
Proceedings

Supervised by Michaël Périn and Cyril Labbé

August 27, 2014

1

1 Rémy Boutonnet
WCET analysis : a counter-based approach
Supervized by Fabienne Carrier and Claire Maiza
Verimag

2 Alexandre Maréchal
A linearization technique for multivariate polynomi-
als using convex polyhedra based on Handelman’s
theorem
Supervized by David Monniaux and Michaël Périn
Verimag

3 Raphaël Jakse
DBnary: Extracting Inflected Forms from the French
Wiktionary
Supervized by Gilles Sérasset
LIG

4 Jérémie Suzan
DBnary : Extracting German inflected Form from
German Wiktionary
Supervized by Gilles Sérasset
LIG

5 Thomas Baumela
MPSoC Virtual Platform Generation
Supervized by Nicolas Fournel and Frederic Petrot
TIMA Laboratory - SLS Group

2

6 Mehdi Makhlouf
PWM Driver (Pulse Width Modulation
Supervized by Nicolas Fournel and Frederic Petrot
TIMA Laboratory - SLS Group

7 Luc Libralesso
Resolution of Bin Packing Problem on GPU
Supervized by Michaël Gabay
G-SCOP

8 Lea Albert
Performance analysis of accelerators caches
Supervized by Guillaume Huard
Inria - MOAIS

9 Myriam Clouet
VSS-Simulator Stats Viewer
Supervized by Vincent Jost
G-SCOP

10 Marion Dalle
Analytical model on memory and cache coherence
(Confidential internship, abstract only)
Supervized by Florence Perronin and Jean-Marc Vin-
cent
CEA

11 Jérémy Wambecke
Distributed Interactive Model Checking for Hybrid
Systems
Supervized by Goran Frehse and Olivier Lebeltel
Verimag

3

12 Anaïs Durand
Self-Stabilizing Leader Election in Polynomial Steps
Supervized by Karine Altisen and Stéphane Devismes
Verimag

13 Maxime Puys and Lionel Rivière and Thanh-Ha Le
and Julien Bringer
High-Level Simulation for Multiple Fault Injection
Evaluation
Supervized by Marie-Laure Potet
Verimag

14 Carole Plasson
Human detection in indoor environment with 3D
sensor
Supervized by Olivier Aycard
LIG - Team AMA

15 Antoine Faravelon
Fast and Accurate Branch Predictor Simulation
Supervized by Nicolas Fournel and Frederic Petrot
TIMA Laboratory - SLS Group

16 Hugo Guiroux
Towards simpler performance troubleshooting for
kernel-intensive workloads
Supervized by Renaud Lachaize and Vivien Quéma
LIG - Team ERODS

4

17 Jérémy Seguin
Evaluation of Xeon Phi’s communications means
Supervized by Vincent Danjean
Inria - MOAIS

18 Simon Moura
Hierarchy construction in large scale taxonomies
Supervized by Eric Gaussier
LIG - Team AMA

19 Maxime Portaz
Comparison of geometrical and model based retar-
geting methods for imitation games using an RGB-D
sensor
Supervized by Etienne Balit and Dominique Vaufrey-
daz
INRIA - PRIMA

20 Gregory Cano
Combining interactive visualisation and UI plastic-
ity to go beyond conventional homescreens
Supervized by Gaelle Calvary
LIG - Team IIHM

21 Geoffrey Danet
Analysis of spatial phenomena using multi-scale ag-
gregation
Supervized by Jean-Marc Vincent and Christine Plumejeaud-
Perreau
LIENSs La Rochelle - INRIA Grenoble

5

WCET analysis : a counter-based approach

Rémy BOUTONNET

VERIMAG, University of Grenoble, France

13 août 2014

Hard real-time systems have strict timing constraints that must be satisfied to avoid catastrophic
events at runtime, major injuries or death. Safe upper-bounds on the execution time of real-time tasks
must be derived to insure that the system meets its constraints. The counter approach is proposed
to tighten the Worst-Case Execution Time (WCET) estimation, by adding special variables called
counters to C programs. This internship shows the interest of the counter approach for semantic
property extraction in the WCET context and how it can improve WCET estimations with a set of
workflow and tools.

Unfortunately, it is not possible in general to compute upper-bounds on the execution time of programs [11], otherwise
one could solve the halting problem. Hopefully, we restrict ourselves to programs used in embedded hard real-time
systems that must terminate and where iteration have to be bounded. However, the real WCET cannot be known
exactly due to the size of the state space of any non-trivial program, and components like caches and branch prediction
used in modern processors [10]. This is why WCET analysis aims to compute an upper-bound on the real WCET,
that must be safe (no underestimation so as to reject programs that may violate their constraints) and tight (to be of
any use).
The counter approach [2] is proposed to refine the WCET estimation computed by existing tools via the extraction of
semantic properties of programs, like infeasible paths or loop bounds, with special variables called counters added at
key program points (e.g. basic blocks) and incremented each time the control flows through that point.
This internship shows how the WCET estimation computed by existing tools can be improved effectively by adding
these counters to C programs.

Figure 1 – The counters workflow. The tools corresponding to arrows
in bold have been developped during this internship.

The C program is first compiled with Gcc
and analyzed by the WCET tool Otawa [1]
that outputs a set of Integer Linear Pro-
gramming (ILP) constraints [9] which are
solved by an ILP solver to obtain a WCET
estimation.
Counters variables are automatically added
to the C program by an annotation tool
that I developped, based on the LLVM in-
frastructure [8] and the Clang C compiler.
A second tool derives a graph matching
from the Control Flow Graph (CFG) of the
program at C level to the CFG at binary
level to rewrite the invariants on counters
found by the PAGAI static analyzer [7] into
invariants on binary basic blocks.
These invariants are translated into ILP
constraints, added to the ones produced by
Otawa and solved by the ILP solver to ob-
tain a new WCET estimation.
The WCET computed by Otawa and the
WCET computed through the use of coun-
ters have been compared with a set of
benchmarks, showing improvements ran-
ging from 2 % to 43 % and even loop bounds

that the Otawa and oRange [5] tools were not able to detect, thus enabling the computation of a WCET bound.
These benchmarks are illustrating that the counter approach can be used to improve the WCET estimation of existing
tools giving two main kinds of semantic properties : the presence of infeasible paths and more accurate loop bounds,
especially with iteration variables modified in the loop body and while loops containing breaks and continues.

1

Références

[1] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa : An open toolbox for adaptive
wcet analysis. In Sang Lyul Min, Robert G. Pettit IV, Peter P. Puschner, and Theo Ungerer, editors, SEUS,
volume 6399 of Lecture Notes in Computer Science, pages 35–46. Springer, 2010.

[2] R. Boutonnet and M. Asavoae. The wcet analysis using counters - a preliminary assessment. 8th Junior Researcher
Workshop on Real-Time Computing - JRWRTC 2014 (Submitted), 2014.

[3] P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

[4] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Conference
Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
84–97, Tucson, Arizona, 1978. ACM Press, New York, NY.

[5] Marianne de Michiel, Armelle Bonenfant, Clément Ballabriga, and Hugues Cassé. Partial flow analysis with orange.
In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification, and
Validation, volume 6416 of Lecture Notes in Computer Science, pages 479–482. Springer Berlin Heidelberg, 2010.

[6] Julien Henry, Mihail Asavoae, David Monniaux, and Claire Mäıza. How to compute worst-case execution time by
optimization modulo theory and a clever encoding of program semantics. In Proceedings of the 2014 SIGPLAN/-
SIGBED Conference on Languages, Compilers and Tools for Embedded Systems, LCTES ’14, pages 43–52, New
York, NY, USA, 2014. ACM.

[7] Julien Henry, David Monniaux, and Matthieu Moy. Pagai : A path sensitive static analyser. Electronic Notes in
Theoretical Computer Science, 289(0) :15 – 25, 2012. Third Workshop on Tools for Automatic Program Analysis
(TAPAS’ 2012).

[8] Chris Lattner and Vikram Adve. Llvm : A compilation framework for lifelong program analysis & transformation.
In Proceedings of the International Symposium on Code Generation and Optimization : Feedback-directed and
Runtime Optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[9] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using implicit path enumera-
tion. In Proceedings of the 32Nd Annual ACM/IEEE Design Automation Conference, DAC ’95, pages 456–461,
New York, NY, USA, 1995. ACM.

[10] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel Grund, Jörg Herter, Jan Reineke, Björn Wach-
ter, and Stephan Wilhelm. Static timing analysis for hard real-time systems. In Gilles Barthe and Manuel
Hermenegildo, editors, Verification, Model Checking, and Abstract Interpretation, volume 5944 of Lecture Notes
in Computer Science, pages 3–22. Springer Berlin Heidelberg, 2010.

[11] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley, Guillem
Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, and Per Stenström. The worst-case execution-time problem - overview of methods and survey of
tools. ACM Trans. Embed. Comput. Syst., 7(3) :36 :1–36 :53, May 2008.

2

W
C

E
T
 a

n
a
lysis: a

 co
u
n
te

r-b
a
se

d
 a

p
p

ro
a
ch

R
é
m

y
 B

O
U

T
O

N
N

E
T
 - U

JF V
E
R

IM
A

G
 S

y
n
ch

ro
n
e

T
h
e
 W

o
rs

t-c
a
s
e
 e

x
e
c
u
tio

n
 tim

e

tim
e

input data W
C

E
T

Estim
ated W

CET

H
a
rd

 re
a
l-tim

e
 syste

m
s h

a
ve

 to
 sa

tisfy strict tim
in

g

co
n
stra

in
ts. D

e
rivin

g
 a

 sa
fe

 u
p

p
e
r-b

o
u
n
d

 o
n
 th

e

exe
cu

ta
tio

n
 tim

e
 o

f a
 ta

sk is e
sse

n
tia

l fo
r th

e

sch
e
d

u
la

b
ility o

f th
e
 w

h
o
le

 syste
m

.

A
n
 e

x
a
m

p
le

 C
 p

ro
g
ra

m

W
e p

rop
ose to ad

d
 sp

ecial variab
les called

 cou
n
ters

on
 C

 p
rog

ram
s to refi

n
e th

e estim
ated

 w
orst-case

execu
tion

 tim
e (W

C
E

T) [1
, 2

] of real-tim
e tasks

com
p
u
ted

 b
y existin

g
 tools.

A
n
 e

x
a
m

p
le

 C
 p

ro
g

ra
m

: in
fe

a
s
ib

le
.c

R
e
fe

re
n
ce

s

T
h
e
 w

o
rkfl

o
w

 o
f co

u
n
te

rs
A

n
 in

fe
a
sib

le
 p

a
th

 in
 in

fe
a
sib

le
.c

This sim
ple C

 program
 has an infeasible path that

existing tools like O
taw

a [4
] and oR

ange does not detect.

in
t in

fe
a
s
ib

le
(in

t x
, in

t y
) {

 in
t re

s
u
lt;

 c
p
tr_

in
fe

a
s
ib

le
1

:

 if (x
 &

&
 y

) {
 c

p
tr_

in
fe

a
s
ib

le
2

:
 re

s
u
lt =

 0
x
1

B
A

D
B

0
0

1
;

 }

 if (x
 &

&
 !y

) {
 c

p
tr_

in
fe

a
s
ib

le
3

:
 re

s
u
lt =

 0
x
1

B
A

D
B

0
0

2
;

 }
 re

tu
rn

 re
s
u
lt;

}

M
u

tu
a
lly

 e
x
c
lu

s
iv

e
c
o
n

d
itio

n
s

E
N

T
R

Y

B
B

 1

B
B

 3

ta
k
e
n B

B
 2

B
B

 6

ta
k
e
n B

B
 5 ta

k
e
n

B
B

 4

ta
k
e
n

B
B

 7

x
4
 +

 x
7
 <

=
 1

T
h
e
 to

o
l u

sin
g

 th
e
 co

u
n
te

rs
a
p

p
ro

a
ch

 fi
n
d

s th
e
 in

v
a
ria

n
t

sta
tin

g
 th

a
t th

e
 p

a
th

B

B
 2

 - 4
 - 3

 - 5
 -7

 is in
fe

a
sib

le
.

A
u
to

m
a
tic a

n
n
o
ta

tio
n
 o

f C
 p

ro
g

ra
m

s

A
 so

u
rce

-to
-so

u
rce

 tra
n
sfo

rm
a
tio

n

to
o
l b

a
se

d
 o

n
 th

e
 C

la
n
g

 A
P
I h

a
s

b
e
e
n
 d

e
v
e
lo

p
p

e
d
 to

 a
u
to

m
a
tica

lly

a
n
n
o
te

 C
 / C

+
+

 p
ro

g
ra

m
s.

In
 th

e
 co

n
te

x
t o

f th
e
 co

u
n
te

rs
a
p

p
ro

a
ch

, it p
ro

v
id

e
s a

u
to

m
a
tic

co
u
n
te

rs a
d

d
in

g
 fo

r co
n
tro

l
stru

ctu
re

s, re
g

a
rd

le
ss o

f th
e

sy
n
ta

ctic fo
rm

 o
f th

e
 p

ro
g

ra
m

.

C
o
u
n
te

rs a
re

 a
d
d

e
d

 in
 th

e
 C

p

ro
g

ra
m

 b
y
 th

e
 a

n
n
o
ta

tio
n
 to

o
l.

A
 g

ra
p

h
 m

a
tch

in
g

 is d
e
riv

e
d

 fro
m

th

e
 co

n
tro

l fl
o
w

 g
ra

p
h
 (C

FG
) a

t C

le
v
e
l to

 th
e
 C

FG
 a

t b
in

a
ry

 le
v
e
l.

T
h
is m

a
tch

in
g

 is u
se

d
 to

 tra
n
sla

te

th
e
 re

la
tio

n
s in

v
o
lv

in
g

 co
u
n
te

rs in
to

re

la
tio

n
s a

b
o
u
t b

in
a
ry

 b
a
sic b

lo
ck

s .

T
h
e
se

 co
n
stra

in
ts a

re
 m

e
rg

e
d

 w
ith

 th
e
 o

n
e
s fo

u
n
d

 b
y

th
e
 e

x
istin

g
 W

C
E
T
 a

n
a
ly

sis to
o
l O

ta
w

a
a
n
d

 so
lv

e
d

 b
y
 a

n
 ILP

 so
lv

e
r.

T
h
e
se

 re
la

tio
n
s a

re
 e

n
co

d
e
d
 in

to
 a

 se
t o

f
In

te
g
e
r Lin

e
a
r P

ro
g

ra
m

m
in

g
 co

n
stra

in
ts th

ro
u
g

h
 th

e

K
irch

o
ff

 ru
le

 o
n
 b

a
sic b

lo
ck

s.

[1
] T

h
e
 w

o
rst-ca

se
 e

xe
cu

tio
n
 tim

e
 p

ro
b

le
m

 - o
v
e
rv

ie
w

 o
f m

e
th

o
d

s a
n
d

 su
rv

e
y
 o

f
to

o
ls, R

.W
ilh

e
lm

 e
t a

l., A
C

M
 Tra

n
sa

ctio
n
s o

n
 E

m
b

e
d

d
e
d
 C

o
m

p
u
tin

g
 S

y
ste

m
s,

V
o
l. 8

, Issu
e
 3

, A
p

ril 2
0

0
8

.

[2
] S

ta
tic tim

in
g
 a

n
a
ly

sis fo
r h

a
rd

 re
a
l-tim

e
 sy

ste
m

s, R
.W

ilh
e
lm

, S
.A

ltm
e
y
e
r,

C
.B

u
rg

u
iè

re
, D

.G
ru

n
d

, J.H
e
rte

r, J.R
e
in

e
ke

, B
.W

a
ch

te
r, S

.W
ilh

e
lm

, V
M

C
A

I 2
0

1
0

,
LN

C
S

 5
9
4

4
, p

p
. 3

-2
2

, 2
0

1
0

.

[3
] PA

G
A

I: a
 p

a
th

 se
n
sitiv

e
 sta

tic a
n
a
ly

se
r, J.H

e
n
ry

, D
.M

o
n
n
ia

u
x
, M

.M
o
y
,

TA
PA

S
'1

2
.

[4
] O

TA
W

A
: A

n
 O

p
e
n
 To

o
lb

ox
 fo

r A
d

a
p

tiv
e
 W

C
E
T
 A

n
a
ly

sis, C
.B

a
lla

b
rig

a
, H

.C
a
ssé

,
C

.R
o
ch

a
n
g

e
, P.S

a
in

ra
t, 8

th
 IFIP

 W
G

 1
0

.2
 In

te
rn

a
tio

n
a
l W

o
rksh

o
p

, S
E
U

S
 2

0
1

0
,

W
a
id

h
o
fe

n
/Y

b
b

s, A
u
stria

, O
cto

b
e
r 1

3
-1

5
, 2

0
1

0
. P

ro
ce

e
d

in
g
s.

T
h
e
 PA

G
A

I [3
] sta

tic a
n
a
ly

ze
r

fi
n
d

s re
la

tio
n
s o

n
 co

u
n
te

rs

R
e
s
u

lt: a
n

 e
s
tim

a
tio

n
 o

f th
e
 W

C
E
T
 tig

h
e
n

e
d

 b
y
 c

o
u

n
te

rs

in
fe

a
s
ib

le
.c

1
 - cp

tr_in
fe

a
sib

le
2

 - cp
tr_in

fe
a
sib

le
3

 >
=

 0
cp

tr_in
fe

a
sib

le
3

 >
=

 0
cp

tr_in
fe

a
sib

le
2

 >
=

 0

PA
G

A
I

1
 - x

4
_in

fe
a
sib

le
 - x

7
_in

fe
a
sib

le
 >

=
 0

x
7

_in
fe

a
sib

le
 >

=
 0

x
4

_in
fe

a
sib

le
 >

=
 0

G
ra

p
h

 m
a
tc

h
in

g
 a

n
d

c
o
n

s
tra

in
ts

 g
e
n

e
ra

tio
n

W
C

E
T
 c

o
u

n
te

rs
 =

 4
6
 c

y
c
le

s
W

C
E
T
 O

ta
w

a
 =

 4
9
 c

y
c
le

s

C
o
n

s
tra

in
ts

s
o
lv

in
g

M
a
tch

in
g

cp
tr_in

fe
a
sib

le
2

 : b
lo

ck 4
cp

tr_in
fe

a
sib

le
3

 : b
lo

ck 7

C
 le

v
e
l

B
in

a
ry

 le
v
e
l

O
ca

m
l, C

+
+

Ya
cc / Le

x
LLV

M
 In

fra
stru

ctu
re

C
la

n
g

 A
S

T
 V

isito
rs

V
a
ria

b
le

s x
i_in

fe
a
sib

le
 a

re
 co

u
n
tin

g
 th

e
 n

u
m

b
e
r

o
f e

xe
cu

tio
n
s o

f b
lo

ck i

S
u
p

e
rv

ise
d

 b
y
 Fa

b
ie

n
n
e
 C

a
rrie

r a
n
d

 C
la

ire
 M

a
iza

M
y
 w

o
rk

In
te

re
st o

f th
e
 co

u
n
te

r a
p
p

ro
a
ch

 fo
r se

m
a
n
tic p

ro
p

e
rty

e
x
tra

ctio
n
 o

f C
 p

ro
g

ra
m

s in
 W

C
E
T
 a

n
a
ly

sis

A linearization technique for multivariate polynomials using convex polyhedra
based on Handelman’s theorem

Alexandre Maréchal
Supervised by David Monniaux and Michaël Périn

Abstract
We present a linearization method to over-
approximate non-linear multivariate polynomials
with convex polyhedra. It is based on Han-
delman’s theorem and consists in using products
of constraints of a starting polyhedron to over-
approximate a polynomial. We also implemented
two other linearization methods that we will not de-
tail in this paper, but that we shall use as compari-
son. As a part of the VERASCO project, the goal is
to prove such methods with the proof assistant Coq.

1 Toward Certification of a C compiler
1.1 The VERASCO project
The CompCert project (2006-2010) from Inria Paris-
Rocquencourt and Rennes consisted in the formal verifica-
tion of a C compiler. The goal was to avoid miscompilation
which is the production of an executable that does not match
the source code. The project led to CompCert, the first C
compiler certified using the proof assistant Coq. This com-
piler is proved to produce a correct executable code if the
corresponding source code can not lead to a runtime error.
Thus, the correctness of the executable code depends on an
assumption on the source code. The VERASCO project fol-
lows CompCert and gathers Inria Paris-Rocquencourt, Inria
Saclay, VERIMAG laboratory, Airbus, and the University of
Rennes. VERASCO aims at developing a certified static an-
alyzer capable of proving the absence of error in the source
code, hence discarding the CompCert assumption. The prin-
ciple of verification based on static analysis is to compute an
over-approximation of all possible reachable states of the pro-
gram, examining only the source code, then to check that no
error state is reachable. As every program, such a verification
tool is not protected from a failure and a bug in the analyzer
can make it miss errors. That’s why the correctness of the
analyzer must be certified in Coq too.

1.2 VERIMAG’s contributions
Static analysis by abstract interpretation
The VERIMAG laboratory performs research about program
verification using static analysis by abstract interpretation [1].
Static analysis differs from test since, first, the source code

Figure 1: Graphical representation of P1 : {x ≥ 1, y ≥ −2, x −
y ≥ 0, x+ y ≤ 5}

is not actually executed, and second, abstract interpretation
ensures that no reachable state is omitted. It uses abstract
domains (such as intervals, polyhedra, etc.) instead of usual
variables to approximate the sets of program states. The ef-
fect of each instruction is captured by symbolic computations
using abstract domains. Static analysis catches the (poten-
tially infinite) set of possible behaviours of the source code at
the price of approximating the reachable states. As a result,
some states considered during the analysis are not reachable
in practice. When precision is needed, programs can be ana-
lyzed using the domain of convex polyhedra which is able to
reason about linear relations between program variables.

A certified library for convex polyhedra
A convex polyhedron1 is defined as a conjunction of lin-
ear constraints of the form

∑n
i=1 λixi ≤ c where ∀i ∈

{1, ..., n}, xi is a variable, λi ∈ Q and c ∈ Q are con-
stants. For instance, the polyhedron P1 defined by the system
{x ≥ 1, y ≥ −2, x − y ≥ 0, x + y ≤ 5} defines a geomet-
rical space represented in the plane (Figure 1). A polyhedron
which is fully bounded is called a polytope.

1We only deal with convex polyhedra. For readability, we will
omit the adjective convex in the following.

Polyhedra are used in static analyzers to automatically dis-
cover linear relations between variables of the source code.
Those relations help deducing necessary properties to prove
the correctness of the program. A Coq library was recently
created by Fouilhé [2], allowing safe handling of polyhedra
operators such as intersection and convex hull, that is the
smallest polyhedron containing the union of P1 and P2.

Polyhedra suffer from an ontological limitation: they can-
not deal with non-linear relations, i.e. expressions containing
products of variables. Hence, the analyzer cannot exploit the
information on a variable z when encountering a non-linear
assignment z := x ∗ y. Moreover, after such an assignment,
all the previously determined linear constraints containing z
do not hold anymore. That’s why a linearization technique
that approximates x ∗ y by a linear expression is necessary to
avoid dramatic loss of precision during the analysis.

Linearization techniques We developed and tested three
linearization techniques, but only the last one will be detailed
in this paper. The two other ones shall be mentioned as com-
parison.

The first linearization technique uses the variable interval-
ization introduced by Miné [3], which consists in replacing
some variables of the non-linear expression by intervals to
remove products of variables. We implemented and proved
this algorithm in Coq.

The second linearization method consists in representing
polynomials in the Bernstein basis which allows to deduce
a bounding polyhedron from its Bernstein coefficients. We
tested it in SAGE (a free open-source mathematics software
system similar to maple or mathematica).

The technique that we shall present in this paper is a new
linearization method based on Handelman’s theorem. Given
a starting polyhedron P , Handelman’s method consists in
using products of constraints of P to obtain a linear over-
approximation of the polynomial constraint f ≥ 0. It requires
a parametric simplex that we implemented in Ocaml. The rest
of the method was developed in SAGE for tests.

Overview of the paper We shall begin with a brief sum-
mary about linearization in Section 2. The linearization
method based on Handelman’s theorem is described in Sec-
tion 3. The parametric simplex algorithm, which is used in
Handelman’s method, is presented in Section 4. We shall give
some clues about the Coq certification of this method in Sec-
tion 5. The three methods are compared in terms of precision
in Section 6 where we also discuss about future works.

2 Linearization
The goal of linearization is to approximate non-linear rela-
tions by linear ones. In this work we do not consider ex-
pressions formed of non-algebraic functions like sin, log, ...2
Our linearization methods only address polynomial expres-
sions containing products of variables. Thus, in this paper
f represents a polynomial expression on the variables of the

2We could in principle treat analytic functions by considering
their Taylor polynomials.

1 int x,y,z;
2 if(x >= 1 && y >= -2 && x >= y && x <= 5 - y)
3 {
4 if(x*x + y*y <= 4)
5 z = y*x;
6 else
7 z = 0;
8 }

Example 2: C program containing two non-linear expressions x ∗
x+ y ∗ y ≤ 4 and y ∗ x

program (x1, . . . , xn). The lines 4 and 5 of Example 2 con-
tain such non-linear relations.

Let us explain how the effect of a guard or an assignment
on a polyhedron is computed, and how the linearization pro-
cess is involved. Without loss of generality, we focus in this
paper on the treatment of a guard f ≥ 0 where f denotes
a polynomial in the (x1, . . . , xn) variables of the program.
For instance the guard x2 + y2 ≤ 4 corresponds to the case
f(x, y) , 4− x2 − y2.

The effect of an assignment x := f on a polyhedron P
corresponds to the intersection of P with a polyhedron G
formed of two inequalities x̃− f ≥ 0∧ f − x̃ ≥ 0 (encoding
the equality x̃ = f). This computation uses a fresh variable
x̃ that is renamed in x after elimination of the old value of x
by projection. We denote by P/x the polyhedron P where the
variable x has been projected. Formally, the effect of x := f

on P is the polyhedron
(
(P uG)/x

)
[x̃/x]

The effect of a guard f ≥ 0 on a polyhedron P consists
in the intersection of the points of P with the set of points
(x1, . . . , xn) satisfying the condition f(x1, . . . , xn) ≥ 0.
This intersection is not necessarily a polyhedron. Let us de-
note by P the set of points after the guard, i.e. P = P ∩
{ (x1, . . . , xn) | f(x1, . . . , xn) ≥ 0 } = { (x1, . . . , xn) ∈
P | f(x1, . . . , xn) ≥ 0 }.

When the guard is linear, say x − y ≥ 0, we simply add
the constraint x− y ≥ 0 to P and obtain a polyhedron. With
the polyhedron P1 from Figure 1, we obtain the polyhedron
P = P1 ∧ (x − y ≥ 0) = { x ≥ 1, y ≥ −2, x − y ≥
0, x+ y ≤ 5, x ≤ y }.

When the guard is not linear, we find its effect on P by
computing a convex polyhedron P ′ such that P ⊆ P ′. There
is no unique polyhedron P ′, any choice of P ′ satisfying P ⊆
P ′ would give a correct approximation.

As an example, the effect of the non-linear guard G , x2+
y2 ≤ 4 on the polyhedron P1 of Figure 1 is represented on
Figures 3 and 4. The green polyhedron G of Figure 4 is a
linear approximation of G by an octagon. We obtain the red
polyhedron P ′ by computing the intersection of polyhedra
P1 ∩G.

Shape of real-life non linear expressions We tested the
linearization techniques on statements taken from the bench-
marks debie1, based on a satellite control software, and pa-

Figure 3: Graphical representations of P1 , {x ≥ 1, y ≥ −2, x−
y ≥ 0, x + y ≤ 5} in orange and the guard G , { (x, y) | x2 +
y2 ≤ 4 } in blue. The set P = P1 ∩ G is represented in red.

Figure 4: Graphical representations of P1 , {x ≥ 1, y ≥ −2, x−
y ≥ 0, x + y ≤ 5} in orange and the guard G , { (x, y) | x2 +
y2 ≤ 4 } in blue. A linear over-approximation G of G is drawn in
green. The approximation P ′ of P ∩ G is represented in red.

pabench which is a flight control code. In general, polyno-
mials of such programs contain less than four variables and
their power rarely exceed two. Indeed, most non-linear ex-
pressions appear in computation of Euclidian distances, that’s
why we encounter square roots as well. As a consequence, the
exponential complexity of some algorithms is manageable.

3 Linearization on polytopes using
Handelman representation

In this section, we explain how to exploit Handelman’s theo-
rem [4] as a new linearization technique. This theorem gives
a characterization of positive polynomials over a compact
set. This kind of description is usually called a positivstel-
lensatz. As said in the introduction, we focus on the treat-
ment of a guard f ≥ 0 where f denotes a polynomial in the
(x1, . . . , xn) variables of the program.

Consider a compact polytope P = { (x1, . . . , xn) | C1 ≥
0, . . . , Cp ≥ 0 } where Ci are linear polynomials over
(x1, . . . , xn). Suppose P describes the possible values of
(x1, . . . , xn) at a program point before the guard, we seek
a polyhedron that approximates P ∧ f ≥ 0. We will use as a
running example

P = { (x, y) | x− 1 ≥ 0, y + 2 ≥ 0, x− y ≥
0, − x− y + 5 ≥ 0 } and f = 4− x2 − y2.

The affine approximation problem A naive call Puf ≥ 0
to the intersection operator of the polyhedral domain would
return P not exploiting the constraint f ≥ 0 which is not
affine. Our approximation problem is to find an affine con-
straint α0 + α1x1 + . . . + αnxn, denoted by aff (f), such
that P ⇒ aff (f) > f meaning that aff (f) bounds f on
the polyhedron P . By transitivity of ≥ we will conclude that
P ∧ f ≥ 0 ⇒ P ∧ aff (f) > 0. Thus, P u aff (f) > 0 will
be a polyhedral approximation of the program state after the
polynomial guard f > 0.

3.1 Handelman representation of positive
polynomials

Notations Tuples and multi-indexes are typed in boldface.
Let I = (i1, ..., ip) ∈ Np be a multi-index. Let us define the
set of Handelman products

HP = { Ci11 × · · · × Cipp | (i1, . . . , ip) ∈ Np }

where P , C1 ≥ 0 ∧ . . . ∧ Cp ≥ 0

This set contains all products of constraints Ci of P . Given
a multi-index I = (i1, . . . , ip), HI ,

∏p
j=1 C

ij
j denotes an

element of HP . Note that the HI are positive polynomials
on P as products of positive constraints of P .
Example 1. Considering our running example,

H(0,2,0,0) = (y+2)2, H(1,0,1,0) = (x− 1)(x− y)
and H(1,0,0,3) = (−x− y + 5)3(x− 1) belongs to
HP .

The Handelman representation of a positive polynomial
Q(x) on P is

Q(x) =
∑
I∈Np

λI︸︷︷︸
≥0

HI︸︷︷︸
≥0

with λI ∈ R+

This representation is used in mathematics as a certificate en-
suring that Q(x) is positive on P . Obviously if a polynomial
can be written in this form, then it is necessarily positive on
P . Handelman’s theorem [4], that we summarize here, con-
cerns the non-trivial opposite implication:

Theorem 1 (Handelman’s Theorem). Let P =
{ (x1, . . . , xn) ∈ Rn | C1 ≥ 0, . . . , Cp ≥ 0 } be a
compact polytope where each Ci is a linear polynomial over
x = (x1, . . . , xn). Let Q(x) be positive polynomial on P .
Then there exists λI ∈ R+ and HI ∈HP such that

Q(x) =
∑
I∈Np

λIH
I

Usually, the Handelman representation of a polynomial
Q(x) is used to determine a constant lower bound of Q(x)
on P thanks to Schweighofer’s algorithm [5] that focuses on
iteratively improving the bound by increasing the degree of
the HI . We shall present here another use of Handelman’s
theorem: we are not interested in just one (tight) bound but in
a polytope wrapping the polynomial Q(x).

3.2 Handelman approximation as a Parametric
Linear Optimization Problem

We are looking for an affine constraint aff (f), such that
aff (f) ≥ f on P , which is equivalent to aff (f) − f ≥ 0
on P . Then, Handelman’s theorem applies:

The polynomial aff (f)− f which is positive on the
polytope P has an Handelman representation as a
positive linear combination of products of the con-
straints of P , i.e.,

aff (f)− f =
∑
I∈Np

λIH
I , λI ∈ R+, HI ∈HP (1)

The relation 1 of Handelman’s theorem ensures that there
exists some positive combinations of f and some HI ∈ HP

that remove the monomials of total degree >1 and lead to
affine forms:

α0 + α1x1 + . . .+ αnxn

= aff (f) = 1 · f +
∑
I∈Np

λIH
I

Note that the polynomials of HP are generators of the pos-
itive polynomials on P but they do not form a basis. Indeed,
it is possible to have one H ∈ HP being a positive linear
combination of other elements of HP .
Example 2. Consider P = { (x, y) | x ≥ 0, y ≥

0, x− y ≥ 0, x+ y ≥ 0 }.
Then, H(2,0,0,0) , x2, H(1,1,0,0) = xy, H(0,2,0,0) =

y2, H(0,0,0,2) = (x + y)2 belongs to Handelman prod-
ucts and they are not independent.
Indeed, H(0,0,0,2) = x2 + 2xy + y2 = H(2,0,0,0) +
2H(1,1,0,0) +H(0,2,0,0)

As a consequence, a positive polynomial aff (f) − f can
have several Handelman representations, even on a given
set of Handelman products. Actually, we exploit the non-
uniqueness of representation to get a precise approximation

of the guard: we look for many affine constraints aff (f) that
bound f on P . Their conjunction forms a polyhedron that
over-approximates f on P .

We now explain how the determination of all affine con-
straints bounding f can be expressed as a Parametric Linear
Optimization Problem (PLOP).

Notations Given a multi-index I and n variables x1, ..., xn,
let xI be the monomial xi11 × ... × xinn . We define the total
degree of the monomial xI as deg(I) =

∑n
j=1 ij . For mono-

mial of degree ≤ 1 we simply write αixi instead of αI x
I

when I = (0, . . . , 0, 1, 0, . . . , 0) with 1 in its ith coordinate.
With this settings, the relation 1 can be rephrased:

For some choice of λI , the coefficient αI of the
monomial xI in the polynomial f +

∑
I∈Np

λI H
I

is null for all multi-index I with deg(I) > 1.
Now, let df ∈ Nn be the maximal degree of the mono-

mials of f . We restrict our search to finding a Handelman
representation of aff (f)− f on the subset { H1, . . . ,Hq } of
all the Handelman products of degree ≤ df , instead of the
whole set HP . If we fail with monomials of degree ≤ d we
increase d. Handelman’s theorem ensures that we will even-
tually succeed.
Example 3. With f = 4−x2−y2, df = 2. There-

fore, we shall consider the 15 following Handelman
products:

H1 = H(0,0,0,0) = 1
H2 = H(1,0,0,0) = x− 1
H3 = H(0,1,0,0) = y + 2
H4 = H(0,0,1,0) = x− y
H5 = H(0,0,0,1) = −x− y + 5
H6 = H(2,0,0,0) = (x− 1)2

H7 = H(0,2,0,0) = (y + 2)2

H8 = H(0,0,2,0) = (x− y)2
H9 = H(0,0,0,2) = (−x− y + 5)2

H10 = H(1,1,0,0) = (x− 1)(y + 2)
H11 = H(1,0,1,0) = (x− 1)(x− y)
H12 = H(1,0,0,1) = (x− 1)(−x− y + 5)
H13 = H(0,1,1,0) = (y + 2)(x− y)
H14 = H(0,1,0,1) = (y + 2)(−x− y + 5)
H15 = H(0,0,1,1) = (x− y)(−x− y + 5)

With the restriction to { H1, . . . ,Hq }, finding the λI can
be formulated as a PLOP.

