/1 loss function

(b) Example of loss functions used for classification.

Power-Law behavior of documents datasets

Figure 2a presents the category size against the rank
distribution for the DMOZ-2011 dataset. More than
15,000 categories contain less than 10 examples each
while a few categories contain over 1,000 examples.6

A power law is described as a functional relationship
between two quantities, where one quantity varies as a
power of the other. Formally, if Ni denotes the number of
document of the i-th ranked class (in terms of number of
documents), then:

Ni = N1× i−β (1)

Where N1 represents the category which contains the
most documents (1st ranked category) and β > 0 denotes
the exponent of the power-law distribution. This formula
can be interpreted as follows: while few categories ag-
gregate a large amount of the documents of the training
set, many contain only few documents [2].

The main problem is that it is difficult to learn a good
model to represent the minority classes. Indeed, only few
statistical information is contained in the dataset about
these categories. Thus the decision function of this cat-
egories tend to be less accurate. As a result, documents
which belong to minority categories tend to be assigned
to majority classes at prediction time [3].

Challenges
This particular behavior of large-scale collections lead to
two main challenges:

1. For the model training: as explained above, the
training of classification models is directly impacted

6The figure depicts the complementary cumulative size dis-
tribution for category sizes. It can be evaluated empirically by
plotting the rank of a category’s size against its size.

by the power-law distribution of text datasets. In
short, the under-representation of minority classes
tend to bias the model towards the majority classes
which affects directly the prediction performance.

2. For prediction of unseen documents: linear mod-
els are represented by a class of functions H of
the form H = {x 7→ 〈w,y〉,w = (w1 . . .wK)}. The
complexity for prediction for this class of functions
is O(nK), where n is the number of features and K
is the number of categories contained in the dataset.
Considering the datasets presented in Table1, the
prediction time for LSTHC-2011 dataset is O(109)
and for the large Wikipedia dataset O(1012).

2.2 Background
In this section we expose the formal background related
to linear classification. First, we formally define the bi-
nary classification problem in which the purpose is to
classify examples when there are only two possible out-
puts. Then, we explain how we can extend this approach
to handle multi-class classification tasks. Finally, we for-
mally define sparsity and detail how linear models are
represented in memory.

2.3 Linear Models
In several applications constraints in both space and pre-
diction time may apply making cumbersome the main-
tenance of large models. For instance, for the DMOZ
dataset of the LSHTC-2011 challenge that contains over
27,000 classes and over half a million of features a linear
model would require approximately 124Gb of memory.
Besides this, many features in such datasets are corre-
lated or uninformative and can harm the performance of
a predictive model.

In large-scale scenarios like for example, text classi-
fication or ad-click prediction, much attention has been

4

given to the deployment of linear models, mostly due to
their simplicity and efficiency. In such scenarios, the vec-
tor representation of data is often sparse and the size of
the feature space exceeds the size of the available train-
ing examples.

Binary classification using linear models
The purpose of binary classification algorithms is to find
a function h : X → {0,1} which map examples of the
training set X to one of the two possible output classes
y ∈ Y , namely the positive class for examples labeled
”1” and the negative class for examples labeled ”0”. The
function h is called the prediction function or, similarly,
a classifier and is used to predict the membership of an
example to one class or the other.

To do so, a common approach in machine learning is
to use algorithms which learn the function h by solving a
convex optimization problem. Linear models approaches
assume that the output of the classification algorithm can
be expressed as a linear relation with respect to the input
features.

Given a vector of inputs x = (x1, . . . ,xn), one can pre-
dict the output yi for an example using the prediction
function h:

h(x) = wT x+w0 (2)

Where the term w0 is the intercept, also known as the bias
in machine learning and w are the model parameters that
one wants to learn.

Loss function
In order to fit the parameters w to a training set X ,
a common approach is to minimize a loss function ` :
Y ×Y → R+. This function measures the quality of
a prediction by attributing a cost that compares the true
label to the predicted one.

In classification three loss functions are widely used:
the 0-1 loss which compute the number of well classified
examples, the hinge loss and the logistic loss.

• 0-1 loss:
`0-1(xi) = 1h(xi)=yi (3)

• Hinge loss:

`hinge(xi) = max(0,1− yih(xi)) (4)

And its squared version:

`hinge(xi) = max(0,1− yih(xi))
2 (5)

• Logistic loss:

`logistic(xi) = log(1+ e−yih(xi)) (6)

Where h(xi) represents the prediction made by the
decision function h for the example i and yi is the
true label of example i. 1h(xi)=yi is the indicator
function which takes a value of 1 when h(xi) = yi
and 0 otherwise.

The loss functions exposed above and in Figure 2b at-
tribute a cost of 0 to a well classified example and a pos-
itive value to misclassified example. In this context, one
seeks to minimize the value of the cost function `∗ over
the example of the dataset. In other words, one searches
the a w which minimizes the error of prediction made on
the examples of the training set.

To do so, one usually solves the convex optimization
problem depicted in Equation 7 using a gradient descent
algorithm:

J(w) = min
w

m

∑
i=1

`(h(xi),yi), (7)

where m is the number of example contained in the train-
ing set.

A classical example of binary linear classification model
is logistic regression. The idea of logistic regression is to
decide the membership of an example by estimating the
function describe in Equation 2, where the values w are
obtained via a gradient descent algorithm. In this frame-
work, if h > 0.5, we assign the example x to positive
class 1. Otherwise we assign it to the negative class 0.

Regularization
In some cases, the hypothesis h learnt may fit well the
training set, J(w) ≈ 0, but fails to generalize to unseen
examples. This behavior is called overfitting, as the
model fits too much the data. Learning algorithms, as
the linear model described in Equation 2, tend to overfit
the data, and thus provide poor predictive performances.

Two main reasons causes overfitting:

1. An over complex model;

2. Too many parameters considered in comparison to
the number of examples in the training set.

In order to avoid overfitting and reduce the model
complexity, one may use regularization methods. The
idea is to constrain the value of the parameters w in Equa-
tion 7 in order to find a trade off between the performance
on the training set and, on the other hand, the complexity
of the learned function.

The problem in Equation 7 can be regularized by
adding an extra term to the optimization problem. In this
context, instead of minimizing the prediction error of the
loss function `∗(h(xi),yi), we minimize the error of the
model plus the norm ‖.‖p of the model itself. Formally,
we want to minimize the following convex optimization
problem:

J(w) = min
w

m

∑
i=1

`(h(xi),yi)+λ‖wT w‖p (8)

where λ controls the trade off between the regularization
and the fitting of the model. By setting λ to a large value,
one forces the magnitude of the parameter w to be low.
The most common variants of regularization in machine
learning are L1 and L2 norms, but any norm can be used.

5

From binary to multi-class classification
Multi-class classification denotes any problem of classi-
fication that considers an output space with more than
two classes, i.e. y ∈ Y = {1, . . . ,K} with K > 2.

It exists many ways to solve multi-class classifica-
tion problem. Uncombined multi-class approaches like
the one proposed by Crammer and Singer [11] solve di-
rectly the multi-class problem and are efficient for small
datasets. However, these approaches may fail when the
number of classes or the number of feature is too high.

Two other approaches have been proposed to solve the
multi-class classification problem by reducing the multi-
class problem to a binary one.

A first solution would be to use a one-versus-one ap-
proach. The idea is to construct a classifier for each
couple of classes to discriminate them. For instance, if
we consider a multi-class problem with three possible
classes (Sport, Computer Science and Entertainment),
one would have to learn three classifiers to discriminate
the following couples:
• Sport and Technology;
• Sport and Entertainment;
• Technology and Entertainment.

In this method, (K×K− 1)/2 binary problems are cre-
ated, one for each pair of labels. Then a classifier is learnt
for each of these pairs. The prediction is then made by
a majority vote among all the classifiers. However this
method is really costly due to the large number of classi-
fiers than need to be handled during training and predic-
tion time.

Another classical approach is One-Versus-Rest (OVR).
The idea of this method is to learn K binary classifiers,
one for each class of the training set [7].

Finally, to classify a new unseen example x, one need
to compute the scalar product between the new example
considered with each of the classifiers of the models (one
per class). Then, to choose the corresponding class for
the example, one just take the maximum of these values.
Formally, to classify a new example x we compute:

argmax
i∈J1,KK

〈wi,x〉+w0 (9)

Where w0 represent the bias of the model and K is the
number of classes considered.

The rationale of this method is that in extreme cases,
OVR can be parallelized as the binary problems are
supposed to be independent, while the uncombined ap-
proaches could not. This procedure is detailed in Algo-
rithm 1.

Support Vector Machines (SVM) framework
In this work, we used a linear machine algorithm called
support vector machines to learn our classifiers. SVM
have been developed by Cortes and Vapnik [10] and are
a state of the art linear classification algorithm for which
we can use an OVR approach to solve multi-class prob-
lem.

Algorithm 1 One-Versus-Rest method for multi-class
classification
Require: A linear binary classification algorithm

A training set (xi,yi)i∈J1,mK ∈X ×Y
Where, X is a set of examples
And Y is a set of labels
for all yi ∈ Y do

1. Set all examples of class yi to label 0 in X ;
2. Set all examples of other classes to label 1;
3. Learn a binary w classifier to differentiate 0 (yi)

from class y j = 1, j ∈ {1, . . .K}, j 6= i
end for
Then to make a decision, one need to use the
Equation 9 as defined previously.

In the SVM framework, one have to solve the follow-
ing unconstrained optimization problem to learn the pa-
rameters vectors of the linear model:

w∗ = argmin
w

‖w‖p︸ ︷︷ ︸
Regularization

+C
m

∑
i=1

`(w;wi,yi)︸ ︷︷ ︸
Loss function

(10)

Where ` denotes the instantaneous loss and C its regu-
larization parameter that trades off the model complex-
ity and the fitness of the decision hyperplane. Typi-
cal cases include the hinge loss for L1-SVM, `(y) =
max(0,1−t ·y), or its squared version used for L2-SVMs,
`(y) = max(0,1− t ·y)2, where t =±1 regarding the real
target class.

2.4 Model representation & Sparsity
Model representation
In order to store models, we usually represent its parame-
ters as a matrix where each column represents a classifier
for a given class and each row represents a feature. Thus,
a value at coordinates (i, j) represents the feature i for the
class j.

For instance, if we have three classes and five features,
a model would look like the following matrix:

Model =

c1 c2 c3

f1 1.65 0.49 0.13
f2 0.89 0 1.89
f3 0.56 0.55 0.36
f4 3.87 1.38 0.99
f5 0 0.87 0.59

 (11)

Where fi represents the feature i and c j represents the
class j.

Sparsity
The matrix of Equation 11 is called a dense matrix since
the values it contains are mostly non zeros. As opposed
to dense representation, model sparsity refers to the num-
ber of zeros which are present in the underlying linear
model.

If we consider the last example11, the model contains
two zeros over five features and three classes. Thus, the
sparsity of this model would be 100× 2

15 ≈ 13%.

6

More generally, if a training set have 10 classes and
100 features, the representation of the model will be a
100× 10. Therefore, if this matrix have 750 zeros, we
say that its sparsity is 75%.

Formally, we calculate model sparsity as follow:

s = 1− # of non-zero weights
of weights in model

(12)

3 State of the art
3.1 Sparse approaches
Sparse approaches look for models which contain a few
non zero weight values. The rational is that these models
are faster for inference and that they reduce the model
complexity.

Aseervatham et al. [1] propose a sparse version of
ridge logistic regression for altering the solution pro-
vided by logistic regression. The authors define a strictly
convex optimization problem for finding a sparse solu-
tion around the ridge solution using L1 regularization.
This method is in-line with our work as it performs a
posteriori the sparsification on the learned model.

Beside this, a popular method for reducing memory
requirements is the use of L1-norm as penalization term
(also known as LASSO), which induces sparsity to the
model [25]. Bolasso [4] is a bootstrapped version of
LASSO. It selects the intersection of the set of variables
selected by several replications of LASSO using boot-
strap samples. In the same vein, Kim et al. proposed
[15] an efficient gradient descent method for LASSO L1
regularized that naturally shrink many features.

Langford et al. [17] introduces a method, called trun-
cated gradient, which modifies the gradient rule in the
standard stochastic gradient descent algorithm. The idea
is to shrink the weights that are smaller than a prede-
fined threshold gradually. Our method works in a similar
manner but we focus on batch learning methods while
inducing sparsity in the model a posteriori as we focus
mainly in improving prediction time.

Koshiba et al. [16] demonstrates after extensive exper-
iments on multiple datasets that L1-loss SVM gives very
sparse models with accuracy results close to the one ob-
tained with a dense model obtained via the use of L2-loss
SVM.

However in applications, like in text classification,
the size of the feature space exceeds the number of
available examples and the features are correlated; in
these cases the performance in terms of accuracy of
LASSO is dominated by the use of L2-norm [25; 30;
1]. But, L2-norm produces dense solutions which can-
not scale well in large classification problems.

The elastic nets regularization approach proposed by
Zou and Hastie [30] look for a trade off between the spar-
sity induced by the usage of L1-norm and the accuracy
obtained by the L2 regularization. The authors show that
the regularization using both norms outperforms LASSO
or ridge regression separately on various examples. Our
work follow the same idea, we seek a method which en-
joy both: the L2 regularization for the accuracy and a
sparse method. Nevertheless, elastic nets approach mod-
ifies a priori the learning of the model by the use of reg-

ularization, while are method works a posteriori on the
underlying model.

Thresholding techniques have also been studied in the
context of wavelets decomposition in signal processing.
For a thorough treatment of multi-disciplinary sparse
methods the interested reader is referred to [19].

3.2 Feature selection
Feature selection approaches aim at reducing the dimen-
sion of the input space X by extracting a subset of rel-
evant features from the original dataset. The intuition is
that all features are not relevant to describe a set of la-
bels. Thus, by selecting the ones which contain useful
information, we remove noise, reduce the model com-
plexity and speed up the learning process as well as the
predictive performance.

To reduce the input space, one may rely on feature se-
lection algorithms as described by Guyon et al.[14]. An
effective method for feature selection is Recursive Fea-
ture Elimination which uses an estimator (for example a
(SVM)) in order to assign weights to the features. Pro-
gressively, the method selects and evaluates subsets of
features. It is evident that such wrapper methods are
costly for large-scale cases as the performance of the
model has to be evaluated repeatedly.

In the context of feature selection, Bi et al. [6] propose
a bootstrap method for selecting variables by construct-
ing a series of linear SVMs and eliminating, after per-
forming a linear combination of the classifiers, the vari-
ables for which the weight values do not exceed a certain
threshold.

A method for feature selection for SVMs is introduced
in [24]. More specifically, by introducing a binary vector
which controls the selection or not of the features, the au-
thors pose a mixed integer programming problem which
is further relaxed in order to be efficiently solved.

Classical approaches for feature selection in text cate-
gorization are described by Yang and Pedersen [29]. All
these methods rely on different techniques that evalu-
ate the relevance of a feature without taking into con-
sideration the algorithm which is used for classification.
Every feature of the training set are ranked regarding
a score given by one evaluation method. For instance,
Document frequency thresholding (DF) feature selection
method gives a score to each feature regarding its num-
ber of occurrences in the corpus. Then, one can decide
to keep n features which were ranked the highest.

3.3 Sampling and cost sensitive approaches
In large-scale document classification, it is common to
deal with unbalanced datasets where some classes are un-
der represented. In this context, models tend to be biased
towards the majority classes [5].

To overcome this problem, one solution is to re-sample
the training set in order to obtain a balanced dataset
and thus, to favor the minority classes. Over-sampling
and under-sampling approaches work toward that idea.
Over-sampling mainly consist in duplicating examples
of minority classes to balance the dataset while, on the
opposite, under-sampling consist in removing examples
of majority classes. For further details about sampling
methods, one may refer to Chawla [8].

7

Similarly, in order to balance the dataset, cost sensitive
approaches assume that the cost of misclassification is
not fixed. The idea is to use an asymmetric cost function
to artificially balance the training process. In that sense,
some misclassification errors may cost more than others.
For instance misclassifying a document about Basketball
in Handball should has a lower cost than misclassifying
Fried Chicken Recipe in the Handball category.

Chen et al. [9] proposed to modify the loss function
to balance the misclassification error over all classes and
showed that the classification error can be reduced for
minority classes.

In [28] Weiss et al. make an extensive comparison
of cost-sensitive and sampling approaches in the frame-
work of unbalanced datasets. They conclude that cost-
sensitive, over-sampling and sub-sampling obtain close
performance results in terms of precision on dataset with
less than 10,000 examples. However, if considering
datasets with more examples, the cost-sensitive approach
outperforms both sampling methods.

3.4 Reducing memory footprint
A different line of work concerns methods that reduce the
memory footprint during the training phase of a classifier
so that they can fit in memory. For instance, Golovin et
al. [13] propose a method for projecting the real valued
weight vector to a coarse discrete set using randomized
rounding for on-line learning methods. The regret anal-
ysis show that the accumulated error during learning is
small.

Recent work focused on feature hashing for reducing
the memory footprint which projects the original feature
space to a low dimensional space [27]. To avoid col-
lisions and thus deteriorate predictive performance the
dimension should not be decreased a lot. Finally, Taka-
matsu [23] propose a rounding technique for compress-
ing the data for learning methods. While these methods
compresses efficiently real-value data it does not perform
any sort of sparsification.

4 Proposed method
As described in Chapter 2, in the SVM framework, one
have to solve the following unconstrained optimization
problem to learn the parameters vectors of the linear
model:

w∗ = argmin
w
‖w‖2

p +C
m

∑
i=1

`(w;wi,yi) (13)

The ridge solution (i.e. when we consider a squared
loss) of this optimization problem is dense and thus can-
not be used in large-scale problems were one should han-
dle hundreds or thousands of features and classes. So,
the idea is to seek a sparse solution ŵ to the optimiza-
tion problem of Equation 13 that is close to the original
solution w∗. Thus, we want ŵ such that:

ŵ≈ w∗ (14)

While the existing methods work a priori, the proposed
approach work a posteriori, that is after training a linear
model and obtaining the weights w∗ of classifiers.

Algorithm 2 Thresholding a linear classifier.
Require: A linear classifier with weight vector w, a

threshold τ

for j = 1 . . . len(w) do
if |wi|< τ then

wi← 0
end if

end for

In order to obtain sparse models a posteriori, one way
would be to force to zero weights that are inferior to a
certain threshold τ as in Algorithm 2. But this approach
is too aggressive and may deteriorate the performance
for larger values of τ . Thus, in Algorithm 3, we propose
a trade-off between the sparsity that we aim to achieve
and the value of the threshold. Larger values will lead
to very sparse models but may hurt the performance by
removing crucial weights. In order to ease this technique
we propose to apply softer thresholding functions which
sparsifies a posteriori a linear classifier by shrinking lin-
early the weights inferior to a second threshold ρ .

4.1 A posteriori pruning:
The general idea of the Algorithm 2 is to remove the val-
ues which are very low compared to the others. We sim-
ply compare the values of all weights of the model to
a given threshold τ and remove them if they are lower.
This algorithm has a low complexity of O(nK), where
n is the number of features and K the number of classes.
Indeed, one only need to evaluate each value of the model
once to decide whether to keep it or not.

Figure 3a depicts the effect of Algorithm 2 on the un-
derlying model when the value of the threshold is set to
τ = 4. We observe that the pruning function has discon-
tinuities in x = ±4 and that the values in [−4,4] are set
to zeros, while the others remain unmodified.

4.2 Improved pruning function
The first Algorithm 2 proposed produces a sparse repre-
sentation of the underlying model, but the function used
for pruning is not smooth and excessively aggressive. In
Figure 3a, the function used for pruning has discontinu-
ities and the values are either zero or the original value
given by the model. The aim of the following method is:
first to be less aggressive on the pruning, then to avoid
discontinuities by smoothing the pruning function.

The intuition is that in text categorization problems,
while small weight values may correspond to unimpor-
tant features many of them may correspond to rare fea-
tures. For instance, it is the case for the minority classes
which contain very few training examples. So, one
should avoid discarding these weights.

In this context, the idea is that while an hard threshold
as Algorithm 2 remove values if they are too small, Al-
gorithm 3 lower down the values which are higher than
a given threshold, but not high enough to remain un-
touched.

Algorithm 3 presents the proposed improved pruning
function. The effect of this algorithm on the values of the

8

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

(a) Basic thresholding function (plain line), τ = 4.

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

(b) Improved thresholding function, τ = 4, ρ = 2.

Algorithm 3 Hinge thresholding of a linear classifier.
Require: A linear classifier with weight vector w,

thresholds τ and ρ

for j = 1 . . . len(w) do
if |wi|< τ then

if wi < 0 then
wi← min(0,wi +ρ)

end if
if wi > 0 then

wi← max(0,wi−ρ)
end if

end if
end for

underlying model is depicted in Figure 3b.

4.3 Intuitive explanation
Intuitively these algorithm reduce the noise by removing
the smallest values of the underlying model. The value
of a feature in the underlying model represents its impor-
tance in the decision that will be made for classification.
The highest the value of a feature for a class, the more it
will influence the decision for prediction for this class.

Although a feature may be meaningful for a given
class, it may be irrelevant for other classes. The idea of
this algorithm is to avoid overfitting and reduce the noise
created by these irrelevant features by removing mean-
ingless values.

As said earlier, there are two main motivation behind
this idea. The first one is to reduce the model size and the
prediction time using a sparse representation. The sec-
ond is to increase the accuracy of the underlying model
by removing the noise related to the dense representation
and the overfitting.

5 Experiments
This section describes the experiments we conducted in
order to evaluate the proposed approach. We focused
on large datasets from the text domain and more specifi-
cally we used datasets from the LSHTC challenge7. We
present and discuss the results of the proposed approach

7http://lshtc.iit.demokritos.gr

in terms of the model sparsity, its predictive performance
and its time for prediction.

5.1 Experimental setup
We evaluated the proposed method in a large-scale sce-
nario in multi-class text classification using the 2011
DMOZ dataset of the LSHTC challenge [20]. This
dataset contains 27875 categories, around 394k examples
and 594k features and it is provided in a pre-processed
format using stop-word removal (a list of words to fil-
ter) and stemming (taking their root form). For each
document in the training set the term frequency is pro-
vided along with the assigned label. We transformed the
t f vectors to the t f ∗ id f representation. We randomly
sampled the DMOZ dataset with increasing number of
classes.

Table 2 details the important characteristics of the
sampled datasets. We note that the number of classes
range from 500 to 3000 and the number of features from
68268 to 216545. It has been shown that LSTC col-
lections generally follow a power law distribution; that
is a large number of classes contain very few number
of examples and most examples are contained in very
small number of classes [2]. Figure 4 presents the class
distribution for the 3000 classes dataset. In this case,
half of the classes contain less than five examples (1309
classes).

Table 2: The main characteristics (number of classes,
features and training instances) of the sample datasets
used for the experiments.

Dataset #Classes #Features #Examples
DMOZ-500 500 68268 5818
DMOZ-1000 1000 104768 11123
DMOZ-2000 2000 168153 23346
DMOZ-3000 3000 216545 35533

5.2 Presentation of compared methods
As mentioned previously we work with linear classifiers
and more specifically we use SVMs as our base model

9

Figure 4: Class distribution in the DMOZ-3000 dataset.
The minority classes are over represented.

 0

 200

 400

 600

 800

 1000

 1200

 1400

2-4 5-9 10-49 50-99 100-249

#
 C

la
ss

es

Examples in training set

DMOZ-3000 classes

due to its state-of-the-art performance in text classifica-
tion tasks. In all experiments we used the SVM library
LIBLINEAR to train the linear models with the squared
hinge loss function [12]. We compare the following ap-
proaches on each of the samples datasets:

• L2-SVM: L2-regularized, L2-loss SVM (ridge pe-
nalization).

• L1-SVM: L1-regularized, L2-loss SVM (LASSO).

• χ2: Apply the χ2 variable selection technique at the
top of L2-SVM. The χ2 variable selection method
has been proved to be very effective for text classi-
fication [29]. It calculates a contingency table for
each term t and class c and then estimates:

χ
2(t,c) =

N× (AD−CB)2

(A+C)× (B+D)× (A+B)× (C+D)

where A is the number of times t and c co-occur,
B is the number of time the t occurs without c, C
is the number of times c occurs without t, D is the
number of times neither c nor t occurs and N is the
total number of documents.
We obtain the final score for a feature (a term in our
case) by averaging its scores across the classes.
To obtain the best number of features for each
datasets, we used a grid-search strategy splitting
each training set in two subsets (70%/30%) and
validating several percentage values for the se-
lected features (from 5% to 70%). Table 3 reports
the number of features that were selected in each
dataset using grid-search.

• Our method named Linear SPARsification (LiSpar).
We perform sparsification of L2-SVM models ac-
cording to Algorithm 3. In order to tune the hyper-
parameters τ and ρ we relied on a simple cross-
validation approach.

Table 3: Number of features kept using χ2 and grid
search. The number in parenthesis represent the percent-
age of features kept from the original dataset.

Classes # Features
500 13600 (19.92%)

1000 20953 (19.99%)
2000 42038 (24.99%)
3000 43309 (20%)

For each dataset and each algorithm we evaluated sev-
eral values of the regularization parameter C ranging
from 1 to 1000 . The performance of each approach is
evaluated in terms of accuracy and Macro F-Measure
(MaF).

Accuracy measures how often a classifier makes the
correct prediction. To compute it, we used the following
formula:

Accuracy =
of documents well classified

predictions made

Considering a set of classes Y = {1, . . . ,K}, the MaF
is computed using the following formula:

MaF =
2∗MaP∗MaR

MaP+MaR
(15)

Where the macro precision (MaP) and the macro recall
(MaR) are computed as:

MaP =
∑

K
k=1

t pk
t pk+ f pk

K
(16)

MaR =
∑

K
k=1

t pk
t pk+ f nk

K
(17)

Where t pk, f pk and f nk are the true positives, false
positives and false negatives respectively for class k.

As we consider imbalanced datasets, the MaF measure
is interesting since it takes into account both precision
and recall and gives the same importance to minority and
majority classes.

5.3 Results & Discussion
Classification Performance
Figure 5 presents the results in terms of accuracy for all
competing algorithms across all datasets with respect to
the penalty term C ranging from 1 to 1000 that leads
to the best accuracy performance. We first observe that
LiSpar outperforms all its rivals in all datasets. In most
of the cases it has a stable behavior in the performance
with respect to the values of the penalty term. We note
that for low values of C the proposed approach will prune
less values as the weight vector is bounded by the penalty
term thus taking smaller values. On the other hand for
larger values the weights become larger which leads to
smaller percentages of pruning and in some cases to
slighter improvement. LiSpar achieves its best results
for parameter values C in the range of 10 to 100, where

10

Figure 5: Accuracy for standard SVM (L2-regularized, L2-loss), LiSpar (our method, SVM and threshold), χ2 feature
selection and L1-regularized L2-loss SVM considering regularization C ∈ {0.1,1,10,100,1000} and 500, 1000, 2000,
and 3000 classes

100 101 102 103

C

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

500 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

100 101 102 103

C

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

1000 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

100 101 102 103

C

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Ac
cu

ra
cy

2000 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

100 101 102 103

C

0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66

Ac
cu

ra
cy

3000 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

the model has not overfit the data and exhibits good per-
formance before pruning.

L1-SVM which produces very sparse models, hurts the
performance in all cases. This is an expected behavior
in large collections where the feature space exceeds the
number of available examples and the features are cor-
related. On the other hand χ2 maintains in most cases
a similar or better performance than L2-SVM, with the
advantage of pruning a large number of uninformative
features.

Figure 6 presents in the same fashion the comparison
of the algorithms in terms of MaF. We can observe again
a similar trend as LiSpar outperforms all its competing
methods. The improvement of MaF confirms that the
proposed pruning method improves particularly the clas-
sification of minority classes. Figure 7 presents the num-
ber of features that were totally pruned or not (which
means that it remains at least one weight value for this
feature) with respect to the term document frequency
(DF) which is the number of documents a term appears
in. Rare terms will have a small DF value while terms
that are often used will have superior values.

Interestingly, the features that were completely pruned
correspond to terms that either are rare or unimportant

and thus have small values of DF. For rare terms this is
a particularity for minority classes which have very few
documents. On the other side for features that were not
completely pruned the DF of the terms is higher and so
the corresponding values in the models tend to be bigger.

Sparsity & Model size
In this section we present the sparsity ratio obtained by
the proposed approach as well as the size of the model
in the disk. We measure the sparsity of a model using
Equation 12.

For measuring the size of the models we used a rep-
resentation of similar to that of LIBLINEAR [12] for
storing a dataset by keeping only the non-zero values for
each class vector. Specifically, for each class we repre-
sent the vector of weights as follows:

class 1 fa1 : va1 , . . . , fb1 : vb1

. . .

class K fak : vaK , . . . , fbK : vbk

where fa j and va j are correspondingly the index and the
value of feature a for the class j.

11

Figure 6: Macro F-Measure (MaF) for standard SVM (L2-regularized, L2-loss), our method (SVM and threshold),
χ2 feature selection and L1-regularized L2-loss SVM considering regularization C ∈ {0.1,1,10,100,1000} and 500,
1000, 2000, and 3000 classes

100 101 102 103

C

0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66

M
aF

500 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

100 101 102 103

C

0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60

M
aF

1000 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

100 101 102 103

C

0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52

M
aF

2000 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

100 101 102 103

C

0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48

M
aF

3000 classes

L2 -SVM
LiSpar
χ2

L1 -SVM

Table 4 presents the sparsity along with the model size
in Megabytes for all methods across all datasets. We con-
sidered only the results for C= 100 as it usually gives
the best results in accuracy. First we note that L1-SVM
achieves maximum sparsity in all cases leading to very
small models. The proposed approach gives very sparse
models (close to L1-SVM) and the resulting models are
at the worst case 10 times smaller than those produced
by L2-SVM. For larger number of classes, which means
more features, LiSpar gives sparser models. For χ2 as the
algorithm selects informative features before the learn-
ing phase, it ends up with a lower sparsity than the other
methods.

The behavior of LiSpar in terms of sparsity ratio has a
two-fold implication. First, for huge datasets the models
can be efficiently compressed and used in light embed-
ded computing applications where size is critical. Sec-
ond, and more importantly, it allows to reduce signifi-
cantly the prediction time as one can rely on a sparse
scalar product for classifying a new example.

Prediction time
In Table 5, we measured the benefit of our method in
terms of prediction time compared to other approaches.

Table 5: Prediction time measurements in seconds on
sparse representation for L2-SVM, LisPar, L1-SVM and
χ2. All models have been trained with a regularization
parameter C = 100.

#Classes L2-SVM χ2 LiSpar L1-SVM
500 110.75 20.01 9.05 2.64

1000 439.01 131.94 62.9 12.71
2000 2163.43 584.17 177.74 48.39
3000 5405.64 1508.72 290.31 120.47

We transformed the models obtained using our different
algorithms using the notation described in Section 5.3.
Then we used sparse vector multiplication to compute
prediction time.

The prediction time is closely related to the percentage
of sparsity: the sparser models are the fastest ones. Ac-
cordingly, L1-SVM outperform others approach in terms
of prediction time. We note that the gap between LiSpar
and L1-SVM is reducing with the model size. The heav-
ier the model, the closer they are in term of prediction
time. LiSpar is 4 to 18 times faster than the standard

12

Figure 7: Number of features pruned with respect to their document frequency (number of documents they appear in).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1 2-4 5-9 10-29 30-99 100-499

#

f
e
a
t
u
r
e
s

p
r
u
n
e
d

DF

DMOZ-500 classes

(a) Fully pruned features.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

1-4 5-9 10-29 30-99 100-3499

#

f
e
a
t
u
r
e
s

n
o
t

p
r
u
n
e
d

DF

DMOZ-500 classes

(b) Not fully pruned features.

Table 4: Sparsity and models size for penalty parameter C= 100.

#Classes L2-SVM LiSpar L1-SVM χ2

500 68.583% (260 Mb) 96.788% (27 Mb) 99.612% (3.1 Mb) 51.708% (72 Mb)
1000 72.479% (723 Mb) 97.062% (77 Mb) 99.701% (7.3 Mb) 57.004% (202 Mb)
2000 75.308% (2200 Mb) 98.228% (148 Mb) 99.769% (18 Mb) 66.072% (674 Mb)
3000 76.415% (4000 Mb) 99.194% (125 Mb) 99.786% (33 Mb) 66.524% (1100 Mb)

model L2-SVM. This difference increases with the num-
ber of classes and features considered. It is also faster
than χ2 feature selection of a factor 3 to 10, which only
consider a subset of the original features. Whereas χ2

and L2-SVM give both dense solution, χ2 is faster than
L2-SVM as it does not consider all the features. The dif-
ference is significant as we selecting less than half of the
features for each dataset.

Discussion

In short, these experiments have demonstrated that it
is possible to use an a posteriori method to obtain a
very sparse model while improving the predictive perfor-
mance. This boost in classification accuracy is related to
minority classes as we can see on MaF evaluation in Fig-
ure 6, where we got improvements up to 4% when com-
paring the standard L2-SVM and our method. This im-
provements are even higher comparing both sparse meth-
ods: LASSO and LiSpar.

Intuitively, by removing small values from the model,
we remove noise and thus small perturbations in predic-
tions. The proposed method provides better and faster
classifiers by removing the impact of irrelevant features
on the decision.

Finally, such as LASSO approach, our method method
provide an embedded feature selection method by reduc-
ing the number of feature considered to a small subset of
the original feature space.

6 Conclusion
6.1 Conclusion
Limitations of the proposed method
Although our method improves significantly the results
of underlying models in terms of accuracy, MAF and pre-
diction time, it may still be improved.

First, LiSpar is computationally as costly as classi-
cal approach considering all features plus an overhead
cost of O(nK) due to the application of the pruning algo-
rithm. Even if this overhead is insignificant regarding to
the complexity of underlying algorithm, the impact may
be non negligible in very large scale tasks.

Secondly, there is currently no cheap way to find opti-
mal values for the hyper-parameters. While cross valida-
tion is a useful tool to estimate these values, it is neither:
accurate nor computationally efficient.

Finally, we are still working on a formal explanation to
the improvements of the proposed method in classifica-
tion tasks. We have leads in regards to text classification:
the pruning of weights is strongly linked to the DF and
TF of terms in the collection and the terms contained in
support vector tend to be less pruned than others.

Conclusion
In this work we proposed a simple approach to sparsify
linear models. Whereas most approaches work a pri-
ori, this method works a posteriori and gives very sparse
models while it achieves to improve the performance for
text classification tasks.

Compared to other sparse approaches such as LASSO,
this method gives better results in terms of accuracy and

13

MaF while the level of sparsity remain close. Moreover,
the additional cost of this approach (O(nK)) is quite low
compared to the standard L2-regularized SVM approach
which allow to use it on large datasets.

6.2 Future work
Based on the method proposed in this work, several di-
rections can be investigated:
• Find a way to formally obtain the best values of

the threshold’s parameters investigating the loss
occurred during prediction. The cross validation
method is reasonable as long as the dataset used is
not too large.
• Use LiSpar as a feature selection model: for in-

stance by removing all the features for which all
the weight values equal zero. This approach, called
embedded feature selection has been studied in the
framework of SVM with L1 norm and produce very
sparse lightweight models.
• As stated in the above paragraph, we are still look-

ing for a formal explanation of the phenomena that
we exposed. Starting by working on the generaliza-
tion error is a first idea on which we are currently
working;
• Test the same approach on different kind of datasets

(e.g. images, biological datasets and so on).

7 Acknowledgments
I would like to express my gratitude to my supervisor
Ioannis Partalas and Massih-Reza Amini for their kind-
ness and their useful comments through the learning pro-
cess of this master thesis. Furthermore, I want to express
my thanks for the many proofreading of this work. They
have both been very patient and explained to me things
as long as needed.

Furthermore I would like to thank all the VISEO R&D
Grenoble and LIG-AMA team for their useful discus-
sions and their cheerful welcome.

References
[1] Sujeevan Aseervatham, Anestis Antoniadis, Éric

Gaussier, Michel Burlet, and Yves Denneulin. A
sparse version of the ridge logistic regression for
large-scale text categorization. Pattern Recognition
Letters, 32(2):101–106, 2011.

[2] Rohit Babbar, Cornelia Metzig, Ioannis Parta-
las, Eric Gaussier, and Massih-Reza Amini. On
power law distributions in large-scale taxonomies.
SIGKDD Explor. Newsl., 16(1):47–56, September
2014.

[3] Rohit Babbar, Ioannis Partalas, Eric Gaussier,
and Massih-Reza Amini. Re-ranking Approach
to Classification in Large-scale Power-law Dis-
tributed Category Systems. In ACM Special Inter-
est Group on Information Retrieval (SIGIR 2014),
pages 1059–1062, Gold Coast, Australia, August
2014.

[4] Francis R. Bach. Bolasso: Model consistent lasso
estimation through the bootstrap. In Proceedings
of the 25th International Conference on Machine
Learning, pages 33–40, 2008.

[5] Urvesh Bhowan, Mengjie Zhang, and Mark John-
ston. A comparison of classification strategies in
genetic programming with unbalanced data. In Ji-
uyong Li, editor, AI 2010: Advances in Artificial
Intelligence, volume 6464 of Lecture Notes in Com-
puter Science, pages 243–252. Springer Berlin Hei-
delberg, 2011.

[6] Jinbo Bi, Kristin Bennett, Mark Embrechts, Curt
Breneman, and Minghu Song. Dimensionality re-
duction via sparse support vector machines. Jour-
nal Machine Learning Research, 3:1229–1243,
2003.

[7] Christopher M. Bishop. Pattern Recognition and
Machine Learning (Information Science and Statis-
tics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[8] NiteshV. Chawla. Data mining for imbalanced
datasets: An overview. In Oded Maimon and Lior
Rokach, editors, Data Mining and Knowledge Dis-
covery Handbook, pages 853–867. Springer US,
2005.