The relation 1 on { H1, . . . ,Hq } amounts to find positive
λ1, . . . , λq ∈ R+ such that

aff (f) = 1 · f +
∑q
i=1 λiHi

=

= λ · (f,H1, . . . ,Hq)
ᵀ

=

α0 + α1x1 + . . .+ αnxn

=

λ · Hf ·mᵀ

=

m · (α0, . . . , αn, 0, . . . , 0)
ᵀ

= m · Hfᵀ · λᵀ

where:

• Hf is the matrix of the coefficients of f and theHi in the
canonical basis of monomials of degree ≤ df denoted
bym = (1, x1, . . . , xn,x

d1 , . . . ,xdf)

• the vector λ = (λf , λ1, . . . , λq) = (1, λ1, . . . , λq) char-
acterizes the Handelman’s positive combination of f and
the Hi

• we associated a coefficient λf = 1 to f just to get con-
venient notations.

Finally, the problem can be rephrased as finding λ ∈
{ 1 } × (R+)

q such that

Hfᵀ · λᵀ = (α0, . . . , αn, 0, . . . , 0)
ᵀ

The result of the matrix-vector product Hfᵀλᵀ is a vector
α , (α0, α1, . . . , αn, αd1 , . . . , αdf

) that represents the con-
straint α0+α1x1+. . .+αnxn+

∑
I≤df

αI x
I in them basis.

Since we seek an affine constraint aff (f) we are interested
in finding λ such that Hfᵀλᵀ = (α0, .., αn, 0, .., 0)

ᵀ. Each
such λ gives an affine constraint aff (f) that bounds f on P .
Therefore, the conjunction of all constraints aff (f) ≥ 0 form
a polyhedron Af that approximates the guard f ≥ 0 on P .

Example 4. The transposed matrix Hfᵀ of f and
our 15 Handelman products with respect to the ba-
sism = (1, x, y, xy, x2, y2) is shown on Figure 5.

With λf = λ6 = λ7 = 1 and every other λi = 0,
we obtain

αᵀ = Hfᵀλᵀ =

9
−2
4
0
0
0

1
x
y
xy
x2

y2

Thus, aff (f) = −2x + 4y + 9 is a constraint that
bounds f on P , as shown on the Figure 6(a). In-
deed, we can see that the plane −2x + 4y + 9 is
above the polynomial f . Figure 6(b) shows the ap-
proximation of f that we obtain with the constraint
−2x+ 4y + 9 ≥ 0.
In order to obtain a better approximation, we
need to find others affine approximations bound-
ing f on P . For instance, with λf = λ8 =
1, λ11 = λ5 = 2, and every other λi = 0,
αᵀ = (21,−2,−8, 0, 0, 0). The Figure 7 shows
the approximation of f with the two constraints
−2x+ 4y + 9 ≥ 0 and −2x− 8y + 21 ≥ 0.

The Parametric Linear Optimization Problem Finding
all and the tightest approximations aff (f) that bounds f on
P can now be expressed as the following PLOP which can be
solved using a Parametric Simplex in the spirit of [6].

Given a set { H1, . . . ,Hq } ⊆ HP of Handelman
products,
minimize aff (f), that is, α0 + α1x1 + . . .+ αnxn
under the constraints

(a)

(b)

Figure 6: (a): The surface z = f(x, y) , −x2 − y2 + 4 is in blue,
the plane z = aff (f)(x, y) , −2x+ 4y + 9 in yellow.
(b): The representation of the polyhedron P , { (x, y) | x − 1 ≥
0, y + 2 ≥ 0, x − y ≥ 0, − x − y + 5 ≥ 0 } is in red and
the area of the circle in blue represents { (x, y) | f(x, y) ≥ 0 }.
The green line is the constraint −2x + 4y + 9 = 0. The yellow
area is the polyhedron P u { (x, y) | −2x + 4y + 9 ≥ 0 } that
over-approximates the conjunction P ∧ f ≥ 0.

Figure 7: The material is that of Figure 6 augmented with a cyan
line which corresponds to the constraint −2x − 8y + 21 = 0. The
yellow area is the polyhedron P u { (x, y) | −2x + 4y + 9 ≥
0, − 2x − 8y + 21 ≥ 0 } that over-approximates the conjunction
P ∧ f ≥ 0.

f H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15

1
x
y
xy
x2

y2

4 1 -1 2 0 5 1 4 0 25 -2 0 -5 0 10 0
0 0 1 0 1 -1 -2 0 0 -10 2 -1 6 2 -2 5
0 0 0 1 -1 -1 0 4 0 -10 -1 1 1 -2 3 -5
0 0 0 0 0 0 0 0 -2 2 1 -1 -1 1 -1 0
-1 0 0 0 0 0 1 0 1 1 0 1 -1 0 0 -1
-1 0 0 0 0 0 0 1 1 1 0 0 0 -1 -1 1

Figure 5: Transposed matrixHf ᵀ of f and the 15 Handelman products of Example 3 with respect to the basis m = (1, x, y, xy, x2, y2)

Hf ᵀ(λf , λ1, . . . , λq)

ᵀ = (α0, . . . , αn, 0, . . . , 0)
ᵀ

λf = 1

λi ≥ 0, i = 1..q

(PLOP 1)

where

• The λ1, . . . , λq are the variables of the PLOP.
• The α0, . . . , αn are kept for the sake of pre-

sentation ; in practice they are substituted by
their expression issued fromHfᵀλᵀ.

• The x1, . . . , xn are the parameters of the
PLOP.

Remark that each instantiation (x1, . . . , xn) of the param-
eters defines a standard Linear Optimization Problem (LP)
which can be solved by the simplex algorithm, providing the
optimum associated to the given parameters. In the next sec-
tion, we describe a parametric simplex able to find every op-
timal solutions of PLOP 1 as a function of the parameters
(x1, . . . , xn).

4 The parametric simplex algorithm
The simplex algorithm is used to find the optimal solution to
a LP of the form

minimize cᵀt
under the constraints

At ≤ b
t ≥ 0

(LP 1)

where t = (t1, . . . , tq) are decision variables, c =
(c1, . . . , cq) is the cost, A ∈ Mm,n(R) and b ∈ Rm. In
this section, we shall describe the algorithm of a parametric
simplex, i.e. a simplex able to find the optimal solution of
linear programming problems whose objective contains pa-
rameters. Instead of cᵀt, the objective of such problems is a
linear combination of the decision variables t1, . . . , tq where
coefficients are linear forms of the parameters β1, . . . , βn.

Before entering into details of the parametric simplex algo-
rithm, we shall begin by running an example of the standard
simplex.

Classical simplex execution
As explained in [7], the principle of the simplex method is to
move from a feasible solution of the problem to another one
that improves the objective value. Iterating this process shall
lead to the optimal solution.

The example that we shall run further is the following one:

minimize −2t1 + t2
under the constraints

t1 + t2 ≤ 5

−t1 ≤ 1

−t2 ≤ 2

−t1 + t2 ≤ 0

t1, t2 ≥ 0

(LP 2)

Initialization: finding a feasible solution The first step is
to add slack variables si to the problem. We add one slack
variable si for each constraint to denote the slack between
its left-hand side and its right-hand side – the constant. For
instance, from the first constraint t1 + t2 ≤ 5 of LP 2, we
define s1 = 5− t1 − t2. The constraint can now be replaced
by s1 ≥ 0. Indeed, t1 + t2 ≤ 5⇔ s1 ≥ 0. Repeating this for
all constraints, we obtain the following definitions:

s1 = 5− t1 − t2
s2 = 1 + t1

s3 = 2 + t2

s4 = t1 − t2

(DEF)

The problem LP 2 can therefore be rewritten into

minimize −2t1 + t2
under the constraints

s1 = 5− t1 − t2
s2 = 1 + t1

s3 = 2 + t2

s4 = t1 − t2
s1, s2, s3, s4, t1, t2 ≥ 0

(LP 3)

Vocabulary The system composed of the equations and
the objective function is called a dictionary. The variables ap-
pearing on the left-hand side of the equalities are called non-
zero variables, or basic variables. The set of these variables
is a basis. The variables appearing on the right-hand side are
null variables or nonbasic.

Note that every feasible solution (t1, t2) of LP 2 leads to
a unique feasible solution of LP 3 thanks to the equations
of DEF. Reciprocally, from a feasible solution of LP 3, a
feasible solution of LP 2 can be deduced by removing the
slack variables.

A starting feasible solution can now be found easily in our
example, setting t1 and t2 at 0. We obtain the solution (t1 =
0, t2 = 0, s1 = 5, s2 = 1, s3 = 2, s4 = 0). The value of the
objective associated to this solution is−2∗0+0 = 0. If LP 2
is feasible but the solution obtained by setting t1 and t2 at 0 is
not (i.e. si < 0 for some i), there exists an auxiliary problem
able to find a correct dictionary. It is detailed in [7].

Finding better solutions Now we have found a feasible so-
lution, the next step is to find another one that has a better
objective value. The idea is to pick a variable that has a neg-
ative coefficient in the objective and increase it as much as
possible. In LP 3, the objective is to minimize −2t1 + t2.
By increasing t1, the objective decreases and we obtain a
better solution. Hence we increase t1 while the solution re-
mains feasible. We must now find the constraint that restrain
the value of t1 the most. s1 = 5 − t1 − t2 gives an up-
per bound for t1 that is 5. Indeed, if t1 > 5, then s1 < 0,
which leads to an unfeasible solution. s2 = 1 + t1 and
s4 = t1 − t2 give lower bounds on t1, and s3 = 2 + t2
does not speak about t1. Therefore, the first constraint is
the limiting one, and setting t1 = 5, we obtain the solution
(t1 = 5, t2 = 0, s1 = 0, s2 = 6, s3 = 2, s4 = 5) then the
objective becomes -10. Note that the value of t1 is no longer
zero and that on the contrary, s1 has become null. That’s why
s1 must leave the basis while t1 enters it (this switch between
two variables is called a pivot). It means that we must change
our dictionary LP 3 so that the basic variables t1, s1, s2, s4
are expressed in terms of the non-basic ones t2, s3. From
s1 = 5 − t1 − t2 we deduce t1 = −s1 − t2 + 5, thus we
obtain the following dictionary:

minimize 3t2 + 2s1 + 10
under the constraints

t1 = −s1 − t2 + 5

s2 = −s1 − t2 + 6

s3 = 2 + t2

s4 = −2t2 − s1 + 5

s1, s2, s3, s4, t1, t2 ≥ 0

(LP 4)

We can see that there is no variable in the objective as-
sociated to a negative coefficient anymore, it means that the
optimal solution has been found.

Parametric simplex execution
To illustrate the parametric simplex, let us replace the coeffi-
cients of t1 and t2 in LP 2 by parameters β1 and β2:

minimize β1t1 + β2t2
under the constraints

t1 + t2 ≤ 5

−t1 ≤ 1

−t2 ≤ 2

−t1 + t2 ≤ 0

t1, t2 ≥ 0

(PLOP 2)

The initialization step is the same as before, and we obtain
the dictionary

minimize β1t1 + β2t2
under the constraints

s1 = 5− t1 − t2
s2 = 1 + t1

s3 = 2 + t2

s4 = t1 − t2
s1, s2, s3, s4, t1, t2 ≥ 0

(PLOP 3)

Once we have a feasible dictionary, the principle is to de-
termine the optimal solution depending on the sign of the pa-
rameters βi. Indeed, to improve the objective in PLOP 3,
since we look for a variable with a negative coefficient in the
objective to perform a pivot, we need to know the sign of the
coefficient of t1, which is β1. First, we shall assume β1 < 0
and obtain a branch leading to one or several optimal solu-
tions depending on the sign of β2. Second, we shall assume
β1 ≥ 0 and get a second branch. Let us execute the algo-
rithm for the branch β1 < 0 to clearly see what type of re-
sults appear. The variable leaving the basis is t1, hence as in
the standard algorithm, we must find the entering variable by
looking for the constraint bounding the value of t1 the most.
Again, this limiting constraint is s1 = 5− t1 − t2 which pre-
vents t1 to exceed 5. The pivot of t1 and s1 gives the solution
(t1 = 5, t2 = 0, s1 = 0, s2 = 6, s3 = 2, s4 = 5) and the
objective value is now 5β1. The associated dictionary is the
following one:

minimize −β1s1 + (β2 − β1)t2 + 5β1
under the constraints

t1 = −s1 − t2 + 5

s2 = −s1 − t2 + 6

s3 = 2 + t2

s4 = −2t2 − s1 + 5

s1, s2, s3, s4, t1, t2 ≥ 0

(PLOP 4)

For the next iteration, we look again for a variable whose
coefficient is negative in the objective. −β1 cannot be nega-
tive because we made the assumption β1 < 0. However, none
of our assumptions prevents β2 − β1 from being negative.
Again, we will create two branches where the first one shall
assume β1 < 0∧β2−β1 < 0 whereas the other one shall as-
sume β1 < 0∧β2−β1 ≥ 0. In the first of these two branches,
the variable leaving the basis is t2, and the limiting constraint
is s4 = −2t2 − s1 + 5, thus the entering variable is s4 and
the maximum value for t2 is 5

2 . Hence the new feasible solu-
tion is

(
t1 = 5

2 , t2 = 5
2 , s1 = 0, s2 = 7

2 , s3 = 9
2 , s4 = 0

)
, the

objective value is 5β1+5β2

2 and we end with the following dic-
tionary:

minimize −β1−β2

2 s1 +
β1−β2

2 s4 +
5β1+5β2

2

β1<0 β1≥0

β2−β1<0 β2−β1≥0 β2<0 β2≥0

5β1+5β2

2 5β1
β1+β2<0 β1+β2≥0

0

5β1+5β2

2 0

Figure 8: Optimal solutions of the problem PLOP 2 in terms of β1
and β2

under the constraints

t1 = −s1
2

+
s4
2

+
5

2

s2 =
s4
2
− s1

2
+

7

2

s3 = −s4
2
− s1

2
+

9

2

t2 = −s4
2
− s1

2
+

5

2
s1, s2, s3, s4, t1, t2 ≥ 0

(PLOP 5)

Recall that our current context is β1 < 0 ∧ β2 − β1 < 0.
With these assumptions, neither −β1−β2

2 nor β1−β2

2 can be
negative. Thus, the optimal has been found and the algorithm
stops for this context. For the second branch, going back to
PLOP 4 and assuming β1 < 0 ∧ β2 − β1 ≥ 0, there is no re-
maining variable with a negative coefficient in the objective.
Thus the optimal for this context is 5β1. The region where
β1 < 0 has been fully explored and leads to two different
optimal solutions depending on β2. At this point, the space
where β1 ≥ 0 still needs to be traveled, so the next iteration
starts from PLOP 2 with the assumption β1 ≥ 0.

Figure 8 summarizes the optimal solutions depending on
the different contexts encountered throughout the algorithm.

Solutions of the parametric simplex Let us denote by z∗
the optimal solution of a PLOP. As explained earlier, z∗ is
a function of the parameters β1, . . . , βn and is divided into
regions. For instance, the optimum solution of PLOP 2 is the
function

z∗(β1, β2) =

5β1+5β2
2

if β1 < 0 ∧ β2 − β1 < 0

5β1 if β1 < 0 ∧ β2 − β1 ≥ 0

5β1+5β2
2

if β1 ≥ 0 ∧ β2 < 0 ∧ β1 + β2 < 0

0 if β1 ≥ 0 ∧ β2 < 0 ∧ β1 + β2 ≥ 0

0 if β1 ≥ 0 ∧ β2 ≥ 0

z∗ is a continuous, piecewise affine and concave function[8].
Note that z∗ can be equal to the same affine function in
several disjoint regions. For instance in both spaces β1 <

0 ∧ β2 − β1 < 0 and β1 ≥ 0 ∧ β2 < 0 ∧ β1 + β2 < 0,
z∗(β1, β2) = 5β1+5β2

2 . Thanks to these properties, the fol-
lowing one can be shown:
Property 1. Let fa : Rn− > R be an affine function ,

if z∗ = fa on I ⊂ Rn with non-empty interior,
if z∗ = fa on J ⊂ Rn such that J ∩ I = ∅,
then z∗ = fa on the convex hull of I ∪ J .
Property 1 could be used during the parametric simplex

algorithm to avoid the creation of a new branch. For instance
with one parameter β, knowing that

z∗(β) =

{
2β − 1 if β ∈ [0, 2]

2β − 1 = 5 if β = 3

we can directly deduce that z∗(β) = 2β−1 for all β ∈ [0, 3].

Application to Handelman’s linearization To solve
PLOP 1, we execute the parametric simplex described pre-
viously. As explained earlier, the decision variables are the
λi while the parameters are the xi. Morevoer, we specify
as initial context the starting polyhedron P , meaning that we
only consider (x1, . . . , xn) ∈ P . We obtain a tree with linear
forms on xi at leaves. Each of these linear forms is a con-
straint over-approximating P ∧ f ≥ 0. As said previously,
it is possible to find the same constraint at different leaves,
and some constraints can be redundant compared to others.
Hence, the over-approximating polyhedron P ′ is defined as
the conjunction of all these constraints. Figure 9 shows P ′
for our guiding example, where we can clearly see that one
green line does not constraint P ′, meaning that it is redun-
dant.

Figure 9: The polyhedron P = { (x, y) | x−1 ≥ 0, y+2 ≥ 0, x−
y ≥ 0, − x− y + 5 ≥ 0 } is drawn in orange. The area delimited
by the blue circle represents the guard { (x, y) | x2+y2 ≤ 4 }. The
red surface is P ′, the approximation of { (x, y) | x2 + y2 ≤ 4 } ∩
P . The green lines are the constraints returned by the parametric
simplex

5 Toward certification in Coq
In this part, we give intuitions about the certification in Coq
of the linearization using Handelman.

We want to prove that aff (f) > f , or equivalently
that aff (f) − f > 0, on the polytope P . Given in-
dexes (i1,1, ..., i1,p), . . . , (iq,1, ..., iq,p) and the coefficients
λ1, .., λq , we have to check in Coq that:

(1) f +
q∑
j=1

λjC
ij,1
1 . . . C

ij,p
p is linear. This can be done by

expanding the polynomial and looking at the coefficient
of monomials of degree > 1.

(2) The product of positive polynomials is positive. This
can be proven in Coq once for all. We obtain finally that

f +
q∑
j=1

λjC
ij,1
1 . . . C

ij,p
p is a linear over-approximation

of f .

The computation of aff (f) does not have to be done in
Coq. Thus, (i1,1, ..., i1,p), . . . , (iq,1, ..., iq,p) and λ1, .., λq are
used as a certificate.

6 Comparison of the linearization methods
and future work

We implemented and proved in Coq the linearization algo-
rithm based on intervalization. The Bernstein’s method was
implemented in SAGE. We developed the parametric simplex
algorithm in Ocaml and the rest of Handelman’s algorithm
was done in SAGE. In order to compare the three methods,
we realised a simple analyzer in SAGE. It is able to handle
C programs containing guards, assignments and if-then-else
but no function call nor loop. Given a starting polyhedron P
and a list of statements s, the analyzer computes the effect
of s on P with the three techniques. The intervalization al-
gorithm is performed by an Ocaml program obtained by au-
tomatic extraction from our Coq development. This Ocaml
code is called by the SAGE script. We are then able to mea-
sure and compare the resulting polyhedra volume using an
existing SAGE library.

Comparison We realized experiments on statements taken
from the satellite code. In general, intervalization is the
fastest but the less accurate of the three methods. Bernstein’s
method can be as accurate as needed, but at the price of an
high algorithmic cost. Handelman’s method is about as ac-
curate as the Bernstein one. Up to now, it is the most ex-
pensive method, mainly because it is new, we implemented
it in a naive way and no attention was paid to improve the
computations as it has been done, for decades, for Bernstein
approximations.

The Bernstein approximation relies on the interval where
ranges each variable. Extracting the interval of a variable
from a polyhedron requires to solve two linear optimization
problems to get the maximum and minimum value of the vari-
able in the polyhedron. This overhead is avoided in Han-
delman’s method which reasons directly on the constraints
of the polyhedron. Hence, the Bernstein’s method is con-
venient when the polyhedron is in fact an hypercube – that
is the product of the interval of each variable – whereas the
Handelman’s method is promising at program point associ-
ated with a general polyhedron. Specifically, we think that

Figure 10: Representation of the effect of the guard { (x, y) | x2 +
y2 ≤ 4 } (yellow circle) on the polyhedron { (x, y) | x − 1 ≥
0, y + 2 ≥ 0, x− y ≥ 0, − x− y + 5 ≥ 0 } (black outline). The
green surface is the result of the linearization using intervalization.
The blue one is the result of Bernstein’s linearization. The red one
is the linearization with the Handelman’s method.

Handelman’s method can be more suitable in terms of preci-
sion, even in complexity, in case of successive linearizations.
Indeed, where the Bernstein’s method stacks approximation
errors at each new linearization, the Handelman one does not
degrade. Moreover, in order to certify these methods, the
Bernstein one requires to switch from the polyhedron repre-
sentation using vertices to the polyhedron representation by
linear constraints, which is not the case for Handelman.

In practice, the three linearization methods can be com-
bined: analysis is an iterative process that switches to finer
methods when the cheapest ones failed to prove correctness
of the program. We can imagine starting an analysis with in-
tervals which are cheap and deal with non-linear expressions.
Then, switching to the domain of polyhedra if more precision
is required. This second phase can reuse the intervals com-
puted by the first one and apply intervalization or Bernstein’s
linearization without paying the overhead of extracting inter-
vals. This time the analysis associates polyhedra to program
points. Then, to gain more precision, a third phase can run
the analysis with Handelman’s linearization. Other combina-
tions are possible and Handelman can be directly used at any
phase since a product of bounded interval is a special case of
polytope, called an hypercube.

We show on Figure 10 the results of the three methods
to approximate the guard {(x, y) | x2 + y2 ≤ 4

}
on P ,

{ (x, y) | x−1 ≥ 0, y+2 ≥ 0, x−y ≥ 0, −x−y+5 ≥ 0 }.
We can see that intervalization is not precise enough to ap-
proximate the guard. Indeed, the resulting polyhedron is the
same as the initial one, and the guard does not add any infor-
mation in the analysis.

We compute Bernstein’s method without any interval split-
ting or degree elevation. Even without any refinement pro-
cess, Bernstein is more accurate than intervalization but
slower.

Handelman’s polyhedron is the most precise of the
three techniques in this example. We chose as subset
{ H1, . . . ,Hq } the 15 possible products of constraints of P
of degree ≤ 2, meaning that we are faced with a 15-variables
LP. Industrial linear solvers are able to deal with hundreds of

variables, but this is obviously the shortfall of Handelman’s
linearization.

Future work Along the document we identified several
points that still need work prior to the integration of our lin-
earization methods in the VERASCO analyser. We review
them quickly and sketch direction of improvement.

Unbounded polyhedron Up to now, we considered only
the linearization with Bernstein or Handelman on polytopes.
Indeed, the Bernstein basis is defined only on [0, 1]l and Han-
delman’s theorem applies on a compact polyhedron. How-
ever, we do not necessarily have full bounds on each variable
of the polynomial expression f , therefore we need to be able
to manipulate unbounded polyhedra. This case has already
been treated for intervalization. There exists a method to han-
dle partially unbounded intervals during the transformation
of a polynomial into the Bernstein basis [9]. It is based on
a bijective transformation of the partially unbounded polyno-
mial to a bounded one which has the same sign. Handelman’s
theorem addresses only compact polyhedra. Obviously, if a
polynomial grows non-linearly in the unbounded direction,
it cannot be bounded by any affine function. However, the
growth of f with respect to the unbounded variable can be
bounded, e.g. f(x) = 1 − x2. The adaptation of Handel-
man’s method to this case is an open question.

Certification in Coq Recall that as a part of VERASCO
project, the linearization techniques need to be certified. We
have done this for the intervalization algorithm, but it still re-
quires to be included in the VERASCO analyzer. The two
other linearization methods have not been certified yet. We
shall certify them in Coq using certificates, meaning that parts
of the computations are done outside of Coq. We do not plan
to implement the Handelman’s method in Coq but to use cer-
tificates that drive the verification in Coq that aff (f) is an
affine constraint and an approximation of f .

Handelman’s Linearization The main improvements of
Handelman’s linearization that we shall work on are:

• The choice of the subset { H1, . . . ,Hq }. On the one
hand, considering a lot ofHi allows lots of Handelman’s
representations, therefore an improved accuracy. On the
other hand, each new Hi adds a variable λi in the sim-
plex. In order to minimize the number of Hi to con-
sider, starting with a small subset { H1, . . . ,Hq }, we
could imagine an incremental approach that adds new
Hi when no solution is found. We must pay attention to
the algorithm in order to exploit the computations of the
previous attempt.

• The size of the output tree returned by parametric
simplex algorithm As explained in Section 4, the same
optimal solution can appear several times in the tree.
Thanks to Property 1 defined in Section 4, we could
sometimes avoid some branch creation, therefore de-
crease the algorithm execution time and obtain a smaller
number of regions. Even so, it would require to fastly

determine if a region belongs to the convex hull of two
other regions.

Experiments in the large Once all the three lineariza-
tion techniques are integrated in the VERASCO analyzer, se-
ries of code benchmarks and testings shall be realised. Then,
combination of the three methods shall be adjusted, as well
as the heuristics we are using. Indeed, we have to adapt our
linearization techniques depending on the type of code we
want to analyse. For instance, the satellite code contains lots
of sums of squares, thus we must adjust our heuristics to be
more effective on this kind of expressions. Similarly, if an ex-
pression appears many times in the program, we should pay
a special attention to linearize it precisely.

References
[1] P. Cousot and R. Cousot, “Abstract interpretation: a uni-

fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints,” in Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pp. 238–252,
ACM, 1977.

[2] A. Fouilhé, D. Monniaux, and M. Périn, “Efficient gen-
eration of correctness certificates for the abstract domain
of polyhedra,” in SAS2013, 2013.

[3] A. Miné, “Symbolic methods to enhance the preci-
sion of numerical abtract domains,” the 7th International
Conference on Verification, Model Checking and
Abstract Interpretation, vol. 3855, pp. 348–363, January
2006.

[4] D. Handelman, “Representing polynomials by positive
linear functions on compact convex polyhedra,” Pac. J.
Math, vol. 132, no. 1, p. 35–62, 1988.

[5] Markus Schweighofer, “An algorithmic approach to
schmüdgen’s positivstellensatz,” Elsevier Preprint, June
2001.

[6] P. Feautrier, “Parametric integer programming,” RAIRO
Recherche opérationnelle, vol. 22, no. 3, p. 243–268,
1988.

[7] V. Chvatal, Linear Programming. Series of books in the
mathematical sciences, W. H. Freeman, 1983.

[8] T. Gal and J. Nedoma, “Multiparametric linear program-
ming,” Management Science, vol. 18, no. 7, pp. 406–422,
1972.

[9] C. Muñoz and A. Narkawicz, “Formalization of a rep-
resentation of Bernstein polynomials and applications to
global optimization,” Journal of Automated Reasoning,
vol. 51, pp. 151–196, August 2013.

DBnary: Extracting Inflected Forms from the French Wiktionary
Extended Abstract

Raphaël Jakse
Magistère internship with Gilles Sérasset (LIG)

Natural Language Processing (NLP) is ubiquitous. Speech
recognition, speech synthesis, automated translation and speech
analysis are examples of NLP.

Inflected forms, which are forms derivated from canonical
forms, are an important part of many natural languages. In
French, for example, the first person of conditional present form
“parlerai” is an inflected form of the canonical form “parler” (“to
speak”).

Writing programs related to NLP therefore requires a way to
recognize and produce inflected forms and link them with their
grammatical information, their canonical forms and potentially
other data as definitions, usage, examples. NLP-oriented dictio-
naries provide such linkings but are usually hard to maintain and
to keep up-to-date with languages which are constantly getting
new words and neologisms.

Wiktionary is a participative dictionary working like
Wikipedia, constantly getting updated by hundreds of people
each month. Unfortunately, this valuable resource contains data
about inflected form but is unexploitable as is: information is
contained in a presentation-oriented syntax which builds lists,
tables, paragraphs, titles, rather than being represented in a
semantic way. Wiktionary is designed to be read and written by
humans who do not necessarily have a background in computer
science. Added difficulty also comes from the fact that this
presentation is not always very consistent.

The goal of this work is to build a maintainable dictionary of
French inflected forms from Wiktionary by extracting and adding
them in DBnary. DBnary is what DBpedia is to Wikipedia: a set
of data extracted from Wiktionary in the RDF format which is
updated when Wiktionary is updated, which makes it possible to
use data from Wiktionary in a automated way.

First part of the work was to find out how inflected forms and
related data appear in Wiktionary. An inflected form can appear
at three places in Wiktionary:

• for nouns and adjectives: in the page of its canonical form,
in which a wikicode macro produces a table containing all
inflected forms of the form. This table can also be present
in the pages of these inflected forms.

• for verbs: in the conjugation tables of the verb, present in a
special page of the Wiktionary.

• for all forms: in its own page, in which it is clearly identified
as being an inflected form of a given morpho-syntactical
type. Its canonical form and morpho-syntactical informa-
tion is found in the definition present on the page, written in
a French following a quite strict pattern (e.g. “Première per-
sonne du présent de l’indicatif de [[parler]]”). This French
sentence also gives morpho-syntactical information on this
inflected form.

Then, parsers had to be written for:

• the French sentence describing the inflected form and giv-
ing its canonical form on the page of the inflected form.

• HTML conjugation tables

• HTML tables of inflected forms of adjectives and noun

• extracting information that is given in inflected and canoni-
cal form pages with macros like {{m}} (masculine), {{f}}
(feminine), {{mf}} (masculine and feminine), {{s}} (sin-
gular) {{p}} (plural), {{sp}} (singular and plural).

• finding macros which expand to HTML tables.

Another part of the work was to find out how to represent these
newly extracted elements in DBnary; in data structures of its ex-
tractor as well as in its RDF model. Previous research on rep-
resentation of lexical (including morphological) information of
a form led to RDF ontologies like Olia and Lexinfo. These on-
tologies are directly usable in DBnary thanks to RDF functioning
and choice was made to use Lexinfo, based on the Lemon model
on which DBary is also based.

Last part of the work is a comparison of this extraction with
other existing resources: Morphalou, Lefff, GLAFF. This part
involves conversion of these resources in a common format,
writing a comparison algorithm finding common and conflicting
forms (form which should have the same morphological infor-
mation but which have not across resources) and some manual
work to understand these differences.

References
[Buitelaar et al., 2009] Paul Buitelaar, Philipp Cimiano, Peter

Haase, and Michael Sintek. Towards linguistically grounded
ontologies. In Lora Aroyo, Paolo Traverso, Fabio Ciravegna,
Philipp Cimiano, Tom Heath, Eero Hyvönen, Riichiro Mi-
zoguchi, Eyal Oren, Marta Sabou, and Elena Simperl, edi-
tors, The Semantic Web: Research and Applications, vol-
ume 5554 of Lecture Notes in Computer Science, pages 111–
125. Springer Berlin Heidelberg, 2009.

[Francopoulo et al., 2006] Gil Francopoulo, Nuria Bel, Monte
George, Nicoletta Calzolari, Monica Monachini, Mandy Pet,
and Claudia Soria. Lexical markup framework (LMF) for
NLP multilingual resources. In Proceedings of the Work-
shop on Multilingual Language Resources and Interoper-
ability, pages 1–8, Sydney, Australia, July 2006. Association
for Computational Linguistics.

[Lehmann et al., 2014] Jens Lehmann, Robert Isele, Max
Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van
Kleef, Sören Auer, and Christian Bizer. DBpedia - a large-
scale, multilingual knowledge base extracted from wikipedia.
Semantic Web Journal, 2014.

[Romary et al., 2004] Laurent Romary, Susanne Salmon-Alt,
and Gil Francopoulo. Standards going concrete: from LMF to
Morphalou. In The 20th International Conference on Com-
putational Linguistics - COLING 2004, Genève/Switzer-
land, 2004. coling.

[Sajous et al., 2013] Franck Sajous, Nabil Hathout, and Basilio
Calderone. GLÁFF, un Gros Lexique Á tout Faire du
Français. In Actes de la 20e conférence sur le Traitement
Automatique des Langues Naturelles (TALN’2013), pages
285–298, Les Sables d’Olonne, France, 2013.

[Sérasset, 2014] Gilles Sérasset. DBnary: Wiktionary as a
Lemon-Based Multilingual Lexical Resource in RDF. Se-
mantic Web Journal - Special issue on Multilingual Linked
Open Data, pages –, 2014. To appear.

DBnary : Extracting German inflected Form from German Wiktionary

Jérémie Suzan
Magistère internship with Gilles Sérasset

1 Abstract
Machine translation, speech synthesis and speech

recognition often required data like texts and dictionar-
ies. Good linguistic data should reflect language and lan-
guage changes, meaning be regularly updated and have
a wide coverage. And maintaining and keeping data up
to date is difficult.

Wiktionary is a dictionary working like Wikipedia,
constantly getting updated by hundreds of people each
month. This resource contains inflected forms, but has
a presentation syntax for building paragraphs, tables,
lists, titles, and all things needed to present a text. The
Syntax is easily learned by humans who didn’t learn com-
puter sciences.

In German an inflected form is a form derived from
canonical form, it can be a declination or conjugation
forms. For example, "kenne" is the first person present
for the verb "kennen" (to know), and "blauster" is the
superlative nominative masculine singular form for the
adjective "blau" (blue).

Wiktionary contains inflected forms of German, but
the resource is unexploitable because of the presenta-
tion’s syntax. DBnary[3] already extracts information
from Wiktionary , the work involves adding German in-
flected forms into DBnary.

The first step of the work was to find out German
inflected forms in Wiktionary. the inflected forms was
contained :
• in the canonical form page in a little table.
• in their own page.
• in specials pages, linked to the canonical form page,
for example Wiktionnary links the page "wissen" (to
know) with the page "wissen (Konjugation)".

In Wiktionary source, there are tables directly built
in wikicode, and HTML tables built by macros expan-
sion. For example {{Deutsch Personnalpronomen 1}}

build a HTML-table containing the Form of the German
personal pronouns "ich" and "wir" in the German’s four
cases.