[9] Jianfu Chen and David Warren. Cost-sensitive
learning for large-scale hierarchical classification.
In Proceedings of the 22Nd ACM International
Conference on Conference on Information &
Knowledge Management, CIKM ’13, pages 1351–
1360, New York, NY, USA, 2013. ACM.

[10] Corinna Cortes and Vladimir Vapnik. Support-
vector networks. In Machine Learning, pages 273–
297, 1995.

[11] Koby Crammer and Yoram Singer. On the algo-
rithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Re-
search, 2:265–292, 2002.

[12] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh,
Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874, 2008.

[13] Daniel Golovin, D. Sculley, H. Brendan McMahan,
and Michael Young. Large-scale learning with less
ram via randomization. In International Confer-
ence on Machine Learning, volume 28 of JMLR
Proceedings, pages 325–333. JMLR.org, 2013.

[14] Isabelle Guyon and André Elisseeff. An introduc-
tion to variable and feature selection. J. Mach.
Learn. Res., 3:1157–1182, 2003.

[15] Yongdai Kim and Jinseog Kim. Gradient lasso for
feature selection. In Proceedings of the Twenty-
first International Conference on Machine Learn-
ing, ICML ’04, pages 60–, New York, NY, USA,
2004. ACM.

[16] Yoshiaki Koshiba and Shigeo Abe. Comparison of
l1 and l2 support vector machines. In Neural Net-
works, 2003. Proceedings of the International Joint

14

Conference on, volume 3, pages 2054–2059. IEEE,
2003.

[17] John Langford, Lihong Li, and Tong Zhang. Sparse
online learning via truncated gradient. Journal of
Machine Learning Research, 10:777–801, 2009.

[18] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun
Zeng, Zheng Chen, and Wei-Ying Ma. Support vec-
tor machines classification with a very large-scale
taxonomy. SIGKDD Explor. Newsl., 7(1):36–43,
June 2005.

[19] Julien Mairal, Francis Bach, and Jean Ponce.
Sparse Modeling for Image and Vision Processing,
volume 8 of Foundations and Trends in Computer
Graphics and Vision. now publishers, 2014.

[20] Ioannis Partalas, Aris Kosmopoulos, Nicolas
Baskiotis, Thierry Artieres, George Paliouras,
Eric Gaussier, Ion Androutsopoulos, Massih-Reza
Amini, and Patrick Galinari. Lshtc: A bench-
mark for large-scale text classification. CoRR,
abs/1503.08581, march 2015.

[21] G. Salton, A. Wong, and C.S. Yang. A vector space
model for automatic indexing. ACM Communica-
tions, 18:613–620, 1975.

[22] Dan Shen, Jean-David Ruvini, and Badrul Sarwar.
Large-scale item categorization for e-commerce. In
Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management,
CIKM ’12, pages 595–604, New York, NY, USA,
2012. ACM.

[23] Shingo Takamatsu and Carlos Guestrin. Reducing
data loading bottleneck with coarse feature vectors
for large scale learning. In Proceedings of the 3rd
International Workshop on Big Data, Streams and
Heterogeneous Source Mining: Algorithms, Sys-
tems, Programming Models and Applications, Big-
Mine 2014, New York City, USA, August 24, 2014,
pages 46–60, 2014.

[24] Mingkui Tan, Li Wang, and Ivor W. Tsang. Learn-
ing sparse SVM for feature selection on very
high dimensional datasets. In Proceedings of the
27th International Conference on Machine Learn-
ing (ICML-10), June 21-24, 2010, Haifa, Israel,
pages 1047–1054, 2010.

[25] Robert Tibshirani. Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267–288, 1994.

[26] George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
MichaelR Alvers, Dirk Weissenborn, Anasta-
sia Krithara, Sergios Petridis, Dimitris Poly-
chronopoulos, Yannis Almirantis, John Pavlopou-
los, Nicolas Baskiotis, Patrick Gallinari, Thierry
Artieres, Axel-CyrilleNgonga Ngomo, Norman
Heino, Eric Gaussier, Liliana Barrio-Alvers,
Michael Schroeder, Ion Androutsopoulos, and
Georgios Paliouras. An overview of the bioasq
large-scale biomedical semantic indexing and ques-
tion answering competition. BMC Bioinformatics,
16(1), 2015.

[27] Kilian Weinberger, Anirban Dasgupta, John Lang-
ford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Pro-
ceedings of the 26th Annual International Con-
ference on Machine Learning, pages 1113–1120,
2009.

[28] Gary Weiss, Kate McCarthy, and Bibi Zabar. Cost-
sensitive learning vs. sampling: Which is best
for handling unbalanced classes with unequal er-
ror costs? In Robert Stahlbock, Sven F. Crone,
and Stefan Lessmann, editors, DMIN, pages 35–41.
CSREA Press, 2007.

[29] Yiming Yang and Jan O. Pedersen. A comparative
study on feature selection in text categorization. In
Proceedings of the Fourteenth International Con-
ference on Machine Learning, ICML ’97, pages
412–420, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[30] Hui Zou and Trevor Hastie. Regularization and
variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320, 2005.

15

Improving the Performance of Multi-Tier Applications on
Multicore Architectures

Hugo Guiroux
LIG, ERODS

Supervised by: Renaud Lachaize, Vivien Quéma

I understand what plagiarism entails and I declare that this
report is my own, original work.
Name, date and signature:

Abstract
In this report, we are interested in the perfor-
mance of multi-tier applications deployed on
a single modern multicore machine. This con-
text brings new challenges that need to be stud-
ied. The contribution made during this intern-
ship is twofold. First, we evaluate the impact
of task placement strategies (i.e., how the ap-
plication is executed on the machine) on three
different use cases. The results show that the
performance of the best strategies depends on
different factors, such as the application archi-
tecture and the workload mix. We also man-
ually understand the performance problems in
each use case. Second, provided the difficulty
to understand performance problems and the
fact that the best strategies are never the same,
we propose the design of a system that would
dynamically mitigate performance problems
of multi-tier applications. We also make pre-
liminary validations of some key aspects of the
proposed design.

1 Introduction
In this report, we are interested in multi-tier applications
running on multicore machines. A multi-tier application
is composed of several inter-connected applications (i.e.,
the tiers) exchanging messages to communicate. Each
tier provides a certain functionality, and the tiers work
together to perform an action. Such applications are gen-
erally server applications, where each tier is involved to
generate the response to a user request. As an exam-
ple, let us consider the following four-tier application.
The application is composed of a Web server (tier 1 –
e.g., Apache) that both serves static content (e.g., im-
ages) and dynamic content (e.g., PHP scripts), forward-
ing dynamic request to the dynamic content engine (tier

2 – e.g., PHP). The content engine may need to retrieve
persistent data from a database (tier 3 – e.g., MySQL),
while storing temporary results in an in-memory cache
(tier 4 – e.g., Memcached).

Historically, to handle thousands of concurrent user
requests, a multi-tier application was deployed on mul-
tiple physical machines, each one featuring a small num-
ber of cores (e.g., 2 – 4 cores). However, thanks to the
evolution of hardware, commodity servers are turning
into massively parallel machines (nowadays, configura-
tions with 48 or 64 cores are common on middle-range
servers) and it becomes possible to run a whole multi-tier
application on a single machine. Such parallel machines
are well adapted to support more and more load. Yet,
the design of recent multicore machines brings new chal-
lenges. Indeed, the increasing number of cores leads to
more and more complex interactions between tiers. Be-
sides, to avoid physical limitations, the main memory is
also split into several nodes (i.e., a group of cores and one
or several memory banks), leading to non-uniform mem-
ory access times (NUMA): a memory access from a core
located near the destination node is faster than from a re-
mote core. This additional factor, which is not present
with smaller machines, need to be considered.

As a consequence of this complexity, grasping how a
multi-tier application behaves on a multicore machine,
as well as troubleshooting its performance issues is a te-
dious process. Indeed, each tier relies on kernel mech-
anisms to communicate with the others, and may in-
volve thousands of tasks (i.e., threads and processes)
to handle all the concurrent requests. This puts a lot
of pressure on the kernel, especially on the scheduler,
which has the goal to decide where (i.e., on which core)
and when tasks are executed, trying to improve over-
all performance. To control the scheduler and to help
it make better decisions, one can manage the place-
ment of tasks, allowing to restrict on which core(s)
each task can be scheduled. The problem of choos-
ing appropriate task placement strategies has been ex-
tensively studied in the context of specific application
domains, such as high-performance computing applica-

tions (e.g., scientific simulations) ([Mazouz et al., 2011;
Zhuravlev et al., 2012]). However, it has not been studied
for multi-tier server applications, which have very dif-
ferent characteristics (e.g., lots of concurrent execution
flows, variable input load across time).

The contribution made through this Master and Mag-
istère internship is twofold. First, we use task pinning to
evaluate on three workloads the impact of different task
placement strategies. Task pinning is a technique that al-
lows forcing a task to execute on a given (set of) core(s).
We observe that imposing an appropriate task placement
strategy can have a strong impact on performance: up
to a 6x improvement compared to the default behavior
of the operating system scheduler. In addition, we also
highlight situations in which performance can actually
be improved by decreasing the amount of CPU resources
allocated to a multi-tier application (for example, we ob-
serve improvement by forcing an application to run on
18 of the 48 available machine cores). This study al-
lows us to conclude that task placement strategies that
improve performance are not always the same, and de-
pend on several factors such as the application architec-
ture or the workload. For each of the studied workloads,
we also pinpoint the cause of the performance improve-
ment or degradation, by leveraging kernel tracing mecha-
nisms. This troubleshooting process shows the difficulty
of finding root causes (i.e., initial causes) of performance
problems in multi-tier applications where thousands of
processes interact and interfere with each other.

The above mentioned facts motivate the creation of a
system that would dynamically find the bottleneck tier,
understand its performance problem, and mitigate it. The
second contribution is the preliminary design for such a
system. We also perform a set of experiments to check
that some of the key design choices we propose will be
viable in practice.

The rest of the report is organized as follows. Section
2 introduces the three use cases of multi-tier applications
that we study, as well as our experimental testbed and
our methodology. In Section 3, we evaluate the impact
of different task placement strategies on our three use
cases. Next, in Section 4, we analyze and understand
the performance problems that we have discovered, and
we design task placement strategies to mitigate them. In
Section 5, we propose the design of a system mitigat-
ing performance problems of multi-tier applications, and
validate some of the key choices of this design. Finally,
we conclude and discuss future works in Section 6.

2 Use Cases and Experimental Setup
In this section we introduce our experimental setup.
First, we present the criteria that guided our selection of
use cases, as well as the injection systems. Then, we

present each use case in details, including the metrics to
evaluate the performance of the system under test. Fi-
nally, we present the hardware and software configura-
tions of our testbed, as well as our experimental method-
ology.

2.1 Overview
Use Cases
To choose representative use cases, we took into ac-
count the following criteria: (i) realism: we are in-
terested in server applications that have strong simi-
larities (in terms of workloads patterns, features, de-
sign and implementation) with real-life deployments,
and (ii) diversity: in order to make our conclusions as
general as possible, we want to study different work-
loads, different web applications architectures and dif-
ferent kinds of performance problems. The three chosen
use cases are all well-established benchmarks in indus-
try and academia: (i) Cloudstone-A, a social-network
application with a Web server, a dynamic content engine
and a database (ii) Cloudstone-B, a variation of the pre-
vious use case with the addition of an in-memory cache,
and (iii) SPECweb 2009 Banking, an online banking sys-
tem. These three use cases are described in details in the
following sub-sections.

Load Injection
A key aspect of server benchmarks is the workload
model. A load injector must mimic the behavior of a real
user. In a web application, a user interacts with a server
system through operations. Each operation is composed
of a request for a dynamically-generated page (e.g., a
home page) and several requests for static content (e.g.,
pictures and CSS files). A user generally issues multiple
operations in a short period of time, which corresponds
to the navigation and interactions through the web appli-
cation. This sequence of operations is called a session.

For all the use cases that we consider, we rely on the
load-injector provided by the corresponding benchmark
implementation. The workloads characteristics are de-
rived from real-world requests traces. All these injectors
are closed-loop injection systems. In a closed-loop injec-
tion system, a predefined number of “users” are created
at the beginning of the benchmark run, and will only be
destroyed at the end of the run. A user will either trigger
an interaction with the server (i.e., send an operation and
wait for the response), or wait for some time between
two operations (called the think time). It is important to
note that, in a closed-loop injection system, a new op-
eration is only issued when the previous one is finished
(and the think time is elapsed). In this model, the number
of users within the system is maintained constant (except
during warm-up and shutdown phases). With a closed-
loop injection system, in the case of a web application,
each user simulates a session, moving from page to page

2

using a Markov transition matrix. Each user also has a
probability to end the session (i.e., the user leaves the
system). However, a user that ends a session is imme-
diately replaced with a new one. We plan to extend our
study by modifying the existing benchmarks in order to
consider other injection models, such as the partly-open
loop [Schroeder et al., 2006].

Performance Metrics
The performance metric we rely on is given by the load
injection system of each use case. The metric is the
throughput, expressed in operations (as defined in sub-
section 2.1) per second. We only consider operations
that are valid. For an operation to be valid, all the re-
sponses (dynamic and static requests) must be correct
(i.e., no error) and must comply with Quality-of-Service
(QoS) constraints. QoS constraints are defined by the
benchmark specification and are assessed by the load in-
jection system that measures statistics on requests. Such
constraints are, for example, an upper bound on the 95th
percentile of the response time.

2.2 First Use Case: Cloudstone-A
Cloudstone [Sobel et al., 2008] is a multi-tier application
benchmark that implements a social-events application
and aims at capturing typical functionality and behavior
of Web 2.0 applications in a datacenter. This benchmark
includes the Olio [oli, 2011] application as the server
stack, and Faban [fab, 2015] as the load injector. We
use the most recent version of Cloudstone, which is part
of the popular Cloudsuite 2.0 benchmark suite [Ferdman
et al., 2012; clo, 2015].

The multi-tier application is composed of three tiers:
(i) NGinx, (ii) PHP and (iii) MySQL NGinx is a Web
server in charge of serving both static (e.g., images, CSS)
and dynamic content (e.g., home page, contact form).
First, the client contacts the NGinx server and requests
the desired action through the HTTP protocol. When a
static request arrives, NGinx reads the requested file and
returns the content to the client. In this case, the request
is not forwarded to any tier. On the contrary, when a
dynamic request comes, NGinx acts as a proxy and for-
wards the request to the PHP dynamic content engine.
These two tiers interact via the Fast-CGI (FCGI) [Brown,
Mark R, 1996] protocol. PHP, in its turn, can interact
with the MySQL database to read and/or write structured
data. When it is the case (not necessarily for every input
request), PHP issues one or several requests to MySQL
using the MySQL protocol. Such dynamic requests may
involve all the tiers, where any of them can be the bot-
tleneck and slow down the total resolution of a client re-
quest.

2.3 Second Use Case: Cloudstone-B
The second use case is also based on Cloudstone, yet
with a different configuration of the multi-tier applica-
tion. This change introduces a very different behavior

of the system under test, leading to two totally different
results and analyses. In consequence, we consider this
configuration as a distinct use case.

Compared to the first use case, the second configu-
ration introduces an additional tier (Memcached). PHP
uses Memcached for in-memory caching of temporary
data. This allows lightening the burden on MySQL,
putting more pressure over Memcached. Such a change,
as we will see later, completely shifts the performance
bottleneck of the application.

2.4 Third Use Case: SPECweb 2009 Banking
SPECweb 2009 [spe, 2009] is part of the SPEC bench-
mark suite, created by the Standard Performance Eval-
uation Corporation, which aims at standardizing bench-
marks for server applications. The focus of SPECweb
2009 is to evaluate the performance of the tiers in charge
of serving client requests (as opposed to back-end tiers
in charge of storage and caching). For this reason,
SPECweb 2009 deliberately eliminates potential bottle-
necks in the back-end tiers by replacing them with a
database simulator, which is an optimized program send-
ing randomized data without computation nor synchro-
nization. We choose to use the Banking workload, which
simulates an online banking interface for account man-
agement. To support the workload, we use NGinx as the
Web server, and PHP as the dynamic content engine. The
database simulator is on another machine to avoid inter-
fering with the two other tiers.

2.5 Experimental Testbed and Methodology
In this sub-section we discuss our hardware setup as well
as the different software stacks and configurations used.

Hardware Setup
We used three different multicore machines as our
testbed. Machine 1 is a 48-core Dell PowerEdge R815
server with 4x AMD Opteron 6344 chips (2,6 GHz, 12
cores), and 64 GB of RAM (DDR3 1600 MHz). Ma-
chine 2 and Machine 3 are two 64-core Dell PowerEdge
R815 server with 4x AMD Opteron 6272 chips (2,1 GHz,
16 cores) has 256 GB of RAM (DDR3 1600 MHz), the
second has 128 GB.

We define a core as a hardware processing unit that can
support only one execution flow at a time In such a large
machine (in terms of number of cores), the main memory
is split into several nodes, leading to non-uniform mem-
ory access times (NUMA). Cores are split in different
groups, and each group is associated with a distinct mem-
ory controller. A group of cores and the corresponding
memory controller is called a NUMA node (or just node).
A core can access memory from a different node by com-
municating through links called interconnects. On such
an architecture, memory access times are not uniform: a
memory access from a core located near the destination
node is faster than from a remote core. Each machine is

3

equipped with two dual-port Intel 82599 network cards
and each pair of machines is connected by two 10 Gb/s
Ethernet links. For all use cases, the system under test
is Machine 1. The two remaining machines are used for
load injection.

Software Versions and Configuration Settings
For all the machines, we use the Ubuntu Server 12.04
operating system, with Linux kernel version 3.17.6. We
use the default Linux scheduler. For Cloudstone-A and
Cloudstone-B, we use NGinx version 1.7.7, PHP ver-
sion 5.3.9 with the APC (PHP script cache plugin) ver-
sion 3.1.9, MySQL version 5.5.20 and Memcached ver-
sion 1.4.20. For SPECweb 2009 we use NGinx 1.7.10
and PHP version 5.6.6 with the embedded script cache
extension. Note that all the above-mentioned software
versions were either shipped with the benchmark suite
(Cloudstone) or the most recent versions at the time of
the experiments. We carefully tune the software parame-
ters of each setup to achieve the best performance.

3 Performance Evaluation
In this section, through an empirical study of our three
use cases, we highlight the impact of task placement
strategies regarding multi-tier web applications deployed
on a multicore machine. More precisely, we make the
following findings: (i) the task placement strategies that
yield good performance are not always the same: this de-
pends both on the application workload and on the soft-
ware architecture of the application; (ii) the most com-
mon placement strategies are not always efficient and can
sometimes be pathological; (iii) in some cases, the best
performance can be achieved by using only a fraction of
the available CPU resources of the machine .