This work need to :
• Evaluate Strategy of extraction for conjugation and
declination.
• Find Wiktionary’s Macro and expanding them.
• Parse Wiktionary HTML tables.
• Extract inflection’s information from HTML tables.

The declinated and conjugated forms was separated
for their handling. To evaluate extraction’s strategies, it
was a comparison between inflected forms extracted in
their own page, and forms generated with a macro (in
special pages or in canonical form’s pages).

When extraction operated, the work was to describe
inflected forms in RDF format with an Ontology (for
example Lexinfo or Olia). And creating links between
inflected forms, their characteristics and canonical forms
into DBnary representation.

Last part of the work was to compare the data
extracted with other data like Zmorge [2] and morphy
[1]. And know how many common forms and conflicting
forms they have.

References
[1] W. Lezius, R. Rapp, and M. Wettler. A freely available

morphological analyzer, disambiguator and context sen-
sitive lemmatizer for german. pages 743–748, 1998.

[2] R. Sennrich and B. Kunz. Zmorge: A german morpho-
logical lexicon extracted from wiktionary. may 2014.

[3] G. Sérasset. Dbnary: Wiktionary as a lmf based multi-
lingual rdf network. may 2012.

G
etting in�ected Form

s into D
Bnary

D
Bnary: Extracting Inflected Form

s from
 W

iktionary
R

aphaël Jakse &
 Jérém

ie Suzan —
 M

agistère L3 internship w
ith G

illes Sérasset

in�ected form
gram

m
atical inform

ation

parleras
canonical form

: parler
Part of speech: verb

num
ber: singular

m
ood: indicative

tense: present
second person

blauesten
canonical form

: blau
Part of speech: adjective

case: dative

gender: fem
inine

num
ber: singular

degree: superlative

W
hen

processing

natural

languages,

inform
ation about in�ected form

s is needed.

M
aintaining

 and
 keeping

 in�ected
 form

dictionaries up to date is di�
icult.

W
iktionary

 is
 a

 participative
 dictionary

 w
orking

 like
W

ikipedia, constantly
 getting

 updated
 by

 hundreds
 of

people each m
onth.

This
 valuable

 resource
 contains

 data
 about in�ected

 form
 but is

unexploitable as is.

D
Bnary is w

hat D
Bpedia

 is to
 W

ikipedia: a
 set of data

 extracted
 from

W
iktionary in

 the R
D

F form
at w

henever it gets updated, w
hich m

akes it
possible to use data from

 W
iktionary in a autom

ated w
ay.

W
ork

 has
 been

 done
 to

 extract in�ected
form

s
 from

 W
iktionary

 in
 D

Bnary. This
includes:

Finding
 out how

 in�ected
 form

s
 and

 related
 data

 appear
 in

W
iktionary.

W
riting

 parsers and
 m

odify D
Bnary‘s extractor to

 handle
 this new

kind of data.

Figuring out how
 to represent them

 in the D
Bnary m

odel.

Com
paring the result w

ith other resources.

A
s of Septem

ber 2014, in�ected
 form

s are extracted
 for the French and

G
erm

an languages. O
ther languages should follow

.

f
r
a
:
e
x
t
r
a
i
r
e
_
_
v
e
r
b
_
_
1

a

l
e
m
o
n
:
W
o
r
d

;

d
b
n
a
r
y
:
p
a
r
t
O
f
S
p
e
e
c
h

"
-
v
e
r
b
-
"

;

d
c
t
e
r
m
s
:
l
a
n
g
u
a
g
e

l
e
x
v
o
:
f
r
a

;

l
e
m
o
n
:
c
a
n
o
n
i
c
a
l
F
o
r
m

[

l
e
m
o
n
:
w
r
i
t
t
e
n
R
e
p

"
e
x
t
r
a
i
r
e
"
@
f
r

;

l
e
x
i
n
f
o
:
p
r
o
n
u
n
c
i
a
t
i
o
n

"
ɛ
k
s
.
t
ʁ
ɛ
ʁ
"
@
f
r
-
f
o
n
i
p
a

;

l
e
x
i
n
f
o
:
v
e
r
b
F
o
r
m
M
o
o
d

l
e
x
i
n
f
o
:
i
n
f
i
n
i
t
i
v
e

]

;

l
e
m
o
n
:
l
a
n
g
u
a
g
e

"
f
r
"

;

l
e
m
o
n
:
o
t
h
e
r
F
o
r
m

[

l
e
m
o
n
:
w
r
i
t
t
e
n
R
e
p

"
e
x
t
r
a
i
t
e
s
"
@
f
r

;

l
e
x
i
n
f
o
:
g
e
n
d
e
r

l
e
x
i
n
f
o
:
f
e
m
i
n
i
n
e

;

l
e
x
i
n
f
o
:
n
u
m
b
e
r

l
e
x
i
n
f
o
:
p
l
u
r
a
l

;

l
e
x
i
n
f
o
:
p
r
o
n
u
n
c
i
a
t
i
o
n

"
ɛ
k
s
.
t
ʁ
ɛ
t
"
@
f
r
-
f
o
n
i
p
a

;

l
e
x
i
n
f
o
:
t
e
n
s
e

l
e
x
i
n
f
o
:
p
a
s
t

;

l
e
x
i
n
f
o
:
v
e
r
b
F
o
r
m
M
o
o
d

l
e
x
i
n
f
o
:
p
a
r
t
i
c
i
p
l
e

]

;

l
e
m
o
n
:
o
t
h
e
r
F
o
r
m

[

l
e
m
o
n
:
w
r
i
t
t
e
n
R
e
p

"
e
x
t
r
a
i
t
e
"
@
f
r

;

l
e
x
i
n
f
o
:
g
e
n
d
e
r

l
e
x
i
n
f
o
:
f
e
m
i
n
i
n
e

;

l
e
x
i
n
f
o
:
n
u
m
b
e
r

l
e
x
i
n
f
o
:
s
i
n
g
u
l
a
r

;

l
e
x
i
n
f
o
:
p
r
o
n
u
n
c
i
a
t
i
o
n

"
ɛ
k
s
.
t
ʁ
ɛ
t
"
@
f
r
-
f
o
n
i
p
a

]

;

28/08/2014. O
rganisers of the IM

2AG
 M

agistère: Cyril Labbé and M
ichaël Périn.

Fact: extracting G
erm

an and extracting French need speci�c w
ork.

French W
ikicode

G
erm

an W
ikicode

=
=
=

{
{
S
|
a
d
j
e
c
t
i
f
|
f
r
}
}

=
=
=

{
{
f
r
-
i
n
v
|
s
m
a
ʁ
t
}
}

'
'
'
s
m
a
r
t
'
'
'

{
{
p
r
o
n
|
s
m
a
ʁ
t
|
f
r
}
}

{
{
i
n
v
a
r
}
}

#

[
[
é
l
é
g
a
n
t
|
É
l
é
g
a
n
t
]
]
,

[
[
r
a
f
f
i
n
é
]
]
.

#
*

'
'
U
n

c
o
s
t
u
m
e

'
'
'
s
m
a
r
t
'
'
'
.
'
'

#
*

'
'
C
e
s

n
a
n
a
s
,

e
l
l
e
s

s
o
n
t

t
r
o
p

'
'
'
s
m
a
r
t
'
'
'

!
'
'

#
*

'
'
U
n

t
o
t
a
l
i
t
a
r
i
s
m
e

'
'
'
s
m
a
r
t
'
'
'
.
'
'

{
{
D
e
u
t
s
c
h

A
d
j
e
k
t
i
v

Ü
b
e
r
s
i
c
h
t

|
P
o
s
i
t
i
v
=
s
m
a
r
t

|
K
o
m
p
a
r
a
t
i
v
=
s
m
a
r
t
e
r

|
S
u
p
e
r
l
a
t
i
v
=
a
m

s
m
a
r
t
e
s
t
e
n

}
}

[
.
.
.
]

{
{
B
e
d
e
u
t
u
n
g
e
n
}
}

:
[
1
]

[
[
g
e
s
c
h
i
c
k
t
]
]
,

[
[
d
u
r
c
h
t
r
i
e
b
e
n
]
]
,

[
[
p
f
i
f
f
i
g
]
]
,

[
[
f
i
n
d
i
g
]
]

:
[
2
]

[
[
e
l
e
g
a
n
t
]
]
,

[
[
h
ü
b
s
c
h
]
]
,

[
[
s
c
h
n
e
i
d
i
g
]
]

[
.
.
.
]

D
ata related to in�ected form

s can be found in their ow
n W

iktionary pages, conjugation or
declination tables, in their corresponding canonical form

s’ pages, depending on the
language and the form

.

1

MPSoC Virtual Platform Generation

Extended abstract
Thomas Baumela. Supervisors : Nicolas Fournel and Frederic Petrot

TIMA Laboratory - SLS Group - Grenoble, France

Nowadays, MultiProcessor System-On-Chip (MPSoC [5])
are widely used because of their multiple advantages (low
power consumption, usability in heterogeneous platforms,
meeting performances in multimedia, network architectures,
security, etc). These systems are becoming more complex to
design, thus we use simulation to develop software before
hardware platform availability. MPSoC virtual platforms allow
to design, run, debug and test software faster than on physical
hardware platforms using sophisticated tools. Developing such
virtual platforms (VP) is a complex and a time consuming task.

Today, Virtual platform environment (VPE) conceptors, VP
conceptors and software conceptors are all depending on each
others. These dependencies cause the following issues.

a) Complex and low-level VP implementations: Virtual
platform implementations are complex programs, only about
5% (in our working environment) of the information in these
is about architecture design. The rest is about syntax, dec-
larations, instantiations, etc. Platform designers need a more
high-level representation.

b) VP implementations depend on VPE: VPE updates
cause most of the time VP updates. Such operations are
manually made by platform conceptors, which results in a long
and complex process. If the way that every components are
connected to a data bus is modified by VPE writers, this must
be changed for every component of every platform.

c) Data redundancy: The set of programs and tools
needed to simulate a platform (including the software), contain
redundant data and parameters. These data have multiple
heterogeneous forms (different formats, languages, usage). The
problems caused by data duplications are obvious (complex
update, introduction of bugs, etc).

d) Found consistency problems: VP are difficult to im-
plement and debug. Debugging wastes time while the causes
of the majority of platform failures are often a simple consis-
tency error in the platform design (mis or unconnected wires,
addressing conflicts, etc).

The result work aims at solving every of the highlighted
issues by generating platform and tools from simple descrip-
tions. We have defined an architecture description language
(ADL) to provide to platform designers the ability to describe
their architecture easier. The language can describe a modular
representation of data, fitting to describing architecture. It
allows to, define components, link between them, give them
parameters, and embed them in other components.

ADL descriptions are then taking by the following genera-
tion model. This model is composed of three main processes.
First, parsing the description language into a specific data
structure making easier data access. Second, processing it

by consistency analyser which run a semantic analyser and
enriches the data structure to fit it to generator specification.
Finally a template processor reads this structure and generates
final outputs processing templates (substituting tags by variable
contents). Template processing allows to externally define
output structure and constant elements without modify the
implementation. A data manager can optionally be added to
enhance the given description.

Using this model for MVPG, we specialize it by defining
an analyser, and a template processor. They are both based
on a component-based software model making them loosely
coupled. The analyser is composed of a central analysis engine,
on which component analysers can self-registering them as a
plugin-like system. Each component analyser knows how to
analyse the platform component corresponding with. The tem-
plate processor is based on the same model, each component
generator knows how to generate component specific snippets
of program (declaration, instantiation, etc). In addition, the data
manager of this specialization provides an addressing auto-
management tool. This model made analysis and generation
processes completely extensible without any modification of
existing software.

In addition to VP generator we have developed a com-
ponent generator. Using the generation model (demonstrating
its reusability), it generates component skeletons (without be-
haviour) to easily write implementation of new components for
the VPE. It also generates component analysers and generators
to extend the VP generator describe before.

Our work environment is composed of the following tools.
YAML [1] in ADL parsing, helping to store the general
description structure into hash tables and arrays. Ruby [4]
for generator model implementation. C/C++, RABBITS [2]
and SystemC [3] for virtual platform implementations. Our
experimental works are the folowing : Generate pre-existent
platforms and compare them to validate generated platform.
Generate ldscripts as software parametrization.

To conclude, our work was to generate virtual MPSoC plat-
forms to provide higher representations of them to designers
and provide tools to help to build softwares. Our generation
model is generic and will can be used every time generation
is needed. In future, we would fully integrate generation
process in all our works about MPSoC simulations (generate
all existing platforms, integrate all existing components to our
generator, etc). Generate complete diagrams and documenta-
tion about a platform. Build a graphical interface to easier
manipulate descriptions. Find a way to integrate component
behavior in our descriptions.

2

REFERENCES

[1] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup
language (yaml) version 1.1. Working Draft 2008, 5:11, 2001.

[2] Tima laboratory SLS team. Rabbits : an environment for fast and accurate
mpsoc simulation. http://tima.imag.fr/sls/research-projects/rabbits/.

[3] Thorsten Grötkerand Stan Liao, Grant Martin, Stuart Swan, and Thorsten
Grötker. System design with SystemC. Springer, 2002.

[4] Yukihiro Matsumoto. Ruby programming language. https://www.ruby-
lang.org.

[5] W. Wolf, AA Jerraya, and G. Martin. Multiprocessor system-on-chip
(mpsoc) technology. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(10):1701–1713, Oct 2008.

�����
������������

���������
������

�����

����!
���������������!
������������������������!
!
��������!
�������������!

������������
���������������������������!
���������������������������!
��������������������������������!
���!
����������������������������!
!
���!
!
�����������������������������!
������������������������������������!
!
��������!
��
!
!
�������������!
�������!
����������������!
�����������������!
������������������������������!
������������������������������!
�������������������������!
!
������������!
���������������������!
!
�����������!
�������!
������������������������������!
!
!
������������������!
������������!
��������������

����

���������

����������
����!
!
���

����������!
!
���

�����������������!
!
���

���

��������������

�������� ����������

���������

�������������������

���������

�������
���������
�����������

��
��

���
������

���������
���������
�����������
���������
����������
������
����

��� ������

�������

�
�

�
�

��
��

�
�

��
�

��
�

�

���

���

�����������������

������������

��

����

����

��������

���������

���������

�

�����

���������

����
�������

��������������� �������
��� ����� ������� �����
�����������������

��� ���� ������������
����������������������
��������� ������� ����
� � � � � � � �� � ��
����������

���������������������
������������������������������
������������������������
���������������������������������������
�����������������
��������������������������������������
������������
��
�������������������
����������������������
��
�����������������������
���������������������������������������
���������������������������������
��
������
����������������������������
��������������������������������������
������������������������������������
������������������������
��������������������������������
���
������������������
���
���
����������������������������

���������������������������
�������������������������������
������������������
�����������������������������
��
����
���������������������������
���������������������������������������
�����
����������������������������
���
����
������������������������������
���
����
���������������������������������������
����������������������������������
���
������������������������
�������������������������
������
������������������������������

�����������������������������������
�����������������������������������
����������������������������������
��
��
��
����������������������������������
�������������������������������������
��������������
���
������
����������������������������������
��������������������������������������
��
������
����������������������������������
��
���
������
������������������������
������������������������������
�������������������������
������������������������������
����������������������
������������������������������
����������������������

����������
����!
!
���

����������!
!
���

�����������������!
!
���

���

��������������

��������

������������

�������������������

�������������������

����������
�����������������
��������������

��������� ���������������� ���� �����
�������������������������������!
����� ����������� ������ ��� ���������
����������

�����������������������
���������������������������

����������������
�������������

�����������������������������
��������� �� ������������������

��������������������������������

�������������������������������
������������������������������������

����

������������������������������
���������������������������

������ �����������������������

���!
�� ����� �������� ���� ��������� ����� ���� ���� ������ ��� ���
���!
���
�������� �������� �� ���������� ���������� ���� �������� ���
���!
!
���� ������ ��� ����������������� ������� ��� �������� ����
�����������

���������
����� ������������

�������

�������������

�����
���������

����
���������

��������������������
����������������

���

�����������������

�������������������
���������

���������
���������

������������

������������

�������������������
����������������

������������

�����
��������

����
��������

���

��������

�������

��������

����������

��������������

�������������
������������������
�
������������������������������
������������������������
�
����������������������������������
������������������������
��������������������������������������
����
��
�������������������
����������������������
������������������
�������������������������������
��������������������

�������������������������
��������������

�������������������������
�������������������������

�������������������������������

���������������������������������!
����������������������������������!
����������������!
����������������������������

��������������������
�����

��!
���!
����������������

1

PWM Driver (Pulse Width Modulation)

Extended abstract
Mehdi MAKHLOUF

TIMA Laboratory - SLS Group - Grenoble, France

Nicolas Fournel, Frederic Petrot

I. INTRODUCTION

Today Embedded Software become a must. A lightweight
OS allowing an adapted material, so less expensive. If we
talked about adapted OS, we talk about adapted driver too
and for us the pwm driver.

II. PWM

In our material, pins cans just product a digital value (On
5v, Off 0v) in their initial mode. But in severals situations
we needed to product numerics values. take a servomotor
in example, it has 3 calble (2 for alimentation and one to
control it), we want to control it with the third cable, who
wait digital values fluctuations: PWM algorithme need a value
to push(/pull), a range of values and finally a clock divisor
to know the frequency. the chip and the motor have a deal
for the values of the frequency and range too are sure. now
a ratio is calculate with the value push divided by the range.
this ratio represents the percent of the cycle where the digital
values takes On, the last part of the cycle it is Off. exemple:

range: 1024 frequency:X mHz value push: 256

V
5

0

Clock Cycle

25%

75%

III. PROBLEMS

To initialize the pwm mode on the chip, we need to access
on the physicals adress to modified the device register. We
much to say at the pin what mode to use, and many others
parameters. Or it’s better if the application don’t access on
the physicals addresses directly, cause of possible errors. A
bad adress can cause many problems on the chip, if you write
on a other register for example. More the initialization of the
device is not very variable, maybe can we activate the device
before the application?

IV. SOLUTIONS

A solution exist, driver using. it’s initialized before the
application main and all access are doing by the access
function of the driver(open, read, write). A file is mounted
for this access, without have to know adresses of the device
registers.

V. EXPERIMENTATIONS

We have begun to write in the raspberry pi [2] registers
into application’s main. After have understood a part of the
documentation, we have find more informations in wiring pi
library [3] who offers access of a lot off possibility with
the raspberry pi, but on a os who give you the access by a
file mounted ”/dev/mem”. We have finally find lasts missings
offsets in this library, we have do our first steps with an
oscilloscope and make a driver with this code. Initialize before
the main, run with a open on our mounted file ”/devices/pwm”
and assign values and parameters on the device with primitives
write and ioctl (change range, frequency or data to push), with
a file descriptor return by the open function. the application is
write in c language with Apes [1]

VI. CONCLUSION

In conclusion we have do a driver of pwm generation for
raspberry pi model b, with settings for a total utility without
know more information about the raspberry pi registers.

REFERENCES

[1] Apes: Application elements for socs. http://tima.imag.fr/sls/research-
projects/application-elements-for-socs/.

[2] Raspberry pi b : is a credit-card sized computer that plugs into your tv
and a keyboard. http://www.raspberrypi.org/.

[3] Wiring pi: gpio interface library for the raspberry pi. http://wiringpi.com/.

Raspberry Pi
(C)2011

Ethernet
RJ45

2xUSB 2.0

HDMI

3.3V
Regulator

Micro-USB
Power

Status-LED's

CPU/GPU
Broadcom
BCM2835

C
a
m

e
ra

 C
S
I D

isp
la

y
 D

S
I

1.8V
Regulator

Ethernet-
controller

E
th

e
rn

e
t JTA

G
G

P
U

/G
P
U

 JTA
G 2.8V

Regulator

Composite
Video RCA3.5mm

audio out

O
K

P
W

R
FD

X
LN

K
1

0
M

Output device drivers for lightweight OS

DNA-OS

Program

Virtual file
driver

Cervomotor

3,5V

Load

Initialized

Open/control

Read/write

Read/write/registers

PWM* control

+ -

45°

0° 180°

the puls width modulation
algorithme (PWM) permiss
you to transmit a numerical
value with a digital value.
pwm take the cervomotor
range and frequency on
parameters to transmit a
utilisable value.
the digit begin at 1(3.5v) and
end at 0(0v), the value
transmit is equal as the
percent of the time where
the digit stay at 1.
exemple on left.

=25% of 180° = 45°

The driver is mouted in a file by the operating system(os). The program can
read,write or call an other control function with the file descriptor return by
an opening of this file. file mounted take a gate responsability and call the
driver function when a read, write or control function was call on the program.

when OS starts, it mounts all drivers and initialize them, all of them initialise the device who it control with read/write
on the devices registers. after all initializations it will start the programm's main. the programm open the driver's file
mounted , who permiss to init the PWM's clock register for us, and after transmit a value with a write to give an order
at the driver to write on the pwm's data register to permiss the hardware to execute the algorithme and transmit the
value with the gpio. Finally the cervomotor take the value and on this example turns to have the same angle as the data
recieved.

exemple of a simple program execution :

Mehdi Makhlouf

25%

0V

3.5V

Start

Init
drivers

Init
devices

Start main
program

Open
driver

Init
clock

Write on
driver's file
descriptor

Write
registers

PWM
transmission

Driver

Program

OS

Hardware

Resolution of Bin Packing Problem on GPU

Luc Libralesso

Supervised by: Michaël Gabay

Extended Abstract
In the bin-packing problem, a finite set of items is to be

packed into a minimum number of bins [Martello and Toth,
1990].

It has many applications like cutting metal bars,filling
trucks,virtual machines placement...

Thanks to some work on bin-packing problem, a com-
pany reduced it’s production costs of paper for an amount
of 56 million euros with reduce wastes of about 1% [CEPI,
2012].

The bin-packing problem is a hard combinatorial optimiza-
tion problem (NP-Complete) Hence,it is very challenging to
solve it optimally.

We can use different approaches :

1. Find structures on instances. With this properties, we
can design efficient algorithms for special cases.

2. Use and design heuristics. Heuristics are fast algorithms
but they do not always return an optimal solution. Some-
times we can even show that the value of the heuristic so-
lution cannot worse than a ratio to the optimal solution
value. For example, First Fit solution for the bin packing
problem is guaranted to be less than 71

60 ×OPT + 1.

3. Solve it with a exact – smarter – algorithm (whose com-
plexity) is exponential in the worst case.

In this internship, we focused on the third option and saw
what can we do to solve bin packing instances in a faster way.

In a first time, we developped and implemented ways to
generate in parallel, partitions and permutations by finding a
bijection between an integer set and solutions space. More-
over, partitions are standard mathematical objects and can be
used for other problems.

The index based object generation makes it easy to imple-
ment the approach on Graphics Processing Unit (GPU).

Permutations : This is the first version of parallel generation
[Wong, 2002].

Partitions : This method use the same principle than Per-
mutation method (i.e. generation by index). It also use
partition representation with restricted growth strings
[Orlov, 2002] that breaks a lot of symetries.

Partitions with sizes : With this method, we only generate
partitions with a given size..

Another way to find the optimal solution is to make deci-
sions on partial solutions. Partial solutions are extended until
we can guarantee that we will not give a better solution than
the best known solution.

Idea : Represent problem by a tree in which each edge is
a choice and each leaf is a solution. The Branch and Bound
approach finds a leaf minimizing the value of the solution.
Key Steps :

• Choose the “most interesting” node
• Generate Children of the selected node
• Compute bounds with heuristics and relaxations
• Update global bounds (if feasible)
• Prune nodes by comparing their bounds to global

bounds

We designed some ways to make choices and made an im-
plementation than can solve instances with up to 200 items in
less than one second.

References
[CEPI, 2012] Key Statistics CEPI. European pulp and paper

industry. 2012.
[Martello and Toth, 1990] Silvano Martello and Paolo Toth.

Knapsack problems. Wiley New York, 1990.
[Orlov, 2002] Michael Orlov. Efficient generation of set par-

titions. Engineering and Computer Sciences, University of
Ulm, Tech. Rep, 2002.

[Wong, 2002] SV Wong. Permutations with cuda and
opencl. Article on http://www.codeproject.com/, May
2002.

Resolution of Bin Packing
Problem on GPU

Intern : LUC LIBRALESSO Supervised by : MICHAËL GABAY

Problem Presentation

Bin packing has many applications :
— Cut cables to minimize waste
— Load Trucks to minimize lost space

It’s an NP-Complete problem.

examples of solutions for instance with
bin capacities = 8 and items = (4, 3, 3, 2, 2, 2)

(a) Heuristic solution (b) Optimal solution
3 bins 2 bins

Integer Linear Programming

Data :
c (integer > 0) bin capacity
n (integer > 0) number of items
wi (integer > 0) weight of the item i

Variables :
xi,j (boolean) true if item i is inside bin j false otherwise
uj (boolean) true if bin j is open false otherwise

Minimize
�

j∈{1,...,n}
uj

�
i∈{1,...,n} xi,j × wi ≤ c ∀j ∈ {1, ..., n} (1)�
j∈{1,...,n} xi,j = 1 ∀i ∈ {1, ..., n} (2)

uj ≥ xi,j ∀i, j ∈ {1, ..., n}2 (3)
uj ≥ uj+1 ∀j ∈ {1, ..., n} (4)
xi,j ∈ {0, 1} ∀i, j ∈ {1, ..., n}2 (5)
uj ∈ {0, 1} ∀j ∈ {1, ..., n} (6)

Permutations and Partitions

Branch & Bound

Idea : Represent problem by a tree in which each edge is a choice
and each leaf is a solution. The Branch and Bound approach finds a leaf
minimizing the value of the solution.

Choose the “most interesting” node

Generate Children of the selected node

Compute bounds with heuristics and relaxations

Update global bounds (if feasible)

Prune nodes by comparing their bounds to global bounds

Breadth
First
Search

Depth
First
Search

Graphics Processing Unit

We use GPU to compute solutions. It of-
ten uses about 500 cores which have a fre-
quency about 700Mhz.

It’s also possible to improve global per-
formance by using a good type of memory.

Bibliography

[1] SV Wong. Permutations with cuda and opencl. Article on
http://www.codeproject.com/, May 2002.

[2] Michael Orlov. Efficient generation of set partitions. Engineering
and Computer Sciences, University of Ulm, Tech. Rep, 2002.

[3] Silvano Martello and Paolo Toth. Knapsack problems. Wiley New
York, 1990.

Perspective

Permutations and Partitions
— Can we generate partitions of multisets ?

Branch and Bound
— Experiment other branching rules
— Improve node selection heuristics (Pricing)
— Implement additional heuristics and reductions
— Combine CPU and GPU to further accelerate the Branch and

Bound (Hybrid Computing)

1

Performance analysis of accelerator caches
Lea Albert, Guillaume Huard

Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France, Inria - MOAIS

Nowadays, computers are composed of accelerators in ad-
dition to their CPUs (central processing unit), that enable the
execution of parallel tasks. GPUs, are composed of grids of
cores. Each such grid possesses eight to thousands cores that
work synchronously. They have a L1 cache shared between
their cores and are connected to the same global L2 cache.
MICs have also many cores that work asynchronously and
have a private L1 cache. Here we work on the only currently
existing MIC, the Intel Xeon Phi coprocessor (60 cores). It has
a particularity: each core has a local L2 cache shared with the
other cores using a bidirectional ring interconnect.

In this work we aim at finding out which of these archi-
tectures is the most efficient regarding the memory. We want
to evaluate them regarding the raw memory efficiency and
the efforts required from the programmer to reach their full
potential.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100

m
ic

ro
se

co
n
d

e
s

Size of block

GeForce 610
GeForce 660
GeForce 670

Fig. 1. Matrix product of 2048×2048 matrices on GPUs

In our experiments, we have decided to work with an algo-
rithm that can be efficiently parallelized, the matrix product,
in which the same data in memory are reused multiple times.
In a naive implementation of this algorithm, the locality is
poor: only the lines of the first input matrix are a source
of spatial locality. We will compare it to a matrix product
by block [1]: the algorithm iterate over blocks of the three
matrices to compute a part of the product in which each
element of each input block is reused a number of times equal
to the block size.

In our first experiment, presented in figure 1, we com-
pare three different GPUs of the same generation of Nvidia
GeForce. We study the effect of the size chosen for the blocks
on the efficiency of the matrix product by block. Notice that
the naive implementation is equivalent to a matrix product by

 100

 1000

 10000

 1 10 100 1000 10000

S
e
co

n
d

e

BlockSize

Intel Xeon Phi

Fig. 2. Matrix product of 2048×2048 matrices on the Intel Xeon Phi

block using 1 as the size of the blocks. Although the 610M
is improved by up to 5,7% when the blocksize increases, it
stays the least efficient. It has a L1 and L2 caches smaller
than the other accelerators. There are almost not differences
between the GeForce 660 and GeForce 670: Both of them
are improved by 3%. They are composed of the same type of
memory hierarchy and of caches of almost the same size.

In our second experiment, presented in figure 2, we evaluate
the same algorithm running on Intel Xeon Phi coprocessor:
Until a block size of 16×16, the performance is improved: for
each result block, we can store all the sub-matrices in the l1
cache. After this size, there is a degradation: with a block size
of 32×32, the degradation is significant due to it uses the L2
cache instead of the L1. We can note that from the 64×64
we start to become more efficient, probably because of the
increased locality brought by the larger block.

To conclude, we have seen the cache behaviour of the
GPUs and MICs is the same for the matrix product. An
effort is required from the programmer to reach the full
potential of the memory hierarchy and, regarding the gains, it
is especially important on the Xeon Phi. We have performed
these experiments on small matrices (2048×2048) and it would
be interesting to extend it to larger sizes that do not fit into
the L2 cache. Also, here we have only evaluated one program,
the matrix product. It would be interesting to test and compare
our accelerators on others programs.

REFERENCES

[1] Ulrich Drepper. What every programmer should know about memory.
Technical report, November 2000.

Performance analysis of accelerator caches
Léa Albert

Guillaume Huard
INRIA MOAIS

It has many asynchronously cores. Each cores have a private l1 cache.
The l2 cache is a bidirectional ring interconnect and each core is
connected by this cache.

In recent years, the accelerators were developed in the market: There
are cheap and powerful. There are two types of accelerators:

GPUs are composed of grids. Each grid has synchronously cores and a
l1 cache. A l2 cache connect all the grids.

The GPU used hasn’t a l2 cache. By copying in local memory, we can go
faster. It is important to allocate explicitly memory to gain performance.

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14 16

m
ic

ro
se

co
n
d

e
s

Size of block

With shared memory
Without shared memory

- By cutting the matrix result on block, we are more efficient
- The GeForce 610 is less powerful (l1 and l2 cache smaller).
- Few differences between GeForce660 and GeForce 670
 (almost similar capacities).

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100

m
ic

ro
se

co
n
d

e
s

Size of block

GeForce 610
GeForce 660
GeForce 670

- The Intel Xeon Phi performances are improved.
- Capacity to store all data in l1 cache (with block size 16x16 or -)
- Need to use the l2 cache after this size (peak on 32x32)
- Using l1 and l2 cache for compute less block (go faster).

It is important from the programmer to work on his code to benefit
fully from the memory whatever the architecture.

I) The context

a) MICs (Many Integraded Cores)

Fig 1: The Intel Xeon Phi coprocessor used for our experiences

b) GPUs (Graphics Processing Units)

Fig2: The NVIDIA’s GPUs

II) The goal

III) Experiences
a) Program with and without shared memory

Fig 4: Running of matrix product of size 1024x1024 on Quadro FX580

b) Program on several GPUs

Fig 5: Running matrix product of size 2048x2048 on GPUs

c) Program on the Intel Xeon Phi

IV) Conclusion
Fig 6: Running matrix product of size 2048x2048 on the Xeon Phi

 100

 1000

 10000

 1 10 100 1000 10000

S
e
co

n
d

e

BlockSize

Intel Xeon Phi

References : [1] Ulrich Drepper. What every programmer should know about memory.
Technical report, November 2000.

Memory has many consequences on the running time of a program.
The goal of the experience is to evaluate the local memory of these
two architectures.
We use the matrix product program:
	°Classic linear algebra
	°Handle much data to be re-used

Fig3: Matrix product per block [1]

VSS-Simulator Stats Viewer

Myriam CLOUET

31 juillet 2014

During the last years, Vehicle Sharing Systems (VSS) have expanded dra-
matically. Those systems are interesting for a variety of reasons (ecological,
economical and political). People are led to think that Vehicle Sharing Sys-
tem will continue to develop.

There is a need for the operating analysis of VSS, their return on invest-
ment and tools for deciding where to implement them and with which design
parameters, such as station location and sizing, �eet sizing, incentives and
prizing policies.

That's why G-SCOP laboratory developed a Vehicle Shareing System
simulator (VSS-Simulator) for analyzing virtual VSS thoroughly.

The simulator can provide data in CSV (Comma Separated Values) format.
This �le can be converted into a tabular within the needed data.

But this format is not realy human readeable and there is a real need
for its analysis. There is a need for a program that is able to convert CSV
format into a graphic output would therefore useful.

During my internship, I developed such a program. For that, i used Java
and some libraries like JFreeChart and Swing.

This program works as follows : the user indicates the path to a CSV
�le output by the simulator, keeps the important data structure from the
CSV �le, then the user can choose which data display. Finally, the program
computes the required data, extracts it and displays it with diverse charts.

However, there are some improvements needed for the program. One of
them is to allow the user to treat other data from the simulator, annex data.
Another improvement can be generating other chart types from the user
request

1

VSS-Simulator Stats ViewerVSS-Simulator Stats Viewer

Introduction and Objectives

Equipements and Methods Results

● Recently increasing interest in Vehicle Sharing Systems (VSS)
● Already existing VSS-Simulator
● Necessity to analyze data from VSS-Simulator

● Equipments :
- langage : Java
- library : jFreeChart, Swing, ...

● Methods :
Program creation that parse file CSV

from VSS-Simulator, store data and
generate Charts depending user request.

● A program that allow user to
choose any file CSV from VSS-
Simulator, various charts and their
features.

● The program displays these data in
charts choosing.

Conclusion

● The program allows to user to choose various charts from data that he want to
analyse int the aim to assist their analyse.

● Improvements :
- Process more data
- Generate more charts.

Myriam CLOUET – Laboratoire G-SCOP

Analytical model on memory and cache coherence
Marion Dalle

Univ. Grenoble Alpes,
F38000 Grenoble, France
CEA, LETI, MINATEC

campus, F38054 Grenoble, France
marion.dalle@e.ujf-grenoble.fr

Supervised by: Yves Durand, Florence Perronnin and Jean-Marc Vincent

Abstract
Designing multicore systems with shared memory
attracts much attention from the designers in the
area. Analytic models allows to evaluate the perfor-
mance of these systems. Thanks to this insight the
designers can dimension the architecture. The ex-
isting models consider average service times. Un-
fortunately the system with shared memory uses
a cache coherence protocol. These protocols can
cause the service times to vary and the existing
models do not take into account this variability. In
this paper we develop a detailed study of the service
time variability for a novel architecture developed
at CEA Grenoble. Some models are developed to
evaluate the performance of the architecture stud-
ied. By building increasingly complex models of
the architecture and analyzing these models.