The section is organized as follows: first, we discuss
the notion of the task placement strategy and we intro-
duce the strategies that we consider. Second, for each use
case, we describe our observations regarding the influ-
ence of task placement strategies on performance. Third,
we study related works about the impact of task place-
ment strategies. Finally, we summarize our conclusions.

3.1 Task Placement Strategies
We must first define the notion of task: a task is an ex-
ecution flow that is schedulable by the operating system
scheduler. In this work, we assume that each thread of
execution at the application level (i.e., within a single-
threaded or a multi-threaded process) is a task. In other
words, we assume that the application-level code does
not multiplex several application threads on top of a sin-
gle kernel-level thread. For a set tasks, a task placement
strategy describes where each task is allowed to be exe-
cuted, i.e., on which core(s). For example, a task place-
ment strategy for three tasks A, B and C can allow A to be
executed on cores 1–6, B on cores 7–12 and C on cores
13–18.

Controlling Task Placement Through Pinning
For an application programmer or a system adminis-

trator, the main technique to control the task placement
strategy is through the pinning mechanism: pinning a
task actually means forcing this task to run on a specific
set of cores. This set can either correspond to a single
core (e.g., the task will only run on core 3), or multiple
cores (i.e., this task can run on cores 1, 5–9, 20–26). One
can also pin a task on a given NUMA node (as defined
in sub-section 2.5). By default, pinning is hierarchical:
if a parent task A is restricted to run only on the set of
cores S, then every task created by A inherits the same
restrictions. However, more complex strategies can also
be implemented. For example, pinning can be used in
such a way that every newly created task runs on a dis-
tinct core, assigned in a round-robin fashion (e.g., the
first task runs on core 1, the second on core 2, and so on,
cycling if needed).

In the context of our work, we focus on the impact
of task pinning on application performance for the use
cases that we have selected. When a task is pinned, sev-
eral factors are impacted: (i) efficiency of the mem-
ory accesses, (ii) interferences between tasks, (iii) load
balancing among cores and (iv) allocation of CPU re-
sources . In our experiments, we have found that, among
the above-mentioned factors impacted by task pinning,
the allocation of CPU resources seems to have the dom-
inant effect on the performance of the applications that
we study. As a consequence, the pinning strategies that
we evaluate are primarily chosen according to this factor.
More precisely, pinning can be used to precisely control
the amount of CPU resources allocated to a given set of
tasks S. For example, pinning all the tasks of S on X
nodes of a machine with N nodes will guarantee that S
will never receive more than a X

N fraction of the total CPU
time. Conversely, if pinning is also used to enforce that
all the other tasks be excluded from the same node, this
will ensure that a X

N fraction of the total CPU time will
actually be reserved for S. We plan to take into account
the other factors (in particular, the memory aspects) in
future work, as discussed in Section 6.

Experimental Approach
For each use case, we evaluate the impact of different
task placement strategies (obtained via pinning) on per-
formance. We systematically evaluate three “default”
pinning strategies. These strategies correspond to the
typical approaches that would be considered by an ex-
perienced programmer or system administrator:

without pinning: the task placement of the multi-tier
application fully relies on the decisions of the kernel
scheduler, which may frequently migrate tasks between
cores in order to balance the load.

node pinning : each task of each tier (including tasks
created during the run) is allowed to be executed on one

4

node (e.g., for Machine 1, this corresponds to 6 cores).
When a new task is created by a tier, it will be allowed
to execute on the next node. Nodes are chosen in a
round-robin fashion over all the nodes of the machine
(e.g., the first task will be on node 0, the second on
node 1). Such a pinning strategy leverages the mem-
ory affinity of a task (the task is always executed on the
node where its memory is). Yet, it leaves some freedom
to the scheduler, which is still able to chose between
multiple cores for the task (to better balance load). This
strategy is more restrictive than the without pinning, but
less restrictive than the core pinning strategy (described
next).

core pinning : each task of each tier (including tasks
created during the run) is forced to be scheduled on
exactly one core. Cores are assigned in a round-robin
fashion over all the cores of the machine (e.g., the first
task will be on core 0, the second on core 1, ... , cycling
if needed). We enforce memory and cache affinity by
always executing the same task on the same core. This
is the most restrictive strategy in terms of load balanc-
ing.

These three strategies use all the available nodes on the
machine.

In addition to the default strategies, we evaluated many
other “custom” strategies (over 15 strategies have been
investigated for each workload/testbed combination). To
restrain the large choices of available configuration pa-
rameters (i.e., to simplify the problem), we select pin-
ning strategies at the granularity of a node (but a node
can possibly be shared between tiers). The design of a
custom strategy considers the following parameters, sep-
arately for each tier: (i) number of nodes allocated to the
tier; (ii) type of allocated nodes (shared with other tiers
or exclusive); (iii) type of pinning for the tasks of the tier
(without, core, or node) . For the sake of conciseness, we
only present the results for the three default strategies, as
well as the best “custom” pinning strategy that we found
for a specific workload and testbed.

3.2 Observations
In this sub-section, we present our experimental results
for each use case.

Cloudstone-A
Figure 1a shows the results of the experiment. The
best observed strategy is m1p3n1, where MySQL is con-
strained to run on one node (node 1), PHP on 3 nodes
(nodes 2, 3, 4) and NGinx on one node (node 5). We
can see that the without, node and core strategies exhibit
the same performance. Finally, our best pinning strategy
outperforms the others by a factor of 6.

As will be explained later (in Section 4.2)), in this con-
figuration, MySQL is actually the bottleneck tier: its low
performance has a dominating impact on the whole ap-
plication behavior. And we observe that reducing the

amount of CPU resources allocated to this tier improves
the overall performance. Thus we can say that allocat-
ing more CPU resources to the bottleneck tier does not
always improve performance and can even hurt it. This
experiment also demonstrates that default (i.e., without,
core and node) strategies are not always the best ones.
We can also see that, somewhat unexpectedly, reduc-
ing the amount of CPU resources allocated to the whole
multi-tier application may sometimes improve perfor-
mance (using only five nodes among the eight available
nodes).

Cloudstone-B
We now evaluate the performance of the Cloudstone-
B use case, which is composed of four tiers: NGinx,
PHP, MySQL and Memcached. Figure 1b shows perfor-
mance results for Cloudstone-B. The best strategy found
is m1p8n1mem2, where MySQL is pinned on one node
(node 1), NGinx also (node 2), Memcached on two nodes
(node 3, 4) and PHP is not pinned and can be scheduled
on any core (relying on the decisions of the scheduler).
We observe that without and node have the same perfor-
mance (2580 op/s). m1p8n1mem2 has a performance of
2845 ops/s, a 10% of performance improvement. core,
one of our default strategies, has a performance of 2200
ops/s (14% lower than the two other defaults strategies,
22% lower than the best one). In contrast to Cloudstone-
A, the default strategies does not always have the same
performance.

We see that this use case works quite well with the
default pinning strategy. Indeed, the best found strategy
exhibits a small percentage of improvement with respect
to the without strategy. This slight improvement can be
explained by the fact that by forbidding MySQL, NG-
inx and Memcached to run on the same node (each one
is assigned to different nodes), the scheduling interfer-
ence between tiers is reduced. Indeed, when the tasks of
multiple tiers are allowed to execute on the same node,
the compete for hardware resources such as cores, cache
space and main memory bandwidth. Moreover, as ex-
plained later (in sub-section 4.2), in this configuration,
PHP suffers from CPU starvation (i.e., it does not have
enough CPU resources). As a consequence, when we
reduce the number of nodes allocated to the other tiers
(NGinx, MySQL, Memcached), we increase the CPU re-
sources given to PHP by the scheduler.

Overall, we can see that adding only one tier (Mem-
cached) totally changes the performance as well as the
behavior of the different pinning strategies. Overall, the
performance impact of different task placement strate-
gies can vary greatly according to the multi-tier appli-
cation architecture, even with a similar input workload
and/or similar implementations for some tiers.

SPECweb 2009 Banking
Our third use case is SPECweb 2009 Banking. SPECweb
involves two tiers (NGinx and PHP) that run on Machine

5

0

100

200

300

400

500

600

without core node m1p3n1

Pinning Strategy

T
hr

ou
gh

pu
t (

op
s/

s)

(a) Comparison of pinning strategies
for Cloudstone-A, injecting with

4000 concurrent users.

0

500

1000

1500

2000

2500

3000

without core node m1p8n1mem2

Pinning Strategy

T
hr

ou
gh

pu
t (

op
s/

s)

(b) Comparison of pinning strategies
for Cloudstone-B, injecting with

18000 concurrent users.

0

500

1000

1500

2000

2500

without core node n1p2

Pinning Strategy

T
hr

ou
gh

pu
t (

op
s/

s)

(c) Comparison of pinning strategies
for SPECweb 2009 Banking,

injecting with 9000 concurrent users.

Figure 1 – Comparison of pinning strategies for the three use cases.
Error bars are 95 percent confidence intervals.

1 and an external database simulator. In Figure 1c, we
observe that the three default strategies yield roughly the
same performance, about 2150 ops/s. The best strategy
that we find is n1p2 (NGinx on one node, PHP on two
other nodes): it yields a performance of 2690 ops/s, an
increase of 25% regarding the without strategy. In ad-
dition, it is important to notice that the latter strategy
only uses three of the eight nodes available on the ma-
chine. This confirms the finding on Cloudstone-A: in
some cases, the best performance can be achieved by us-
ing only a fraction of the available CPU resources of the
machine. Finally, comparing results of SPECweb 2009
Banking and Cloudstone demonstrates that the best task
placement strategy is dependent of the workload.

3.3 Related Work
To the best of our knowledge, our work is the first one
to highlight and study in depth the strong impact of task
placement through pinning for multi-tier applications de-
ployed on a multicore architecture. Below, we discuss
the main related works on the impact of task placement
strategies.

The impact of pinning has been mainly studied in the
context of high-performance computing (HPC) applica-
tions, and to a lesser extent for multimedia and data anal-
ysis applications [Mazouz et al., 2011; Sartor and Eeck-
hout, 2012]. In these contexts, the studied applications
generally use one task per physical core (or a small num-
ber of tasks per core). On the contrary, the web applica-
tions we are interested in generally use a great number
of tasks per core in order to handle several concurrent re-
quests and overlap the latency of input/output (I/O) op-
erations (e.g., network and disk I/O).

The impact of task pinning and allocation of CPU re-
sources (either for native applications or for applications

encapsulated inside virtual machines) has also been stud-
ied in the context of co-scheduling distinct (and compet-
ing) applications on a shared server [Tang et al., 2011;
Wang et al., 2012; Das et al., 2013; Rao et al., 2013;
Blagodurov et al., 2013]. In contrast, we focus on ap-
plications that are composed of several tiers. These
tiers need to cooperate to serve a user request, and the
amounts of execution resources needed by the different
tiers are interdependent. Besides, unlike most of these
works, we cannot make a distinction between interactive
and background tasks in order to facilitate and prioritize
scheduling decisions.

Some works have considered server applications, as
we do. A part of these works only considers single-tier
applications or only task placement for a single tier [Tam,
David and Azimi, Reza and Stumm, Michael, 2007].
Other works consider multiple instances of the same
multi-tier application on the same machine, but do not
explore in depth the impact of different pinning strate-
gies [Gaud et al., 2011; Hashemian et al., 2013]. Some
works have also studied server applications on multicore
architectures at the hardware level using the performance
counters available on modern processors [Ferdman et
al., 2012]. They discovered inefficiencies due to mis-
matches between application needs and the microarchi-
tectural features of modern processors. These works only
focus on aspects related to hardware design and have not
evaluated the impact of task placement. In addition, the
above papers related to multi-tier applications have only
studied machines with a relatively small number of cores
(four to eight times lower than on the machines used in
our experiments).

3.4 Summary
We have conducted a study of the impact of task place-
ment strategies on the performance of multi-tier web ap-

6

plications running on multicore machines. To the best of
our knowledge, our study is the first one to demonstrate
the magnitude of this impact. Our main findings can be
summarized as follows.

First, we saw that giving more CPU resources to the
bottleneck tier does not always improve performance and
can even hurt it. Then, we observed that commonly used
pinning strategies (i.e., core or node pinning) may de-
grade performance. Besides, we observed that perfor-
mance may be improved by reducing the total number
of cores allocated to the application, which can be sur-
prising. We also found that the performance of a given
task placement strategy can vary greatly according to the
multi-tier application architecture, even with a similar
workload mix. Finally, we saw that the performance of
a task placement strategy may vary according to differ-
ent workload mixes (i.e., Cloudstone vs. SPECweb 2009
Banking).

With such a wide range of possibilities, we have not
found a solution or a small set of solutions that always
work well. In the following section, we analyze each
use case to manually understand which tier is the lim-
iting one, and find a pinning strategy that mitigates the
identified issue.

4 Analysis
In this section, our objective is to understand why the
different task placement strategies studied in the previous
section lead to different performance. To this end, we
try, for each use case, to identify which tier is the main
performance bottleneck, and to understand from which
performance problem it suffers.

The section is organized as follows. First, we conduct
a study of related works regarding performance trou-
bleshooting for multi-tier applications. Then, for each
use case, we identify the main performance bottleneck
and we propose a task placement strategy to mitigate the
problem.

4.1 Multi-Tier Applications Performance
Troubleshooting: Tools and Methodology

Several works have dealt with the problem of detecting,
understanding and resolving performance problems for
multi-tier applications.

Whodunit [Chanda et al., 2007] is a tool designed to
help programmers understand performance problems in-
side a multi-tier application. It tracks a request end-to-
end through each tier using a new technique called trans-
actional profiling. This technique allows characterizing
the complete path taken into the code for each request
type. Thus, the tool can detect conflicting requests types
and also identify the types of user requests that trigger the
heaviest work on some tiers (e.g., the application-level
requests that stress the database). This kind of insight can
provide guidance on modifications to optimize the design
of a multi-tier application (e.g., adding a caching layer).

However, this tool only allows understanding which code
paths are problematic, or which requests are conflicting:
it does not explain why. Moreover, it does not con-
sider problems that are specific to multicore machines
(e.g., memory controller contention), nor problems that
are due to the multi-tier nature of the application, like
bottlenecks induced by inefficient inter-tier traffic pat-
terns. Besides, Whodunit requires to modify the applica-
tion source code, whereas we target legacy applications.

BorderPatrol [Koskinen and Jannotti, 2008] also pro-
vides end-to-end request tracking inside multi-tier appli-
cations. Contrary to approaches like Whodunit, the ap-
plication does not need to be modified. To this end, it
uses a proxy in front of each tier to capture requests. Us-
ing a method called temporal join, BorderPatrol is able to
correlate request relationships between tiers. The output
is a trace showing how much time a request has spent
in each tier. The goal of the tool is above all to trace
requests through the application, while having very lit-
tle information about each tier (i.e., tiers are considered
as black boxes – no source code availability is required).
BorderPatrol is only able to help a developer to under-
stand where requests spend their time. Moreover, like
Whodunit, BorderPatrol is not able to explain why a re-
quest spends some time in a tier (i.e., what is the perfor-
mance problem).

Qingyang et al. [Qingyang et al., 2011] tackle the
problem of soft-resource allocation on multi-tier applica-
tions. The notion of soft resources refers to the resources
that are configurable through each tier configuration file
(e.g., thread pool size, maximum number of concurrent
connections – a concrete example of soft resource, in the
use cases that we study is the number of PHP processes
available to handle requests). The authors demonstrate
the sensitivity of soft-resource tuning: setting the allo-
cation of some soft resources either too low or too high
may hurt performance. We carefully tuned soft resources
in order to avoid such problems. Besides, contrary to the
authors, we consider a deployment on a single multicore
machine. This introduces an additional dimension to take
into account: CPU resource allocation between the dif-
ferent tiers. The same authors also propose an algorithm
to tune the soft-resource configuration according to the
needs of an application. We believe that this algorithm
not sufficient for the cases that we consider. First, the au-
thors assume that the bottleneck is necessarily due to lim-
iting hardware resource: they do not consider bottlenecks
related to software resources (e.g., lock contention). Sec-
ond, this tuning algorithm only aims at maximizing the
usage of the limiting hardware resource but does not con-
sider the efficiency of this usage. For example, the CPU
resource may be fully used but mostly wasted if many
tasks spend time in a synchronization bottleneck (e.g.,
contention on a sleeping lock, or worse, on a spinlock).

Overall, none of the previously described tools meet
our needs. Some of them do not take into account the

7

specific problems of a multicore machine and the others
can only provide partial insight that is not sufficient to
understand the performance bottlenecks.

4.2 Understanding Performance Bottlenecks
Most of the workloads that we study are kernel-intensive:
they heavily rely on kernel mechanisms, e.g., thousands
of tasks putting pressure on the scheduler, and making
intensive usage of local communication channels. To un-
derstand the performance problems of these workloads,
we rely on kernel tracing mechanisms. Using the Linux
perf facility, we periodically capture kernel and user
call-chain samples for the tasks of each tier. To visual-
ize the capture, we use FlameGraph plots [fla, 2015]. A
FlameGraph is a is visualization method that allows de-
tecting the most frequent code paths taken by the tasks
of each tier.

As a starting point of our investigations, for each use
case, we generate the FlameGraph of the without strat-
egy. This allows us to understand which tier has the
higher CPU consumption and in which code paths each
tier spends its time. Using these insights, we now explain
the root cause of the performance problems observed for
the two first use cases. Due to a lack of space, the analy-
sis for the third use case is not presented in this report.

First Use Case: Cloudstone-A
Root Cause: User-Level Lock Contention We gener-
ated the FlameGraph for the Cloudstone-A use case us-
ing the without strategy. Due to a lack of space, we do
not show this FlameGraph. On the FlameGraph, we see
that most of the CPU time is consumed by MySQL, es-
pecially inside the mutex spin lock function. The
name of the function gives a hint on the performance
problem: MySQL seems to spend most of its CPU time
trying to acquire lock(s). After investigating the MySQL
source code [mys, 2015], it appears that the function
is related to the InnoDB buffer pool. This buffer
pool is an in-memory cache that InnoDB (i.e., a database
storage engine used by MySQL) uses to avoid reads
from the disk. We observe that concurrent accesses to
this cache are synchronized with a coarse-grain lock-
ing scheme, which explains the heavy contention when
MySQL is stressed.

Task Placement Strategy In this use case, MySQL
is the performance bottleneck. Thus, an efficient task
placement strategy must be directed towards it. The ob-
served lock contention is caused by a too high num-
ber of concurrent accesses: it is important to under-
stand that giving more CPU resources to the incriminated
tier will only degrade performance. Indeed, the more
there are concurrent execution flows trying to access the
same lock, the more they will wait on it. Therefore, we
need to reduce the amount of CPU resources allocated to
MySQL. The number of nodes allocated should neither

be too low (MySQL would suffer from CPU starvation)
nor too high (there would be contention inside MySQL).
In the Cloudstone-A use case, we found experimentally
that one node (6 cores on Machine 1) is the right amount
of CPU resources.