Distributed Interactive Model Checking for Hybrid Systems

Jeremy Wambecke
M1 Informatique Verimag

Supervised by: Goran Frehse and Olivier Lebeltel

I understand what plagiarism entails and I declare that this report
is my own, original work.
Jeremy Wambecke, 21/08/14:

Abstract
Hybrid systems describe the evolution of a set of
continuous variables with both discrete and contin-
uous dynamics. They are studied since they can be
applied to model a lot of systems, relative to com-
puter science or to other fields. SpaceEx is a state
of the art model checking tool for these systems,
based on efficient algorithms to check the models of
real dimension systems. Its current user interface,
through a web browser, gives a limited interaction
with the tool.
An interactive way to control the analysis, associ-
ated to a visualization system, will make easier the
checking of hybrid systems and so their modeling.
Some examples of features that can be useful are a
step by step analysis mode and a pause command,
to visualize partial results. This system has to be
distributed, to allow both local and distant usages.
For this, a client-server architecture provides a flex-
ible and easy to maintain solution, while allowing
these usages.
The result is a single-user prototype which com-
putes trajectories and sends them to the interface
to be displayed. It can react to some control com-
mands, such as pause and provides a step by step
mode for the analysis. Further work is needed to in-
tegrate the SpaceEx analysis core and to add multi
user functionalities.

1 Introduction
Hybrid systems are used to represent continuous systems in
which discrete events occur. They deal with the evolution of
real variables, which is continuous but can change according
to discrete events. The reachability of these systems, i.e. try-
ing to know which values the variables can have, is known
to be a hard problem due to this particularity of both discrete
and continuous properties[Alur et al., 1995]. SpaceEx[Frehse
et al., 2011] is a tool platform for the Verification of such
systems, developed at Verimag laboratory under the Hybrid

team of Oded Maler. It consists of an analysis core based on
a reachability algorithm, associated to a model editor for cre-
ating hybrid systems models in analysis core format. These
models can then be sent to the analysis core to be checked
through a web interface.

The main goal of this internship is to design and implement
a new form of interaction with the SpaceEx analysis core,
which will be more powerful, user friendly and convenient
than the current one. An important requirement for this new
interface is the reactiveness. Indeed, a computation can take
a large amount of time and we want to get a feedback on it.
For example, if an user launches a computation and waits a
lot of time while it’s not expected, it would be better that he
can have a way to ask what is happening with this. Within
this scope, some ways to control the computation have to be
added, such as a step by step mode which allows the user to
incrementally check a model.

This new form of interaction with SpaceEx would ideally
be fitted to the two main usages, namely local and distant
ones. So, an architecture which seems appropriate is a clien-
t/server one, where the server can be accessed locally or dis-
tantly. The server encapsulates the SpaceEx analysis core and
provides to it a way to react to control commands, and to send
results to the client. This last includes a way to send these
commands and the visualization system for the analysis re-
sults. One approach for this kind of architecture is remote
procedure calls (RPC), which allows the client to call func-
tions of the server. This approach has several advantages,
such as the encapsulation of low-level network aspects.

The implementation results in a server embedding a com-
putation core which generates trajectories. The SpaceEx core
was not yet embedded in the server, as a simplest analysis
core which simulates its behavior was used for the tests. This
server can react to some control commands sent by the client,
such as pausing the computation, computing a step in the al-
gorithm or stopping it. It sends partial results, i.e., the trajec-
tories that have been computed, when it’s going in pause, on
demand or after a step was executed. In the other side, the
client provides a way to send the commands to the server, re-
ceiving the computation status to inform the user. It displays
the received trajectories with some options, such as variables
to display selection or zoom features.

This report is structured as follows. Section 2 presents the
hybrid systems and the notion of reachability. Then section

3 evokes the client-server architecture and the possible appli-
cations provided by it. Section 4 discuss about the interests
to have an interactive model-checking, and presents the rela-
tive functionalities to be provided. Section 5 explains some
implementation choices, such as the choice of a RPC library.
Finally, section 6 comes as a conclusion and presents further
work to be done on the project.

2 Hybrid systems
This part describes the concepts of hybrid systems, their rep-
resentation as automata and the concept of state in this field.
Then, we approach the modeling and model checking con-
cepts and discuss why it is an important issue. For more de-
tailled description, see [Branicky, 2005].

2.1 Description
A hybrid system consists of a set of real valued variables
which evolve according to continuous equations. It has a set
of discrete states, called the locations, each having its own
equations. At a given time, the system is in one location,
which determines the equations that are applied on the vari-
ables. Thus the equations that are applied to the variables
depend on the location in which the system is. The equations
of a hybrid system are called the flow equations. A hybrid
system is associated to discrete events occurring according to
the variables values, which lead to a location change. These
events are called transitions. A hybrid system can be repre-
sented by a hybrid automaton, with the locations as the au-
tomaton states and the discrete events as the transitions.

We use the following syntax in the hybrid automata rep-
resentation. The equality is represented by a ‘==‘ symbol,
while the ‘=‘ symbol represents an affectation. The prime
represents either the derivative of a variable or the new value
of it, depending on whether it is in a location or in a transi-
tion. For example, x’ represents the derivative of x in a flow
equation, whereas it represents its new value if it is placed in
a transition. We will precise this meaning in the following.

2.2 Locations
A hybrid automaton is composed of discrete states called
locations, each having its own flow equations and applying
them to the variables. So, the dynamics of the variables, i.e.,
their evolution, is defined by the flow equations of the current
system location. The locations are associated to a label, and
have an invariant on the variables which defines when it is
possible to remain in it.

Figure 1 describes the parts of a location of an automaton
with two variables. In this example, x must be positive and y
lower than 10 to stay in this location. The dynamics of y and
x are expressed by their derivative, the one of y is equals to x
while the one of x is 1.

In a hybrid system, the expression of the flow equations is
of the form x’ == a1.x + a2.x + a3.x ... + b. It is possible
to represent inequalities in this form in placing restrictions
in invariants. For example, an inequality -1 < x’ < 1 can be
expressed in introducing a variable e, with x’ == e as the flow
equation and -1 < e < 1 as the invariant.

Figure 1: Location example

Figure 2: Transition example

2.3 Transitions
The locations are associated with transitions. They have a la-
bel to be identified and can have a guard, which is a condition
on the variables to take the transition. The transitions op-
tionally have some assignments on the variables, represented
with a prime symbol. Notice that these assignments can lead
to a discontinuity in a variable dynamics, as its value changes
arbitrary at a given time.

Figure 2 describes the parts of a transition between two
locations. In this example, this transition is possible when
y reaches the value of 4. During this transition, x takes 6 as
value, as described with x’ = 6. Note that x’ in the assignment
part of a transition is not the derivative, but the representation
of the new value of x.

Two important rules about transitions have to be known :

• The invariant of a location must be satisfied to stay in it.

• To take a transition from a location to another, the invari-
ant of this latter has to be satisfied, as well as the guard
of the transition.

Hybrid automata can be non-deterministic, as if some tran-
sitions are possible the system can take any of them or stay in
the same location if its invariant is respected. The guard of a
transition is optional, as it can be deduced from the invariants
of the source and destination locations. However, for clarity
reasons, a common practice is to always specify the guard of
a transition.

2.4 States and reachability
Let’s introduce the concept of state. A state of a hybrid sys-
tem is defined by a couple (loc, val) where loc is the current
location of the system and var is a set which gives each vari-
able a value. This must not be confused with a discrete state,
called location. A hybrid automaton is associated to an ini-
tial state, which corresponds to the location in which it begins

Figure 3: Example of a hybrid system describing the evolu-
tion of a variable y. The curve represents the beginning of its
execution with (y ≤ 5, y==0) as initial state. Notice that this
system is non-deterministic, as when y is equals to 5 the two
locations are acceptable for the system. However, a hybrid
system is in one location at the same time.

and a set of values for the variables. These values correspond
to the initial ones of the variables.

An execution of a hybrid automaton is a sequence of as-
sociations of transitions and sets of values for the variables,
according to the dynamics of the locations covered by the hy-
brid system. An execution originates in a given initial state.
A state is reachable if an execution leads to it. In other words,
the reachability can be defined by, from a given location and
having an initial values for variables, it is possible to reach a
given location with expected values for the variables. For ex-
ample, in figure 3 the state (Greater than 5, y==6) is reachable
with (Lower than 5, y==0) as initial state.

We define a trajectory as the sets of values taken by a hy-
brid system variables during the time passed in a given loca-
tion, after a given transition and before it takes another. An
execution can be represented with a set of trajectories, cor-
responding to the different locations reached by the system.
For example, in figure 3 the execution can be represented by
two trajectories. The first corresponds to the time passed on a
first location, when y is lower than 5. The second corresponds
to the time passed on the second location, where y is greater
than 5.

2.5 Modeling and checking
A critical step in these systems is the modeling one, as its
result will make the foundation of a product. That is why
a lot of time is dedicated to ensure that the model will not
reach unacceptable states, especially in critical systems. For
example, a helicopter controller must ensure that the vertical
orientation will not exceed a given threshold for the aircraft
not pitching down. That demonstrates the need for a tool that
provides not only reachability features but also a way to find
where the model behavior has began to be wrong.

Figure 4: Bouncing ball model defined in the Model Editor
of SpaceEx

SpaceEx[Frehse et al., 2011] [Frehse, 2010] is a model
checking tool for hybrid systems, developed by the Hybrid
team of Oded Maier at Verimag. It enables to define a hy-
brid automaton model in its own language, with the help of
a model editor. Figure 4 shows the model of a bouncing ball
defined in the Model Editor.

Then the user can specify some options as the initial state
and then he can check the model. It provides several algo-
rithms such as Phaver [Frehse, 2009] or Le Guernic-Girard
(LGG) [Guernic and Girard, 2010], and features to develop
new ones. These embedded algorithms allow to check real
models, with hundred of variables, in an acceptable time.
This scalability is provided by the algorithms properties, es-
pecially the data structures used, which allows to perform
some frequently used operations in model checking. This par-
ticularity makes SpaceEx attractive for companies, as a scal-
able checking tool for a wide range of systems which depend
on real variables. It supports the concept of forbidden states,
that can be defined. A forbidden state is one that must not
be reached in the execution. If it is the case, it is notified to
the user. Figure 5 shows the results of a helicopter controller
analyze in SpaceEx.

2.6 SpaceEx algorithms
To understand the design of interactive model checking, we
describe the form of the SpaceEx algorithms. It uses a fixed
point computation, that is, the result obtained at a step is used
as the basis of the next one. Figure 6 represents informally
the form of the algorithms used in SpaceEx. Two sets of
states are used. The first one, called waiting, represents the
states which remain to be analyzed. The second one, called
passed, contains the states produced with the previous steps.
The states in the passed set are so the reachable states of the
analyzed model. At the beginning, the waiting set contains
the initial state of the system and the passed set is empty. At
the end, the passed set is sent to the output as it represents
the system evolution. The function computeSuccessors re-
turns the successors of a state. This function depends on the
used algorithm, which differ mainly in set representation and
operations on it. It checks if the states that results from this
were not already reached. If it is the case, i.e., if a state pro-

Figure 5: Results of a helicopter controller analyze in
SpaceEx. This shows the aircraft stabilization by the con-
troller.

p a s s e d = θ
w a i t i n g = { i n i t i a l _ s t a t e }
whi le (w a i t i n g 6= θ) loop

s = pop (w a i t i n g)
w a i t i n g = w a i t i n g ∪ c o m p u t e S u c c e s s o r s (s)
p a s s e d = p a s s e d ∪ { s }

end loop
o u t p u t (p a s s e d)

Figure 6: Form of the SpaceEx algorithms

duced is already in the passed set, it is not added. So, the
algorithm ends only if, at a given time, all the produced states
were already reached.

3 Architecture for Local and Distributed
Usages

This section describes the architecture used for the system.
The chosen architecture model is a client-server one (see
[Janssen, 2014] for a definition). The server side is composed
of the computation core with a wrapper around it to inter-
pret received commands, while the client side has a part of
data processing, a visualization system and a graphical inter-
face for the user to interact with ergonomics. Both client and
server have a communication layer, which interact according
to defined protocols for the client to connect to the server, to
launch a computation, to control it and to exchange data in a
certain format.

3.1 Local and distributed usages
• Local usage corresponds to the scenario in which an

user downloads SpaceEx on his own machine for work-
ing on it, just by launching it like another simple soft-
ware. In particular, the user does not have to config-
ure anything for running SpaceEx. What’s more, several

Figure 7: System architecture

instances of this same software can be launched at the
same time without having conflicts. With this scenario,
the server can be seen as having a single client.

• Distributed usage corresponds to a scenario in which
the server is running on a machine, and several users
connect to it to request model checking, each having his
own client on his machine. The main example for this
case is a classroom session, where the server was con-
figured and runs on a machine while some students are
launching computations on it. This scenario brings up
some issues, like getting the IP/port of the server for the
clients or identifying them.

3.2 Advantages of a Client Server Architecture
The main advantage of this architecture is the independence
of both parts, with the exception of the communication lay-
ers which depend on communication protocols. Client and
server can be written in different languages, which is the case
in this system. The SpaceEx computation core was developed
in C++ for performance, as model checking operations are
costly. Since the server side has to encapsulate this computa-
tion core, it has to be written in this language to encapsulate
it. The client side has to be portable for being executed on dif-
ferent systems, so the choice of Java was made. In addition
it makes easier the development of graphical user interfaces
with the embedded swing library.

3.3 Remote Procedure Calls for Communication
One approach for this kind of architecture is remote proce-
dure calls (RPC), which allows the client to call functions
(or methods in case of object oriented programming) of the
server. This approach has several advantages, such as the re-
use of network-dealing code, which furthermore encapsulates
low-level aspects. Furthermore, RPC give more semantics
than a raw flow of bytes, as when handling with read/write on
sockets. This method is used for message passing between
the client and the server, for example for the client to send
the model to check or for the server to send the results. The
RPC are used to implement the communication protocols that
initiate an analysis.

3.4 Applications
This architecture provides several ways of usage for SpaceEx
:

• Local
The communication can be established with client and
server on the same machine, allowing the user to launch
both as a local software.

• Distributed
Client and server can communicate through a network.
In this way, it is possible to launch the server on a ma-
chine and to access it distantly. This makes the usage of
SpaceEx easier, as the server can be configured once for
all users, which have just to specify the machine coordi-
nates to access the server.

• Classroom work
The typical applied example of the previous point, where
the server is running on a machine in a computer room,
while students are launching some computations on it in
the context of a practical work.

• Company usage
The model checking of hybrid systems interests the in-
dustry, so with this architecture the server can be in-
stalled on a shared machine of a company, accessed by
its members. This will allow to share computation re-
sults, and to simplify the usage of SpaceEx.

• Cloud
The most advanced usage of the system is to let the
server run on a machine accessible through Internet and
to distribute a preconfigured version of the client, which
allows to connect without configuration. It is in consid-
eration at Verimag, but requires a lot of work and means
to apply it.

4 Interactive model checking
A tool which provides a way to check a hybrid model with
interactivity can be very useful. In fact, with only the final
results of the model checking, it is difficult to visualize the
evolution of a model. If the results are not valid, i.e., a not
acceptable state was reached, it is important to discover at
which step the system has began to go wrong. So this tool
could act like a debugger, for example in automatically paus-
ing the computation when a wrong state is reached or execut-
ing it step by step. In addition, some controls are given to
the user through the client, as making the core to pause the
computation, to execute a step or to restart it.

4.1 Visualization system
Added to these controls, an interactive visualization system
can help to understand the model behavior. This can provide
a way to select some variables, whose trajectories will be dis-
played. A zoom can be applied on these. Furthermore, the
understanding of what is going on with the system is some-
times easier when displaying the variables as a function of a
certain another one, which is provided by this system. Figure
8 shows an example of a such system, which is composed of

Figure 8: Computation results with variables as function of
another

three variables : x, y and the time t. The two first curves are
representations of respectively x and y as functions of time,
while the third is the representation of y as a function of x. We
can see that this system is perfectly periodic, as this makes a
circle and not an ellipse, and so a fixed point was found. This
is not obvious with only the two first curves.

4.2 Step by Step Computation
Hybrid systems can be very complex and be composed of
hundred of variables, which makes their modeling and above
all the detection of errors very difficult in these cases. More-
over, an error in the modeling can lead to the reach of an un-
acceptable state, but not always at the next step. In fact, this
wrong state can be reached after many steps was executed.
When it occurs, the initial error is impossible to find in the
results, due to the large number of trajectories. To address
this issue, a step by step mode provides a way to visualize the

intermediate results, in forms of trajectories, whenever a new
state is reached. With the displaying of these intermediate re-
sults, the user can immediately see that sometimes is going
wrong in the model, in which location, and can correct it.

4.3 Forbidden states
The concept of forbidden states is supported by the SpaceEx
analysis core. We can use this informations to display the tra-
jectories of the forbidden states that have been reached in a
way to differentiate them. If a forbidden state is defined with
an inequality on a variable, for example x≤ 5 which explains
that the variable x must never exceed 5, a line can be dis-
played to represent this limit. In addition, every trajectory of
x that exceeds this limit will be differentiated. Furthermore,
it is possible to pause the analysis as soon as a forbidden state
is reached, for the user to immediately see it.

4.4 User-Assisted Checking
Another functionality which can help the user to check a
model is to provide to it a way for directly interacting with
the model checking algorithm. Thus, based on the algorithm
given in figure 6, the user could choose the next state to com-
pute successors. For doing this, the waiting set, which con-
tains the states that remain to be analyzed, have to be sent to
the client and to be displayed. Then, the visualization sys-
tem displays these states in a different way than the passed
ones, for them to be differentiated. The user can so choose
the next state to be analyzed, for example in clicking on the
trajectory that represents it. Furthermore, a representation of
the locations can be added to select the next transition in a
non-deterministic scenario.

5 Implementation
This section gives some implementation details and choices.
It talks about some developed features, then evokes the
communication implementation using remote procedure calls
(RPC) and the data relative components implementation. So
far, about 3K lines of C++ for the server and 6K of Java for
the client have been written. Some unit tests have been de-
veloped on the client side, for critical parts that concern the
trajectories treatment. As these parts have been optimized
due to the huge amount of data that can be received, the code
is the more complex part and had to be rigorously tested.

5.1 Developed features
The aimed use case in this internship is the local one, where
the user launches both client and server as a single program.
To do this, a script has been developed that allows this be-
havior. A terminate command has been added for this case,
which leads to the end of the server when the client termi-
nates. The coordinates of the server, namely IP address and
port number, can be passed either by an option file or by ar-
gument, the latter being used in the script.

For both client and server, logging systems have been im-
plemented for debugging, allowing severity options (error,
warning and debug) and in-file saving. The displayed mes-
sages can be filtered by this severity option.

The system was incrementally designed and implemented
in making prototypes, each version adding a new feature. For

Figure 9: Screenshot of the current version of the prototype.
A trajectory with 5 variables was sent after the computation
was paused. This can be seen in the status bar in the bottom
of the window.

these prototypes, the analysis core was simulated with one
that generates trajectories. For example, the first version just
consisted of the connection protocol, another more advanced
version allowed to send sine and cosine point evaluations and
so on.

For now, some commands was implemented to control the
computation. The server provides a control manager to the
analysis core, which takes care of the control commands. So
the user can launch, pause, stop the computation and execute
a step on it in sending the command via the client. On the
client side, the visualization system was implemented to dis-
play the trajectories. The displayed variables can be chosen,
such as the variable used in abscissa. With this feature, each
variable can be displayed as a function of any other. The
zoom features have also been implemented.

This prototype allows some features of interactive model
checking, such as the visualization system and the step by
step computation. Furthermore, it is possible for the analysis
core, through the server, to send a trajectory as soon as it is
computed.

5.2 Used Libraries
Communication
The first objective was to choose a modern, open source and
cross language RPC library to support the development of
the client/server architecture. A survey of such libraries was
made, which is given in the appendix. This survey led to the
choice of Apache Thrift, a library which was originally de-
veloped for Facebook. The purpose of Thrift is to provide
a way for creating services available between different pro-
gramming languages, and to make the development of clients
and servers easy. This is done via a specific IDL (interface
definition language) from which some code is generated for
providing remote methods implementation. Some reasons led
to the choice of Thrift :

• Modernity : Thrift was open sourced in 2007, integrated
to Apache in 2008 and is still in development.

• Reliability : The fact that this library was used for
Facebook and taken over by Apache inspires confidence
about its quality.
• Flexibility : The IDL of Thrift allows to write our own

data types without having to serialize them manually,
as the generated code does this automatically for us.
What’s more, this library brings a lot of features, for ex-
ample threaded servers, SSL sockets...
• Ease of use : Thrift is simple to install and use. We

just have to write a description of needed data types
and services, and then generate the code with the Thrift
command. It then generates this code for client, server
and sending data, encapsulating all network aspects. We
then just have to write the handlers for the method calls
we defined in the Thrift file.

Visualization
A plotting library was needed to implement the visualization
system of the client. We chose JFreeChart, a library for Java
which provides some plotting functionalities. It facilitates the
development of the visualization part, for example in provid-
ing methods for displaying some curves of different colors,
adding legends for them. An adapter has been written to
transfer the data, received from the server, to the library form.
This adapter provides an independence between the data rep-
resentation and the used library, allowing to change it with
minimum effort.

6 Conclusion
This work is an attempt to improve the interaction with the
SpaceEx analysis core, in designing some features such as
a step by step mode and a visualization system. Further-
more, these actions can be done through the network with the
client-server architecture. That will bring a new way of us-
ing SpaceEx, which will make easier the checking of hybrid
system models. With these features the user is more impli-
cated in the process and has a better feedback on the analysis.
All of this is made in one purpose, which is to facilitate the
detection of errors in hybrid systems models, above all the
complicated ones with hundred of variables.

Some functionalities relative to interactive model checking
has to be added. For example, the user assisted checking has
to be developed. For this, more information from the anal-
ysis core has to be sent to the client, such as the locations
reached by the model. A multi-user functionality has to be
added to satisfy all the use cases of the project, such as using
the tool in a classroom for a practical session. This will bring
new challenges, mainly the definition of a protocol for client
identification.

Acknowledgements
I would like to thank Goran Frehse, who was an attentive su-
pervisor, and Olivier Lebeltel for bringing his help. Both gave
me a lot of time and some useful advice, not only for this in-
ternship but which will also be suitable for further works.

References
[Alur et al., 1995] R. Alur, C. Courcoubetis, N. Halbwachs,

T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hy-
brid systems. Theoretical computer science, 138(1):3–34,
February 1995.

[Branicky, 2005] Michael S. Branicky. Introduction to hy-
brid systems. Handbook of Networked and Embedded
Control Systems, pages 91–116, 2005.

[Frehse et al., 2011] Goran Frehse, Colas Le Guernic,
Alexandre Donze, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, and Antoine Girard Thao
Dang Oded Maler. Spaceex : Scalable verification of hy-
brid systems. CAV11, 2011.

[Frehse, 2009] Goran Frehse. Phaver: Algorithmic verifica-
tion of hybrid systems past hytech. International Journal
on Software Tools for Technology Transfer (STTT), 10(3),
June 2009.

[Frehse, 2010] Goran Frehse. An introduction to spaceex
v0.8. 2010.

[Guernic and Girard, 2010] Colas Le Guernic and Antoine
Girard. Reachability analysis of linear systems using
support functions. Nonlinear Analysis: Hybrid Systems,
4(2):250–262, 2010.

[Janssen, 2014] Cory Janssen. Client/server architecture,
2014.

Self-Stabilizing Leader Election in Polynomial Steps∗†

Anaı̈s Durand
VERIMAG UMR 5104, Université Joseph Fourier, Grenoble, France

anais.durand@e.ujf-grenoble.fr

Supervised by: Karine Altisen and Stéphane Devismes
Joint work with: Alain Cournier (MIS Lab., Université Picardie Jules Verne, France) and

Franck Petit (LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, France)

Abstract

In this paper, we propose a silent self-stabilizing
leader election algorithm for bidirectional con-
nected identified networks of arbitrary topology.
This algorithm is written in the locally shared
memory model. It assumes the distributed un-
fair daemon, the most general scheduling hypoth-
esis of the model. Our algorithm requires no
global knowledge on the network (such as an up-
per bound on the diameter or the number of pro-
cesses, for example). We show that its stabiliza-
tion time is in Θ(n3) steps in the worst case, where
n is the number of processes. Its memory re-
quirement is asymptotically optimal, i.e., Θ(log n)
bits per processes. Its round complexity is of the
same order of magnitude — i.e., Θ(n) rounds
— as the best existing algorithm [Datta et al.,
2011b] designed with similar settings. To the best
of our knowledge, this is the first self-stabilizing
leader election algorithm for arbitrary identified
networks that is proven to achieve a stabilization
time polynomial in steps. By contrast, we show
that the previous best existing algorithm designed
with similar settings [Datta et al., 2011b] stabilizes
in a non polynomial number of steps in the worst
case.

1 Introduction
In distributed computing, the leader election problem con-
sists in distinguishing one process, so-called the leader,
among the others. We consider here identified networks. So,
as it is usually done, we augment the problem by requiring all
processes to eventually know the identifier of the leader. The
leader election is fundamental as it is a basic component to
solve many other important problems, e.g., consensus, span-
ning tree constructions, implementing broadcasting and con-
vergecasting methods, etc.

∗This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-
11-LABX-0025-01) funded by the French program Investissement d’avenir and the
AGIR project DIAMS.

†A preliminary version of this work has been published in SSS’2014 [Altisen et
al., 2014a].

Self-stabilization [Dijkstra, 1974; Dolev, 2000] is a versa-
tile technique to withstand any transient fault in a distributed
system: a self-stabilizing algorithm is able to recover, i.e.,
reach a legitimate configuration, in finite time, regardless
the arbitrary initial configuration of the system, and there-
fore also after the occurrence of transient faults. Thus, self-
stabilization makes no hypotheses on the nature or extent of
transient faults that could hit the system, and recovers from
the effects of those faults in a unified manner. Such versa-
tility comes at a price. After transient faults, there is a finite
period of time, called the stabilization phase, before the sys-
tem returns to a legitimate configuration. The stabilization
time is then the maximum time to reach a legitimate config-
uration starting from an arbitrary one. Notice that efficiency
of self-stabilizing algorithms is mainly evaluated according
to their stabilization time and memory requirement.

We consider (deterministic) asynchronous silent self-
stabilizing leader election problem in bidirectional, con-
nected, and identified networks of arbitrary topology. We in-
vestigate solutions to this problem which are written in the
locally shared memory model introduced by Dijkstra [Dijk-
stra, 1974]. In this model, the distributed unfair daemon is
known as the weakest scheduling assumption. Under such an
assumption, proving that a given algorithm is self-stabilizing
implies that the stabilization time must be finite in terms
of atomic steps. However, despite some solutions assum-
ing all these settings (in particular the unfairness assump-
tion) are available in the literature [Datta et al., 2010; 2011a;
2011b], none of them is proven to achieve a polynomial up-
per bound in steps on its stabilization time. Actually, the time
complexities of all these solutions are analyzed in terms of
rounds only.

Related Work. In [Dolev et al., 1999], Dolev et al showed
that silent self-stabilizing leader election requires Ω(log n)
bits per process, where n is the number of processes. Notice
that non-silent self-stabilizing leader election can be achieved
using less memory, e.g., the non-silent self-stabilizing leader
election algorithm for unoriented ring-shaped networks given
in [Blin and Tixeuil, 2013] requires O(log log n) space per
process.

Self-stabilizing leader election algorithms for arbitrary
connected identified networks have been proposed in the
message-passing model [Afek and Bremler-Barr, 1998;

Awerbuch et al., 1993; Burman and Kutten, 2007]. First,
the algorithm of Afek and Bremler [Afek and Bremler-Barr,
1998] stabilizes in O(n) rounds using Θ(log n) bits per pro-
cess. But, it assumes that the link-capacity is bounded by
a value B, known by all processes. Two solutions that
stabilize in O(D) rounds, where D is the diameter of the
network, have been proposed in [Awerbuch et al., 1993;
Burman and Kutten, 2007]. However, both solutions assume
that processes know some upper bound D on the diameter D;
and have a memory requirement in Θ(logD log n) bits.

Several solutions are also given in the shared memory
model [Arora and Gouda, 1994; Dolev and Herman, 1997;
Datta et al., 2010; 2011a; 2011b; Kravchik and Kutten, 2013].
The algorithm proposed by Dolev and Herman [Dolev and
Herman, 1997] is not silent, works under a fair daemon, and
assume that all processes know a bound N on the number
of processes. This solution stabilizes in O(D) rounds using
Θ(N logN) bits per process. The algorithm of Arora and
Gouda [Arora and Gouda, 1994] works under a weakly fair
daemon and assume the knowledge of some bound N on the
number of processes. This solution stabilizes inO(N) rounds
using Θ(logN) bits per process.

Datta et al [Datta et al., 2010] propose the first self-
stabilizing leader election algorithm (for arbitrary connected
identified networks) proven under the distributed unfair dae-
mon. This algorithm stabilizes in O(n) rounds. However,
the space complexity of this algorithm is unbounded. (More
precisely, the algorithm requires each process to maintain an
unbounded integer in its local memory.)

Solutions in [Datta et al., 2011a; 2011b; Kravchik and Kut-
ten, 2013] have a memory requirement which is asymptoti-
cally optimal (i.e. in Θ(log n)). The algorithm proposed by
Kravchik and Kutten [Kravchik and Kutten, 2013] assumes
a synchronous daemon and the stabilization time of this lat-
ter is in O(D) rounds. The two solutions proposed by Datta
et al in [Datta et al., 2011a; 2011b] assume a distributed un-
fair daemon and have a stabilization time in O(n) rounds.
However, despite these two algorithms stabilize within a fi-
nite number of steps (indeed, they are proven assuming an
unfair daemon), no step complexity analysis is proposed. Fi-
nally, note that the algorithm proposed in [Datta et al., 2011a]
assumes that each process has a bit of memory which cannot
be arbitrarily corrupted.

Contribution. We propose a silent self-stabilizing leader
election algorithm for arbitrary connected and identified net-
works. Our solution is written in the locally shared mem-
ory model assuming a distributed unfair daemon, the weakest
scheduling assumption. Our algorithm assumes no knowl-
edge of any global parameter (e.g., an upper bound on D or
n) of network. Like previous solutions of the literature [Datta
et al., 2011a; 2011b], it is asymptotically optimal in space
(i.e., it can be implemented using Θ(log n) bits per process),
and it stabilizes in Θ(n) rounds in the worst case. Yet, con-
trary to those solutions, we show that our algorithm has a
stabilization time in Θ(n3) steps in the worst case.

For fair comparison, we have also studied the step com-
plexity of the algorithm given in [Datta et al., 2011b], noted

hereDLV . This latter is the closest to ours in terms of perfor-
mance. We show that its stabilization time is not polynomial,
i.e., there is no constant α such that the stabilization time of
DLV is in O(nα) steps. More precisely, we show that fix-
ing α to any constant greater than or equal to 4, for every
β ≥ 2, there exists a network of n = 2α−1 × β processes
in which there exists a possible execution that stabilizes in
Ω(nα) steps. Due to the lack of space, this latter result is not
presented here. Refer to the technical report online [Altisen
et al., 2014b] for more details.

Roadmap. The next section is dedicated to computational
model and basic definitions. In Section 3, we propose our
self-stabilizing leader election algorithm. In Section 4, we
outline the proof of correctness and the complexity analysis.
A detailed proof of correctness and a complete complexity
analysis are available in the technical report online [Altisen
et al., 2014b]. In Section 5, we detail some experiments. Fi-
nally, we conclude in Section 6.

2 Computational model
Distributed systems. We consider distributed systems
made of n processes. Each process can communicate with
a subset of other processes, called its neighbors. We denote
by Np the set of neighbors of process p. Communications
are assumed to be bidirectional, i.e. q ∈ Np if and only if
p ∈ Nq . Hence, the topology of the system can be repre-
sented as a simple undirected connected graph G = (V,E),
where V is the set of processes and E is a set of edges rep-
resenting (direct) communication relations. We assume that
each process has a unique ID, a natural integer. IDs are stored
using a constant number of bits, b. As commonly done in the
literature, we assume that b = Θ(log n). Moreover, by an
abuse of notation, we identify a process with its ID, whenever
convenient. We will also denote by ` the process of minimum
ID. (So, the minimum ID will be also denoted by `.)

Locally shared memory model. We consider the locally
shared memory model in which the processes communicate
using a finite number of locally shared registers, called vari-
ables. Each process can read its own variables and those of
its neighbors, but can only write to its own variables. The
state of a process is the vector of values of all its variables. A
configuration γ of the system is the vector of states of all pro-
cesses. We denote by C the set of all possible configurations.

A distributed algorithm consists of one program per pro-
cess. The program of a process p is a finite set of actions of
the following form: 〈label〉 :: 〈guard〉 → 〈statement〉. The
labels are used to identify actions. The guard of an action in
the program of process p is a Boolean expression involving
the variables of p and its neighbors. If the guard of some ac-
tion evaluates to true, then the action is said to be enabled at
p. By extension, if at least one action is enabled at p, p is said
to be enabled. We denote by Enabled(γ) the set of processes
enabled in configuration γ. The statement of an action is a
sequence of assignments on the variables of p. An action can
be executed only if it is enabled. In this case, the execution of
the action consists in executing its statement.

The asynchronism of the system is materialized by an
adversary, called the daemon. In a configuration γ, if
Enabled(γ) 6= ∅, then the daemon selects a non empty sub-
set S of Enabled(γ) to perform an (atomic) step: ∀p ∈ S,
p atomically executes one of its actions enabled in γ, leading
the system to a new configuration γ′. We denote by 7→ the re-
lation between configurations such that γ 7→ γ′ if and only if
γ′ can be reached from γ in one (atomic) step. An execution
is then a maximal sequence of configurations γ0, γ1, . . . such
that γi−1 7→ γi,∀i > 0. The term “maximal” means that the
execution is either infinite, or ends at a terminal configura-
tion γ in which Enabled(γ) is empty.

In this paper, the daemon is supposed to be distributed and
unfair. “Distributed” means that while the configuration is
not terminal, the daemon should select at least one enabled
process, maybe more. “Unfair” means that there is no fairness
constraint, i.e., the daemon might never permit an enabled
process to execute, unless it is the only enabled process.

Rounds. To measure the time complexity of an algorithm,
we also use the notion of round. This latter allows to high-
light the execution time according to the speed of the slowest
process. If a process p is enabled in a configuration γi but not
enabled in the next configuration γi+1 and does not execute
any action between γi and γi+1, we said that p is neutralized
during the step γi 7→ γi+1. The first round of an execution
e, noted e′, is the minimal prefix of e in which every process
that is enabled in the initial configuration either executes an
action or becomes neutralized. Let e′′ be the suffix of e start-
ing from the last configuration of e′. The second round of e
is the first round of e′′, and so forth.