For the other tiers, when searching for the best config-
uration, we also tried to choose a strategy that allocates
the minimum amount of nodes that each tier needs. This
allows saving CPU resources. We have found that NG-
inx needs one node and PHP needs three nodes. This
explains how we found our best configuration m1p3n1
(MySQL on one node, PHP on three nodes and NGinx
on one node) for Cloudstone-A, which uses only 63 per-
cent of the total amount of available CPU resources.

Second Use Case: Cloudstone-B
Root Cause: CPU Starvation We also generate the
FlameGraph for Cloudstone-B (not shown here). First of
all, with the FlameGraph, we can see that the MySQL
bottleneck is not present anymore. Indeed, most of the
time is now spent inside PHP. This acts as evidence that
Memcached reduces the load on MySQL. In order to de-
termine if PHP, as MySQL previously, suffers from lock
contention, we zoom into the PHP call-chains. As it turns
out, there is no evidence that PHP suffers from a problem
like this, and seems to use its CPU times efficiently.

It is not surprising that PHP consumes most of the
CPU time. Indeed, most of the business logic of the re-
quest processing is done by PHP, and this becomes the
most costly processing phase when MySQL is not on the
critical path. Thus, we emit the hypothesis that PHP
is limited by the amount of available CPU resources.
To validate our hypothesis, we initially set the number
of nodes allocated to each tier like in our best strat-
egy (m1p8n1mem2: MySQL one node, NGinx one node,
Memcached two nodes) and we vary the number of nodes
allocated to PHP, observing the application performance.
Then, we increase the amount of nodes allocated to PHP
and see that the performance also increases. These re-
sults validate our hypothesis that the performance prob-
lem of Cloudstone-B is PHP suffering from CPU starva-
tion.

Task Placement Strategy In order to mitigate the
identified performance problem, our approach to choose
a task placement strategy is in opposition with the one
we considered for Cloudstone-A. As a matter of fact, we
do not want to reduce the CPU resource of the bottle-
neck tier. Rather, we need to reduce the amount of CPU
resource of all other tiers, to use the saved resource for
the bottleneck tier. In the context of a multicore machine,
finding the right amount of CPU resources for each tier
is non-trivial. We do not want to reduce too much the
allocation of a tier, otherwise it may suffer from CPU
starvation. Yet, we still want to save the highest possible
amount of resources for the bottleneck tier.

8

In the Cloudstone-B case, our best-found strategy is
m1p8n1mem2 (MySQL on one node, NGinx on one
node, Memcached on two nodes and PHP is free to be
scheduled on any core). We find that MySQL needs at
least one node, NGinx also needs one node and Mem-
cached needs two nodes. Finally, by allowing PHP to be
scheduled on any node, we allow it to exploit as many
CPU resources as possible.

Summary
For the first two use cases, we have provided an explana-
tion for the main performance problems. We also ex-
plained how to mitigate such problems by using opti-
mized task placement strategies. In the next section, we
discuss the design of a system that could dynamically
and automatically detect, understand and mitigate perfor-
mance problems of a multi-tier application running on a
multicore machine.

5 Towards Dynamic Optimizations
In Sections 3 and 4, we have seen that the task place-
ment strategy that yields the best performance depends
on multiple factors, and that the root cause of the perfor-
mance problem is never the same. These facts motivate
the need for a solution that could automatically and dy-
namically address the problems that we have highlighted.
First of all, we provide a brief overview of the state of the
art regarding dynamic optimizations for multi-tier appli-
cations, finding that no previous work fully meets our ex-
pectations. As a consequence, we propose design guide-
lines for a system mitigating the performance problems
we are interested in, and perform experiments validating
some of the key choices of this design.

5.1 Related Work
In this section, we briefly review the main existing solu-
tions that aim at dynamically optimizing the performance
of a multi-tier application.

A first solution is SEDA [Welsh et al., 2001; Welsh
and Culler, 2003]. SEDA introduces a new multi-tier ap-
plication design, where each tier is modeled by a stage,
composed of a pool of threads and a queue of pend-
ing requests. Each stage is managed by a controller,
whose goal is to detect and react to performance prob-
lems within the stage. SEDA does not fully meet our
needs with respect to several aspects: (i) it requires to
completely rewrite the application, whereas we want to
support legacy application, and (ii) the approach used by
SEDA to mitigate the performance bottlenecks (i.e., in-
creasing the thread pool size) may not always address the
problems that we target, or may even be counterproduc-
tive (e.g., lead to CPU starvation).

A second solution is proposed by Urgaonkar et al. [Ur-
gaonkar et al., 2007; Urgaonkar et al., 2008]. In this
work, the authors propose a generic model to detect the
performance problems of a multi-tier application. This

solution is not adapted to our situation, for two main rea-
sons. First, authors consider deployment on a cluster of
physical machines. On a single multicore machine, the
resource allocation of each tier is dependent of the re-
source allocation of every other tier. Second, we refrain
from requiring a thorough application characterization.
We believe that, the complexity arising from the deploy-
ment on a multicore machine does not allow to know in
advance what is, for each tier, a good resource allocation
policy.

None of the solutions presented above fully meets our
needs. As a consequence, in the next sub-section, we
propose the design of a system whose goal is to auto-
matically and dynamically detect the bottleneck tier, un-
derstand the root cause of the performance problem and
mitigate it.

5.2 Design Proposal
We propose design guidelines for a system that miti-
gates the performance problems of a multi-tier applica-
tion. Our approach intends to be generic: it is not specific
to any multi-tier application or multi-tier architecture and
it works with legacy applications, relying on operating
system tracing and task placement mechanisms. The ar-
chitecture of our solution will be decomposed into three
main components, which together perform the mitiga-
tion. The following sub-sections give more details about
each component, along with the organization of their ex-
ecution.

First Component: Identification of the Bottleneck
Tier
The role of the first component will be to identify the bot-
tleneck tier. To this end, we plan to model the multi-tier
application using queuing theory where tiers are nodes
and queues represents requests waiting to be handled. In-
deed, we believe such a theory is adapted to our needs.

In models based on queuing theory, each tier has many
characteristics (e.g., request processing time) that, we be-
lieve, will allow the tool to identify the bottleneck tier. To
retrieve them, we plan to dynamically compute some of
these characteristics by capturing and analyzing events
related to inter-tier communications, and derive others
using equations given from the theory.

Second Component: Understanding of the
Performance Problem
The second component will be in charge of understand-
ing from which performance problem the bottleneck tier
suffers (e.g., lock contention, CPU starvation). Thus,
the component will need to collect and analyze a set
of system-level metrics (e.g., scheduling statistics, lock
concurrency levels) in order to pinpoint the precise kind
of problem. Each metric will serve two purposes: (i) de-
cide if the bottleneck tier suffers from the performance
problem detected by this metric, and (ii) validate the
impact of the performance improvement modifications

9

made on the tier: the measured value will reflect the im-
pact of the performed changes .

Third Component: Mitigation of the Performance
Problem
The third component will be in charge of choosing a task
placement strategy adapted to the mitigation of the per-
formance problem identified by the second component,
and apply this strategy to the application’s tasks at run-
time. When choosing a task placement strategy, the com-
ponent will need to carefully balance resource allocation
among the tiers, to avoid CPU starvation and reduce CPU
interference.

Coordination of the Three Components
The three components need to be executed one after the
other. Moreover, once the third component has modified
the application task placement strategy, the system needs
to execute the three components again. Indeed, modify-
ing the performance of a tier may change the through-
put of the bottleneck tier and therefore the throughput of
the other tiers. A new tier may become the bottleneck,
which need to be detected and handled by the system.
The solution iterates the execution of the components un-
til reaching system “stability”: when there is no more
performance problem that the system can mitigate. The
dynamic optimization system will also have to be trig-
gered at regular intervals in order to handle the potential
variations of the input load.

5.3 Preliminary Design Validation
During the design of the system, we made design choices
for each one of the three components. Before starting to
implement the proposed design, it is important to verify
if these choices are viable. In other words, we need to
verify: (i) that it is possible to observe and/or perform
the needed actions (with enough precision and reactivity)
and (ii) that every action has a low overhead (i.e., it does
not significantly slow down the running application).

In particular, we consider that it is necessary to vali-
date the three following important choices. The first one
is the possibility for the first component to dynamically
capture the required events to feed the multi-tier model,
in order to identify the bottleneck tier. The second one
is the possibility for the second component to find and
compute a metric that detects the performance problem
of this bottleneck tier. Finally, the third one is the feasi-
bility for the third component of applying a task place-
ment strategy at run-time. For each one of these choices,
we present an experiment validating its viability. Due to
a lack of space, we only present the experiment validat-
ing the first component.

Dynamic Tracing of Interactions Between Tiers
As explained previously, we plan to model the multi-tier
application using queuing theory. We consider tiers as
black boxes: we have very few information on them. Yet,

we expect that by feeding our model with dynamically
computed input parameters, the system will be able to
identify the bottleneck tier. In order to compute these pa-
rameters, we have observed requests characteristics (e.g.,
processing time, arrival time) inside the multi-tier appli-
cation. To this end, we have captured events related to
inter-tier communications (request and response produc-
tion/consumption) using kernel tracing mechanisms.

Before establishing our model, we first want to verify
if the capture of these events is feasible. In other words,
we have checked that the capture does not significantly
modify the behavior or hurt the performance of the ap-
plication. Using the Cloudstone-A with the m1p3n1 task
placement strategy (the best strategy for this use case),
we have compared the performance with and without the
capture enabled.

The results of this experiment show less than one
percent of performance overhead (without capture: 570
ops/s, with a confidence interval of 95% of the mean
equals +- 19 ops/s; with capture: 565 ops/s, +- 14 ops/s).
We consider this overhead as insignificant.

Even if we still need to confirm that using queuing the-
ory will allow detecting bottleneck tiers, preliminary re-
sults show that it is feasible to dynamically capture some
of the input parameters for this type of model.

6 Conclusion and Future Works
We studied the impact of task placement strategies on
multi-tier applications deployed on a single multicore
machine and proposed the preliminary design of a system
that will dynamically mitigate performance problems of
such applications.

We first introduced the multi-tier Web application use
cases, our experimental testbed and the configuration
choices we made for evaluating the impact of task place-
ment strategies using pinning. Then, we studied the im-
pact of task placement strategies on our three use cases.
We observed up to a 6x improvement compared to the
default behavior of the operating system scheduler using
specific strategies. In addition, we also highlighted sit-
uations in which performance can actually be improved
by decreasing the amount of CPU resources allocated to
the multi-tier application (using roughly 40% of the total
CPU resource available). From this study, we concluded
that the best task placement strategies are not always the
same, and depend on several factors such as the appli-
cation architecture or the workload. We also pinpointed,
for every use case, the root cause of the observed perfor-
mance problems. This troubleshooting process showed
the difficulty of understanding performance problems in
multi-tier applications. Motivated by our findings, we
proposed the preliminary design of a system that will dy-
namically identify the bottleneck tier, understand its per-
formance problem, and mitigate it. Finally, we validated
some of the key choices made during the design phase.

10

Acknowledgment
This work has been supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01).

References
[Blagodurov et al., 2013] Sergey Blagodurov, Daniel

Gmach, Martin Arlitt, Yuan Chen, Chris Hyser, and
Alexandra Fedorova. Maximizing Server Utilization
While Meeting Critical SLAs via Weight-based Col-
location Management. In Symposium on Integrated
Network Management (IM), pages 277–285. IEEE,
May 2013.

[Brown, Mark R, 1996] Brown, Mark R. Fastcgi speci-
fication. Open Market Inc., 1996. Accessed: 2015-
04-27.

[Chanda et al., 2007] Anupam Chanda, Alan L. Cox,
and Willy Zwaenepoel. Whodunit: Transactional Pro-
filing for Multi-tier Applications. In European Con-
ference on Computer Systems (EuroSys), pages 17–
30. ACM, 2007.

[clo, 2015] Cloudsuite 2.0 Benchmark. http://
parsa.epfl.ch/cloudsuite, 2015. Accessed:
2015-04-27.

[Das et al., 2013] R. Das, R. Ausavarungnirun,
O. Mutlu, A. Kumar, and M. Azimi. Application-to-
core Mapping Policies to Reduce Memory System
Interference in Multi-Core Systems. In Symposium on
High Performance Computer Architecture (HPCA),
pages 107–118. IEEE, Feb 2013.

[fab, 2015] Faban, A Free and Open Source Perfor-
mance Workload Creation and Execution Framework.
http://faban.org/, 2015. Accessed: 2015-04-
27.

[Ferdman et al., 2012] Michael Ferdman, Almutaz
Adileh, Onur Kocberber, Stavros Volos, Moham-
mad Alisafaee, Djordje Jevdjic, Cansu Kaynak,
Adrian Daniel Popescu, Anastasia Ailamaki, and
Babak Falsafi. Clearing the Clouds: a Study of
Emerging Scale-Out Workloads on Modern Hard-
ware. In Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 37–48. ACM, 2012.

[fla, 2015] FlameGraphs: a visualization of profiled
software, allowing the most frequent code-paths to
be identified quickly and accurately. http://www.
brendangregg.com/flamegraphs.html,
2015. Accessed: 2015-06-05.

[Gaud et al., 2011] Fabien Gaud, Renaud Lachaize,
Baptiste Lepers, Gilles Muller, and Vivien Quéma.
Application-Level Optimizations on NUMA Mul-
ticore Architectures: the Apache Case Study.
LIG Research Report RR-LIG-011, March 2011.
https://hal.inria.fr/hal-00950933.

[Hashemian et al., 2013] Raoufehsadat Hashemian, Di-
wakar Krishnamurthy, Martin Arlitt, and Niklas
Carlsson. Improving the Scalability of a Multi-core
Web Server. In International Conference on Perfor-
mance Engineering (ICPE), pages 161–172. ACM,
2013.

[Koskinen and Jannotti, 2008] Eric Koskinen and John
Jannotti. BorderPatrol: Isolating Events for Black-
box Tracing. In Proceedings of the 3rd European
Conference on Computer Systems (EuroSys), pages
191–203. ACM, 2008.

[Mazouz et al., 2011] Abdelhafid Mazouz, Sid-Ahmed-
Ali Touati, and Denis Barthou. Performance Evalu-
ation and Analysis of Thread Pinning Strategies on
Multi-core Platforms: Case study of SPEC OMP ap-
plications on Intel architectures. In High Performance
Computing and Simulation (HPCS), pages 273–279,
Istanbul, Turkey, July 2011. IEEE.

[mys, 2015] MySQL Server source code. https:
//github.com/mysql/mysql-server, 2015.
Accessed: 2015-04-27.

[oli, 2011] Olio, a Web 2.0 Toolkit. http:
//incubator.apache.org/projects/
olio.html, 2011. Accessed: 2015-04-27.

[Qingyang et al., 2011] Wang Qingyang, S. Malkowski,
Y. Kanemasa, D. Jayasinghe, Pengcheng Xiong,
C. Pu, M. Kawaba, and L. Harada. The Impact of
Soft Resource Allocation on n-Tier Application Scal-
ability. In Parallel Distributed Processing Symposium
(IPDPS), pages 1034–1045. IEEE, May 2011.

[Rao et al., 2013] Jia Rao, Kun Wang, Xiaobo Zhou,
and Cheng zhong Xu. Optimizing Virtual Machine
Scheduling in NUMA Multicore Systems. In 2013
IEEE 19th International Symposium on High Per-
formance Computer Architecture (HPCA2013), pages
306–317. IEEE, Feb 2013.

[Sartor and Eeckhout, 2012] Jennfer B. Sartor and
Lieven Eeckhout. Exploring Multi-threaded Java
Application Performance on Multicore Hardware.
In Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA),
pages 281–296. ACM, 2012.

[Schroeder et al., 2006] Bianca Schroeder, Adam Wier-
man, and Mor Harchol-Balter. Open Versus Closed:
A Cautionary Tale. In Networked Systems Design &
Implementation (NSDI), pages 18–30, San Jose, CA,
USA, May 2006. USENIX Association.

[Sobel et al., 2008] Will Sobel, Shanti Subramanyam,
Akara Sucharitakul, Jimmy Nguyen, Hubert Wong,
Arthur Klepchukov, Sheetal Patil, Armando Fox, and
David Patterson. Cloudstone: Multi-platform, Multi-
Language Benchmark and Measurement Tools for
Web 2.0. In Workshop on Cloud Computing and its
Applications (CCA), pages 1–6. IEEE, October 2008.

11

http://parsa.epfl.ch/cloudsuite
http://parsa.epfl.ch/cloudsuite
http://faban.org/
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
http://incubator.apache.org/projects/olio.html
http://incubator.apache.org/projects/olio.html
http://incubator.apache.org/projects/olio.html

[spe, 2009] SPECweb2009: Benchmark for Evaluating
Web Server Performance. https://www.spec.
org/web2009/, 2009. Accessed: 2015-04-27.

[Tam, David and Azimi, Reza and Stumm, Michael, 2007]
Tam, David and Azimi, Reza and Stumm, Michael.
Thread Clustering: Sharing-aware Scheduling on
SMP-CMP-SMT Multiprocessors. In European
Conference on Computer Systems (EuroSys), pages
47–58. ACM, March 2007.

[Tang et al., 2011] Lingjia Tang, Jason Mars, Neil Vach-
harajani, Robert Hundt, and Mary Lou Soffa. The Im-
pact of Memory Subsystem Resource Sharing on Dat-
acenter Applications. In International Symposium on
Computer Architecture (ISCA), pages 283–294. ACM,
2011.

[Urgaonkar et al., 2007] Bhuvan Urgaonkar, Giovanni
Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser
Tantawi. Analytic Modeling of Multi-tier Internet Ap-
plications. ACM Transactions on the Web, 1(1), May
2007.

[Urgaonkar et al., 2008] Bhuvan Urgaonkar, Prashant
Shenoy, Abhishek Chandra, Pawan Goyal, and Tim-
othy Wood. Agile Dynamic Provisioning of Multi-
tier Internet Applications. ACM Transactions on
Autonomous and Adaptive Systems, 3(1):1:1–1:39,
March 2008.

[Wang et al., 2012] Wei Wang, Tanima Dey, Jason
Mars, Lingjia Tang, Jack W. Davidson, and Mary Lou
Soffa. Performance Analysis of Thread Mappings
with a Holistic View of the Hardware Resources.
In 2012 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software, pages 156–
167. IEEE, 2012.

[Welsh and Culler, 2003] Matt Welsh and David Culler.
Adaptive Overload Control for Busy Internet Servers.
In USENIX Symposium on Internet Technologies and
Systems (USITS), pages 4–18. USENIX Association,
March 2003.

[Welsh et al., 2001] Matt Welsh, David Culler, and
Eric Brewer. SEDA: An Architecture for Well-
conditioned, Scalable Internet Services. In Sympo-
sium on Operating Systems Principles (SOSP), pages
230–243. ACM, October 2001.

[Zhuravlev et al., 2012] Sergey Zhuravlev, Juan Carlos
Saez, Sergey Blagodurov, Alexandra Fedorova, and
Manuel Prieto. Survey of Scheduling Techniques for
Addressing Shared Resources in Multicore Proces-
sors. ACM Computing Surveys, 45(1):4:1–4:28, De-
cember 2012.