Self-stabilization. Let A be a distributed algorithm. Let E
be the set of all possible executions ofA. A specification SP
is a predicate over E .
A is self-stabilizing for SP if and only if there exists a

non-empty subset of configurations L ⊆ C, called legitimate
configurations, such that:
• Closure: ∀e ∈ E , for each step γi 7→ γi+1 ∈ e, γi ∈
L ⇒ γi+1 ∈ L.
• Convergence: ∀e ∈ E ,∃γ ∈ e such that γ ∈ L.
• Correction: ∀e ∈ E such that e starts in a legitimate

configuration γ ∈ L, e satisfies SP .
Every configuration that is not legitimate is called illegiti-

mate. The stabilization time is the maximum time (in steps or
rounds) to reach a legitimate configuration starting from any
configuration.

Self-stabilizing leader election. We define SPLE the spec-
ification of the leader election problem. Let Leader : V 7→
N be a function defined on the state of any process p ∈ V
in the current configuration that returns the ID of the leader
appointed by p. An execution e ∈ E satisfies SPLE if and
only if:

1. For all configuration γ ∈ e, ∀p, q ∈ V,Leader(p) =
Leader(q) and Leader(p) is the ID of some process in
V .

2. For all step γi 7→ γi+1 ∈ e, ∀p ∈ V , Leader(p) has the
same value in γi and γi+1.

An algorithm A is silent if and only if every execution is
finite [Dolev et al., 1999]. Let γ be a terminal configuration.
The set of all possible executions starting from γ is the sin-
gleton {γ}. So, if A is self-stabilizing and silent, γ must be
legitimate. Thus, to prove that a leader election algorithm is
both self-stabilizing and silent, it is necessary and sufficient
to show that: (1) in every terminal configuration γ, ∀p, q ∈ V ,
Leader(p) = Leader(q) and Leader(p) is the ID of some
process; (2) every execution is finite.

3 Algorithm LE
In this section, we present a silent and self-stabilizing leader
election algorithm, called LE . Its formal code is given in Al-
gorithm 1. Starting from an arbitrary configuration, LE con-
verges to a terminal configuration, where the process of min-
imum ID, `, is elected. More precisely, in the terminal con-
figuration, every process p knows the identifier of ` thanks to
its local variable p.idR. This means that, in particular, we in-
stantiate the function Leader of the specification as follows:
Leader(p) = p.idR, ∀p ∈ V . Moreover, a spanning tree
rooted at ` is defined using two variables per process: par
and level. First, `.par = ` and `.level = 0. Then, for every
process p 6= `, p.par points to the parent of p in the tree and
p.level is the level of p in the tree.

We now present a simple algorithm for the leader election
in Subsection 3.1. We show why this algorithm is not self-
stabilizing in Subsection 3.2. We explain in Subsection 3.3
how to modify this algorithm to make it self-stabilizing.

3.1 Non Self-Stabilizing Leader Election
We first consider a simplified version of LE . Starting from
a predefined initial configuration, it elects ` in all idR vari-
ables and builds a spanning tree rooted at `. Initially, every
process p declares itself as leader: p.idR = p, p.par = p,
and p.level = 0. So, p satisfies the two following predi-
cates: SelfRoot(p) ≡ (p.par = p) and SelfRootOk′(p) ≡
(p.level = 0)∧ (p.idR = p). Note that, in the sequel, we say
that p is a self root when SelfRoot(p) holds. From such an
initial configuration, our non self-stabilizing algorithm con-
sists in the following single action:

J-Action′ :: ∃q ∈ Np, (q.idR < p.idR)
→ p.par ← min�{q ∈ Np};

p.idR← p.par.idR;
p.level← p.par.level + 1;

where ∀x, y ∈ V, x � y ⇔ (x.idR ≤ y.idR) ∧ [(x.idR =
y.idR)⇒ (x < y)]

Informally, when p discovers that p.idR is not equal to the
minimum identifier, it updates its variables accordingly. Let q
be the neighbor of p having idR minimum. Then, p selects q
as new parent (p.par ← q and p.level← p.par.level+1) and
sets p.idR to the value of q.idR. If there are several neighbors
having idR minimum, the identifiers of those neighbors are
used to break ties.

Hence, the identifier of ` is propagated, from neighbors to
neighbors, into the idR variables and the system reaches a

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈5, 0〉

〈7, 0〉

〈6, 0〉

〈2, 0〉

〈4, 0〉

(a) Initial configuration. SelfRoot(p)∧SelfRootOk′(p) holds
for every process p.

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈2, 0〉

〈2, 1〉

(b) 4, 5, 6, and 7 have executed J-Action′. Note that J-Action′

was not enabled at 2 because it is a local minimum.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈1, 2〉

〈1, 2〉

(c) 2, 3, and 4 have executed J-Action′. 3 joins the tree rooted
at 1, but the new value of 3.idR is not yet propagated to its child
6.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈1, 2〉

〈1, 2〉

〈1, 2〉

(d) 6 has executed J-Action′. The configuration is now terminal,
` = 1 is elected, and a tree rooted at ` is available.

Figure 1: An example showing an execution of the non self-stabilizing algorithm. Process identifiers are given inside the nodes.
〈x, y〉 means idR = x and level = y. Arrows represent par pointers. The absence of arrow means that the process is a self
root.

terminal configuration in O(D) rounds. Figure 1 shows an
example of such an execution.

Notice first that for every process p, p.idR is always less
than or equal to its own identifier. Indeed, p.idR is ini-
tialized to p and decreases each time p executes J-Action′.
Hence, p.idR = p while p is a self root and after p executes
J-Action′ for the first time, p.idR is smaller than its ID for-
ever.

Second, even in this simplified context, for each two neigh-
bors p and q such that q is the parent of p, it may happen that
p.idR is greater than q.idR —an example is shown in Fig-
ure 1c, where p = 6 and q = 3. This is due to the fact
that p joins the tree of q but meanwhile q joins another tree
and this change is not yet propagated to p. Similarly, when
p.idR 6= q.idR, p.level may be different from q.level + 1.

According to those remarks, we can deduce that when
p.par = q with q 6= p, we have the following relation be-
tween p and q:
GoodIdR(p, q) ≡ (p.idR ≥ q.idR) ∧ (p.idR < p)
GoodLevel(p, q) ≡ (p.idR = q.idR)

⇒ (p.level = q.level + 1)

3.2 Fake IDs
The algorithm presented in Subsection 3.1 is clearly not self-
stabilizing. Indeed, in a self-stabilization context, the execu-
tion may start in any arbitrary configuration. In particular,
idR variables can be initialized to arbitrary natural integer
values, even values that are actually not IDs of (existing) pro-
cesses. We call such values fake IDs.

The existence of fake IDs may lead the system to an il-
legitimate terminal configuration. Refer to the example of
execution given in Figure 2: starting from the configuration

2 3 4 5
〈1, 1〉 〈3, 0〉 〈4, 0〉 〈1, 1〉

(a) Illegitimate initial configuration, where 2 and 5 have fake idR.

2 3 4 5
〈1, 1〉 〈1, 2〉 〈1, 2〉 〈1, 1〉

(b) 3 and 4 executed J-Action′. The configuration is now terminal.

Figure 2: Example of execution that does not converge to a
legitimate configuration.

in 2a, if processes 3 and 4 move, the system reaches the ter-
minal configuration given in 2b, where there are two trees and
the idR variables elect the fake ID 1. In this example, 2 and
5 can detect the problem. Indeed, predicate SelfRootOk′ is
violated by both 2 and 5. One may believe that it is suffi-
cient to reset the local state of processes which detect incon-
sistency (here processes 2 and 5) to p.idR ← p, p.par ← p
and p.level ← 0. After these resets, there are still some er-
rors, as shown on Figure 3.

2 3 4 5
〈2, 0〉 〈1, 2〉 〈1, 2〉 〈5, 0〉

Figure 3: One step after Figure 2b, 2 and 5 have reset.

Again, 3 and 4 can detect the problem. Indeed, predicate
GoodIdR(p, p.par) ∧ GoodLevel(p, p.par) is violated by
both 3 and 4. In this example, after 3 and 4 have reset, all
inconsistencies have been removed. So let define the follow-
ing action:

3

5

2 6

4

〈1, 2〉

〈5, 0〉

〈2, 0〉 〈1, 4〉

〈1, 3〉

(a) Initial configuration.

3

5

2 6

4

〈3, 0〉

〈5, 0〉

〈1, 5〉 〈1, 4〉

〈1, 3〉

(b) 2 joins the tree. 3 leaves it.

3

5

2 6

4

〈3, 0〉

〈1, 6〉

〈1, 5〉 〈1, 4〉

〈4, 0〉

(c) 5 joins the tree. 4 leaves it.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈1, 5〉 〈6, 0〉

〈4, 0〉

(d) Both 3 and 6 move.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈2, 0〉 〈6, 0〉

〈1, 8〉

(e) 4 joins, 2 leaves.

3

5

2 6

4

〈1, 7〉

〈5, 0〉

〈2, 0〉 〈1, 9〉

〈1, 8〉

(f) Configuration similar to 4a.

Figure 4: The first process of the chain of bold arrows violates the predicate SelfRootOk′ and resets by executing R-Action′,
while another process joins its tree. This cycle of resets and joins might never terminate.

R-Action′ ::
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) ∧ ¬(GoodIdR(p, p.par)

∧GoodLevel(p, p.par))
)

→ p.par ← p; p.idR← p; p.level← 0;
Unfortunately, this additional action does not ensure the

convergence in all cases—refer to the example in Figure 4.
Indeed, if a process resets, it becomes a self root but this does
not erase the fake ID in the rest of its subtree. Then, an-
other process can join the tree and adopt the fake ID which
will be further propagated, and so on. In the example, a pro-
cess resets while another joins its tree at lower level, and this
leads to endless erroneous behavior, since we do not want
to assume any maximal value for level (such an assumption
would otherwise imply the knowledge of some upper bound
on n). Therefore, the whole tree must be reset, instead of its
root only. To that goal, we first freeze the “abnormal” tree
in order to forbid any process to join it, then the tree is re-
set top-down. The cleaning mechanism is detailed in the next
subsection.

3.3 Cleaning Abnormal Trees
To introduce the trees, we define what is a “good relation”
between a parent and its children. Namely, the predicate
KinshipOk′(p, q) models that a process p is a real child
of its parent q = p.par. This predicate holds if and only
if GoodLevel(p, q) and GoodIdR(p, q) are true. This rela-
tion defines a spanning forest: a tree is a maximal set of pro-
cesses connected by par pointers and satisfyingKinshipOk′
relation. A process p is a root of such a tree whenever
SelfRoot(p) holds orKinshipOk′(p, p.par) is false. When
SelfRoot(p) ∧ SelfRootOk′(p) is true, p is a normal root
just as in the non self-stabilizing case. In other cases, there is

an error and p is called an abnormal root: AbRoot′(p) ≡(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨

(
¬SelfRoot(p) ∧

¬KinshipOk′(p, p.par)
)
. A tree is said to be abnormal

(resp. normal) when its root is abnormal (resp. normal).
We now detail the different predicates and actions of Al-

gorithm 1.

Variable status. Abnormal trees need to be frozen before
to be cleaned in order to prevent them from growing end-
lessly (see 3.2). This mechanism is achieved using an addi-
tional variable, status, that is used as follows. If a process
is clean (i.e., not involved into any freezing operation), then
its status is C. Otherwise, it has status EB or EF and no
neighbor can select it as its parent. These two latter states are
actually used to perform a “Propagation of Information with
Feedback” [Chang, 1982] into the abnormal trees. StatusEB
means “Error Broadcast” and EF means “Error Feedback”.
From an abnormal root, the status EB is broadcast down in
the tree. Then, once the EB wave reaches a leaf, the leaf ini-
tiates a convergecast EF -wave. Once the EF -wave reaches
the abnormal root, the tree is said to be dead, meaning that
there is no process of status C in the tree and no other process
can join it. So, the tree can be safely reset from the abnormal
root toward the leaves. Notice that the new variable status
may also get arbitrary initialization. Thus, we enforce previ-
ously introduced predicates as follows. A self root must have
status C, otherwise it is an abnormal root:

SelfRootOk(p) ≡ SelfRootOk′(p) ∧ (p.status = C)

To be a real child of q, p should have a status co-
herent with the one of q. This is expressed with the

Algorithm 1 Algorithm LE for every process p
Variables: p.idR ∈ N; p.par ∈ Np ∪ {p}; p.level ∈ N; p.status ∈ {C,EB,EF} ;
Macros:

Childrenp ≡ {q ∈ Np | q.par = p}
RealChildrenp ≡ {q ∈ Childrenp | KinshipOk(q, p)}
p � q ≡ (p.idR ≤ q.idR) ∧ [(p.idR = q.idR)⇒ (p ≤ q)]
Minp ≡ min� {q ∈ Np | q.status = C}

Predicates:
SelfRoot(p) ≡ p.par = p
SelfRootOk(p) ≡ (p.level = 0) ∧ (p.idR = p) ∧ (p.status = C)
GoodIdR(s, f) ≡ (s.idR ≥ f.idR) ∧ (s.idR < s)
GoodLevel(s, f) ≡ (s.idR = f.idR)⇒ (s.level = f.level + 1)
GoodStatus(s, f) ≡ [(s.status = EB)⇒ (f.status = EB)] ∨ [(s.status = EF)⇒ (f.status 6= C)]

∨[(s.status = C)⇒ (f.status 6= EF)]
KinshipOk(s, f) ≡ GoodIdR(s, f) ∧GoodLevel(s, f) ∧GoodStatus(s, f)
AbRoot(p) ≡ [SelfRoot(p) ∧ ¬SelfRootOk(p)] ∨ [¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par)]
Allowed(p) ≡ ∀q ∈ Childrenp, (¬KinshipOk(q, p)⇒ q.status 6= C)

Guards:
EBroadcast(p) ≡ (p.status = C) ∧ [AbRoot(p) ∨ (p.par.status = EB)]
EFeedback(p) ≡ (p.status = EB) ∧ (∀q ∈ RealChildrenp, q.status = EF)
Reset(p) ≡ (p.status = EF) ∧AbRoot(p) ∧Allowed(p)
Join(p) ≡ (p.status = C) ∧ [∃q ∈ Np, (q.idR < p.idR) ∧ (q.status = C)] ∧Allowed(p)

Actions:
EB-action :: EBroadcast(p) → p.status← EB;
EF -action :: EFeedback(p) → p.status← EF ;
R-action :: Reset(p) → p.status← C; p.par ← p; p.idR← p; p.level← 0;
J-action :: Join(p) ∧ ¬EBroadcast(p) → p.par ←Minp; p.idR← p.par.idR; p.level← p.par.level + 1;

predicate GoodStatus(p, q) which is used to enforce the
KinshipOk(p, q) relation:

GoodStatus(p, q) ≡ [(p.status = EB)⇒ (q.status
= EB)] ∨ [(p.status = EF)⇒ (q.status 6= C)]
∨[(p.status = C)⇒ (q.status 6= EF)]

KinshipOk(p, q) ≡ KinshipOk′(p, q)∧
GoodStatus(p, q)

Precisely, when p has status C, its parent must have status
C orEB (if theEB-wave is not propagated yet to p). If p has
status EB, then the status of its parent must be EB because
p gets status EB from its parent q and q will change its status
to EF only after p gets status EF . Finally, if p has status
EF , its parent can have status EB (if the EF -wave is not
propagated yet to its parent) or EF .

Normal Execution. Remark that, after all abnormal trees
have been removed, all processes have status C and the al-
gorithm works as in the initial version. Notice that the guard
of J-action has been enforced so that only processes with
status C and which are not abnormal root can execute it, and
when executing J-action, a process can only choose a neigh-
bor of status C as parent. Moreover, remark that the cleaning
of all abnormal trees does not ensure that all fake IDs have
been removed. Rather, it guarantees the removal of all fake
IDs smaller than `. This implies that (at least) ` is a self root
at the end of the cleaning and all other processes will elect `
within the next D rounds.

Cleaning Abnormal Trees. Figure 5 shows how an abnor-
mal tree is cleaned. In the first phase (see Figure 5a), the

root broadcasts status EB down to its (abnormal) tree: all
the processes in this tree execute EB-action, switch to sta-
tus EB and are consequently informed that they are in an
abnormal tree. The second phase starts when the EB-wave
reaches a leaf. Then, a convergecast wave of status EF is
initiated thanks to action EF -action (see Figure 5b). The
system is asynchronous, hence all the processes along some
branch can have status EF before the broadcast of the EB-
wave is done into another branch. In this case, the parent
of these two branches waits that all its children in the tree
(processes in the set RealChildren) get status EF before
executing EF -action (Figure 5c). When the root gets status
EF , all processes have status EF : the tree is dead. Then
(third phase), the root can reset (safely) to become a self root
by executing R-action (Figure 5e). Its former real children
(of status EF) become themselves abnormal roots of dead
trees (Figure 5f) and reset.

Finally, we used the predicate Allowed(p) to temporarily
lock the parent of p in two particular situations — illustrated
in Figure 6 — where p is enabled to switch its status from
C to EB. These locks impact neither the correctness nor
the complexity of LE . Rather, they allow us to simplify the
proofs by ensuring that, once enabled, EB-action remains
continuously enabled until executed.

4 Correctness and Complexity Analysis
First, remark that idR and level can be stored in Θ(log n)
bits. So, the memory requirement of LE is Θ(log n) bits per
process.

Let us first distinguish between clean and dirty configura-
tions. Given any configuration γ, γ is clean if and only if
in γ, ∀p ∈ V,¬EBroadcast(p) ∧ p.status = C. In other

EB-action

C

6

2 8

〈1, 0〉

〈1, 1〉 〈1, 1〉

(a) When an abnormal root detects an error, it executes EB-action.
The EB-wave is broadcast to the leaves. Here, 6 is an abnormal root
because it is a self root and its idR is different from its ID (1 6= 6).

EF -action

C

EB

(b) When the EB-wave reaches a leaf, it executes EF -action. The
EF -wave is propagated up to the root.

C EF

EB

5

4

7

9

〈1, 4〉

〈1, 5〉

〈1, 5〉

〈1, 5〉

(c) It may happen that the EF -wave reaches a node, here process 5,
even though the EB-wave is still broadcasting into some of its proper
subtrees: 5 must wait that the status of 4 and 7 become EF before
executing EF -action.

EF -action

EF

EB

(d) EB-wave has been propagated in the other branch. An EF -wave
is initiated by the leaves.

R-action

EF

(e) EF -wave reaches the root. The root can safely reset (R-action)
because its tree is dead. The cleaning wave is propagated down to the
leaves.

R-action

EF EF

6

2 8

〈6, 0〉

〈1, 1〉 〈1, 1〉

(f) Its children become themselves abnormal roots of dead trees and
can execute R-action: 2 and 8 can clean because their status is EF
and their parent has status C.

Figure 5: Schematic example of the cleaning mechanism. Trees are filled according to the status of their processes: white for
C, dashed for EB, gray for EF .

4

9

〈3, 0〉

〈4, 1〉

(a) 4 and 9 are abnormal roots. If 4 executes R-action before 9
executes EB-action, the kinship relation between 4 and 9 becomes
correct and 9 is no more an abnormal root. Then, EB-action is no
more enabled at 9.

6 3

4

9

〈2, 3〉 〈3, 0〉

〈3, 1〉

〈2, 5〉

(b) 9 is an abnormal root and Min4 is 6. If 4 executes J-action be-
fore 9 executes EB-action, the kinship relation between 4 and 9 be-
comes correct and 9 is no more an abnormal root. Then, EB-action
is no more enabled at 9.

Figure 6: Example of situations where the parent of a process is locked.

words, a configuration is clean if and only if it contains no
abnormal trees. In particular, such a clean configuration does
not contain fake IDs smaller than `. Any configuration that is
not clean is said to be dirty.

4.1 Correctness and Stabilization Time in Steps
Convergence from a clean configuration. Let us first con-
sider any clean configuration, γ. As γ is clean, γ may contain
some fake IDs, but all of them (if any) are greater than `. This
implies, in particular, that ` is a self root and `.idR = ` for-
ever from γ. Moreover, in γ there are at most n different
values disseminated into the idR variables. Every process
p 6= ` can only decrease its own value of idR by executing
J-action (all other actions are disabled forever at p because
they deal with abnormal trees). Hence, overall after at most
(n−1)×(n−2)

2 executions of J-action, the configuration is ter-
minal and ` is elected.

Convergence from an arbitrary configuration. The re-
mainder of the proof consists in showing that, from any arbi-
trary configuration, a clean configuration is reached in O(n3)
steps. So, let consider a dirty configuration γ. Then, γ con-
tains some abnormal trees. In the following, we say that a
process p is called alive if and only if p.status = C. Other-
wise, it is said to be dead. By extension, a tree T is called an
alive tree if and only if ∃p ∈ T such that p is alive. Otherwise,
it is called a dead tree.

We first show that no abnormal alive tree can be created
from γ. So, as there are at most n abnormal alive trees in the
initial configuration, and each of them may contain up to n
processes, at most n2 EB-action,EF -action, andR-action
respectively are sufficient to freeze and remove all them. No-
tice that this way we clean abnormal trees is the main differ-
ence between our algorithm LE and the algorithm proposed
in [Datta et al., 2011b], DLV . Indeed, we have shown that,
contrary to LE , the correction mechanism implemented in
DLV can involve a non-polynomial number of correction ac-
tions (see [Altisen et al., 2014b]).

Nevertheless, processes can execute J-action during the
removal of abnormal trees. In particular, a process p can
leave an abnormal alive tree T by executing J-action to

join another (normal or abnormal) tree. However, in this
case the value of p.idR necessarily decreases. Later p can
join T again, but this may happen only if p executes actions
EB-action, EF -action, and R-action at least once in the
meantime. This means that p participates to the removal of
some abnormal tree. Thus, each time p joins T again, the
number of abnormal trees decreases, i.e., p can join and leave
T at most n− 1 times.

Thus, each process (n) can join each abnormal tree (at
most n) at most n − 1 times using J-action which gives an
overall number of J-actions in O(n3).

To sum up, starting from any configuration, a terminal con-
figuration where ` is elected is reached in O(n3) steps. (We
prove a tighter bound in [Altisen et al., 2014b].)

4.2 Stabilization Time in Rounds
Let us consider a clean configuration γ. Again, γ may contain
some fake IDs, but all of them (if any) are greater than `.
This implies, in particular, that ` is a self root and `.idR = `
forever from γ. ` being the minimum value in idR variables,
` is propagated, from neighbors to neighbors, into the idR
variables and the system reaches a terminal configuration in
O(D) rounds.

Consider now a dirty configuration γ. From γ, all ab-
normal trees are frozen and removed in parallel using three
waves: (1) the broadcast of the value EB from the abnormal
roots to the leaves, (2) a convergecast of the value EF from
the leaves to the abnormal roots, and (3) finally, the cleaning
is performed top-down. As the maximum height of a tree is
n, each of these waves is done in at most n rounds. Overall,
abnormal trees are removed in at most 3n rounds.

Hence, the stabilization time is at most 3n+D rounds.

5 Experimentation
In this section, we evaluate the average performances of al-
gorithm LE in terms of rounds and steps. This work is still in
progress.

5.1 Experimentation Protocol
We generate pools of random graphs using the Unit Disk
Graph (UDG) model [Huson and Sen, 1995]. In a UDG, a

node is connected with all the other nodes in a disk around
it. In other words, two nodes are connected if and only if
the Euclidean distance between them is smaller than some ra-
dius. Wireless sensor networks can be roughly modeled using
UDG where the radius of the disk is the transmission range
of the sensor emitter.

We use a simulator dedicated to locally shared memory
model. An enabled process p is selected by the daemon with
an exponential distribution of parameter 1

α = 1
4 (The ex-

pected time before activation is 4.) for every process.
The initialization of the processes is also randomized:
• The number of fake ids smaller than `, denoted nf ,

equals to 10% of n.
• Each process has a unique random id between nf and
n+ nf − 1.
• nf processes (uniformly chosen) have a random idR be-

tween 0 and nf −1. The other processes have a random
idR between nf and n+ nf .
• The par pointer is uniformly chosen among the neigh-

bors of the node and itself.
• The level is uniformly chosen between 0 and an arbi-

trary value.
• The status is uniformly chosen.

5.2 Average stabilization time in rounds
An experimental analysis was realized to evaluate the average
performances of LE in terms of rounds.

We generate a pool of twenty random UDGs of n = 1000
nodes for each value of the diameter between 4 and 27. We
executeLE five times on each graph of the pool, until the con-
fidence interval is smaller than 2% of the average stabilization
time in rounds.

Figure 7 shows the results. The average stabilization time
in rounds is drastically smaller (the order of magnitude is the
diameter) than the analytical bound in the worst case of ex-
actly 3n + D rounds. So the worst case seems to be rare in
this class of graph.

5.3 Average stabilization time in steps
An experimental analysis was realized to evaluate the average
performances of LE in terms of rounds.

We generate a pool of ten random UDGs of diameter close
to 15 (15 ± 1) for n = 100, 200, . . . , to n = 1000 nodes.
We execute LE five times on each graph of the pool, until the
confidence interval is smaller than 2% of the average stabi-
lization time in steps.

Figure 7 shows the results. The average stabilization time
in steps is drastically smaller than the analytical bound in the
worst case of Θ(n3) steps. So the worst case seems to be rare
in this class of graph.

5.4 Work in progress
Other experiments have been done by inserting faults in a
terminal configuration in order to measure the impact of the
number of faults on the stabilization time. But, this work
needs further investigation.

The same experimental analysis was also done on an-
other model of random graphs: Barabási-Albert graphs. The
Barabási-Albert model [Albert and Barabási, 2001] generates

random scale-free networks (i.e., networks with a power-law
degree distributions) similar to a lot of actual systems, the In-
ternet for example. It models preferential attachment: a node
with high degree receives new links with a bigger probability
than a node with smaller degree. Again, the average stabiliza-
tion time in rounds and in steps is drastically smaller than the
analytical bounds but this work needs further investigation,
in particular on the link between the performances of LE and
the density of the graphs.

6 Conclusion

We proposed a silent self-stabilizing leader election algo-
rithm, called LE , for bidirectional connected identified net-
works of arbitrary topology. Starting from any arbitrary con-
figuration, LE converges to a terminal configuration, where
all processes know the ID of the leader, this latter being the
process of minimum ID. Moreover, as in most of the solu-
tions from the literature, a distributed spanning tree rooted at
the leader is defined in the terminal configuration.
LE is written in the locally shared memory model. It

assumes the distributed unfair daemon, the most general
scheduling hypothesis of the model. Moreover, it requires no
global knowledge on the network (such as an upper bound on
the diameter or the number of processes, for example). LE is
asymptotically optimal in space, as it requires Θ(log n) bits
per process, where n is the size of the network. We analyzed
its stabilization time both in rounds and steps. We showed
that LE stabilizes in at most 3n + D rounds, where D is the
diameter of the network. We have also proven in the technical
report [Altisen et al., 2014b] that for every n ≥ 4, for every
D, 2 ≤ D ≤ n−2, there is a network of n processes in which
a possible execution exactly lasts this complexity. Finally, we
proved that LE achieves a stabilization time polynomial in
steps. More precisely, we have shown in the technical report
[Altisen et al., 2014b] that its stabilization time is at most
n3

2 + 2n2 + n
2 + 1 steps. Still in [Altisen et al., 2014b], we

have shown that for every n ≥ 4, there exists a network of n
processes (and of diameter 2) in which a possible execution
exactly lasts n3

6 + 5
2n

2− 11
3 n+ 2 steps, establishing then that

the worst case is in Θ(n3).
We have also implemented LE in a high-level simulator to

empirically evaluate its average performances. Experimental
results tend to show that its worst cases in terms of rounds
(exactly 3n + D rounds) and in terms of steps (Θ(n3) steps
are rare.

Perspectives of this work deal with complexity issues.
In [Datta et al., 2011b], Datta et al showed that it is easy
to implement a silent self-stabilizing leader election which
works assuming an unfair daemon, uses Θ(log n) bits per
process, and stabilizes in O(D) rounds (where D is an up-
per bound on D). Nevertheless, processes are assumed to
know D. It is worth investigating whether it is possible to de-
sign an algorithm which works assuming an unfair daemon,
uses Θ(log n) bits per process, and stabilizes in O(D) rounds
without using any global knowledge. We believe this problem
remains difficult, even adding some fairness assumption.

10

15

20

25

30

35

5 10 15 20 25

R
ou

nd
s

D

Average stabilization time
Confidence interval

D

Figure 7: Average stabilization time in rounds (n = 1000).

0

50

100

150

200

100 200 300 400 500 600 700 800 900 1000

St
ep

s

n

Average stabilization time
Confidence interval

D

Figure 8: Average stabilization time in steps (D = 15± 1).

References
[Afek and Bremler-Barr, 1998] Yehuda Afek and Anat

Bremler-Barr. Self-Stabilizing Unidirectional Network
Algorithms by Power Supply. Chicago J. Theor. Comput.
Sci., 1998, 1998.

[Albert and Barabási, 2001] Réka Albert and Albert-László
Barabási. Statistical Mechanics of Complex Networks.
CoRR, cond-mat/0106096, 2001.

[Altisen et al., 2014a] Karine Altisen, Alain Cournier,
Stéphane Devismes, Anaı̈s Durand, and Franck Petit.
Self-Stabilizing Leader Election in Polynomial Steps. In
SSS, 2014.

[Altisen et al., 2014b] Karine Altisen, Alain Cournier,
Stéphane Devismes, Anaı̈s Durand, and Franck Petit.
Self-Stabilizing Leader Election in Polynomial Steps.
Technical report, CNRS, 2014.

[Arora and Gouda, 1994] Anish Arora and Mohamed G.
Gouda. Distributed Reset. IEEE Trans. Computers,
43(9):1026–1038, 1994.

[Awerbuch et al., 1993] Baruch Awerbuch, Shay Kutten,
Yishay Mansour, Boaz Patt-Shamir, and George Varghese.
Time Optimal Self-stabilizing Synchronization. In STOC,
pages 652–661, 1993.

[Blin and Tixeuil, 2013] Lélia Blin and Sébastien Tixeuil.
Brief Announcement: Deterministic Self-stabilizing
Leader Election with O(log log n)-bits. In PODC, pages
125–127, 2013.

[Burman and Kutten, 2007] Janna Burman and Shay Kut-
ten. Time Optimal Asynchronous Self-stabilizing Span-
ning Tree. In DISC, pages 92–107, 2007.

[Chang, 1982] Ernest J. H. Chang. Echo Algorithms: Depth
Parallel Operations on General Graphs. IEEE Trans. Soft-
ware Eng., 8(4):391–401, 1982.

[Datta et al., 2010] Ajoy Kumar Datta, Lawrence L. Lar-
more, and Hema Piniganti. Self-stabilizing Leader Elec-
tion in Dynamic Networks. In SSS, pages 35–49, 2010.

[Datta et al., 2011a] Ajoy Kumar Datta, Lawrence L. Lar-
more, and Priyanka Vemula. An O(n)-time Self-stabilizing
Leader Election Algorithm. J. Parallel Distrib. Comput.,
71(11):1532–1544, 2011.

[Datta et al., 2011b] Ajoy Kumar Datta, Lawrence L. Lar-
more, and Priyanka Vemula. Self-stabilizing Leader Elec-
tion in Optimal Space under an Arbitrary Scheduler. Theor.
Comput. Sci., 412(40):5541–5561, 2011.

[Dijkstra, 1974] Edsger W. Dijkstra. Self-stabilizing Sys-
tems in Spite of Distributed Control. Commun. ACM,
17(11):643–644, 1974.

[Dolev and Herman, 1997] Shlomi Dolev and Ted Herman.
Superstabilizing Protocols for Dynamic Distributed Sys-
tems. Chicago J. Theor. Comput. Sci., 1997, 1997.

[Dolev et al., 1999] Shlomi Dolev, Mohamed G. Gouda, and
Marco Schneider. Memory Requirements for Silent Stabi-
lization. Acta Inf., 36(6):447–462, 1999.

[Dolev, 2000] Shlomi Dolev. Self-stabilization. MIT Press,
March 2000.

[Huson and Sen, 1995] Mark L Huson and Arunabha Sen.
Broadcast Scheduling Algorithms for Radio Networks.
In Military Communications Conference, 1995. MIL-
COM’95, Conference Record, IEEE, volume 2, pages
647–651, 1995.

[Kravchik and Kutten, 2013] Alex Kravchik and Shay Kut-
ten. Time Optimal Synchronous Self Stabilizing Spanning
Tree. In DISC, pages 91–105, 2013.

High-Level Simulation for Multiple Fault Injection Evaluation

Maxime Puys and Lionel Rivière and Thanh-Ha Le and Julien Bringer
SAFRAN Morpho

Firstname.Name@morpho.com

Magistère supervisor: Marie-Laure Potet
Verimag

University of Grenoble
Marie-Laure.Potet@imag.fr

This article is an extended version of one we submitted and
got accepted to the QASA 2014 workshop afiliated to ES-
ORICS 2014.

Abstract
Faults injection attacks have become a hot topic in
the domain of smartcards. This work exposes a
source code-base simulation approach designed to
evaluate the robustness of high-level secured imple-
mentations against single and multiple fault injec-
tions. In addition to an unprotected CRT-RSA im-
plementation, we successfully attacked two coun-
termeasures with the high-level simulation under
the data fault model. We define a filtering crite-
ria that operates on found attacks and we refine
our simulation analysis accordingly. We introduce
a broader fault model that consists in skipping C
lines of code and exhibit benefits of such high-level
fault model in term of simulation performance and
attack coverage.

1 Introduction
Effects of physical attacks on secure implementations were
first described in 1997. In particular, fault injection at-
tacks aim at modifying a program’s state using an external
event such as laser beams, voltage glitches or electromagnetic
waves. Among the numerous possibilities opened by such at-
tacks, an attacker can perform a Differential Fault Analysis
(DFA) [Boneh et al., 1997; Biham and Shamir, 1997] and
retrieve secret information such as embedded cryptographic
keys.

Smartcard-based products, which are widespread in the
daily life, can be a profitable target for attackers. They may
be sensitive to such fault attacks and therefore require a high
security certification standard such as the Common Criteria
[CSE et al., 2012]. One of the very first step of a certification
process is the security code review. In order to bring out vul-
nerabilities, evaluators and developers perform high-level se-
curity code reviews at the source code level. Suspected points

are then audited at the assembly level, but not systematically.
However, mostly manual, this task is time consuming and
error prone. A code reviewer could miss critical errors that
might lead to a major security breach.

This two reasons encourage the development of automated
high-level code analysis to help evaluators and developers.
Complete and exhaustive approaches are often used at the bi-
nary level where all impacts of a fault can be considered (such
as code operation modification) but this takes a long time to
perform. In order to rapidly point out vulnerabilities in the se-
curity evaluation process, the high-level fault simulation be-
comes definitely useful. It constitutes a complementary step
to other following low-level simulated or practical analyses.