12

https://www.spec.org/web2009/
https://www.spec.org/web2009/

Using Static Single Assignament in Dynamic Binary Translation ∗

Antoine Faravelon
Grenoble Alpes

Grenoble, France
antoine.faravelon@imag.fr

Supervised by: Frédéric Pétrot.

Abstract
As System on a Chip are more and more complex,
full system simulation becomes the only viable op-
tion to develop applications in a timely fashion
for them. Yet, functional accuracy is not enough,
specifically as systems embed more and more pro-
cessor, and simulation speed is of utmost impor-
tance. State of the art cross compiled Instruction
Set Simulators (ISS) uses Dynamic Binary Trans-
lation (DBT) to obtain good simulations speed.
While it enables them to perform better than in-
struction by instruction interpretation, the transla-
tion phase is still naive. Indeed, it is akin to com-
pilation with a frontend-middle end-backend struc-
ture. The middle end however has limited opti-
mization. This report presents method to enhance
performances of cross compiled ISS. To do so, the
possibility to implement an SSA Intermediary Rep-
resentation in DBT and its use to enhance middle
end optimization abilities have been studied. It led
to implement an SSA IR in a state of the art DBT
ISS, Qemu. Performances were overall improved,
with up to 20% gain on some benchmarks which is
attributed to better host register usage. Time spent
in middle and back end was measured to be negli-
gible on most benchmarks and pretty much so even
on a Linux boot.

1 Introduction
System on a Chip (SoC) nowadays are more and more com-
plex. Developing applications for them and estimating their
performance has thus grown to be more and more compli-
cated. But, in the same time, market pressure is pushing
developers to develop applications before first devices us-
ing these processors have even been fully designed. Android
smartphones are a perfect example of that: QualComm has
released around 80 different Snapdragon platform instances
to its customers in 6 years, Texas Instruments advertised 25
during the same period, and many other players in the mar-
ket have similar numbers. To permit software development

∗These match the formatting instructions of IJCAI-07. The sup-
port of IJCAI, Inc. is acknowledged.

ahead of hardware availability, full system simulation is the
only solution. To that aim, we focus on fast execution of
cross-compiled code during this internship. It consists of ex-
ecuting code designed for a target CPU on an already, readily
available one. Although simulation accuracy is of course im-
portant, to be practically useful, speed is of the essence. The
state of the art in instruction set simulation relies on Dynamic
Binary Translation (DBT), which now manages to achieve
good translation speed. Instead of an instruction per instruc-
tion interpretation, DBT translates each executed basic block
of the target processor binary code into host binary. Most
modern DBT simulators use a compiler like structure, that
is, frontends which decode target code into an Intermediary
Representation (IR). This IR is processed by a middle end,
which can perform optimization and is then translated to host
binary by the backend. However, code generation seems to
be a weak point. Optimization is quite limited, thus gener-
ated code is potentially sub optimal. In particular one of the
state of the art and probably the most widely used dynamic bi-
nary translator, Qemu[Bellard, 2005], only implements live-
ness analysis and constant folding. This means that there is
a potential speed improvement to be gained there. A naive
solution to obtain this gain would be to craft optimizations
individually for each existing simulator. However, designing
an optimization algorithm which is both fast and efficient is
nothing simple and requires a thoughtful study. One solu-
tion to tackle both sides of the problem and avoid the need
of such a study is to directly take inspiration from compiler
techniques. In particular, specific intermediary representa-
tions such as Static Single Assignment (SSA) are widely used
in compiler optimization. Their properties allow to design
quick, and efficient optimization, which seems particularly
adapted to DBT code generation problem as speed is of the
utmost importance and yet generated code quality is sought
for. For SSA, an important number of optimizations have al-
ready been designed. These may be ported to any kind of
SSA IR with much less effort than designing or porting algo-
rithms from scratch. This then seems to be the most adapted
solution to answer both sides of the code generation problem.
The aim of this work is to implement the SSA IR in Qemu.
Using this intermediary form, it is then possible to quickly
compute live ranges of variables thanks to implicit def use
chains. Optimizations such as liveness analysis can then be
performed in a quicker way. Code generation can thus be

accelerated as the naive liveness analysis algorithm can be
quite complex in the general case. However, in SSA form
it is vastly simplified as one use may only have one defi-
nition, the algorithm shall then stabilize faster. New opti-
mizations can also be done. For example, when exiting SSA
form, it becomes possible to rename variables that have dis-
joint live ranges as the same destination variables. Host reg-
ister spilling can thus be reduced at code generation. Later
on, the use of SSA could also lead to cache the intermedi-
ary form itself and use it to re-generate code as needed when,
for example, hot paths are detected. However, as this IR was
not designed with DBT in mind, two main difficulties related
with its use still persist. Firstly, building (and memorizing) an
SSA form may be too heavy for DBT. This has been tackled
by identifying constraints on IR code which have been iden-
tified in DBT and then simplifying a reference, linear time,
SSA construction algorithm presented in [Sreedhar and Gao,
1995]. The second difficulty is to get out of SSA without be-
ing able (or hardly) to add real copy and yet be efficient, al-
low for optimizations, and minimize the number of variables
as in general algorithms such as [Sreedhar et al., 1999] and
[Boissinot et al., 2009]. Another difficulty is that we may not
in any way break compatibility with the existing framework.
Our IR should be fully transparent to existing front ends and
back ends.

2 Background
Before going further let us recall a few important notions used
in the rest of this report.

2.1 Dynamic Binary Translation

DBT consists of translating a target machine code into an host
machine code, on a target basic block per target basic block
basis. The code thus translated is cached so as to avoid having
to re-translate it every time it needs to be executed. Caching
the code allows to amortize the cost of translation and po-
tential optimization that were done on it. In all recent ap-
proaches, translation is actually made in two steps. First, the
code is translated into an IR, instruction by instruction (stages
”Fetch” and ”Decode” in Fig. 1). When a branch instruction
is found, the translation stops (”Yes” link in Fig. 1). The IR
block is then slightly optimized by the middle end and, fi-
nally, translated into host code (”Code generation” stage in
Fig. 1) and cached.

Figure 1: Dynamic Binary Translation Principle (illustration
taken from [Gligor et al., 2009]).

3 Static Single Assignment
3.1 Principle
Static Single Assignment is a set of properties applied to an
Intermediary Representation. The fundamental property is
that only one definition of any variable may exist. A defi-
nition being any kind of affectation. This property implies
some interesting corollaries for optimization. Firstly, any use
of a variable corresponds to one and only one definition. This
makes computing def-use chains (the set of all reachable uses
of a variable from its definition without any other definitions
in-between) trivial. It also greatly simplifies liveness analysis
(the range of instructions which make use of a given defini-
tion). Secondly whenever a new definition occurs, previous
ones are dead. This makes register allocation almost trivial
too, as any two definitions are independent and can thus use
the same register if and only if their live ranges are disjoint.

φ −nodes and φ − f unctions
Now that the principle and advantages of SSA are known, let
us see implementation difficulties. While applying the princi-
ple is trivial for any purely linear program, complexity comes
whenever it is not. Indeed, if a basic block is conditionally
executed, the next block may have to choose between two
copies of the same variable. To understand the problem, see
Fig. 2. What can be seen there is a case where, after an if-

a0 = x0

a2 = x2

a3 =ϕ(a1:B1,a2:B2)

a1 = x1

B0:

B1: B2:

c0 = a3

Figure 2: φ − f unctions

else statement, variables in the final block have two possible
values with two different names. This would obviously be a
problem at run time. To mark this problem, which will later
be solved by renaming all the values with the same name, a
φ − f unction will be placed. This function is virtual (it is
not really executed) and could be read as ”a3 takes value a1
if coming from block 1 or a2 if coming from block 2”. In
the rest of the report, a node containing a φ − f unction is
called a φ −node. The set of all nodes possibly containing a
φ − f unction is the Iterated Dominance Frontier. Dominance
referring to the portion of the code where one definition of a
variable dominates its use, i.e. any use is linked to this defi-
nition. Dominance frontier is the point where this dominance
ends. When two dominance frontiers are at the same point,
it then means that two definitions of a variable are alive to-
gether. It is then necessary to insert a φ − f unction to choose
the right definition and transfer it to a new copy. These nodes
are only ”possibly” φ as definitions inside may die before ever
being used, thus removing the need of a φ − f unction. Fi-
nally, when it is just created, SSA is in a from called Conven-
tional SSA (CSSA). All copies of the same variable have non

overlapping live ranges, and any two copies in a φ− f unction
in particular.

DJ-Graphs
One last useful notion for SSA is DJ-graphs. A DJ-graph is
essentially a transformation of a CFG but with two types of
edges and a stronger order. Each vertex has a level which
depends on dominance. If a vertex is dominated by another,
i.e. attaining this vertex from the root implies going through
its dominator first, its level will be the level of this vertex + 1.
At the same time an edge colored with a ”D” will be drawn
between them, it will be called a D-edge. A vertex which is
targeted by a D edge will then systematically be lower in the
graph than its dominator. As for the other type of edges, J-
edges, they are drawn between two vertices in the case where
it is possible to reach the second one from the root by passing
through the first. A J-edge directed at a vertex implies that
multiple path can lead to it. These graphs are very useful to
computes SSA form in a faster way. Thanks to them, finding
which node may be φ implies much less redundancy. Their
use in SSA construction and φ − f unctions placement was
first introduced in [Sreedhar and Gao, 1995].

3.2 Optimizations
When speaking about SSA, it is also important to discuss op-
timizations, as these are one of the main motivations behind
its implementation.

Conservative Optimizations
The main characteristics of conservative optimizations is not
to create interferences between variables which did not in-
terfere before. A well known one is liveness analysis. It con-
sists in an elimination of dead variables and instructions. Live
ranges are first computed and then used to eliminate variables
which are never used. In a regular compiler case, SSA aware
liveness analysis is rarely used as live ranges are needed to
form a pruned SSA form(without dead φ − f unctions). Yet,
in DBT, a formal liveness analysis is often need, or useful,
as this step allows to determine which temporary variables
should effectively be synced to memory(as a variable) at the
end of the block. Using a SSA aware algorithm such as the
one in [Boissinot et al., 2008] then becomes quite useful, as it
exposes multiple advantages compared to regular algorithms.
In particular, it is faster and has vastly improved resistance to
code transformation. This shows the interest of optimizations
in SSA. Especially conservative ones.

Destructive Optimizations
Destructive Optimizations, as opposed to conservative ones,
have for main characteristics to generate new interferences
between variables. A perfect example of those is con-
stant folding. When executed, this algorithm can drastically
change the live range of variables. Indeed, it proceeds by
eliminating variables which are copies of others, thus extend-
ing live range of the ”primary” variables. It also suppresses
instructions which were manipulating said copy or constants.
After its pass, the SSA form will have been broken as vari-
ables which are part of a φ − f unctions are copies of each
other. Thus algorithm will change their live range and have
them interfere with each other and with copies generated by

the function itself. Other optimizations such as code motion
will have similar effect. An example of code motion effect
can be found in figure 6, other examples may be found in
[Sreedhar et al., 1999]. Even though these optimizations can
seem harmful, they are beneficial to generated code quality.
It may then be useful to still use them when possible.

3.3 Coalescing
A last notion that should be discussed is coalescing. While it
could be considered to be an optimization, it is presented sep-
arately as it is a mandatory step, and not optional like other
optimizations are. It is the step in register allocation that con-
sists in placing each variables in registers. Moreover, out of
SSA algorithms are a special case of coalescing. The problem
is similar to graph coloring and is thus NP-Complete. Yet, in
SSA, the problem is actually simpler. Since every variables
are defined once and only once, computing their live range is
thus simpler and their value is known along their whole life.
Following [Boissinot et al., 2009] method to compute inter-
section, it is then possible to allocate registers by value and
not just by variables. In general, live ranges being cleanly
separated(only one definition) knowing for the exact length
of register occupation by any variables is trivial. Coalesc-
ing itself is a fixed point algorithm that, given a set of vari-
ables, reduce it as near as possible to a set of independent
variables. Independent variables being variables which can
not be placed in the same register. The fact of imposing a
limit in the resulting number of variables is the actual reg-
ister allocation. These variables will then be colored with a
register number. Obviously, it is not always possible to reach
the desired number. There will then be spilling which means
that registers will be put on the stack instead. The problem
of choosing which register to spill, even in SSA, is still NP-
Complete([Bouchez et al., 2005]). Hopefully, in this work
only aggressive coalescing is needed, i.e the number of color
is not limited(see [Boissinot et al., 2009]). It is used to exit
from SSA form, which only means reducing as much as pos-
sible the number of variables yet without constraints on the
desired number. Reaching optimal solution is still a fixed
point problem. Still it can be bounded if an optimal solution
is not the objective, as is the case in this work where speed is
sought for, not code quality itself.

4 Related Works
The first and foremost work that should be observed is the
one at the origin itself of DBT. The concept is, in fact, not
recent. Its first traces can be found in the 80’s in [Deutsch
and Schiffman, 1984]. Even though it was not yet dynamic
binary translation but dynamic translation in a more general
sense, it had all the core ideas. Instead of generating code for
a real machine directly, it was first generated for an abstract
machine. At runtime, this abstract code would then be trans-
lated to native code whenever the block of code, or function,
would need to be executed. Resulting code would then be
cached for later use.
Now, for DBT and SSA, while to the best of the author’s
knowledge, no work about SSA IR for Qemu has been done,
there are traces of such work in at least one other DBT en-

gine: crossbit [Yindong et al., 2010]. But the authors de-
signed their own simulator and thus could implement their
own IR as they saw fit, even though they do not detail how
they perform optimizations. This is one important difference
with this work as the SSA here is to be implemented in an
existing simulator. Compatibility with existing backends and
frontends has to be kept, leading to other difficulties. Also,
while with their most recent IR [Yang and Guan, 2012] they
affirm being faster than Qemu and Valgrind, no code or bi-
nary seem to be readily available to test the current version
of Qemu against them and, in the original article, they ad-
mit themselves that their simulator is not functional (it lacks
proper exception support, . . .) and it only seems to support
application level DBT (not OSes). So, comparing an incom-
plete simulator, designed only to simulate user space applica-
tions with a full featured system level simulator raises a few
questions, making it hard to base our work on their results.
Anyhow, it is not possible to decide if it is useful or not to use
an SSA IR using these works.
In the state of the art DBT such as Qemu [Bellard, 2005]
or UQDBT[Probst, 2001], the IR is not in SSA. Only a few
properties are expected from those. For example, the num-
ber of virtual registers (or temporaries) is considered infinite.
This is enough to achieve the objective of reusable DBT with-
out making frontends programing overly complex. LLVA, the
IR from LLVM [Adve et al., 2003] is also in SSA. It is also
widely used and studied. Nonetheless, LLVM is not quite
adapted to full system simulation. It was designed with C or
C++ source code as an entry and not pure binary, even less an
OS. Challenges are not quite the same.
In the same way, Jikes rvm [Alpern et al., 2000] has simi-
lar problematics: it is a virtual machine, programs are trans-
lated dynamically, SSA is used for some optimizations [Van-
Drunen and Hosking, 2004]. However, it is targeted for class
files which gives much more information than what can be
obtained from a binary (number of variables, functions, size
of the code, standard frame size between others). In fact
whole part of the optimization gain there will be related to
inlining functions and procedures, which is very hard to do in
DBT, and improving garbage collection which is not imple-
mented in Qemu nor in any standard simulator to the best of
our knowledge. While inlining could be an interesting addi-
tion to DBT, and quite probably lead to good performance in-
crease, it also needs to rethink the generated code cache man-
agement system which would require an important amount of
time and effort to be done.
For SSA itself, literature is quite large. This work focuses on
algorithms to construct and destroy SSA form. In [Boissinot
et al., 2009] or [Sreedhar et al., 1999] a focus is given to
design general algorithm to get out of SSA in any situation,
i.e. even when some properties have been violated by opti-
mization pass. While the former algorithm claim to be usable
in JIT (and thus probably in DBT), technical problems pre-
vented us to use it. Indeed, the insertion of copy instructions
during the optimization pass breaks the consistency of Qemu
IR, thus rendering impossible the use of general algorithms.
Instead of using this general algorithm, it was then preferred
to remain in CSSA form of which renaming is enough to get
out. This still opens the possibility to try to eliminate as many

”copies” as possible, which needs to be evaluated to know if
will be beneficial or not.

5 Contribution

target instr 1
target instr 2

.

.

.

Current Block

IR generation

IRinstr 1
IRinstr 2

IRinstr m

.

.

.

Optimizations:
Liveness analysis
Constant Folding
....

 Code generation

host instr 1
host instr 2

host instr h

.

.

.

target instr n

target instr 1
target instr 2

.

.

.
target instr n

target instr 1
target instr 2

.

.

.
target instr n

target instr 1
target instr 2

.

.

.
target instr n

Execution

Determine next block

Fe
tch

 n
e
x
t b

lo
ck

1

2

6

5

7

Target binary program

Next Block

Conversion to SSA

4

Exit of SSA

Figure 3: Code generation process with SSA

The main contribution of this work is the definition of a
method to transform an intra basic block IR into an equiva-
lent SSA form during DBT. Code generation in DBT is done
block by block a in way that is oblivious to other blocks. Our
SSA version of IR integrates in that phase, the SSA transfor-
mation is thus intra basic block. Figure 3 depict that process.
As was explained in section 2.1, firstly instructions of the cur-
rent block are processed one by one. After this phase, an IR
block is obtained. It is in this IR block that SSA transfor-
mation take place. Optimizations are then executed. Once
optimizations are done, it is important to get out of SSA, in
particular to solve φ − f unctions problem. During this exit
of SSA, optimizations are done too. Finally, after destroying
the SSA form, host code generation takes place and the block
can be executed, next block will be determined and then be
translated if not already done, executed directly otherwise.
In order to achieve the implementation of an intra basic block
IR in DBT, an extensive study of the problem had to be done.
Amongst the questions were, what would be the processed
code’s control flow graph (CFG) form? How to then place
φ -functions? Where could speed ups be expected? And also
clearly, in order to experimentally be able to assess the inter-
est of the proposal, what could be implemented or not into a
DBT engine, e.g. Qemu in this particular case?