Contributions. We propose an efficient high-level ap-
proach to analyze source codes against multiple fault injec-
tions. To achieve this end, we built tools to exhaustively ex-
plore a data fault model defined a the C variable level. Helped
by an oracle, they can for each combination of faults tell if
an attack worked on the program. Thanks to the testing ap-
proach we are able to produce detailed counterexamples or
state on the program’s robustness with respect to the chosen
fault model. We demonstrate the validity of our approach on
three implementations of the CRT-RSA [Quisquater and Cou-
vreur, 1982] algorithm in the signature process by performing
BellCoRe attacks [Boneh et al., 1997]. Moreover, we pro-
pose two attack classification criteria aiming at regrouping
them which becomes time-saving when dealing with multiple
faults on realistic implementations. Finally, we study the re-
sults of the analysis with a line-skip fault model, lighter than
the data fault model.

Organization of the paper. In section 2, we define useful
terms widely used to express several concepts and security
notions. We also recall the CRT-RSA algorithm and the Bell-
CoRe attack. Section 3 further explains the considered fault
model and the approach we use to evaluate implementations.
Section 4 shows the results of our tests on the three CRT-RSA
implementations. Finally, section 5 defines two classification
criteria and discusses outcomes obtained from the three ex-
amples under the line-skip fault model.

2 State-of-the-art and definitions
2.1 Terminology
This section proposes succinct definitions of four notions: an
attack, a fault, a security breach and a vulnerability. We ex-
plain how these notions are related and we will refer to these
definitions all along this paper.

A security breach is the deviation of a program from
its expected behavior in terms of security. A vulnerability
names the presence of an error or lack of security in the pro-
gram that might lead to a security breach. This term will be
defined more precisely in section 5.1 using our classification
criteria. A fault represents an external event changing the
program’s state. Its behavior and effects are formalized by
a fault model using parameters such as space and temporal
aspects, or persistence. An attack is the exploitation of a vul-
nerability by a fault. In [Potet et al., 2014], authors refined
this definition with the presence of a goal for the attacker.
However, we will confine to the basic definition.

2.2 CRT-RSA
We choose to analyze the well known asymmetrical CRT-
RSA algorithm [Quisquater and Couvreur, 1982]. Let’s say
that Alice wants to send the message m to Bob. She has to
sign m using her RSA private key (d, N) and then she com-
putes the signature S = md mod N . The idea behind the
CRT algorithm is to replace the costly modular exponentia-
tion of RSA with two sub-exponentiation with half the size
of the original exponent. This roughly speeds up the compu-
tation by a factor of four.

Hence, the RSA private key d is split in two parts dp and
dq . The inverse of q modulo p is denoted iq . We obtain:

dp = d mod (p− 1)

dq = d mod (q − 1)

iq = q−1 mod p

The two modular sub-exponentiation are realized as fol-
lowing :

Sp = mdp mod p

Sq = mdq mod q

S = Sq + q · (iq · (Sp − Sq) mod p)

This last step recombines the two sub-signatures Sp and
Sq in the final signature S. It can be performed using either
Gauss or Garner’s formula. The latter is the most used be-
cause as it provides better memory performances. This is the
one we presented in the algorithm.

2.3 BellCoRe Attack on CRT-RSA
This attack has been discovered in 1997 by Boneh, DeMillo
and Lipton [Boneh et al., 1997] from BellCoRe (Bell Com-
munications Research). An attacker is able to retrieve a prime
factor p or q of N if he is able to inject a fault in the signature
computation in order to obtain a faulty signature Ŝ such as:

1. |Ŝ| 6= |S|

2. And |Ŝ mod p| = |S mod p| or |Ŝ mod q| = |S mod
q|

The attacker is then able to retrieve either p or q by com-
puting gcd(N,S− Ŝ). In 1999, Joye, Lenstra and Quisquater
[Joye et al., 1999] showed that this attack can use only the
faulty signature Ŝ and the message m and retrieve either p

or q by computing gcd(N,m − Ŝe) with an overwhelming
probability.

2.4 Code Security Properties
Security metrics aim at defining quantitative and objective
criteria in order to gauge various aspect of security. It can
be considered in multiple ways [Miani et al., 2013] and takes
several form [Vaughn et al., 2003; Savola, 2007]. In the con-
text of smartcards implementation robustness testing against
fault injection and considering a manual security code review,
they are designed to facilitate decision making and improve
the code robustness. Measuring how the targeted implemen-
tation deviates from its functional specification under fault
injection constitutes the correctness aspect of security. It is
the assurance that the targeted function carries out its task
precisely to the specification with the expected behavior. An-
other metric to assess the efficiency of a simulation tool is
needed in order to confront specific tools.

Measurement requires realistic assumptions and inputs to
attain reliable results [Jansen, 2010]. The qualitative and
quantitative properties of a security objective must be defined.
In our case, the security objective is to preserve the correct-
ness of an ongoing RSA ciphering or signature under fault
injections to avoid BellCoRe attacks. The quantitative aspect
of such an objective lies in the number of deviation from the
expected behavior. According to Section 2.1, it corresponds
to the number of security breaches. The qualitative aspect
corresponds to the nature of the attack (the fault model), and
the way it deviates from the reference.

The classification of deviant cases permit to define the crit-
icality level of found attacks. Thereby, we can measure the
code sensitivity or robustness of a targeted code under fault
attack, and determine potential vulnerabilities according to a
measurement system, a fault model and a simulation tool.

2.5 Existing Works
In [Christofi, 2013; Christofi et al., 2013], Christofi et al.
propose a formal method to validate cryptographic imple-
mentations against first order fault injections relying on the-
orem proving. The fault targets a C variable and sets it
to zero. Their studies lead them to the implementation
of a Frama-C plugin named TL-Face and using the
Jessie plugin in order to solve weakest precondition prob-
lems. A case study has been made on the Vigilant implemen-
tation of CRT-RSA, revealing possible BellCoRe attacks.

In [Rauzy and Guilley, 2013], Rauzy et al. study the ef-
fects of a first order fault on several CRT-RSA implementa-
tions. Their fault model consists in replacing any intermedi-
ate value with either zero or a random value. No mathemat-
ical properties such as co-primality or equivalent modulo is

considered. Their analyses lead to the implementation of an
OCaml tool testing exhaustively every possible faults. It has
been used to compare an unprotected implementation of CRT-
RSA with the Shamir [Shamir, 1999] one and the Aumüller
one [Aumüller et al., 2002]. In [Rauzy and Guilley, 2014],
they extend their approach on Vigilant and Coron’s counter-
measures and provide high-order attacks.

In [Kauffmann-Tourkestansky, 2012], Kauffmann-
Tourkestansky works on a first order fault model targeting
control flow in order to skip instructions (using NOP or
JUMP instructions). He uses a mutation analysis of C source
codes and try to fill the gap between high-level and low-level
implementations.

In [Heydemann et al., 2013], Heydemann et al. also fo-
cus on an instruction skip based fault model. They propose a
set of counter-measures applicable to every instruction of the
Thumbs2 instruction set of the ARM language [arm, 2005].
They suppose that it is hard for an attacker to reproduce twice
the same fault in a few cycles delay and give a way to du-
plicate each instruction. Finally, they prove that this mutated
program (with all its instruction duplicated) has the same be-
havior than the original using the Vis model-checking tool
[Brayton et al., 1996].

In [Berthier et al., 2014], Berthier et al. propose a brand
new approach for evaluating smartcards security against first
order fault injection. It consists in embedding the fault sim-
ulator itself directly on the smartcard. This way, faults are
tested on the final product which is more reliable than on
a software model. Moreover, it also enable the possibility
to study the behavior of the card after injections using side-
channel analysis. Their fault model targets byte skipping of
an arbitrary length. They put it into practice on an implemen-
tation of a DES cipher, revealing for instance a fault able to
skip a function call which compromised the security of the
implementation.

In [Potet et al., 2014], Potet et al. study the effects of a test
inversion based fault model. The analysis is objective guided,
in term of reaching or not basic blocks. The fault model is
exhaustively explored by a mutation approach. Moreover,
in order to take into account higher order faults, that would
cause path explosion (and in their case, mutants number ex-
plosion), they only create one higher level mutant. It embeds
on its own the possibility of injecting each possible fault or
not. The paths are then covered by the concolic execution
tool Klee [Cadar et al., 2008].

Those existing works emphasize the importance of consid-
ering both data and control flow fault models in secure im-
plementation robustness evaluation. With our high-level fault
simulation approach presented in the next section, we con-
sider both models while ensuring a very efficient detection
and high performances.

3 High-Level Simulation Approach
Section 3.1 defines two reachable fault models considered
with fault simulator, namely the data and the line-skip fault
models. Section 3.2 defines the testing protocol used to eval-
uate implementations.

3.1 Mechanisms
The fault simulator operates at the source code level, con-
sidered fault models are defined with this granularity accord-
ingly.

Granularity: : C variable
(Spatial | temporal) control : Complete | Limite
Persistence: : Permanent or transient
Multiplicity: : First order or higher
Type: : Set to 0 or 1

FAULT MODEL 1: Data

Figure 1: Data fault model

As showed in figure 1, the black arrows represent the pro-
gram’s execution by GDB (launched by the run command).
Using a breakpoint, it is interrupted each time a vari-
able’s value has to be modified. The value modification (rep-
resented by a red bracket) is performed using the set var
command followed by the new value. Finaly, execution is
resumed using the continue command.

This model is a subset of the one proposed in [Vigilant,
2008; Rauzy and Guilley, 2013]. Both of them allow the
attacker to perform permanent and transient faults on every
variable and intermediate values. On the opposite, our model
only allow permanent faults on variable and transient faults
on intermediate values, which is more realistic. It also as-
sumes that an attacker can not modify the secret key, the
message to sign or the signature, which should pass integrity
checks at any time.

The instruction-skip fault model is explored in previous
works [Berthier et al., 2014; Moro et al., 2013; V. K. Kosuri
and N. Fazal, 2013], but almost exclusively at the assembly
code level. To our knowledge, no experiment targets CRT-
RSA under such fault model in the literature. As there is no
assembly instruction notion at the C code level, we propose
a high-level extension of the instruction-skip fault model as
follows:

Granularity : C code line
Skip Width : One C code line
(Spatial | temporal) control : Complete | Limite
Persistence : Transient
Multiplicity : First order or higher

Type :
Skip of lines
in C source code

FAULT MODEL 2: Line-skip

Figure 2: Line-skip fault model

As described in figure 2, the black arrows represent the pro-
gram’s execution by GDB (launched by the run command).
Using a breakpoint, it is interrupted each time a line-
skip is requested. The skip is performed using the jump
command (represented by a red arrow), allowing direct or in-
direct jumps to a line of the souce code. Finaly, execution is
resumed using the continue command.

In practice, the fault simulator has been designed to permit
arbitrary width line skips. However, a C line of code is of-
ten represented by several lines of assembly. Knowing that in
the current state of the art, it remains difficult to skip multiple
assembly lines, an attacker will unlikely be able to skip mul-
tiple C lines of code. Then, we will only consider faults with
a width of one line.

Table 1 summarizes the differences of our fault models
with state of the art, on several general criteria in order to
show the diversity of existing analysis on this topic.

The simulator mostly relies on a testing approach in the
sense that the targeted implementation is not modified be-
tween simulations. However, a single mutation might be
needed to decompose computations and let the intermediate
values appear as one time variables.

Faults are injected using the well known Gnu Project De-
bugger (GDB) [GDB, 1988] that makes it possible to pause
the execution via breakpoints, change any variable’s value

and then resume the execution. Moreover, we enhanced the
control and efficiency of our simulator by providing automa-
tion through Python scripts which allow way more possibili-
ties than GDB scripts as they only have few conditional struc-
tures available.

3.2 Test Protocol
Our testing protocol currently targets any single function in
an implementation. Several parameters can be tuned to spec-
ify the fault model such as the fault multiplicity or which vari-
able to attack or not. If not specified, every global variable of
the file, local variable and parameter of the function will be
faulted at each line of the function.

Figure 3: Inner-workings of the simulator

As described in figure 3, GDB commands are controlled
by Python scripts which will for each combination of faults
(aka targeted variables, injection lines and new values set),
ask GDB to:

1. Execute the target;
2. Set breakpoints where the fault shall be injected;
3. Inject the faults;
4. Get the system state post execution;
5. Repeat this sequence until the fault model is exhaus-

tively explored.

All functionnal outputs (such as function return value or
prints) are logged in a single file split by executions. More-
over, as these outputs might be given to an oracle telling if
they correspond to an attack or not, the log file also keeps
track of such verdicts automatizing request to oracles. This
will spot possible attacks with respect to an oracle defined by
the user. As we will see, there might be many of them.

We choose to allow the simulator to change the value of a
variable even if this variable is not used at the targeted line.
It means that every variable will be forced to every possible
values (zero or one) at each line. This possibility could be
realistic for example in a system where the values of the vari-
ables are stored in memory and loaded each time they are
read. In a system where this assertion does not stand (basi-
cally all system with registers), only the realistic attacks will
be included in the total set of attacks found.

Instinctively, such a flexibility will create a relation be-
tween some attacks in a way that they can be regrouped as
one generic attack and several ways to reproduce it. Thus, in

Reference
Abstraction Type of

Persistence
High

level fault model order

[Christofi, 2013] [Christofi et al., 2013] High level (C) Data-flow Permanent
[Rauzy and Guilley, 2013] [Rauzy and Guilley, 2014] High level (OCaml) Data-flow Transient X

[Kauffmann-Tourkestansky, 2012] High level (C) / Low level Control-flow Transient
[Heydemann et al., 2013] [Moro et al., 2013] Low level Control-flow Transient

[Berthier et al., 2014] Low level Control-flow Transient
[Potet et al., 2014] Intermediate (LLVM) Control-flow Transient X

Our approach High level (C)
Data-flow Permanent

X
Control-flow Transient

Table 1: Comparison of our approach with state-of-the-art

section 5.1, we will define precisely what we call redundant
attacks. Then we will detail classification criteria in order to
regroup such attacks.

4 Case Study
In this section we present a case study in order to show the
validity of our tool. We concentrate on the process of signa-
ture using CRT-RSA. The objective is to ask a system to sign
a random message m with its own key (p, q, dp, dq , iq , N)
and to obtain a prime factor p or q of N using a BellCoRe
attack.

We will study the results of the simulator on an unprotected
CRT-RSA implementation and on one using the Aumüller et
al. counter-measure. Both of them will be tested with the
data fault model and the line-skip fault model explained in
Section 3.1.

4.1 Study of an Unprotected Implementation of
CRT-RSA

1 i n t CRT RsaSign (i n t M , i n t p , i n t q , i n t dp ,
i n t dq , i n t iq)

2 Sp = Mdp mod p /∗ S i g n a t u r e modulo p ∗ /
3 Sq = Mdq mod q /∗ S i g n a t u r e modulo q ∗ /
4

5 /∗ Recombining ∗ /
6 S = Sq + q · (iq · (Sp − Sq) mod p)
7 re turn S

Listing 1: Unprotected implementation of CRT-RSA

SIMULATION 1 targets the unprotected CRT-RSA given in
Listing 1 with first order attacks under the data fault model.
For the rest of this paper, we will describe each simulation
experiment with the following structure:

Target function : Unprotected CRT RsaSign

Success oracle : Success of a BellCoRe attack
on the signature

Fault model : Data
Fault multiplicity : 1 (first order)
Result : 11 attacks found

SIMULATION 1: Data model on unprotected CRT-RSA (first
order faults)

Data attack example 1 The unprotected implementation of
CRT-RSA is prone to numerous attacks. For instance, forcing
the value of Sp to zero prior to the execution of line 6 reveals
the prime factor q of N . Indeed,

S − Ŝ = q · ((iq · (Sp − Sq) mod p)− (iq · (−Sq) mod p))

and

gcd(N,S − Ŝ) = q

Data attack example 2 An even clearer attack consists in
zeroing the whole intermediate value q ·(iq ·(Sp−Sq) mod p)

prior to the execution of line 6 will result in Ŝ = Sq , thus we
have a BellCoRe attack:

|Ŝ| 6= |S| and |Ŝ mod q| = |S mod q|

SIMULATION 2 targets the same unprotected CRT-RSA
with first order attacks according to the line-skip fault model.
Results are shown below:

Line attack example 1 Skipping the line computing iq ·
(Sp − Sq) mod p (intermediate computation included in line
6 of listing 1) led to Ŝ = Sq + q · (Sp − Sq) (as the for-
mer intermediate value of the signature was (Sp − Sq) and
we skipped its multiplication to iq) which allows a BellCoRe
attack.

The line-skip fault model detected four vulnerable lines.
Listing 1 shows a generic code of the naive RSA where sev-
eral computations are gathered on few lines. There is a strong

Target function : Unprotected CRT RsaSign

Success oracle : Success of a BellCoRe attack
on the signature

Fault model : Line-skip
Fault multiplicity : 1 (first order)
Result : 4 attacks found

SIMULATION 2: Line-skip model on unprotected CRT-RSA
(first order faults)

dependency between the implementation and the attack suc-
cess rate with the line skip fault model. The latter can also re-
cover several attacks found by the data fault model and count
them as a single one, which explains the lower number of
found attacks in SIMULATION 2.

For instance, if we consider a variable a that is used in an
attacked exponentiation, with the data fault model, we can
set it either to 0 or 1. However, with the line-skip fault model,
the attack output will depend on the initialization value of a.
Therefore, if a was initialized to 0, we would recover a set-
to-zero data fault model. Moreover, if a was not initialized,
we would recover a random data fault model and finally, if a
was initialized to a constant value, we would recover a set-
to-value data fault model. Even if the two latter data fault
models are not directly considered by our simulation, the line-
skip fault model can detect them.

4.2 Study of the Shamir Implementation of
CRT-RSA

The counter-measure of Shamir [Shamir, 1999] introduces a
new factor r co-primed with p and q, random and small (less
than 64 bits). Computations are thus performed modulo p ·
r (resp. modulo q · r), which allows to retrieve the result
by reducing modulo p (resp. modulo q). A verification is
possible by reducing modulo r. The Shamir implementation
of CRT-RSA is given in listing 2.

1 i n t CRT RsaSign (i n t M , i n t p , i n t q , i n t d ,
i n t iq)

2 r = rand ()
3

4 p
′
= p · r

5 dp = d mod (p− 1) · (r − 1)

6 S
′
p = Mdp mod p

′
/∗ S i g n a t u r e modulo p

′
∗ /

7

8 q
′
= q · r

9 dq = d mod (q − 1) · (r − 1)

10 S
′
q = Mdq mod q

′
/∗ S i g n a t u r e modulo q

′
∗ /

11

12 /∗ Recombining ∗ /
13 Sp = S

′
p mod p

14 Sq = S
′
q mod q

15 S = Sq + q · (iq · (Sp − Sq) mod p)
16

17 i f (S
′
p 6≡ S

′
q mod r) { takeCounterMeasure() }

18 e l s e { re turn S }

Listing 2: Shamir implementation of CRT-RSA

Target function : Shamir CRT RsaSign

Success oracle : Success of a BellCoRe attack
on the signature

Fault multiplicity : 1 (first order)
Result : 15 attacks found

SIMULATION 3: Data model on Shamir CRT-RSA (first
order faults)

SIMULATION 3 targets the Shamir implementation of CRT-
RSA with the data fault model. Our simulator shows that a
first order fault is enough to break the implementation.

Data attack example 3, A Set-to-zero on the value of Sp

prior to execution of line 15 of listing 2 allows us to obtain the
exact same attack than Data attack example 1, as the integrity
test only relies on S

′

p and S
′

q .

Data attack example 4 The same clear attack presented on
Data attack example 2 is still feasible. Setting the whole in-
termediate value q · (iq · (Sp−Sq) mod p) to zero prior to the
execution of line 15 will trigger a BellCoRe attack the exact
same way.

SIMULATION 4 targets the same Shamir implementation of
CRT-RSA under the line− skip fault model. Here again, our
simulator shows that a first order fault is enough to break the
implementation.

Line attack example 2 Skipping the line computing iq ·(Sp−
Sq) mod p (intermediate computation included in line 15 of
listing 2) led to Ŝ = Sq + q · (Sp − Sq) which allows a Bell-
CoRe attack as showed in Line attack example 1. As exam-
plained in Data attack example 3, Shamir’s counter-measure
is not triggered due to the fact that the integrity test only relies
on S

′

p and S
′

q and not on S.

4.3 Study of the Aumüller Implementation of
CRT-RSA

The counter-measure of Aumüller [Aumüller et al., 2002] has
been developed in order to enhance the version of Shamir
against first order attacks. It stills introduce a new factor t
co-primed with p and q. However, the computation of dp et
dq is performed outside of the function which removes the
use of d. Moreover, the ending verification introduced by
Shamir is now asymmetrical and intermediate verification are
also added. The Aumüller implementation of CRT-RSA is
given in listing 3.

On the Aumüller implementation of CRT-RSA, our results
matches the one exposed in [Rauzy and Guilley, 2013]. No
first order attack is found by setting any variable or interme-
diate data to zero.

1 i n t CRT RsaSign (i n t M , i n t p , i n t q , i n t dp ,
i n t dq , i n t iq)

2 t = r and ()
3

4 p
′
= p · t

5 d
′
p = dp + random1 · (p− 1)

6 S
′
p = Md

′
p mod p

′
/∗ S i g n a t u r e modulo p ’ ∗ /

7

8 i f ((p
′
mod p 6= 0) o r (d

′
p 6≡ dp mod (p− 1))) {

takeCounterMeasure() }
9

10 q
′
= q · t

11 d
′
q = dq + random2 · (q − 1)

12 S
′
q = Md

′
q mod q

′
/∗ S i g n a t u r e modulo q ’ ∗ /

13

14 i f ((q
′
mod q 6= 0) o r (d

′
q 6≡ dq mod (q − 1))) {

takeCounterMeasure() }
15

16 /∗ Recombining ∗ /
17 Sp = S

′
p mod p

18 Sq = S
′
q mod q

19 S = Sq + q · (iq · (Sp − Sq) mod p)
20

21 i f ((S − S
′
p 6≡ 0 mod p) o r (S − S

′
q 6≡ 0 mod q)) {

takeCounterMeasure() }
22

23 Spt = S
′
p mod t

24 Sqt = S
′
q mod t

25 dpt = d
′
p mod (t− 1)

26 dpt = d
′
p mod (t− 1)

27

28 i f (Sdqt
pt 6≡ S

dpt
qt mod t) { takeCounterMeasure() }

29 e l s e { re turn S }

Listing 3: Aumüller implementation of CRT-RSA

SIMULATION 5 targets the CRT-RSA implementation pro-
tected with the Aumüller countermeasure shown in Listing 3
above. Second order attacks are performed according to the
data fault model, we obtain:

Target function : Aumüller CRT RsaSign

Success oracle : Success of a BellCoRe attack
on the signature

Fault model : Data
Fault multiplicity : 2 (second order)
Result : 802 attacks found
SIMULATION 5: Data model on Aumüller CRT-RSA

(second order faults)

The Aumüller implementation is not robust against second
order attacks using this data fault model. The first fault is
used to corrupt the computation while the second avoids the
counter-measure to be triggered.

Data attack example 5 A Set-to-one fault on (p− 1) before
the execution of line 5 sets up a BellCoRe attack. Secondly,

performing the same fault on (p− 1) before the execution of
line 8 avoids triggering the counter-measure.

Data attack example 6 The attack presented for unprotected
and Shamir implementations consisting in setting the whole
intermediate value q · (iq · (Sp − Sq) mod p) to zero be-
fore the execution of line 19 stills enables a BellCoRe attack.
However, it will also trigger the counter-measure of line 21
(through the test S − S

′

p 6≡ 0 mod p). A second fault will
disable it by setting the intermediate value S − Sp to zero.

Such a huge number of attacks (802 in SIMULATION 3)
makes results impossible to analyze by hand. Moreover it is
obvious that most of these attacks found can be regrouped
into some generic attacks with different ways to reproduce
them. This example definitely shows the necessity of classi-
fication criteria and metrics.

SIMULATION 6 targets the same protected CRT-RSA with
the Aumüller countermeasure but second order attacks are
performed according to the line-skip fault model. Results are
shown below:

Target function : Aumüller CRT RsaSign

Success oracle : Success of a BellCoRe attack
on the signature

Fault model : Line-skip
Fault multiplicity : 2 (second order)
Result : 13 attacks found

SIMULATION 6: Line-skip model on Aumüller CRT-RSA
(second order faults)

Line attack example 3 Skipping the line computing iq ·(Sp−
Sq) mod p (intermediate computation included in line 19 of
listing 3) led to Ŝ = Sq + q · (Sp − Sq) which allows a Bell-
CoRe attack as showed in Line attack example 1 and 2. This
time, it also triggers the counter-measure on line 21 which
can be easily skipped by our fault model at the second order.
This attack is very similar to the Data attack example 6.

Thirteen attacks are spotted by the line-skip fault model.
Interestingly, the number of attacks found by the line-skip
fault model in Simulation 4 is drastically lower to the one
found by the data fault model in simulation 3. This can be
explained knowing that it only depends on the lines while the
data fault model also depends on variables and values. We
will present deeper analyses of the link between these two
models in section 5.2.

To the best of our knowledge, some studies showed that
the Aumüller implementation of CRT-RSA is weak against
multiple fault injection such as [Kim et al., 2011] but none
provides detailed experimental results.

5 Advanced Analysis
5.1 Regrouping Criteria
We recall that a successful attack is the exploitation of a code
vulnerability, which is induced by the fault injection. Ac-
cording to the transient value modification fault model, we

provide a variable-centric criteria Cval by which we measure
the code sensitivity. Cval only depends on the value taken by
the targeted variable regardless the attacked line of code. It is
defined as:

Cval(targeted var, value) := #{line | O(S, Ŝ, n) = true}

For a given couple (targeted variable, value), Cval de-
scribes the number of successful attacks obtained by setting
targeted variable to value regardless of the lines. We de-
fine as non-redundant, the successful attack that has the great-
est injection line number.

Table 2 summarizes the experimental results obtained by
the fault simulator on CRT-RSA implementations with the
data fault model on C variables. The first line shows how
many attacks have been found by the simulator on each
implementation. The second line displays how many non-
redundant attacks are found. When the same targeted vari-
able is modified to the same value at several different lines of
the code, it describes the same attack. We call such groups of
lines a vulnerability. This is why the second line of Table 2
report a lower number of found attack.

5.2 Link Between The Fault Models
We now provide a line-centric criteria Cline that for each line
of the implementation under testing returns a boolean value
depending on the presence of an attack with an injection on
this line. In the end, for a given implementation, this criteria
returns the set of lines where injecting a fault results in an
attack. It is defined as follows:

Cline(l,m) :=

{
true if ∃ A(l,m) | O(S, Ŝ,N) = true

false otherwise

For a given line l, Cline returns true if there exist a success-
ful attack A on line l according to the fault model m denoted
as A(l,m). For each implementation that we studied, we re-
trieve vulnerable lines filtered by Cline under the data fault
model. Then, we check how many of these lines are also
vulnerable under the line-skip fault model. For readability
purpose, we define

V ulnerable linesmodel := {l | Cline(l,model) = true}

Thereby, we compute the following ratio:

Gain :=
#{V ulnerable linesdata − V ulnerable lineslskip}

#{V ulnerable lineslskip}

It happened that for each of our implementations, this gain
ratio was 100% even considering redundant attacks. This
means that each vulnerable line found with the data fault
model is also vulnerable with the line-skip fault model.

Moreover, as we can see in table 3, the first (resp. second)
line displays the time taken by our tool for each implemen-
tation using the data (resp. line-skip) fault model. The third
line is the ratio of the first and second lines. We can here

conclude that simulations using the line-skip fault model are
much quicker than using the data fault model. This is spe-
cially true when dealing with higher order faults.

In our experiments, every attack found by the data fault
model seems to be reproducible using the line-skip fault
model. As mentioned in section 4.1, the general link between
the two fault models is not straightforward. On one hand,
the general effects of a line skip on a variable is a Set-to-
last-value. It differs from Set-to-0/1. If we consider that an
attacker has no control on intermediate values, the line-skip
fault model can be seen as a uncontrolled value fault model.

On the other hand, considering a single line of code, the
data fault model targets only one variable while the line-skip
fault model targets every modified variables of the line. De-
spite these differences, it still becomes really useful to run
line-skip based simulations prior to data based simulation at
high-level as it produces similar effects. Moreover, the large
simulation performance improvement justifies this choice.

Finally, high-level line-skip allows to discover attacks
pretty invulnerable to data fault models such as removing a
break statement in a switch or adding/removing loop iter-
ations. As a matter of fact, the last has been put into practice
in [Dehbaoui et al., 2013] where the authors are able to in-
crease the leakage of an AES key for side channels analysis.
Generally, these high-level faults models can be considered
as the consequence of low-level faults encompassing several
of them.

6 Conclusion
We proposed an approach to evaluate the robustness of se-
cured implementations against multiple fault injections. This
approach works on high-level source codes (such as C). We
proposed a first fault model relying on data modification with
the granularity of a C variable. This fault model has been au-
tomated in a Python tool which is able to try it exhaustively
on a given implementation and log out the functions outputs.
Helped by oracles, it can tell whether a combination of faults
results in a attack or not.

We demonstrated the validity of our tool on three examples
of CRT-RSA implementations and obtained results according
to the current state-of-the-art. Moreover, we proposed a sec-
ond fault model relying on line skipping that is faster. In our
experiments, we found that it covers entirely the attacks found
by the data fault model with a huge speed gain.

Finally, we proposed a set of criteria and metrics in order
to regroup attacks found and quantify in term of security the
robustness of an implementation.

6.1 Perspectives
Further work is to refine the link we found between our data
and control-flow fault models. This shall start by analysing
more example such as more complexe counter-measures (for
instance [Vigilant, 2008] and its enhancement [Coron et al.,
2010] or [Kim et al., 2011]). We also already studied non-
cryptographic example such as VerifyPIN implementations,
and we would like to continue to expand in this way.

Unprotected Shamir Aumüller Aumüller
(order 1) (order 1) (order 1) (order 2)

Attacks found 11 15 0 802
Non-redundant attack 9 11 0 85

Table 2: Found Attacks with the Fault Simulation with Data Fault Model

Unprotected Shamir Aumüller Aumüller
(order 1) (order 1) (order 1) (order 2)

Data 3,53 s 38,75 s 143,93 s 1361,45 mn
Line Skip 2,18 s 2,39 s 14,31 s 7,41 mn
Gain ratio 162 % 1621 % 1006 % 18373 %

Table 3: Line-skip Fault Model And Fault Simulation Timing Performances

Then a deeper and more generic analysis of our two fault
models could formaly establish a link between the two of
them and definitely promote the use of line − skip models
to increase simulations speed.

References
[arm, 2005] ARM Architecture Reference Manual - Thumb-

2 Supplement, 2005.
[Aumüller et al., 2002] C. Aumüller, P. Bier, W. Fischer,

P. Hofreiter, and J.-P. Seifert. Fault Attacks on RSA with
CRT: Concrete Results and Practical Countermeasures. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,
editors, CHES, volume 2523 of Lecture Notes in Computer
Science, pages 260–275. Springer, 2002.

[Berthier et al., 2014] M. Berthier, J. Bringer, H. Chabanne,
T.-H. Le, L. Rivière, and V. Servant. Idea: Embedded
Fault Injection Simulator on Smartcard. In J. Jürjens,
F. Piessens, and N. Bielova, editors, ESSoS, volume 8364
of LNCS, pages 222–229. Springer, 2014.

[Biham and Shamir, 1997] E. Biham and A. Shamir. Differ-
ential Fault Analysis of Secret Key Cryptosystems. In Bur-
ton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lec-
ture Notes in Computer Science, pages 513–525. Springer,
1997.

[Boneh et al., 1997] D. Boneh, R. A. DeMillo, and R. J. Lip-
ton. On the Importance of Checking Cryptographic Pro-
tocols for Faults (Extended Abstract). In W. Fumy, edi-
tor, EUROCRYPT, volume 1233 of LNCS, pages 37–51.
Springer, 1997.

[Brayton et al., 1996] R. K. Brayton, G. D. Hachtel,
A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T.
Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R.. Ranjan, S. Sarwary, T. R. Staple, G. Swamy,
and T. Villa. VIS: A system for verification and synthesis.
In Rajeev Alur and ThomasA. Henzinger, editors, Com-
puter Aided Verification, volume 1102 of Lecture Notes in
Computer Science, pages 428–432. Springer Berlin Hei-
delberg, 1996.

[Cadar et al., 2008] C. Cadar, D. Dunbar, and D. R. En-
gler. Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
pages 209–224, 2008.

[Christofi et al., 2013] M. Christofi, B. Chetali, L. Goubin,
and D. Vigilant. Formal verification of a CRT-RSA im-
plementation against fault attacks. J. Cryptographic Engi-
neering, 3(3):157–167, 2013.

[Christofi, 2013] M. Christofi. Preuves de sécurité outillées
d’implémentation cryptographiques. PhD thesis, Labora-
toire PRiSM, Université de Versailles Saint Quentin-en-
Yvelines, France, 2013.

[Coron et al., 2010] Jean-Sebastien Coron, Christophe Gi-
raud, Nicolas Morin, Gilles Piret, and David Vigilant.
Fault attacks and countermeasures on vigilant’s rsa-crt al-
gorithm. In Proceedings of the 2010 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC ’10,
pages 89–96, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[CSE et al., 2012] CSE, SCSSI, BSI, NLNCSA, CESG,
NIST, and NSA. Common Criteria for Information Tech-
nology Security Evaluation Version 3.1 Release 4, 2012.
https://www.commoncriteriaportal.org.

[Dehbaoui et al., 2013] A. Dehbaoui, A.-P. Mirbaha,
N. Moro, J.-M. Dutertre, and A. Tria. Electromagnetic
Glitch on the AES Round Counter. In E. Prouff, editor,
COSADE, volume 7864 of LNCS, pages 17–31. Springer,
2013.

[GDB, 1988] 1988. http://www.sourceware.org/gdb/.
[Heydemann et al., 2013] K. Heydemann, N. Moro, E. En-

crenaz, and B. Robisson. Formal verification of a soft-
ware countermeasure against instruction skip attacks. In
PROOFS 2013, Santa-Barbara, États-Unis, Aot 2013.

[Jansen, 2010] W. Jansen. Directions in security metrics re-
search. DIANE Publishing, 2010. NISTIR 7564.

[Joye et al., 1999] M. Joye, A. K. Lenstra, and J.-J.
Quisquater. Chinese Remaindering Based Cryptosystems

in the Presence of Faults. J. Cryptology, 12(4):241–245,
1999.

[Kauffmann-Tourkestansky, 2012] X. Kauffmann-
Tourkestansky. Analyses securitaires de code de
carte a puce sous attaques physiques simulees. PhD
thesis, Université d’Orléans, 2012.

[Kim et al., 2011] S.-K. Kim, T. H. Kim, D.-G. Han, and
S. Hong. An Efficient CRT-RSA Algorithm Secure
Against Power and Fault Attacks. J. Syst. Softw.,
84(10):1660–1669, Octobre 2011.