5.1 Preliminary work
Preliminary work mostly consists of an analysis of existing
literature about SSA and understanding what is reasonable to
implement in a DBT simulator. We first look into the case of

an ARM frontend. Backend for all this work is x86 64 (even
though any backend should work). The first problem to tackle
is to create the SSA IR form. In this creation, the costliest part
is theoretically placing φ−nodes, this complexity is however
strongly related to the form of the CFG.
We also focused at first on a single processor, to identify the
issues one by one. By analysing the ARM assembly lan-
guage, one can guess the possible CFG of a regular DBT
IR such as the one from Qemu. Indeed, the only instruc-
tions causing a branch but not a change of basic block are
predicated instructions. These are instructions which execu-
tion depends on whether some flags are set or not. In the IR
CFG, they then form a triangle as in Fig. 4. The presence of

tst r8, #1

moveq r3, #32

mov r3, #32

movne r3, #48

mov r3, #48

 movi_i32 tmp5,$0x1
 mov_i32 tmp6,r8
 and_i32 tmp6,tmp6,tmp5
 mov_i32 NF,tmp6
 mov_i32 ZF,tmp6

tst r8, #1 :

 movi_i32 tmp5,$0x0
 brcond_i32 ZF,tmp5,ne,$0x1
 movi_i32 tmp5,$0x20
 mov_i32 r3,tmp5
 set_label $0x1

moveq r3, #32 :

 movi_i32 tmp5,$0x0
 brcond_i32 ZF,tmp5,eq,$0x2
 movi_i32 tmp5,$0x30
 mov_i32 r3,tmp5
 set_label $0x2

movne r3, #48 :

...

set_label $0x2

 movi_i32 tmp5,$0x1
 mov_i32 tmp6,r8
 and_i32 tmp6,tmp6,tmp5
 mov_i32 NF,tmp6
 mov_i32 ZF,tmp6
 movi_i32 tmp5,$0x0
 brcond_i32 ZF,tmp5,ne, $0x1

 movi_i32 tmp5,$0x20
 mov_i32 r3,tmp5

set_label $0x1
movi_i32 tmp5,$0x0
brcond_i32 ZF,tmp5,eq,$0x2

movi_i32 tmp5,$0x30
mov_i32 r3,tmp5

ARM asm QEMU IR QEMU IR CFG

Figure 4: ARM assembly and its resulting IR and CFG

this form does mean that there will be φ − nodes, but it also
means that these should not be overly complex to compute.
Only loops and other backward branches are actually prob-
lematic. Hopefully, none of them exists in ARM instruction
set, except for these triangles, the CFG is a straight line.

5.2 Algorithms
Design
Knowing these restriction, one can get optimistic about con-
structing an SSA form, and in particular place φ − nodes in
DBT simulators without major slow downs. The φ − node
placing algorithm comes directly from [Sreedhar and Gao,
1995]. Firstly, a DJ-graph, is constructed. This graph con-
tains two types of edges: J-edges and D-edges. A D-edge
between two nodes indicates that the second node can only
be accessed, from the root of the graph, by passing through
the first one. A J-edge on the contrary correspond to an edge
of the CFG which is optionally taken, i.e. it is possible to get
to the second node by passing through the first one. A simple
way to see things is to say that a node is part of the Iterated
Dominance Frontier (IDF), meaning it is possibly a φ−node,
if there are one or more J-edges directed toward it, i.e. some
of its direct predecessors are conditionally executed. In our
case, thanks to the fact that we work on a basic block per ba-
sic block basis, this simple way is actually the exact way to
compute the IDF. With the CFG being oriented in only one
direction, a node may be φ if and only if a direct predecessor
node has a J-edge toward it. From this observation, one can
write the simplified Algorithm 1. It makes use of a dequeue
data-structure to create a topologically sorted DJ-graph.

The DJ-graph creation, see Algorithm 1, proceeds as
follows: First the nodes are computed, then they are used

Algorithm 1: DJ-graph computation
Data: IR basic-block (array of instruction) T
Result: A topologically sorted DJ labeled IR CFG

G(N,E) and the Iterated Dominance Frontier
IDF

N← /0;
n0← new node() // A node contains its first and last
instruction plus a level and φ variable set if need be.
n0.first instruction← T0;
for i in 0 .. T.length do

if Ti = branch then
ni.last instruction← Ti;
N← N∪ni;
ni+1← new node();
ni+1.first instruction← Ti+1;
ni+1.last instruction← TTi.dest−1;
E← E ∪ (ni,ni+1,D);
E← E ∪ (ni,ni+2,D);
E← E ∪ (ni+1,ni+2,J);
ni+2.isPhi← true;
IDF ← IDF ∪ni+2;
i← Ti.dest // The next interesting instruction is
the destination of the branch.

end if
end for

to create and color the DJ graph. Nodes can be considered
to be retrievable by the index of their last instruction. For
each nodes only the first and last instructions are memorized
so as to be able to go through instructions it covers later
without having to actually store all of them. Creating D and J
edges can be done as, at that time, all nodes are known in the
CFG. D edges are directed to all successors as, without any
backward jump in the block, it is impossible to find any path
not going through the current node to its successors. J edges
are between the predicated nodes and non predicated one as
these are, obviously, optional paths. The visit function found
in [Sreedhar and Gao, 1995] was not used, determining
φ −nodes was done directly while constructing the CFG and
DJ-Graph. Generality was sacrificed as the absence of loops
means that there is no need to be careful, whenever a J edge
is found, its target is inserted as being IDF. In the general
case, this would hardly be possible as loops and backward
jumps would then make it possible to duplicate nodes in
the IDF and thus potentially φ − f unctions which could
cause correctness problems. However, in this case, there
are no loops or backward jumps, so the algorithm suffice in
this form to guarantee that no node is inserted in the IDF
for naught or is studied more than once. It is thus a better
solution to build the IDF at the same time as the DJ Graph as
it then becomes mostly costless. DBT being an environment
where any seemingly slight performance loss may in practice
slow down applications dramatically, any and all possible
optimizations should be done.

The algorithm 2 proceeds through instructions to make
variables in SSA form. Destination variables are replaced by

Algorithm 2: Conversion to SSA
Data: The IR block’s CFG and its instruction set T
Result: All variables are in SSA form(only one

definition per variable)
// All instructions have a destination where the result is
stored and sources used for computations(destination
may also be a source);
for i in 0 .. T.length do

if AlreadyDefined(Ti.argument destination) then
Ti.argument destination←
CreateCopy(Ti.argument destination);
Ti.argument destination.birth← Ti;

end if
foreach Source s in Ti.argument sources do

if ThereExistCopy(s) then
s.last use← Ti;
s← LatestCopy(s);

end if
end foreach

end for

a new copy if they were previously defined. Then, to preserve
consitency, sources are replaced by their latest copy if one ex-
ists. At the end, every variables of the IR is defined once and
only once and each copies of a same varibles have disjoint
live ranges. Consequently, the code is not only in SSA form,
it is in the stronger CSSA form. Thanks to that fact, it is pos-
sible to use a simple Out of SSA algorithm on it, as long as
no destructive optmizations are executed. At the same time as
the form is constructed, live ranges of each variables are com-
puted. These data will be used to compute live out sets in the
φ − f unction placement algorithm 3. After executing this al-
gorithm, the only step left to build SSA form is φ− f unctions
placement.
While the IDF has already been computed, it would be sub
obtimal to place φ − f unctions immediately. Some of them
might in fact contain only dead variables. Thus, as an im-
provement to the method of [Sreedhar and Gao, 1995] which
explained how to compute IDF in linear time, algorithm 3 was
added. Looking at example 5, one can see that while J edges

a0 = x0

a2 = x2

a3 =ϕ(a1:B1,a2:B2)

a1 = x1

B0:

B1: B2:

a4 = z

J Edge J Edge

Figure 5: Interference of Dead Variables

are pointing at B, there is no need of a φ− f unction. All con-
cerned variables are actually dead, computing a φ − f ucntion

for them is thus a non sense as they will be eliminated by live-
ness analysis. Thus, algorithm 3 inserts φ− f unction only for
live variables, hence avoiding this problem. This is done by
checking, for each variables with multiple sources, whether
they are used or not(if they are part of the live out set).

Algorithm 3: Phi-function insertion
Data: IDF The pre computed Iterated Dominance

Frontier
Result: Φ(N,V) A set of nodes and their φ -functions
N← /0;
V ← /0;
foreach Node n ∈ IDF do

foreach Variable v ∈ n.PhiVariableSet do
// The PhiVariableSet is the set of variables
which began their life in a predecessor
predicated block;
if liveOut(v) then

N← N∪n // if n already there, just ignore;
V ←V ∪ v;

end if
end foreach

end foreach

The form which is obtained after executing copy insertion
algorithm 2 and Algorithm 3 is still CSSA, as any copies of
the same variable will not have overlapping live ranges.
Once in SSA form, and potential optimizations have been
done, it is necessary to transform out of SSA. For now these
optimizations are limited to a simple liveness analysis, no
other optimization were done on the SSA IR. The part which
was chosen for optimization is the out of SSA itself. What
[Boissinot et al., 2009] mainly taught us was that exiting
SSA, when in CSSA form, essentially is an aggressive co-
alescing problem. Knowing that DBT frameworks creates a
potentially large number of temporaries, eliminating a num-
ber of them should lead to reduced spilling on host side. It
was thus decided to execute a simple, proof of concept, co-
alescing algorithm at SSA exit. Assuming primary variables
are variables that were not added by SSA construction, algo-
rithm 4 is obtained.

Algorithm 4 proceeds by going through each primary
variables and finds the first one with which it will be merged.
To decide whether or not to merge, the only test is to check
that live ranges of both variables don’t intersect. For now,
this algorithm will, at best, reduce by half the number of
variables and is quadratic with respect to the number of
primary variables. It remains that this algorithm is not
fully satisfactory and a better, already designed one will be
presented in a later part of this section. Indeed, in a first
time, this work focused on keeping simple algorithms that
would fit well in our simulator. Adding copies, as stated in
Section 4, currently breaks consistency in Qemu IR. This
issue was not addressed as it would essentially be used only
for a general out of SSA algorithm which did not yet have
a use. The second grief is that coalescing can obviously be
done in a better way. Even if the limitation of merging two

Algorithm 4: simple Coalescing and SSA exit algorithm
Data: V a set of CSSA variables
Result: V is no longer in SSA, first level disjoint

variables were merged
foreach unmarked primary variables p ∈V do

foreach unmarked primary variables v ∈V \ p do
if live(v)∩ live(p) = /0 then

mark p and mark v;
rename v as p;
break;

end if
end foreach

end foreach
foreach variables v ∈V copy of primary p do

rename v as p;
end foreach

variables at most was done, searching for the ”best” match
would probably enhance code generation more. A more
complete set of algorithm could then be algorithms 5 and 6.

Algorithm 5: Out of SSA copy insertion, directly in-
spired by method II of [Sreedhar et al., 1999]

Data: A set of SSA variables
Result: A set of CSAA variables
foreach φ − f unctions Φ do

foreach Copy Ci ∈Φ do
foreach Copy C j ∈Φ with i 6= j do

if live(C j)∩ live(Ci) 6= /0 then
Insert copies of Ci and C j in their source
block;

end if
end foreach

end foreach
end foreach

Algorithm 5 aims at transforming a program in any state of
SSA form back into a CSSA form. As some optimizations
such as copy propagation may modify live ranges of vari-
ables, these might result in obtaining a ”TSSA” form. This
would mean a SSA form without guarantee that no copy of a
same variable may have intersecting live range. Traditional,
simple out of SSA algorithm then becomes unusable as there
is a risk to rename variables which have different values at the
same time, see figure 6. To avoid this, before proceeding to
the renaming, copies are inserted for problematic variables.
Variables will be considered problematic if, being related by
φ− f unctions, they have intersecting live ranges and may sur-
vive further than their respective φ − f unction. In that case,
copies will be added to make sure these variables are killed at
the time of their φ− f unctions. This algorithm overestimates
the need of copy but is better than a naive approach. Still, it
is correct which is the foremost interest of this work for now.
This algorithm was not used by [Boissinot et al., 2009] as it

Algorithm 6: Coalescing function
Data: A set of SSA variables V
Result: A minimal set of register allocatable variables
while There exist v1 and v2 such that live(v1) ∩ live(v2)
= /0 do

foreach Primary variables v ∈V do
bm← FindBestMatch(v);
rename v with bm;

end foreach
end while

Algorithm 7: And find best match sub function
Data: A variable v
Result: Returns best match for variable v
min← ∞;
bestMatch← nil;
foreach primary unmarked variables v2 ∈V \ v do

S← Coalescing(V \ {v,v2});
if S.length ¡ min then

min← S.length;
bestMatch← v2;

end if
end foreach
return bestMatch;

implied for them to compute interference graphs. Yet, Qemu
and most likely other DBT simulators need to compute live-
ness of variables, even in SSA form, and as such, liveness
information are obtained in a costless way. Reducing even
slightly the number of copies can help for final renaming and
as such it seems beneficial to use it.
Algorithm 6 is a stabilizing algorithm. It proceeds by going
through the set of primary variables, find best pairs to be re-
named and then pass again for as long as variables which can
be renamed together exists. To find the best match for any
variable, it re-execute itself with the variable set minus con-
sidered pair and compare size of resulting sets. It should be
noted that here, the live range of a primary variable is con-
sidered to span from its definition to the death its last copy.
The solution implicitly does correctness wise what is done
in [Boissinot et al., 2009]. Merge is done for primary vari-
ables and all their copies at the same time and as such, for all
φ congruence classes, without any internal live range check-
ing. There is no problem with variables inside a φ congruence
class either as 5 execution ensure that we are in CSSA form
once again. The out of SSA itself has implicit correctness
as two variables are renamed with same name if and only if
none of their copies have intersecting live ranges. Optimiza-
tion itself is slightly weaker as variables are not merged by
values but only with respect to their live range. Some copies
which could have been avoided with Method III of [Sreedhar
et al., 1999] will not be eliminated either as constraint on live
ranges are stronger here.
Once implemented, algorithm 6 should allow to get better
runtime performance, furthermore if implemented in an inter

a0 = x0

a2 = x2

a3 =ϕ(a1:B1,a2:B2)

B0:

B2:

c0 = a3

a0 = x0

a3 =ϕ(a1:B1,a2:B2)

B0:

B2:

c0 = a3

a2 = x2

CSSA Form Code Motion

a = x0B0:

B2:

c = a

a = x2

Incorrect Out of SSA translation

Figure 6: Erroneous out of SSA translation

basic block fashion. However, inter basic block optimization
pauses the problem of cache management which does not al-
low to change already generated code and thus to replace pre-
viously generated block by an optimized complete code path.
Still, most implemented algorithms would be able to support
such a case with little to no modification, only exiting SSA
needs to be made generic using algorithm 5 as a pre pass so
as to avoid live range problems.

6 Experimental Validation
6.1 Performances
Protocol
On the platform side, benchmarks were ran on a linux server.
The distribution that was used is debian Jessie. Hardware
that was used is 32 Xeon Cores @ 1,84GHz with 32 GB of
memory.
All tests were ran with only one user on the server so as to
avoid any impromptu context switches and any other kind of
noise in the measurement. Pursuing the same objective, never
more than 20 tests were executed in parallel and no other tasks
were ran either. Both SSA and non SSA benchmarks were
launched in parallel so that the server was in the same state
for both runs. All cross-executed benchmarks were run bare
metal, that is, without an operating system. They were cross
compiled to ARM with gcc O2 level optimization and then
loaded as a kernel in Qemu.
To obtain statistically valid results, every performance related
tests were executed 120 times. The average value was taken
to be used in graphs with its standard deviation.

Only for cache misses, where cachegrind was used and as
this tool is deterministic, tests were ran only once.

As for Qemu configuration, the platform that was used is
integratorcp. The only modification done to the platfrom
itself is an exit trap (write at an address to shut Qemu down).
With this platform, the standard quantity of memory was
used, that is 128MB.
The performances were evaluated using the linear algebra
set of the Polybench benchmark [Pouchet, 2012]. This set
of tests was chosen because it is representative of multiple
interesting cases. On one side, programs which are short and
don’t go through the same code many times. Those have
execution time which are largely dependant of compilation
time. On the other side, long running program going through
the same loop over and over. These have execution time
which mainly depends of generated code performance. They
also expose different sizes of blocks and number of variables.

These elements are even more interesting than run time.

Run time

1

10

100

1000

10000

0 2m
m

3m
m

atax
bicg

cholesky

durbin

gesum
m

v

ludcm
p

lu trisolv

trm
m

linux
0

Ti
m

e
 i
n
 s

benchmarks

SSA

NO SSA

Figure 7: Run times on various benchmarks

On Figure 7 one can see the run time of Qemu with and
without SSA. It can be seen that there is a performance gain
when using SSA. However, this gain seem to be variating de-
pending on the benchmarks. On one hand, benchmark 2mm
is 9 seconds faster with SSA. On the other hand, ludcmp runs
at about the same speed (both results are contained in the er-
ror margin of the other). 3mm is also about 9 seconds faster
on average but gesummv ran at about the same speed in both
cases. In all cases, Qemu without SSA exposed important
error margins. There was overall a performance gain, it was
however not uniform. In an attempt to explain it, an instru-
mentation of the code was done in order to determine what
time was spend in optimization and translation in general.
The results can be seen in Figure 8. For all chosen bech-

1000

10000

100000

1x106

0 2m
m

3m
m

atax
bicg

cholesky

durbin

gesum
m

v

ludcm
p

lu trisolv

trm
m

linux
0

Ti
m

e
 i
n
 m

ic
ro

se
co

n
d

s

benchmarks

SSA

NO SSA

Figure 8: Time spent in Qemu middle end/backend for one
execution

100

1000

10000

100000

1x106

0 2m
m

3m
m

atax
bicg

cholesky

durbin

gesum
m

v

ludcm
p

lu trisolv

trm
m

linux
0

Ti
m

e
 i
n
 m

ic
ro

se
co

n
d

s

benchmarks

SSA

Figure 9: Time spent going in and out of SSA

marks, time spent in middle and backend never really exceeds
half a second, even on a linux boot which is a worst case for
translation. In cholesky case for example, 0,003 seconds are
spent for non SSA version of Qemu and 0,008 for SSA ver-
sion. Running linux, time spent in backend manage to reach
around 0,48 seconds with SSA. This means that any observed
performance gain, or its absence, can hardly be related in any
way to a variation in translation time. The observation of Fig-
ure 9 shows that both conversing to SSA and going out of it,
even when both are summed, remains a low overhead. Com-
pared to execution times seen in Figure 7, translation times
and even more so SSA conversion and destruction are clearly
negligible. Therefore, one can conclude that SSA didn’t bring
any significant overhead, it is about 1,5% even for linux, and
yet brought significant speed ups on multiple benchmarks.
Furthermore, it shows that there is still room for optimization.
As long as the run time performance gain is large enough,
slowing down translation further will not be a problem. Even
if it came to reach 2 or 3% of overhead, the run time gain
would remain superior.