[Miani et al., 2013] R.-S. Miani, M. Cukier, B. B. Zarpelão,
and L. de Souza Mendes. Relationships Between Informa-
tion Security Metrics: An Empirical Study. In Proceedings
of the Eighth Annual Cyber Security and Information In-
telligence Research Workshop, CSIIRW ’13, pages 22:1–
22:4, New York, NY, USA, 2013. ACM.

[Moro et al., 2013] N. Moro, A. Dehbaoui, K. Heydemann,
B. Robisson, and E. Encrenaz. Electromagnetic Fault In-
jection: Towards a Fault Model on a 32-bit Microcon-
troller. In FDTC, pages 77–88. IEEE, 2013.

[Potet et al., 2014] M.-L. Potet, L. Mounier, M. Puys, and
L. Dureuil. Lazart: a symbolic approach for evaluation
the robustness of secured codes against control flow fault
injection. In ICST, 2014.

[Quisquater and Couvreur, 1982] J.-J. Quisquater and
C. Couvreur. Fast decipherment algorithm for rsa public-
key cryptosystem. Electronics Letters, 18(21):905–907,
1982.

[Rauzy and Guilley, 2013] P. Rauzy and S. Guilley. A For-
mal Proof of Countermeasures against Fault Injection At-
tacks on CRT-RSA. volume 2013, page 506, 2013.

[Rauzy and Guilley, 2014] P. Rauzy and S. Guilley. Formal
Analysis of CRT-RSA Vigilant’s Countermeasure Against
the BellCoRe Attack: A Pledge for Formal Methods in the
Field of Implementation Security. In S. Jagannathan and
P. Sewell, editors, PPREW@POPL, page 2. ACM, 2014.

[Savola, 2007] R. Savola. Towards a taxonomy for informa-
tion security metrics. In G. Karjoth and K. Stølen, editors,
QoP, pages 28–30. ACM, 2007.

[Shamir, 1999] A. Shamir. Method and apparatus for pro-
tecting public key schemes from timing and fault attacks.
Patent Number 5,991,415, Novembre 1999. also presented
at the rump session of EUROCRYPT ’97.

[V. K. Kosuri and N. Fazal, 2013] V. K. Kosuri and N. Fazal.
FPGA Modeling of Fault-Injection Attacks on Crypto-
graphic Devices. In IJERA, volume 3, pages 937–943,
2013.

[Vaughn et al., 2003] R. B. Vaughn, R. R. Henning, and
A. Siraj. Information Assurance Measures and Metrics -
State of Practice and Proposed Taxonomy. In HICSS, page
331, 2003.

[Vigilant, 2008] D. Vigilant. Rsa with crt: A new cost-
effective solution to thwart fault attacks. In Proceeding Sof

the 10th International Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES ’08, pages 130–145,
Berlin, Heidelberg, 2008. Springer-Verlag.

Human detection in indoor environment with 3D sensor

Carole Plasson
AMA, LIG

Grenoble, France

Supervised by: Olivier Aycard

I understand what plagiarism entails and I declare that this report
is my own, original work.
Plasson Carole, 21 august 2014

Abstract

Human detection is an open and complex problem
in computer vision. Indeed, creating an accurate
3D detection in real time is a research area which
remains under study. In industry, it can be used
when robots work side-by-side with human work-
ers. In this case, detection has to be accurate for
security.
This internship deals with human detection in in-
door environment. It is performed with RGB-D
data provided by 3D sensor. RGB-D datasets are
composed of color and depth images. The purpose
is to obtain an accurate 3D detection in real time.
To achieve this, we first at all perform a motion de-
tection. It allows us to obtain 2D bounding boxes.
These are sent to a classifier to determine whether
the boxes contain a human. After that, we obtain a
2D human detection. With this method, it is possi-
ble to detect several people at the same time.
Once 2D detection performed, we work with depth
data to compute the orientation of a human. We
obtain an angle which allows us to realize a 3D box
around human. For a real time detection, we add
parallelism.

1 Introduction
The human detection is an essential part in computer vision
and is used, for example, in video-surveillance. The main
problem of this detection is the variation of human features
(physical features but also different postures they may have).
In some cases, for example in industry where humans work
side by side with robots, there is a new problem :
detection has to be efficient, in the interests of security but
also efficiency. Indeed, a robot has to be able to detect a
human. With this detection, it will avoid him and will not
stop unnecessarily if the robot detects a human enough away
[Knight, 2013].

During this internship, we are interested in the detection
in constrained environment (indoor environment) and with a
fixed camera. This camera is a 3D laser sensor which allows
us to get RGB (Red Green and Blue) and depth data. (see
figure 1)

(a) RGB image
(color image)

(b) Depth image
(grayscale)

(c) Example of depth
representation

Figure 1: Data sent by sensor

For this, we first use color images to create a 2D box
around human. The figure 2 shows the steps to realize this
box. These images will be analyzed to detect moving regions
that we represent by white pixels (images in black and white).

Then, we use a classifier which allows us to recognize a
human in an image thanks to different features. With this
classifier, we know if the bounding box contain an human or
not (image with red rectangle).

Figure 2: Steps to perform a bounding box

Once the 2D box obtained, we perform this one in 3D.
To achieve this, we compute the orientation angle of human
in using depth images. With this angle, we can create a 3D
bounding box. Sometimes, this 3D representation is not
sufficient, too large and imprecise. We can adjust and cut this
one in several boxes to resolve this problem.
The construction of this 3D box requests a lot of compu-
tations. For a detection in real time, our computations in
the program have to be optimal. For best performances,

parallelism has been added.

This report is structured as follows. Section 2 presents the
general scheme for performing a human detection. Then, the
section 3 explains the different steps to obtain a bounding box
and it contains a description of classifier. This description
introduces the methods currently used for a human detection.
In section 4, we present the construction of a 3D box around
a human. We show also, in section 5, the results obtained by
our program, the advantages and limitations of this one and
the possible improvements for the detection. Finally, section
6 comes as a conclusion.

2 Steps to perform a 3D human detection
This section introduces the different steps of the detection re-
alized during the internship. These ones will be explained in
the following sections.

Figure 3: Steps to perform a 3D human detection

Figure 3 shows, in blue, performed steps during TER and,
in red, performed steps during Magistere. 2D bounding box
is obtained with these following blue steps :

1. Acquisition of the background image.
This image is the room without people and is used to
detect motion.

2. Motion detection.
We perform a comparison pixel by pixel between back-
ground image and color images sent by the sensor. We
obtain a set of moving points.

3. Get moving region.
We assemble points to obtain a detection of several mov-
ing regions.

4. Human recognition.
This step allows us to determine whether moving regions
are humans. Step learning, show in the figure, was made
before execution.

After these performed steps, we have one or several 2D
bounding box(es) containing a human. We use it to make a
3D detection.

1. Maximal optimization of the previous steps.
Before construction of 3D box, we have to add paral-
lelism. Without this, the 3D detection can not be per-
formed in real time.

2. Computation of the depth in millimeter.
To know the position of the human, we have to compute
the depth in mm thanks to depth images.

3. Computation of orientation angle.
With the 2D bounding box and depths in mm, we can
know the orientation of the human.

4. Processing of 3D box.
With the orientation angle, we can create the 3D bound-
ing box.

After these steps performed, we have a 3D box around hu-
man.

3 2D bounding box creation
In this part, we explain the steps to get the bounding box. We
start with RGB detection to find regions of interest in an im-
age and to send them to the classifier. After that, we explain
the methods and algorithms used by the classifier.

3.1 Motion detection with RGB data
The simplest method to detect a motion is using RGB images
(color images). Indeed, a 3D sensor sends 30 images per
second. To perform detection, we use the background image
which represents the room without any human [Wikipedia,
2014a]. With a simple comparison, it allows us to detect
changes like, for example, a human displacement in front of
the sensor.
A first method to realize this comparison is : for each
pixel of each image, we compute the color difference with
the corresponding pixel of the background image. If this
difference is greater than a given threshold, we suppose that
the pixel is moving.
This method is precise enough but we have some errors.
Indeed, during brightness change, pixels of illuminated
regions change. With this method, these pixels will form a
moving region and it is an error.

We can prevent this happening in comparing each image
provided by the sensor with the previous one. These errors
will be here at the time of lighting but quickly removed in
next images. Indeed, the difference with the previous image
will be too low in following images. For this second method,
we use two thresholds : one for the comparison with the back-
ground image and an other for the comparison with the previ-
ous image. If the differences are greater than these thresholds,
pixels belong to moving region. Difference with the back-
ground image is preferred to difference with the previous im-
age since this one is more accurate to detect whole human. In
the event of a human is almost static, he will be detected after
the comparison with the background image. However, with
the previous image, he will not be entirely detected, the dif-
ference being too low between 2 successive images. Images
in figure 4 show results of RGB detection.

Image 4a is the background image and image 4b represents
the RGB image. The white pixels of image 4c are moving
pixels and the black pixels identify static regions.

(a) Background
image

(b) RGB image
(color)

(c) Motion detec-
tion

Figure 4: RGB image processing to detect motion

3.2 Computation of connected components
Once moving pixels found, we have to separate the moving
regions and to create a bounding box for each of them. For
example, in figure 6, we obtain a box around the human and
another around the object at the left.

This step allows us, in addition to boxes creation, to
remove errors like white pixels which represent this object
at the left in the image. So, we realized an algorithm to
determine connected components of moving pixels.
With image 4c, we can see that the human is not always
entirely detected. His detection depends on his motions. To
obtain a single component which will represent the human,
we cannot simply assemble neighbor pixels. In fact, the
moving pixels are not always directly adjacent. So, we define
a region of approximately 50 pixels around each of them.
All pixels in this region will be in the same component. (see
figure 5)

Figure 5: Region of 2 pixels

After defining components, we can remove those which
can not represent a human (for example, those containing too
few pixels). This process limits the number of images sent
to the classifier. Then, we draw a rectangle, around each
of them, computing minimum and maximum in width and
height. The image part contained in the rectangle is sent to
the classifier to be analyzed (see section 3.3).

We can see, on the figure 6, two rectangles, one for each
found component. Those identify moving regions. Then, we
can use the classifier to know whether the rectangles contain
a human.

Figure 6: Results after connected components computation

3.3 Classifier
The used classifier is based on the machine learning algorithm
Adaboost created by Yoav Freund and Robert Schapire in
1997 [Freund and Schapire, 1999] and [Freund and Schapire,
1996]. Adaboost uses the boosting method. The principle of
this method is to use a set of binary classifiers more efficient
than random (having a success rate higher than 50%), call
weak classifiers. A binary classifier distributes the inputs in
two categories. In our case, the inputs are the images and the
categories are : “contains human” or “does not contain hu-
man”. A linear combination of these weak classifiers forms a
final classification function. This function allows us to know
whether an image contains human. These binary classifier are
determined by HOG descriptors (Histogram of Oriented Gra-
dients) which are really efficient for human detection. HOG
are found by Navneet Dalal and Bill Triggs, researchers for
INRIA [Dalal and Triggs, 2005] and [Wikipedia, 2014b] in
2005.

Histogram oriented gradients
This section explains HOG computation which allows us
to determine the shape of a human in computing different
gradients. A gradient is a vector which defines a variation
of function. In our case, the gradients defines the color
variation. First, the image is divided in several parts with
same size, called cells. For each cell, the algorithm performs
a histogram containing different orientations of gradients
for each pixel of this cell. In order to be more efficient,
we then realize blocks, which can overlap. These blocks
contain several cells. For each block, we compute the local
histograms which will be normalized. They will be the final
descriptors used by Adaboost.

Computation of orientation gradient
For a pixel, this orientation is performed with Perwitt filter (a
mask). This filter uses different 3x3 matrices like these :

Gx =

(
+1 0 −1
+1 0 −1
+1 0 −1

)
Gy =

(
+1 +1 +1
0 0 0
−1 −1 −1

)
Gx allows us to compute the horizontal orientation of gra-

dient andGy the vertical orientation. The gradient orientation
of this pixel is computed in using color values of the adjacent
pixels. We compute the sum of products between the adjacent
pixels and the coefficients of the filter located in the matrix.
We realize this computation on an example. This following

matrix contains values of 9 adjacent pixels. The aim is to
compute orientation of gradient for the central pixel (this one
with b2 as value). (

a1 b1 c1
a2 b2 c2
a3 b3 c3

)
The orientation of the gradient in the horizontal direction

is found thanks to the matrix Gx as follows :

1 ∗ a1 + 0 ∗ b1 + (−1) ∗ c1 + 1 ∗ a2 + 0 ∗ b2
+(−1) ∗ c2 + 1 ∗ a3 + 0 ∗ b3 + (−1) ∗ c3

If the value is positive, the gradient is oriented to the left,
otherwise to the right. We do likewise with Gy to obtain the
vertical orientation (top or down direction).

Construction of the histogram cell
The computation of the orientation gradient is realized for
all pixels of each cell. Once these directions obtained, we
construct the corresponding histogram. (see figure 7).

(a) orientation of
gradients cell

(b) Orientation histogram of cell

Figure 7: Steps to create histogram

This histogram represents the number of instances of each
direction (beginning to the left, then top left, ...).

Blocks formation
In order to be more efficient, Navneet Dalal and Bill Triggs
have thought to create blocks. A block contains several cells,
so we must define their size. In the figure 8, we will take
blocks containing 2x2 cells.

Figure 8: Creating 2 blocks : one red and another blue

We compute local histograms of the block. For this, we use
histograms of cells contained in the block. In the example,
the histogram of the red block is computed using cells C1,
C2, C4 and C5. After, a normalization is made. Each block
contains, at the end, a local histogram. They define binary
classifiers used to create the final classifier.

Adaboost method
The aim of Adaboost is to perform progressively the final
function of classification F . This final function is a linear
combination of selected classifiers. Thanks to the algorithm,
we obtain an efficient function of classification. It will allow
us, from features obtained with HOG descriptors, to classify
images containing humans and those without human. First,
the Adaboost method uses a set of weak classifiers, H and a
set of m examples. Training set is the one of (xi, yi) where
xi represents examples and yi indicate if examples are posi-
tive (contain a human) or not. yi ∈ {−1;+1} for i = 1,...,m.
Each example is assigned to a coefficient of difficulty d1(i)
initialized to 1

m . These classifiers return, for each example,
+1 if example is found positive, -1 otherwise.
Adaboost begins by choosing the first classifier h1 in H . It
will be added to F , the final function. We choose the classi-
fier with best success rate, the one which minimizes the error
of classification. This error is performed as

et =

m∑
i=1

dt(i)[ht(i) 6= yi]

In the final function, each classifier is assigned to an integer
αt which is proportional to its success rate. Thanks to this, the
classifier with the best success rate will have a weight more
important than the others in the final function :

αt =
1

2
ln(

1− et
et

)

Difficulty coefficients of examples are updated. Indeed, the
examples where the classifier failed must have a coefficient
more important than the other examples. So, we will oblige
future classifiers to be more efficient with misclassified ex-
amples by previous ones. The new value of coefficients is
computed as follows :

dt+1(i) =
dt(i)

Zt
∗
{

exp−αt si ht(i) = yi
expαt si ht(i) 6= yi

where Zt is a normalization vector. The algorithm chooses
other classifiers in this way. It stops when the success rate is
sufficient or a certain number of classifiers is reached.

4 Construction of 3D bounding box
To create a 3D bounding box, we use depth data and the 2D
box created. In this section, we present the depth images and
how to compute depths in millimeters stored in these images.
Then, we compute the orientation of human thanks to these
distances and finally, we realize a 3D box with this orienta-
tion.

4.1 Get depth in millimeter
A depth image contains depth values, in millimeters, for each
pixel. It can be available in different resolutions : 640x480,
320x240 or 80x60. Here, we use depth images in 640x480.
Generally, 3D sensors are efficient for distances between 80
cm and 400 cm. The depth data in millimeters is encoded on
16 bits. In an image, each pixel is associated with 3 values
: blue, green and red values encoded on 8 bits. The depth in

millimeter can be store in different ways. In our case, we use
only green and red values like this :

depth_mm = (value_green << 8) | value_red

This computation allows us to know the distance between
human and the sensor, as well as the human orientation.

4.2 Orientation of detected human
In the section 3, we explain how to obtain a 2D bounding
box. Once this one obtained, we get the depth of pixels
which are on the right and left ends (see the figure 9).

Figure 9: Computation of human orientation

In the figure 9, the 2 circles represent the extremities on
the horizontal axis of the bounding box. After, we compute
depths associated with these extremities with the formula in
section 4.1.

Thanks to these depths, we can know the orientation of
human with a simple trigonometric formula.

(a) Right orientation (b) Left orientation

Figure 10: Representation of orientation with a view from the
top

In the figure 10a, the depth of p2 is greater than the depth
of p1. d represents the difference between the 2 depths and w
is the width of the 2D bounding box. The orientation angle α
is computed with these 2 values like this :

α = arctan(d/w)

4.3 Production of the 3D bounding box
With the previous subsections, we have the orientation of the
human. We just need to draw this box on image, see figure
11.

Figure 11: A 3D bounding box

In the figure 11, the left edge of the box is closer to the
sensor than the right edge. Therefore, the depth of point 1 (to
the left) is less than the depth of the point 2 (to the right). The
thickness of the box is fixed but, with more time, it can be
dynamically computed.

5 Results obtained and possible improvements
In this section, we explain implementation choices, advan-
tages and limitations of our program. Then, we present some
possible improvements.

5.1 Implementation choices
This program has been realized in c++ in using Opencv li-
brary. Opencv is an open-source library created for the com-
puter vision. It has a c++, python, c and java interfaces and
can be used with Windows, Linux, Mac OS or Android. I
used it for image processing, especially for HOG and Ad-
aboost. For a program in real time, I used multi-threading.
For the motion detection, several threads compare the frames.
Then, when a motion region is found, the current thread sends
this region to an other one which executes the classifier.

During this internship, I did not have a 3D sensor. There-
fore, I used my web-cam for the implementation of the 2D
bounding box. Indeed, I just need to have RGB images for
the motion detection.
However, for the 3D detection, I needed depth data. Thus, I
spent some time searching RGB and depth datasets on the In-
ternet [Center, 2014]. Moreover, these images had to contain
humans in indoor environment and the website had to indi-
cate the sensor position (for example the height of camera),
the maximal depth ... This research took a lot of time of the
Magistere period.

5.2 Advantages and limitations of the program
Despite low image quality and depth image rather accurate,
the results are relatively right. Thanks to the RGB detection,
a moving human is quickly detected when he walks in front
of sensor. It is also possible to detect several humans simul-
taneously (see figure 12). Parallelism has been introduced for
the detection to be executed in real time.
Some errors are present if the human motion is too low. Im-

ages of the figure 13 represent these errors.
On these images, the human is not entirely detected. This

error can be a real problem for the human recognition (see

(a) RGB image (b) Motion detection

(c) Computation of
bounding boxes

Figure 12: Detection of several humans

Figure 13: Errors of the detection

right image). We can see that there are only arms which are
detected. Indeed, body parts detected are only the moving
body parts. Therefore, the rectangles containing arms are
sent to the classifier and the human is not recognized.

Moreover, the classifier does not always recognize a hu-
man. Overall, a standing human is recognized but if he is
sitting or crouching, he is not.

5.3 Possible improvements

During this internship, we are interested in an accurate repre-
sentation. When humans work side by side with robots, the
detection has to be more accurate for security. For this, we
have to improve the box and to refine the human contours.
Figure 14 is a simple example to present this problem.

Figure 14: Insufficient box

In the example, a box is not sufficient. In this section, we
explain how to improve the 3D detection. Due to lack of time,
these next steps are not implemented. After the program exe-
cution, an imprecise 3D bounding box is returned. To obtain
a 3D representation more accurate, we can cut this box in dif-
ferent parts (see figure 15).

(a) 3D box obtain by
program

(b) Cutting the 3D box

Figure 15: First step to improve the 3D representation

We can first cut the 3D box in several boxes. For example,
the cut can be realized every 15 centimeters. A human is no
longer represented by a single 3D box but by some boxes.
We can after that adjust the different boxes, see figure 16. For
this, we research the minimum and maximum in horizontal
for each block. We then obtain several boxes with different
sizes.

Figure 16: 3D representation

6 Conclusion
6.1 Interests of a human detection
The human detection is an important part in computer vision.
It is in a lot of fields as video-surveillance, industry ... Cur-
rently, technology is evolving and more and more humans
work side-by-side robots.
For example, in automobile manufacturing, robots can carry
heavy loads and realize dangerous tasks instead of workers.
The detection has to be accurate and in real time for security.

6.2 Analysis of this work
I realized a human detection with RGB and depth images.
This internship allows me to find out the computer vision and
to use libraries that I had never used.
To create these bounding boxes, I followed different steps.
First, I had to learn the Opencv library to work with images
and videos. Once this work realized, I did the motion detec-
tion thanks to background subtraction and comparisons with
successive frames. Second, I found the moving regions with
the computation of connected components. Third, I worked
on HOG that I did not know and used the classifier. Finally, if
a human is detected, I perform the 3D bounding box around
him thanks to computation of the angle of orientation and the
approximation of the thickness. Some ideas to improve was
found but I did not have time to implement them.
Despite some errors, the results obtained are interesting. In-
deed, humans are quickly detected and the program can detect
several ones simultaneously. Adding 3D brings more infor-
mations about the position and the orientation of the humans
in the room.
The 3D bounding box improvement was not implemented but
can be integrated without difficulty. With this improvement,
a human would be represented by a set of boxes. This method
would allow us to obtain a more accurate 3D representation
of human.

Acknowledgements
I would like to thank my supervisor Olivier Aycard and Ri-
cardo Omar Chavez Garcia for their attention and their help
during this internship.

References
[Center, 2014] Computer Vision Center. Dgait database,

2014.
[Dalal and Triggs, 2005] Navneet Dalal and Bill Triggs. His-

tograms of oriented gradients for human detection, com-
puter vision and pattern recognition. 2005.

[Freund and Schapire, 1996] Yoav Freund and Robert
Schapire. A decision-theoric generalization of on-line
learning and an application to boosting. 1996.

[Freund and Schapire, 1999] Yoav Freund and Robert
Schapire. A short introduction to boosting. Journal of
Japanese Society for Artificial Intelligence, 1999.

[Knight, 2013] Will Knight. Smart robots can now work
right next to auto workers. MIT Technology Review,
September 2013.

[Wikipedia, 2014a] Wikipedia. Background subtraction —
wikipedia, the free encyclopedia, 2014. [Online; accessed
25-August-2014].

[Wikipedia, 2014b] Wikipedia. Histogram of oriented gradi-
ents — wikipedia, the free encyclopedia, 2014. [Online;
accessed 25-August-2014].

Fast and Accurate Branch Predictor Simulation ∗

Antoine Faravelon
UFR IM2AG,Grenoble

antoine.faravelon@e.ujf-grenoble.fr
Supervised by: Nicolas Fournel, Frédéric Pétrot

Tima, Team SLS

I understand what plagiarism entails and I declare that this report
is my own, original work.

Antoine Faravelon, 21 august 2014

Abstract
Processors are becoming more and more powerful
and a few MHz can change performances dramati-
cally. Thus it becomes vital to be able to simulate
a processor design as early in the design process as
possible. This simulation needs to be accurate and
performant as runtime is of utmost importance and
so is the precision of the result. This article gives an
overview of a simulation process for one particular
part of a processor, the branch predictor. Indeed,
current fast simulation technologies such as native
simulation and Dynamic Binary Translation (DBT)
ignore such architectural details. However, they
may give precious information to a processor de-
signer or an early developer in the case they would
like to estimate the, possibly Worst Case, Execu-
tion Time (WCET) of their program. We focus on
two predictors. The branch predictor modeling pro-
cess and analyze of its runtime and accuracy are de-
scribed in this article. With a simple predictor over
93% precision was achieved while causing an over-
head that is inferior to 5%. A slightly more evolved
version can raise accuracy by about 3% on average
with no sensible further decrease in performances.

1 Introduction
A branch predictor is a component of the processor that
guesses the outcome of a conditional branch, i.e if the branch
will be taken or not taken. In this article we aim at model-
ing the behavior of predictors. The principle of simulation is
to reproduce the execution of a program on a target architec-
ture on a host machine with a different architecture. The pro-
cess is actually slow and as such, fast simulation techniques
have been developed. Currently, the state of the art in fast
simulation ignores architectural details of processors, such as

∗These match the formatting instructions of IJCAI-07. The sup-
port of IJCAI, Inc. is acknowledged.

branch predictors or pre fetchers. But, in order to calculate
or estimate the WCET of a program on a given processor,
this details are necessary. Simulating them though, in a fully
detailed way is impractical as this would dramatically slow
down the whole simulation process. Indeed, most predictors
use large tables accessed non sequentially which means that
making them run faithfully on the host machine would result
in filling the L1 cache(and even L2) of its processor resulting
in an important decrease of performances. For example, the
ISL-TAGE [André Seznec , 2011] presented for the 3rd cham-
pionship of branch prediction uses about 64KB of memory in
hardware, another example would be any two level predictor.
A 15 bits global history will require 215 entries to be used
(with a 2 bit counter and a memory wise perfectly optimized
program it would be a 216 bits wide table).To avoid that, the
predictor should be simulated by approximation. Using infor-
mation that are not available to the predictor to reduce mem-
ory usage or managing it in a different way can allow to simu-
late it with satisfying results while not diminishing the speed
of the whole simulation in unreasonable proportions.

2 Related Work
Related work can be found in the domain of processor mod-
eling and particularly for the computation of the WCET. A
survey of simulation tools already used in the computation
of the WCET of a program was given in [Reinhard Wilhelm
et al. , 2008]. From there, the first observation is that most
tools use static analysis(after checking, even those that were
said to be dynamic often turned out to have become static
since this paper). Searching for the method used to simu-
late branch predictors in these tools, it can be seen that for
a number of them there is no information on branch predic-
tion. Dynamic branch prediction was only advertised in the
Chronos simulator but it is a static analyzer in fact, working
on source code and extracting real addresses from the binary
obtained by compiling it. It advertises precise simulation of
popular predictors, which seems more attractive than solution
proposed in [Xianfeng Li et al., 2004] and [Colin and Puaut,
2000]. They basically tag branches as predicted always taken,
never taken, unknown,(or a a slightly more refined scheme for
the second one). But static analysis methods are hardly appli-
able to a DBT scheme as it uses information on the whole
CFG to simulate the predictor. Dynamic branch prediction
was also addressed in simulation with for example [Björn

Franke , 2008] and [Franke and Powell , 2009]. These are
based on statistical models and machine learning. While they
provide good results, they require prior knowledge of the pro-
cessor and the possibility to execute training sets on them. It
may still be possible for a programmer after the target archi-
tecture has been released, however it seems impractical both
for early development and processor design as the final pro-
cessor is not yet available and having to use a perfectly accu-
rate simulator would reduce the usefulness of an approximate
one. Time would anyway have been lost in training which
may have to be repeated multiple times as design evolves.

3 Featured Predictor
We mainly study two predictors. The gshare, which is a sim-
ple bimodal predictor given as example in cbp3 and the TAGE
family which is now considered to be state of the art in branch
prediction[André Seznec , 2007].

3.1 A few definitions
Bimodal/n bit saturating counter
Branch predictors are most often based on counters. The
counter represents the last outcomes of a branch and is used
to establish a prediction. Usually, it is bi-modal(two bits). If
the counter has a value greater or equal to 2, then the predic-
tor will consider the branch to be taken, otherwise it will be
considered to be not taken. The principle is the same with
a counter of any length, if the value is more than half the
maximum, then the branch is taken, otherwise it is not. Most
of the predictors use a 2bit counter(gshare for example) or
3bit(TAGE for its tagged tables). When a counter’s state is
2n−1

2 or 2n−1

2 + 1 then the counter is said to be ”weak” oth-
erwise it is said to be strong. When counters are at their ex-
trema they saturate,i.e. their value will not continue to in-
crease/decrease.

Two Level Predictor
In complement to the counter, one needs some method to
store them. The two level predictor model uses a table which
contains counters for a given amount of branches. The way
this table is indexed varies in function of the predictors. The
two featured predictors derive from it. To have a more precise
description of this predictor model and some of its deriva-
tives, see [Yeh and Patt, 1992].

Global history
In a global history model, the predictor possesses information
on the outcome of the last n branches. A n bit shift register
is used, so that each branch outcome is introduced to the left
of the register while its rightmost bit is dropped. The number
thus formed is then used as an index for a bimodal counter
table of size 2n.

3.2 gshare
The gshare is a Two Level Predictor using bimodal counters
and deriving from Global History model. The table index
corresponding to the branch is calculated by XORing the Pro-
gram Counter(PC) of the branch and the global history reg-
ister. This predictor has been widely used in the past as the
model is relatively simple to implement. However, as any

global history based predictor, table size grows exponentially
as history size grows. It does offer satisfying results in a cer-
tain number of situations but with a reduced quantity of mem-
ory, a branch may access to an already in use entry. Correla-
tion with a global history will not always be positive either.

3.3 TAGE

Bimodal
Table

Tagged Tables

cnt tag conf

Longer History

Choose
Rightmost entry

one entry

Figure 1: Base elements of the TAGE branch predictor

The TAGE predictor uses multiple model of predictors.
One of the two main elements of this predictor is the tagged
tables. N tagged tables, each of them using different global
history sizes forming a geometric series. The other element
is the default predictor [André Seznec , 2007] which is a bi-
modal table here. Each tagged table has Kn entries. Every
entry contains, a 3bit saturating counter, a tag which is a part
of a branch’s PC and a confidence counter (describes age and
usefulness of this entry). To give the prediction, an entry’s
tag should correspond to the PC of the current branch, its
confidence should not be null and the counter not in a weak
state. The tables are indexed in a way near that of the gshare
: the PC of the branch is XOR’ed with the current global
history. But the number of actually used bits of this history
depends of the table(the table N+1 uses a larger history than
table N, however it is hashed as explained in [Pierre Michaud
, 2005]).Then, the chosen prediction will be the entry satis-
fying these conditions in the largest tagged table. If none re-
spect these conditions, the default predictor will be used. An
entry in the tagged table will be created when the default table
or the current largest table fail to provide a correct prediction.
Other components are used in various implementations. In
the implementation that was chosen for this work, a loop pre-
dictor and statistical corrector were used. The later being a
predictor which obeys pre inscribed statistics to bias the pre-
diction if it seems unrealistic [André Seznec , 2011]. Figure
1 describes the base elements of the TAGE predictor. The
main advantage of the tagged table over a simple gshare is
that the size used for global history is hopefully more optimal
as entries in this tables are allocated only when the default
predictor and shorter history tables failed to provide a correct
prediction. Conversly, for branches of which the outcome is
independent from that of the previous ones, the bimodal table
will be used which should reduce the number of cases where
history is nocive to the prediction.

4 Proposition

This work proposes to add simulation of a branch predictor to
existing DBT simulators. These simulators execute programs
from target architecture by dynamically translating the binary
code into instructions that are executable by the host. The
functional core of this simulator will not depend on our pre-
dictor simulator. If the prediction is wrong, what will suffer is
the runtime estimation of the said binary code. Indeed, while
in hardware a wrong prediction degrades performances, here
only the estimation of its performances will be affected. In
the case of DBT, only runtime information can be used for
simulation, basically, anything that can be readen in the
execution unit of a processor, that is, the instruction itself,
its arguments, its PC and the state of the registers before and
after its execution. This simulator may also be extended to
native simulators. In native simulation, the source code of
the program is first compiled using specific techniques to
obtain a binary of which the structure is the same as it would
have been if it had been compiled for the target machine.
Then it is executed on the host. This binary can be annotated
during the compilation process with the original source code
and any information static analysis can provide(A Control
Flow Graph(CFG) for example). This annotations could
then be used by the predictor simulator in order to make its
prediction not only on runtime information(which would
actually not be fully accessible as register state in original
predictor or the real PC can not be found in this execution
flow as it is compiled for the host machine). The estimated
prediction given by this simulator will then be used to
compute the time an instruction should take to execute, if the
estimated prediction is not the same as the direction taken
by the branch, then it will be estimated that the processor
would have suffered penalties in term of performance due to
fetching not useful instructions and polluting its cache as a
consequence for example. The estimation of the execution
time of each instruction will then be used to give an esti-
mation of the WCET of the whole program by adding the
execution time of each instruction of each path taken in the
program.

In the simulator, just as in [Xianfeng Li et al., 2004], the
program is modeled through a CFG. Here, it is generated
dynamically as the trace runs. The end of each block is
the conditional branch that is being predicted, the start is
the target of a branch. Each edge corresponds to the target
of a branch (the address reached if the branch is taken) or
to the next instruction(that will be executed if the branch
is not taken). This information is acquired by reading the
PC(for the address of the branch) and the target that is given
by the branch instruction. Each block is a ”node”. The
most important part of this node being the branch(other
instructions are ignored). Through the edges going to each
node, the parents are also accessible, potentially allowing to
relate branches to their predecessors. Nodes are numbered
as they are found, a ”distance” between nodes(and branches)
can then be defined.

In order to obtain a predictor that is as near as possible to
the reality, the simulated predictor was created from the orig-
inal model. The simulator can be seen as a simplification of

the ”optimal” simulator(e.g. a simulator precisely following
hardware model) but developed in reverse. First, the ”core” is
implemented(instead of first the full feature). This core is the
set of counters. When simulating a gshare it is particularly
seen as a simple 2bits counter stored in a hash table indexed
with the start address of the block(with no XOR’ing of the
address) is enough to give good result. As for the TAGE,
using the same table and adding a simple approximation of
tagged tables to access 3bits counters is what allowed us to
obtain the first version of the predictor simulator.

The main interest of this simulator is to be usable in fast
simulation, it is oriented to a DBT scheme but could be ex-
tended to native simulation. It does not rely on prior training
as the method used in [Franke and Powell , 2009] and the
performance impact, according to current experiments, is
acceptable for real use. Also, this simulator gives a solution
that is universal which is limited in the case of machine learn-
ing as unknown situation that occurs may lead to imprecision
on programs that are not yet known, while this simulator
perform independently of prior knowledge and as such will
depend only on the content of the program(though, as seen
in the Experimentation section, it does not perform equally
on every type of traces). Implementation in RABBITS also
showed that such a simulator can be integrated to a DBT
simulator quite naturally as the structure used by these are
very similar as to the ones needed by the predictor simulator
to compute its predcitions.

This work however, also shows the limit of the approach
simulating a branch predictor without static analysis or
machine learning as in the pre cited works. Indeed, being in
a situation that is near that of the real predictor, simulating
it, using less memory and being faster becomes actually a
form of optimization of the said predictor, which has many
potential limits. Though there is still a few advantages over
it such as more available memory and more flexibility in the
organization of information, these are more an asset to make
better predictions (see idealistic predictors of the branch
prediction championship) than an help to simulate it.

5 Experimentation
In this section, the method used to create the simulator and
the tools that were used will be described.