Standard Deviation

0

2

4

6

8

10

12

14

16

18

20

0 2m
m

3m
m

atax
bicg

cholesky

durbin

gesum
m

v

ludcm
p

lu trisolv

trm
m

linux
0

Ti
m

e
 i
n
 s

e
co

n
d

s

benchmarks

SSA

NOSSA

Figure 10: Standard deviation on various benchmarks

As observed in previous subsection, Qemu without SSA
has a large standard deviation. It is another interesting phe-
nomenon to be observed in this work, in most benchmarks,
there is an important reduction of standard deviation when
using SSA IR. Indeed, as one can see in figure 10, for most
benchmarks that were used in these experiments, standard de-
viation was sensibly reduced compared to Qemu without the
SSA IR. It means that an element of performance which tends
to vary greatly otherwise gets more stable. For example, on
the benchmark cholesky, while the standard deviation reaches
12,89 seconds for Qemu without SSA, it goes down to 1,76
seconds when SSA is used. As for atax, it is reduced from
2,05 to 0,15. For atax is also interesting to note that standard
deviation of SSA translation time itself was actually high.
Linux exposes next to no effect on standard deviation. Just as
there was mostly no effect on performances. Only ludcmp re-
ally figures as an exception here, with 17,93 seconds standard
deviation with SSA against 15,86 without it. It is possible that
some specificities of this benchmark render SSA implemen-
tation less efficient. While further investigation is needed to
give a definitive answer, the most likely reason would be that
most variables in this program have intersecting live ranges.
Probably Linux presenting no reaction to SSA implementa-
tion is explained in the same way. Consequently, Out Of SSA

algorithm would then recreate a program nearly identical to
the one before SSA pass. In any other tested programs, none
of the decreases in standard deviation are negligible. Unde-
niably, implementation of SSA into Qemu had an effect on
variability in execution time. Parameters that may have exe-
cution time vary are usually related to memory accesses. This
could, for example, be the result of better register handling.
Indeed, register spilling implies a larger number of memory
accesses and memory access latency, especially on an Intel
host, can have a high variability. This variability being due
to the complex memory hierarchy, associated with advanced
prefetching and eviction algorithms.

Analysis

tmp18 live range

tmp9 live range Merge the two
disjoint variables
into tmp18DISJOINT

Figure 11: variable merging

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

I1 D1

%
 m

is
s

ra
te

Cache type

SSA

NO SSA

Figure 12: Instruction and data L1 Cache misses rate

Going back on what was observed before, it is quite safe
to assume that the performance gain is related to a generated
code run time improvement. Knowing that the only modi-
fication that was done on generated code is a reduction of
the number of variables, one can deduce that spilling was re-
duced. An example of gain in number of variables can be
found in 11. In that figure is represented a case where coa-
lescing replaced a variable with another, disjoint one. This is
akin to a register allocation, the two variables were disjoint
and thus could be placed in the same register. Such an oper-
ation could be done until all variables left have overlapping
live ranges and are impossible to place in one same register.
Reducing the number of variable is in itself a way to use host
registers in a more efficient way. Intuitively, as register al-
location implies to map a set of variables to a fixed number
of registers, having less variables should yield better results
using any naive algorithm. The effect of this reduction in
number of variables find its root in basic memory wall issue

as could be suspected with previous figures. When less vari-
ables are used, register are allocated in a better way and thus
less memory accesses, in particular on the stack, are done. A
measure of this effect in the case of Qemu is exposed in fig-
ure 12. There, it can be seen that the percentage of L1 cache
misses, both on instruction and data side, has been sensibly
reduced by the use of SSA. It goes down from 0,40% with-
out SSA to 0,28% with it for instructions, and from 1,5% to
1,3% for data in the case of a Linux boot. While these num-
bers may seem to be negligible, even a slight percentage of
cache misses may slow down program sensibly as these are
costly. Especially, an instruction cache miss will unavoid-
ably provoke slow downs as unknown instructions tend to
stall pipelines completely. All of these results tend to con-
firm the importance of using coalescing at the exit of SSA
and comfort us in thinking that improving further this algo-
rithm is an important factor in further improving overall qemu
performance.
Moreover, study of time spent in backend shows that trans-
lation time is mostly negligible in front of run time, even on
such a complex program as Linux. From that observation, it
becomes clear that an important margin for middle end op-
timizations exists. Which tends to prove the viability of the
SSA IR approach to optimize Qemu code generation.

7 Future Work
While this work already managed to produce interesting re-
sults, we would like to improve it further. In a short term
vision, we would like to improve the intra basic block perfor-
mance. To this end, a first step will be to implement the algo-
rithms that were presented in the contribution chapter. Final-
izing coalescing in particular seems to be the best way to pro-
ceed. Seeing also that translation time does not seem a lim-
iting factor for now, implementing some state of the art SSA
optimization may be a good option. To have that, the general
out of SSA algorithm detailed in the Section 5(Contribution)
will be essential. Overall, short term work will mainly focus
in improving existing SSA form in an intra basic block way.
For the longer term, multiple tasks will have to be tackled.
While a natural continuation of this work would be to imple-
ment SSA in an inter basic block fashion, doing so require
some deep modification into Qemu and most other DBT en-
gines. Indeed, modification of generated code is complicated
as of now. Due to the fact that in DBT, Unlike in e.g. java, the
size of blocks, their number of variables, and in general the
size of a code frame are unknown a priori, it is not possible
to easily implement a modifiable code cache. This, however,
is needed if we are to achieve a good performance boost with
inter basic block optimization, as most optimizations achiev-
ing important performance gains would be destructive to the
cache. Inlining for example requires to change the way the
cache is addressed by current DBT so as to preserve its co-
herence. And yet, it would give an opportunity of impor-
tant performance gain. This leads us to think that improv-
ing cache management in DBT is actually the next step in
our work. The scheme should remain simple enough not to
cause overhead, and yet respect the specification needed for
efficient inter basic block optimizations. Once this would be

done, implementing these optimizations would require to add
target code profiling. While this has already been studied be-
fore, our approach would be novel as we would like to add
efficient target code profiling and optimization in the case of
multi processor target and host machine. n addition to this,
another main problem nowadays in profiling is that it is more
reactive than proactive. When defining a hot path, the de-
cision need to be made early as explained in [Duesterwald
and Bala, 2000]. Failing to do so will lead to miss the gain
that optimized generated code could have provided. We pro-
pose to improve profiling of hot paths by using branch pre-
diction, using [Faravelon et al., 2015], to predict whenever
branches are likely to be taken and thus whether the path will
be just warm or hot. By predicting hot paths, while some
optimization might be done for naught, real hot paths should
be optimized sooner, thus improving the gain related to their
optimization. To summarize, our long term target is to imple-
ment efficient generated code cache management along with
profiling and optimization for multi CPU target machine with
proactive approach to profiling. All of this being done while
obtaining a good trade off between time spent in translation
and run time performance gain.

8 Conclusion

In the end, this work has led to satisfying results. As a first
contribution, in this report we proved that it was possible to
implement SSA in a DBT simulator. Overall cost of this im-
plementation was shown to be pretty much negligible in term
of translation time. The proof of concept implementation that
was done in Qemu slowed translation down slightly. Yet,
overall runtime was in most benchmarks improved or stayed
the same. And that, even though the implementation is still
sub optimal. To this day, even on a complex program such as
Linux, featuring self modifying code which can slow down
sensibly Qemu code generation, translation time remains in-
ferior to 2,25% of overall execution time. Execution time on
the other hand was sometime improved by almost 20%. One
can then conclude that not only SSA IR is a viable path to
optimize Qemu code generation, but that there is still a sig-
nificant margin to optimize.
This margin may be used to implement other SSA specific
optimization and in particular the second part of our contribu-
tion. That is, the DBT usable algorithms that were provided
in this report. In particular, a generic out of SSA algorithm
may, in the long run, be an important addition to current im-
plementation. Coupled with a more evolved coalescing algo-
rithm such as the one presented in this report, generated host
code performances could be significantly improved.
Implementing SSA in a DBT simulator did prove to be a dif-
ficult task. Little to no directly related work exists to this day.
Even though extensive literature about SSA can be found,
none of these works were done with DBT in mind. As a mat-
ter fact, the nearest works nowadays are targeted at Java-like
virtual machines JITs. While these works are very interesting
and can be inspiring, constraints are not the same. Thus the
need to develop an approach specifically adapted to DBT.

References
[Adve et al., 2003] Vikram Adve, Chris Lattner, Michael

Brukman, Anand Shukla, and Brian Gaeke. Llva: A low-
level virtual instruction set architecture. In Proceedings of
the 36th annual IEEE/ACM International Symposium on
Microarchitecture, page 205, 2003.

[Alpern et al., 2000] Bowen Alpern, C Richard Attanasio,
John J Barton, Michael G Burke, Perry Cheng, J-D Choi,
Anthony Cocchi, Stephen J Fink, David Grove, Michael
Hind, et al. The jalapeno virtual machine. IBM Systems
Journal, 39(1):211–238, 2000.

[Bellard, 2005] Fabrice Bellard. Qemu, a fast and portable
dynamic translator. In USENIX Annual Technical Confer-
ence, FREENIX Track, pages 41–46, 2005.

[Boissinot et al., 2008] Benoit Boissinot, Sebastian Hack,
Daniel Grund, et al. Fast liveness checking for ssa-form
programs. In Proceedings of the 6th annual IEEE/ACM in-
ternational symposium on Code generation and optimiza-
tion, pages 35–44. ACM, 2008.

[Boissinot et al., 2009] Benoit Boissinot, Alain Darte, Fab-
rice Rastello, Benoı̂t Dupont De Dinechin, and Christophe
Guillon. Revisiting out-of-ssa translation for correctness,
code quality and efficiency. In Proceedings of the 7th an-
nual IEEE/ACM International Symposium on Code Gen-
eration and Optimization, pages 114–125. IEEE Computer
Society, 2009.

[Bouchez et al., 2005] Florent Bouchez, Alain Darte,
Christophe Guillon, and Fabrice Rastello. Register
allocation and spill complexity under ssa. Technical
Report LIP-2005-33, Laboratoire de l’Informatique du
Paralllisme, cole Normal Suprieure de Lyon, August
2005.

[Deutsch and Schiffman, 1984] L. Peter Deutsch and Al-
lan M. Schiffman. Efficient implementation of the
smalltalk-80 system. In Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pages 297–302, 1984.

[Duesterwald and Bala, 2000] Evelyn Duesterwald and Vas-
anth Bala. Software profiling for hot path prediction: Less
is more. In Proceedings of the 9th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 202–211, 2000.

[Faravelon et al., 2015] Antoine Faravelon, Nicolas Fournel,
and Frédéric Pétrot. Fast and accurate branch predictor
simulation. In Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition, pages
317–320. IEEE, 2015.

[Gligor et al., 2009] Marius Gligor, Nicolas Fournel, and
Frédéric Pétrot. Using binary translation in event driven
simulation for fast and flexible mpsoc simulation. In Pro-
ceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, pages
71–80. ACM, 2009.

[Pouchet, 2012] Louis-Noël Pouchet. Polybench: The poly-
hedral benchmark suite, 2012.

[Probst, 2001] Mark Probst. Fast machine-adaptable dy-
namic binary translation. In Proceedings of the Workshop
on Binary Translation, volume 9. Citeseer, 2001.

[Sreedhar and Gao, 1995] Vugranam C Sreedhar and
Guang R Gao. A linear time algorithm for placing
φ -nodes. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, pages 62–73. ACM, 1995.

[Sreedhar et al., 1999] Vugranam C Sreedhar, Roy Dz-
Ching Ju, David M Gillies, and Vatsa Santhanam. Trans-
lating out of static single assignment form. In Static Anal-
ysis, pages 194–210. Springer, 1999.

[VanDrunen and Hosking, 2004] Thomas VanDrunen and
Antony L Hosking. Anticipation-based partial redundancy
elimination for static single assignment form. Software:
Practice and Experience, 34(15):1413–1439, 2004.

[Yang and Guan, 2012] Yin-dong Yang and Hai-bing Guan.
An efficient adapting virtual intermediate instruction set
towards optimized dynamic binary translator (dbt) system.
Journal of Central South University, 19:3118–3128, 2012.

[Yindong et al., 2010] Yang Yindong, Guan Haibing, Zhu
Erzhou, Yang Hongbo, and Liu Bo. Crossbit: a multi-
sources and multi-targets dbt. In CLOUD COMPUTING
2010, The First International Conference on Cloud Com-
puting, GRIDs, and Virtualization, pages 41–47, 2010.

2015

Interactive techniques for handheld augmented
reality: switching between augmented reality

and virtual reality

Design

AR view VR view

Interaction

Valentin Prulière, Etienne Viallet, Laurence Nigay

IIHM, LIG, Grenoble, France;

Using a mixed environment of Augmented reality and Virtual reality to
assist in studying objects.
Study of techniques to avoid being desoriented within the environment.

The view on the object as if the
user were physically looking at it,

with no change in the point of view

Different points
of interest are

placed

Augmented
Reality

View of object
from user
viewpoint

Virtual Reality View of object
from different

viewpoint

As soon as we
leave AR and
enter VR, only

the 3D model is
visible

pruliere.pdf: en attente d'inclusion

1

Finding Buffer Overflows Generating Loops
Claude Goubet 28/08/15

What is a buffer overflow?
A buffer overflow appears when a program, writing data in a buffer,

overruns its boundary and overwrites the adjacent memory locations.

This can lead to a software crash or allow access to forbidden

memory locations and arbitrary code execution.

The string functions from C libraries are very vulnerable to buffer

overflows.

How to detect a buffer overflow?
Idea : finding buffer overflows by statically detecting loops

containing addresses which are modified at each iteration and

checking if at least one of these addresses is written on.

First step: finding loops

From the control flow graph of the disassembled x86 version of

a program (Figure 4.a) we create a domination tree in order to

detect the back-edges (in purple in Figure 4.b). A loop will

contain all nodes from the header to the back-edge node.

We must detect inner-loops (Green) and nested loops (blue) as

well as nesting loops (Red).

Figure 1: C code of the strcpy function

Figure 2: x86 Code of the strcpy

functions loop

.While:

 movl -4(%ebp), %eax

 movzbl (%eax), %edx

 movl -8(%ebp), %eax

 movb %dl, (%eax)

 movl -8(%ebp), %eax

 movzbl (%eax), %eax

 testb %al, %al

 setne %al

 addl $1, -8(%ebp)

 addl $1, -4(%ebp)

 testb %al, %al

 jne .While

strcpy(char *s1, const char *s2)

{

 char *s = s1;

 while ((*s++ = *s2++) != 0)

 ;

 return (s1);

}

Figure 1 illustrates the functioning of

the strcpy() function.

The constant s2 represents the input

string.

The variable s1 is the output string,

copy of s2.

Strcpy will process all the the s2 string

until the character pointed to by s2 is

‘\0’, without checking s1’s size.

top

S2’s pointer

S1’s pointer

Return address

s2

s1

Return address

Figure 3: Stack representation in a strcpy call

int main () {

 int x = 0;

 while (x != 1){

 if (x < 1)

 x++;

 else

 x--;

 }

 while (x <= 15){

 int i = 0 ;

 while (i < 3){

 x++;

 i++;

 }

 }

 return 0;

}

How can a buffer overflow

happen using strcpy()?

The figure 3 represents the organisation of the stack

during a call of strcpy(). On the top of the stack are the

variables used by the called function. At the bottom are

the buffers containing the s2 string, the string to copy,

and a buffer of free space allocated to s1.

Lets study the x86 code in figure 2:

Red : the memory write on s1

Brown : test if current character is ‘\0’

Purple : increment pointed address in stack

Green : back to the top of the loop

Both pointors are incremented until reach ‘\0’. If s1’s

buffer is smaller than s2 there is an overflow. It can then

overwrite all the way to the return address.

Second step: Dataflow analysis
The dataflow analysis will allow us to know the state of every

variable in term of data dependencies in the program and

update the control flow graph. This way, a new edge will be set

from each definition instruction to the definition instruction of

its dependencies.

Detection

To detect the dangerous loops we can now enumerate the

loops, climb up the data dependencies and find out if there is a

call to a memory write instruction on a self-dependent memory

address.

In the example of Figure 2, the red instruction would be

detected and we would find that it writes on eax which

depends on ebp (blue), when ebp is incremented in the purple

section. Since an incrementing instruction leads to a self-

dependency, this loop would be set as a vulnerable loop.

Figure 4.a: example of C code containing

loops

Figure 4.b: Control flow

graph of Figure 4.a

Low addresses

High addresses

Finding Buffer Overflows Generating Loops
Claude Goubet 28/08/15

What is a buffer overflow?
A buffer overflow appears when a program, writing data in a buffer,

overruns its boundary and overwrites the adjacent memory locations.

This can lead to a software crash or allow access to forbidden

memory locations and arbitrary code execution.

The string functions from C libraries are very vulnerable to buffer

overflows.

How to detect a buffer overflow?
Idea : finding buffer overflows by statically detecting loops

containing addresses which are modified at each iteration and

checking if at least one of these addresses is written on.

First step: finding loops

From the control flow graph of the disassembled x86 version of

a program (Figure 4.a) we create a domination tree in order to

detect the back-edges (in purple in Figure 4.b). A loop will

contain all nodes from the header to the back-edge node.

We must detect inner-loops (Green) and nested loops (blue) as

well as nesting loops (Red).

Figure 1: C code of the strcpy function

Figure 2: x86 Code of the strcpy

functions loop

.While:

 movl -4(%ebp), %eax

 movzbl (%eax), %edx

 movl -8(%ebp), %eax

 movb %dl, (%eax)

 movl -8(%ebp), %eax

 movzbl (%eax), %eax

 testb %al, %al

 setne %al

 addl $1, -8(%ebp)

 addl $1, -4(%ebp)

 testb %al, %al

 jne .While

strcpy(char *s1, const char *s2)

{

 char *s = s1;

 while ((*s++ = *s2++) != 0)

 ;

 return (s1);

}

Figure 1 illustrates the functioning of

the strcpy() function.

The constant s2 represents the input

string.

The variable s1 is the output string,

copy of s2.

Strcpy will process all the the s2 string

until the character pointed to by s2 is

‘\0’, without checking s1’s size.

top

S2’s pointer

S1’s pointer

Return address

s2

s1

Return address

Figure 3: Stack representation in a strcpy call

int main () {

 int x = 0;

 while (x != 1){

 if (x < 1)

 x++;

 else

 x--;

 }

 while (x <= 15){

 int i = 0 ;

 while (i < 3){

 x++;

 i++;

 }

 }

 return 0;

}

How can a buffer overflow

happen using strcpy()?

The figure 3 represents the organisation of the stack

during a call of strcpy(). On the top of the stack are the

variables used by the called function. At the bottom are

the buffers containing the s2 string, the string to copy,

and a buffer of free space allocated to s1.

Lets study the x86 code in figure 2:

Red : the memory write on s1

Brown : test if current character is ‘\0’

Purple : increment pointed address in stack

Green : back to the top of the loop

Both pointors are incremented until reach ‘\0’. If s1’s

buffer is smaller than s2 there is an overflow. It can then

overwrite all the way to the return address.

Second step: Dataflow analysis
The dataflow analysis will allow us to know the state of every

variable in term of data dependencies in the program and

update the control flow graph. This way, a new edge will be set

from each definition instruction to the definition instruction of

its dependencies.

Detection

To detect the dangerous loops we can now enumerate the

loops, climb up the data dependencies and find out if there is a

call to a memory write instruction on a self-dependent memory

address.

In the example of Figure 2, the red instruction would be

detected and we would find that it writes on eax which

depends on ebp (blue), when ebp is incremented in the purple

section. Since an incrementing instruction leads to a self-

dependency, this loop would be set as a vulnerable loop.

Figure 4.a: example of C code containing

loops

Figure 4.b: Control flow

graph of Figure 4.a

Low addresses

High addresses