5.1 Tools
cbp3 simulator
The first tool was the program provided to participants of
the 2011’s championship branch prediction(organized by the
Journal Of Instruction Level Parallelism). The default predic-
tor(gshare) was used in the first phase of this work. For the
second phase, the ISL-TAGE predictor provided by André
Seznec was used. For both, the driver of the championship
served as a basis. The driver is used to give the rhythm of the
simulator. When the predictor report its prediction, the simu-
lator is called to provide its own and they are then compared.
At the end the driver will provide statistics on the simulators
performances. These statistics were the ones that were used
to provide the results presented in the next section.

DBT Simulator : RABBITS
In a second time, the work focused on RABBITS, the DBT
simulator developed by TIMA and based on qemu. Both the
simulator and the original predictor were implemented and
are now executed in the translated code. This allows to moni-
tor their execution in a realistic environment and thus measure
the respective impact on execution time of the whole simula-
tor(with potential for the misprediction costs).

It should be noted that annotations, that is code which is not
part of the original program’s translation, such as the branch
prediction here have no influence on the functional’s code ex-
ecution. A misprediction will not change the way it is exe-
cuted, neither will a prediction that is not the same as the one
from the original predictor. The costs of such mistakes will
be to reduce the accuracy of the estimation about runtime and
performance in general. Execution of these annotations will
have an influence on overall execution time of the simulation
though, and this is what is measured here as an overhead.

Branch Predictor Simulator
In the functional simulator the simulator uses information
provided by the driver in the same way as the original predic-
tor. It gets the PC and the real outcome to compare with the
predicted one from the driver’s ”uop” structures. It does not
however use any information on the outcome of the original
predictor as this will not be accessible anymore in a produc-
tion system. Only Data available in a real DBT simulator are
accessed. These information are stored in a Dynamically gen-
erated CFG along with static and dynamic information gen-
erated by the simulator. The main information that are used
are two counters, a 2bit one and a 3bit one that are used to
simulate the ones from the predictor, a block number which is
used to simulate the distance between two last blocks and thus
recreate the idea of tagged tables in a more simple way(and
without the tags as the blocks are indexed by the PC of the
branch leading to them). Other information that are kept are
the parents of the block(the block that potentially can jump
to it), the last (real) outcome of the branch and, if the branch
is a loop, the length of the iteration and the confidence on
the loop predictor’s prediction. This last information allows
to potentially simulate a L-TAGE instead of a TAGE. Some
information will not be kept for final version for reasons that
will be explained in Results section.

When simulating the gshare predictor in preliminary work,
it has become immediately apparent that creating every entry
of the table required for the gshare would lead to high per-
formance overhead as memory consumption of the gshare is
exponential with the size of the history which would fill the
cache of the processor easily and dramatically reduce perfor-
mances of the complete simulator.

The final version of the simulator(in RABBITS) principaly
uses the PC of the branch and its condition so as to be able
to compute the outcome at runtime. RABBITS structures are
used to store the predictor simulator’s information instead of
using its own data structures. This version of the simula-
tor(which has been back ported to the functional simulator
for tests) simulates the tagged tables by using an 8 bit his-
tory size as an index for a 3 bit counter table contained in
each block(so one by branch). This allows to have a virtu-

ally unlimited number of entries as only the potentially useful
ones are loaded at one given moment thus not filling the host
caches for naught. The latest version is as in the figure 2 .

Taken
2bit counter

.

.

.

3bit counter

Tagged table

global
history

CFG
Node

Figure 2: structure of the simulator

5.2 Evaluation
Functional Simulator
In order to determine the efficiency of the simulator, the met-
rics used were execution time and precision. For precision,
the cbp3 executable was used. It executes both the predic-
tor and the simulator, compare their results and then give a
set of statistical values such as percentage of good prediction,
false negatives and false positives. For the second metrics,
three executable were created, cbp3-none which only exe-
cutes the naked driver(no predictor or simulator), cbp3-sim
which executes only the simulator and cbp3-pred which exe-
cutes only the predictor. Then, each of them were launched
on a asus S400CA laptop with a Intel(R) Core(TM) i3-3217U
CPU @ 1.80GHz on ArchLinux(Rolling Release) and execu-
tion time(user) was captured using time command. The time
itself may vary depending on processors and condition on the
machine. This information is used as an indicator of perfor-
mance as the ratio gives a good idea of performances(in term
of execution time) of the simulator over that of the original
predictor. Also, the predictor against which the program was
tested is the ISL-TAGE as it is the latest and it seemed inter-
esting to analyze the importance of added modules.

RABBITS
The same metrics and test machine were used as for the func-
tional Simulator. Two platforms of the RABBITS simulator
were used : roger(which runs linux and whose exact specifi-
cations can be found on TIMA’s website), and thumper which
allows to run bare bones programs(or whith a minimal OS).
Both synthetic benchmarks and realistic ones were launched
on the thumper platfrom, the roger platforms was used only
for the linux boot process.

5.3 Results
As a demonstration of feasibility, a simulation of the
TAGE/L-TAGE/ISL-TAGE has been realized and evaluated

here. The result of this evaluation will be presented in this
section.

Performances and Precision of Functional simulator
Following the methods explained in previous methods, the
following result were obtained :

0

20

40

60

80

100

CLIENT01

CLIENT02

CLIENT08

CLIENT10

INT02

INT04

M
M
03

M
M
06

M
M
07

SERVER03

W
S02

W
S04

W
S06

Same-Pred
False-Pos
False-Neg

Figure 3: Precision of the Simulator Without Tagged table

0

20

40

60

80

100

Client

Server

Int
W
orkstation

M
ultim
edia

All

Average
Without-anomaly

Figure 4: Precision of the Simulator on average

The result shown in figure 3 and figure 4 shows the
precision of the simulator that is, the number of time where
the simulator gives the same prediction as the original
predictor. In most cases, the simulator is above 90% of
good predictions(93,52%on average) and, for client and
server programs, above 95% for almost all traces(95,40 %
and 95,69% on average). Three anomalies appear : WS04,
MM07 and, to a lesser extent, WS03. However, after deeper
observation it revealed that mostly every errors in WS04 and
MM07 comes from a few branches that appear in a cycle.
These anomalies have actually been reduced with the use of
a faithful emulation of one tagged table.

Another phenomenon to observe is that there seems to be
no real bias on false positive and false negatives. On average
it appears that there is near the same proportion of both.

It should be observed that even if anomalies are eliminated,
the multimedia and workstation have result lower than the
global mean. Still, with or without them the precision is still
above 90% on average.

In table 5 it can be observed that the simulator’s over-
head(over driver only) is very low. It is also much lower

0

20

40

60

80

100

Client02

Client08

Int04
M
M
07

Server03

W
S04

Driver
Simu
pred

Figure 5: Perfomances of the simulator without ta-
ble(seconds)

than that of the original predictor which has important over-
head(especially considering that loading a trace takes multi-
ple seconds).

Overhead of the original can be as high as 13 seconds,
causing an overhead larger than 20% on the client02 trace
while the simulator only give an overhead of 0.8s(less than
2%). On other traces it is around 6-7%.

Influence of Loop Prediction(and other precise details)
The simulator is actually able to simulate Loop prediction
also. This however has been deactivated on final version as
result is actually negative, Here are the result on a subset of
the traces:

0

20

40

60

80

100

CLIENT01

CLIENT02

CLIENT08

CLIENT10

INT02

INT04

M
M
03

M
M
06

M
M
07

SERVER03

W
S02

W
S04

W
S06

Same-pred
False-pos
False-neg

Figure 6: Precision of the Simulator with Loop Prediction

And the average by type of traces:

As it can be seen on the figure 6, on average precision
of the simulation decreased slightly, many traces are now be-
low the 90% of accurate simulated prediction threshold. This
tends to show that when adding more precise details of the
simulated predictors decrease its accuracy. The Workstation
and multimedia traces type are the one that suffered the most
from the loss of precision(see figure 7) while the server ones
remain mainly unscratched.

Another interesting result is that false negatives seems to
have raised consequently on some traces, thus giving an indi-
cation for the direction that analysis of this loss should take,
that is, analyze case where the simulated loop predictor an-
swers false. This should be done in the future as it could lead

0

20

40

60

80

100

Client

Server

Int
W
orkstation

M
ultim
edia

All

Average

Figure 7: Precision of the Simulator with Loop Prediction on
Average

to better overall precision of the simulator.
It is important to note that in most cases, simulating pre-

cise details(confidence factors, pseudo random number using
bimodal counters etc.) will deteriorate the overall precision
of the simulation in the same way as the Loop predictor. Per-
formance remains relatively the same as in any mode the el-
ements necessary for this simulation are still memorized and
memory is the main limiting factor here. Eliminating this ele-
ments may however lead to increase in speed especially in the
final simulator. This is why study of non useful information
is important, it allows to save memory by eliminating it.

Table Simulation
On the other hand, simulating the tagged tables in a more
faithful manner can lead to an important increase in preci-
sion. By simulating a tagged tabble using a global historic of
size 8 leads to the results presented in figure 8. The corner
cases where the simple predictor had its lowest precision
yield better results, over 6% for the WS03 which gives the
worst results for the simulator without a tagged table and
about 3% in most other traces.

0

20

40

60

80

100

CLIENT01

CLIENT02

CLIENT08

CLIENT10

INT02

INT04

M
M
03

M
M
06

M
M
07

SERVER03

W
S02

W
S04

W
S06

Same-Pred
False-Pos
False-Neg

Figure 8: Precision of the Simulator With Tagged table

Since the main difference between this version of the
simulator and the previous one is the use of a global history
it can be deduced that the prediction(and thus outcome) of
the cycle of branches mentionned earlier is dependent on
the outcome of previous branches. Thus the reason why the
simulator fails is that the history was not really emulated

before. The results now though better are not perfect. This
can most probably be explained by the fact that the size of
historic used in the table does not correspond to the one
used for all these branches. Some of them are probably
related to older branches which here are not present, or less
likely a shorter relation is needed(the size of historic used
here is the second shortest). This could then be solved by
implementing more tables. This however would be costly
as more tables will consume more memory and potentially
increase the number of memory accesses due to the research
of the matching entry in the longest table.

Performance And Precision of DBT Simulator
Firstly, precision of the branch prediction simulation in RAB-
BITS was evaluated. This allows to check its implementation
by verifying that it performs the same as in the functional
simulator. The results are exposed in figure 9.

0

20

40

60

80

100

Linux-Boot

M
otionJpeg

m
odulo-2

Same-Pred
False-pos
False-neg

Figure 9: Precision of the simulator

The results we obseved are near that of the ones in the
functional simulator which tends to confirm the corectness
of our implementation. Precision of the simulator in this
reduced set of known programs are satifying. The test of
the branch taken when the iterator of a loop is multiple
of two shows result that are the same with the original
predictor for 99,92% of predictions. This shows the ability
of the simulator, just as the tage, to choose the tagged table
when needed as a bimodal table(and to some extent the
first version of the predictor) would fail to predict this case.
Indeed, the history of branches outcome is need here to
determine patterns where the branch will be taken or not
taken. The lowest precision is attained on the Motion Jpeg
decoding(ParallelMJPEG software executed on thumper
platform of RABBITS) where precision is slightlty above
90%.

After verifying the precision and thus the corectness of
implementation, the performances, that is the overhead of
branch prediction was measured.

In the set of tests, performances of both version of the
simulator are quite near. The most important observed dif-
ference in overhead is seen on the ParallelMJPEG test, with
36s more for the final version(less than 3%). The overhead
of the final version being 4,76%. The fully implemented
TAGE predictor’s overhead is much more important. In

0

500

1000

1500

2000

Linux-Boot

M
otionJpeg

M
odulo

RABBITS
Simu-v1
Simu-v2

Pred

Figure 10: Performances of the perdictor simulator’s two ver-
sions against RABBITS alone and the TAGE predictor

case of a linux boot sequence, it is about 15 times slower
than RABBITS alone. On the other tests, it is about 2 times
slower as can be seen in figure 10.

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

RABBITS

Sim
u

ISL-TAGE

L2-Misses
L3-Misses

Figure 11: Cache Misses during Linux Boot

0

5e+09

1e+10

1.5e+10

2e+10

2.5e+10

RABBITS

Sim
u

ISL-TAGE

L2-Misses
L3-Misses

Figure 12: Cache Misses during Motion Jpeg Decoding

Figures 11, 12, 13 show the number of cache misses(L2
and L3 as L1 was not possible to be measured) in the different
traces that were tested for performances. In each of them, the
original predictor causes multiple times more cache misses
than the branch predictor simulator or RABBITS without
branch prediction. In particular, in the case of the linux
boot there are 19 times more L2 cache misses with it en-
abled. This explains such a degradation of performances in
this trace(about 15 times slower than RABBITS alone). For
the simulator, the difference is relatively low. In the case of
the Motion Jpeg decoding and modulo 2 there are even less
L2 cache misses than without it. This could be explained by
the fact that, by executing the branch prediction simulation

0

2e+08

4e+08

6e+08

8e+08

1e+09

RABBITS

Sim
u

ISL-TAGE

L2-Misses
L3-Misses

Figure 13: Cache Misses during Modulo2 test

before the branching itself, some data that will be useful to
the following parts are fetched in the cache by the processor
with a better timing.

In view of these results, correlated with the runtime, it
seems that memory is indeed the main limiting factor to the
performance of branch prediction simulation. It confirms the
need to simulate the tables of these predictors in a way that
is less costly in memory accesses and, more importantly, that
causes less cache misses either in the simulator itself or after
its execution.

Comparison to other predictors
Finally, in order to show that the simulator is not just a generic
simulator but is adapted to the TAGE, a comparison was led
with other predictors, the gshare and the bimodal. This has
been done both with the functional simulator’s traces and real
programs in RABBITS.

0

20

40

60

80

100

CLIENT01

W
S04

M
M
07

INT02

m
odulo-2

ISL-TAGE
Gshare
Bimodal

Figure 14: Comparison with multiple predictors

From the figure 14 one can first observe that the bimodal
and simulated predictor results are quite far. For the trace
CLIENT01 there is only 45,49% of matching results while
97,79% of predictions of the simulator are the same as for the
ISL-TAGE.

In the case of the Gshare results are more mixed. While the
trace WS04 exhibits 7% reduction in matching rate compared
to the TAGE, it is slightly superior in the case of the trace
CLIENT01. This can be explained by the fact that the gshare
and tagged table function in a similar way. But there are two
main differences, for the TAGE and simulator counter size is
3bit and, whenever the counters are in a weak state, an entry
in the alternate predictor(a bimodal table) is used instead of
the table. This means that if a branch outcome is not related to
the previous branches then it will probably not be processed

by a table indexed using global history but only this branch
PC thus obtaining results possibly different from the gshare’s.

6 Conclusion And Future Work
6.1 Analysis of this work
Functional Simulator
From the obtained results, multiple points should be re-
marked:

First, to make the simulation perform satisfyingly, multiple
aspects of the branch predictor were simplified. For instance,
while the real predictor has multiple tagged tables indexed
by a hash of the branch’s PC and multiple global historic
sizes(one for each table), the predictor simulator either sim-
ulate it using a condition on the distance between blocks and
a PC indexing or use only one table with an historic of size
8(but unlimited number of entries) indexed using the PC of
the branch and the global historic see figure 2. In the end,
the creation of the branch predictor simulator was mainly a
work of simplification. Keeping most revelant information
and mechanism. One information that appears to be the most
important was the counter(s) size(s). Just having a counter of
the good size with a PC indexed table was enough to simulate
with very high precision a gshare and it is the main base for
the TAGE. The main focus of this work was to analyze infor-
mation so as to determine the useful ones. The second focus
was to experiment in order to assess the precision and over-
head caused by the resulting simulator, improving it when
possible. Another important part was to organize information
in an efficient way so as to reduce memory related overhead.
A probable side effect of simplification was to damage the
ability to simulate precise details of the original predictor as
these are based on some of its behaviors which may not be
replicated.

In the end, a first established method to simulate predictor
is to extract the counters, their size and when they are used.
Then, by simplifying the way they are accessed, by grouping
all information together and then using notion such as dis-
tance between blocks(which the original predictor could not
possess), it becomes possible to imitate various costly details
in a less heavy way at the price of reducing precision.

It is important to not forget that while making a ”perfect”
simulator would allow to reach a state without any mistake,
branch prediction is not the only part of the main simula-
tor(binary Translation being an obvious other part) and as
such should not monopolize all resources.

But this work also seems to exhibit limits in simulating pre-
dictors in this condition. In the end, this work is near to an
optimization of the predictor while accepting a loss in preci-
sion in exchange for reduced overhead as in [Pierre Michaud
, 2005] where the author processes by successive degrada-
tion of its idealistic predictor to reach a realistic one. The
optimization has obvious limitation, one of them being that
the original predictor has probably already been deeply an-
alyzed and optimized leaving only a shorter margin. As for
simplifications, each of them needs to be tested to analyze the
damages caused by it, which in the end cause problem akin
to the learning phase of a machine learning driven simulator
such as the one from [Franke and Powell , 2009].

Real Simulator : RABBITS

Implementation of the branch predictor simulator in RAB-
BITS has shown satisfying results. Precision wise, it
performs the same as the functional algorithm as it uses
the same algorithms. Performance wise, adding the branch
predictor simulator had a relatively low impact. This is
possible thanks to the simulator structures, as the infomration
that are needed by the DBT simulator are near in term
of organization(basic blocks are cut along branches) to
what is needed for the branch prediciton simulation. Thus
information can be retrieved from this data structures when
they are the same as the one used for by RABBITS and the
missing ones can be added to them. This allows to improve
performances compared to the functional simulator as the
costly management of data structures is avoided and some
memory consumption is potentially avoided.

On the other hand, the original predictor’s impact on
performances is important. On the roger platform, booting
linux is about fifteen times slower (15 minutes on the test
machine) when enabled. This shows that using it for realistic
benchmarks is quite problematic, as these benchmarks
tend to focus mostly on workloads after boot. Overall it
causes multiple times more cache misses than its simulated
counterpart in any of the benchmarks. This shows that in any
program heavy performance loss is to be foreseen as L2 and
L3 cache misses can be extremely costly. Thus, the need for
approximation of predictors is shown to be quite important
in a real DBT simulator.

6.2 Future Work

This work has shown that it was possible to simulate predic-
tors such as the ones from the TAGE family with reasonable
decrease in performance for a satisfying precision in a DBT
simulator. It could be used, coupled with the appropriate
data, to estimate the runtime of a program in a more precise
way by computing misprediction penalties when they are
predicted to occur.

However, while results are satisfying, it seems that
integrating this work in a native simulator could lead to
enchanced precision. Indeed, in native simulation, not only
the CFG, but also the source code of the program is available
which could allow to detect relations between branch thus
enabling the simulator to predict statically in which table
with which history size the branch should be placed. Thus
reducing once again or eliminating the corner cases in which
the simulator does not perform as satisfyingly as on average.
These cases being seemingly related to branch history. The
CFG and that knowledge coupled together could at least
lead to predict the number of tagged entries needed in the
simulator thus reducing or suppressing runtime memory
usage when the prediction can be done by static analysis.

In a more general manner, tests should be led in order to
determine how many tagged tables can be simulated, evaluate
the gain of precision and the degradation of performance for
each added table.

References
[André Seznec , 2011] André Seznec. A 64 Kbytes ISL-

TAGE branch predictor. JWAC-2 : Championship Branch
Prediction, june , 2011.

[André Seznec , 2007] André Seznec. The L-TAGE Branch
Predictor. Journal of Instruction-Level Parallelism, July ,
2007.

[Pierre Michaud , 2005] Pierre Michaud. A PPM-like, tag-
based branch predictor. Journal of Instruction-Level Par-
allelism, April , 2005.

[Björn Franke , 2008] Björn Franke. Fast Cycle-
Approximate Instruction Set Simulation. SCOPES
’08 Proceedings of the 11th international workshop on
Software & compilers for embedded systems, 2008

[Franke and Powell , 2009] Björn Franke, Daniel Christo-
pher Powell. Using continuous statistical machine learn-
ing to enable high-speed performance prediction in hy-
brid instruction-/cycle-accurate instruction set simulators.
SCOPES ’08 Proceedings of the 11th international work-
shop on Software & compilers for embedded systems,
2008

[Reinhard Wilhelm et al. , 2008] Reinhard Wilhelm,Jakob
Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdi-
nand, Reinh old Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschu lat, Per Stenstr
om. The Worst-Case Execution Time Problem Overview
of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems ,April, 2008

[Colin and Puaut, 2000] A. Colin and I. Puaut. Worst case
execution time analysis for a processor with branch pre-
diction. Journal of Real time Systems, May, 2000

[Xianfeng Li et al., 2004] Xianfeng Li, Abhik Roychoud-
hury and Tulika Mitra. Modeling Out-of-Order Proces-
sors for Software Timing Analysis Proceedings of the 25th
IEEE International Real-Time Systems Symposium, de-
cember, 2004

[Yeh and Patt, 1992] Tse-Yu Yeh and Yale N. Patt. Alterna-
tive Implementations of Two-Level Adaptive Branch Pre-
diction The 19th Annual International Symposium on
Computer Architecture, May, 1992

Towards simpler performance troubleshooting for kernel-intensive workloads

Hugo Guiroux
MoSIG Student, UJF
ERODS Team, LIG

Supervised by: Renaud Lachaize and Vivien Quéma

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
The design of recent machines is inherently dis-
tributed and parallel. Such hardware architectures
introduce performance problems, which are hard to
discover and understand. We propose a set of pro-
filing metrics helping programmers to easily and
rapidly pinpoint performance hot-spots related to
the usage of kernel mechanisms in their applica-
tion. As a starting point, we study Hackbench, a
massively multi-processes micro-benchmark mak-
ing intensive use of communications channels and
exhibiting non-trivial performance anomalies. This
study allows us to show different metrics and visu-
alization technique said to be resource-centric: we
observe the actions leading to inefficient behaviour
by taking point-of-views of resources (e.g., pro-
cesses, communication channels).

1 Introduction
The hardware architecture of modern computers is extremely
complex. Indeed, in order to overcome physical limitations,
the design of recent machines is inherently distributed. To-
day, any machine has several cores (multi-core architecture)
and can thus run different execution flows in parallel. Be-
sides, the main memory is also split into several nodes, lead-
ing to non-uniform memory access times (NUMA): a mem-
ory access from a core located near the destination node is
faster than from a remote core. Besides, the degree of distri-
bution (number of cores and nodes) increases with each new
hardware generation.

The operating system kernel allows programmers to exploit
such diverse architectures by abstracting the underlying ma-
chine. It also provides different mechanisms easing the work
of the application developers for common tasks (e.g., commu-
nication, process management) without worrying about the
system complexity. But achieving an efficient usage of these
mechanisms is hard, even for experienced programmers. In
such complicated environments, understanding performance
problems is often much harder than discovering and address-
ing them.

The work presented in this report aims at simplifying the
analysis of performance problems that arise from the usage
of kernel mechanisms. We are particularly focused on the
context of server-side applications (e.g., web servers, storage
services, data analytics). Such applications are generally very
difficult to analyze because (i) they stress the kernel mecha-
nisms and (ii) they have workloads that may greatly change
over time.

A server-side application is structured as a set of concur-
rent execution flows (processes, threads), which interact both
explicitly and implicitly. Many performance problems are
actually caused by inefficient patterns for such interactions.
An example of explicit interaction between execution flows is
communication via IPC channels. An IPC channel is a kernel-
managed facility enabling several processes that run on the
same machine to exchange data. Well-known examples of
IPC channels are the pipe (unidirectional) and the Unix do-
main socket (bidirectional). A common use of such sockets
is on a server-side web application, in which a request is first
received by a web server, which communicates with another
process to do the business logic and so on: each process doing
a part of the request handling and communicating with oth-
ers using IPC channels. Several problems can arise from the
misuse of IPC channels, which can be related to a producer-
consumer pattern. For example, we can imagine one process
producing data too fast or another one not consuming data fast
enough. Thus, bottlenecks appear, leading to performance is-
sues. The overall goal is to get a flow of data going through
the chain as fast and as fluidly as possible.

An example of implicit interaction between execution
flows is synchronization on a lock protecting a shared data
structure. Different processes may concurrently invoke a sys-
tem call, which internally has to access to a kernel shared data
structure. Those accesses must be synchronized to maintain
the consistency of the data. To do so, each process will try
to acquire a shared lock. This lock will be held by only one
process at a time, thus forcing the others to wait on it. The
situation where multiple processes wait on a lock will create
contention. And such a situation is one example of inefficient
implicit interactions leading to performance degradation.

Overall, pinpointing inefficient interactions involving con-
current execution flows and kernel mechanisms is hard (both
for explicit and implicit interactions) and the need for profil-

ing tools helping to do so is crucial.

Our long-term goal is to design and implement a profil-
ing tool in order to help programmers detect and understand
performance problems related to inefficient usage of kernel
mechanisms.

There are several criteria for such a tool:

Obvious alerts: the tool must allow developers to easily
and rapidly understand the cause of performance hot-spots
thanks to precise indicators: indicating which resource (e.g,
process, IPC channel) is subject to performance issues using
different metrics to explain why and showing inefficient pat-
terns pinpointing which processes are involved.

Overhead: as in all profiling tools, an overhead is to be ex-
pected: observing the execution of an application has a cost.
The one of our tool must be the lowest possible. We are con-
sidering production server workload: we do not want to in-
duce service degradation nor service outage. We can not let
our tool stress the observed application in order to gather per-
formance information. Besides, the behaviour observed with
the tool must be close to the original one. Inducing too much
overhead can remove performance issues (e.g., problems due
to lock contention where overhead can reduce the stress on
the lock acquisition).

Dynamic instrumentation: ideally, a user should simply
be able to run the tool without having to modify or recompile
the kernel or the application.

We tolerate at first to not fulfill all the requirements,
especially the one about dynamic instrumentation. For the
moment, we modify the kernel manually and recompile it,
allowing us to validate our approach before trying to do it in
a more flexible way for the end user.

Our approach is incremental: in this report, we focus on
the first step towards the design of our profiling tool. More
precisely, we identify which metrics provided by kernel trac-
ing/debugging facilities to use. Indeed, we observed that tak-
ing a “heavy” approach by collecting as many metrics as pos-
sible and then processing them is not feasible. The induced
overhead is too high. Thus, we need to select the necessary
and sufficient set of metrics to build our diagnosis.

Then, we devise how to combine such metrics in order to
get a point-of-view allowing us to discover and understand
performance problems. Our approach is supported by the
case study of discovering inefficient kernel mechanisms us-
ages in Hackbench, a micro-benchmark for Linux that makes
intensive use of communication and scheduling facilities in
a massive multi-process context. This allows us to identify
different metrics that can be used in a future profiling tool to
detect performance issues. Our study describes the different
techniques we used to understand performance problems at
application and kernel level. We plan to generalize this man-
ual approach as well as automatize it through a profiler tool.

This report is organized as follows. Section 2 presents
available profiling tools and methods and their limitations in
our case. Section 3 presents Hackbench, the configuration

we used and the behaviour we observed. Section 4 shows the
approach taken to understand inefficient interactions patterns,
which metrics and methods we used. Finally, sections 5 and
6 concludes about different metrics that can be used for au-
tomatically pinpointing problematic interactions patterns and
presents future works.

2 Background & Related Works
As mentioned previously, the need for tools helping program-
mers to find performance issues in their programs is crucial.
In this section, we first describe the main existing tools related
to our work. Then, we explain why they are not sufficient
to address the specific problem that we target: performance
troubleshooting of kernel-intensive workloads.

Most profiling tools are based on event collection and
processing [Wisniewski and Rosenburg, 2003]. Events are
timestamped information carrying structured data that indi-
cate something happened in some context (e.g., a function
call with the corresponding arguments and call chain). A pro-
filer operates in two successive phases:

Event collection: an online phase (also called tracing
phase) where the profiler gathers all information it needs.

Event processing: an offline phase (i.e., after the execu-
tion of the application) where events are sorted and processed.
Different kinds of processing can be applied to such a list:
statistics aggregation, temporal flows construction, etc.

Decoupling these two phases allows easily implementing
different strategies to process the data gathered before. It also
reduces the profiling overhead while the application runs by
doing the event-processing offline, as such a processing has
generally a greater overhead than the collection phase.

The event processing phase will be the main part of our
contribution. Concerning event collection, several techniques
are available for the Linux kernel [de Rochefort, 2014]. Due
to a lack of space, we only discuss two of the main ones be-
low.

LTTng [Giraldeau et al., 2011] is a set of tracing tools aim-
ing to be highly efficient. It uses kernel and hardware fa-
cilities as event sources. Even if the main goal of LTTng is
event collection, a plugin architecture is available to process
these events. Previous work ([Fournier and Dagenais, 2010])
presents a use case with a LTTng plugin inferring perfor-
mance hot-spots at application level. However, we observed
that LTTng introduces a significant performance overhead on
highly parallel applications. LTTng uses separate processes
to collect events. These additional processes can impact the
scheduling of a multi-process application. Moreover, adding
new types of events in the kernel requires modification and
recompilation of the tool, which is problematic.

Our choice for events collection is to use the Linux “perf”
tool [Weaver, 2013]. perf uses the “perf events” kernel mech-
anisms to gather different sources of events such as software
counters (e.g., number of context-switches), hardware events
(e.g., memory accesses) and kernel static tracepoints (interest
points such as scheduling of a process, defined in the kernel
source code). It allows building a timeline of events (called
a trace) that can be processed offline. The integration of perf

inside the Linux kernel is a guarantee of its quality. It also in-
sures that the tool will be maintained for a long time. Besides,
changes inside the kernel like the insertion of new tracepoints
do not force recompiling the tool, which is convenient. All
the available tracepoints are dynamically discovered by perf
(via the sysfs kernel interface).

Regarding the processing phase, a recent survey [Wang
et al., 2013] shows that profiling tools can be classified
into two categories: code-centric and data/resource-centric
tools. Most profiling tools such as VTune [Intel, 2013] and
CodeXL [AMD, 2014] are code-centric: they correlate blocks
of code to performance hot-spots such as the elapsed time
spent within a function or the number of calls of a function.

The code-centric is poorly-suited for our problem: it does
not allow us to identify the types and instances of the im-
pacted resources. Resource-centric tools are better suited to
solve these problems.

An example of the resource-centric approach is MemProf
[Lachaize et al., 2012], a memory profiler developed by the
ERODS team. It is designed for NUMA machines, where in-
efficient memory accesses can be on remote nodes and thus
lead to performance issues. Its goal is to allow application
programmers to easily detect inefficient memory access pat-
terns and pinpoint their cause. To do so, MemProf builds two
kinds of temporal flows: (i) flows of memory accesses from
a thread point of view: this allows knowing which thread or
group of threads access which objects and (ii) flows from an
object point of view: MemProf is able to semantically iden-
tify objects in memory and thus to deduce accesses to them.
Using temporal flows for threads and objects can help pro-
grammers identifying the precise memory behaviour of an ap-
plication, by highlighting which run-time entities and which
execution phases are causing inefficiencies.

Several previous works on resource-centric profiling tools
have been proposed by the HPC (High Performance Comput-
ing) community. Projections [Kalé and Sinha, 1993] is a a
framework helping programmers to understand performance
problems of parallel applications. However it only targets ap-
plications written in Charm++, which is a programming lan-
guage derived from C++. Paraver [Pillet et al., 1995] and
Scalasca [Geimer et al., 2008] are two tools providing use-
ful information to the programmer to investigate performance
problems due to communication in highly parallel environ-
ments. However such tools are designed around the assump-
tion that programmers have a great control and knowledge
about machine resources and workloads: HPC applications
either implement resources management in user mode (with
better knowledge of resource usage) or give information to
the kernel as hints (e.g., for scheduling, for future resource
usage). In our case, the kernel has a priori no knowledge
about the running application and the application relies on
the kernel for efficient management of its mechanisms.

3 Case Study
In this section we describe a case study of the Hackbench
micro benchmark. We chose Hackbench as a starting point
for our work because of the following characteristics: (i) it

makes an intensive usage of IPC channels, (ii) it is massively
multi-processes (iii) its code is simple to understand, and (iv)
its execution yields non-trivial performance anomalies.

3.1 Hackbench
We study Hackbench 1, a micro-benchmark/stress test for the
Linux scheduler. It was designed to stress the scheduler by
spawning a large number of processes (or threads) doing nu-
merous IPC operations (using either Unix domain sockets or
pipes). In the remainder of this document we focus only on
a configuration using processes and sockets with the default-
settings (40000 processes).

The initial process (called the master) is in charge of man-
aging the other Hackbench processes called workers.

The execution of Hackbench can be decomposed into three
phases 2:

Process creation: all workers are created by the master.
Synchronization phase: the master creates two sockets to

provide synchronization: one to communicate from workers
to master (socket 1), the other one from master to workers
(socket 2). When a worker starts, it writes a byte into the
socket 1 and then waits (using the poll syscall) for incoming
data from the socket 2. When the master has created all the
workers, it consumes every byte one by one (from socket 1).
Once all the bytes are consumed, it writes one byte inside the
socket 2, giving the “go” notification for all workers to start.

Reaping phase: the master waits for processes to finish
before terminating.

This challenges the process scheduler due to the large num-
ber of processes competing on the same resource (synchro-
nization phase).

3.2 Setup
Since we target multi-core architecture, we chose to pin (forc-
ing a process to run on a set of cores) the master on the first
core (core 0) and the workers on all other cores except this
one. This kind of optimization is often used by experienced
system programmers. Indeed, as the master is in charge of or-
chestrating the creation and the main execution phases of the
worker processes, its reactivity is expected to have a strong
impact on the application’s total execution time. Thus, it
makes sense to provide it with a dedicated core, so that it
does not compete for execution with the other processes.

We run the experiments on a 48-core Dell PowerEdge
R815 server with 4x AMD Opteron 6344 chips (2,6 GHz, 12
cores), and 64 GB of RAM (DDR3 1600 MHz). We use the
Ubuntu 12.04.4 operating system, with Linux kernel version
3.13. All experiments were run 60 times.

3.3 Observations
In this configuration, we observe a wide variation of the
execution time with approximately 25% of the runs taking

1https://github.com/jlelli/rt-tests/blob/
master/src/hackbench/hackbench.c, [Online; accessed
10-June-2014]

2The initial Hackbench version contains a message exchange
phase between workers after the synchronization phase. We chose
to ignore this phase for simplicity.

Figure 1: Process-view timeline for a long run

more than twice as long as the others (from 7.5 to 20 sec-
onds). These variations are unexpected and surprising. In-
deed, Hackbench is a deterministic micro-benchmark which
does not depend on any input. It exhibits a “reproductible”
workload and yet has highly varying execution times. Some
can argue that this is mostly due to the non-determinism of
the Linux scheduler. However, a twofold increase of the ex-
ecution time is an uncommon behavior (at such a timescale)
and, given that Hackbench uses 40000 concurrent and identi-
cal processes, we expect all CPUs to be always busy.

Our objective is to understand the root-cause of such vari-
ations and to provide solutions to guarantee a short execution
time for all Hackbench runs.

4 Performance Troubleshooting Methodology
This section starts with Section 4.1, in which we present the
methodology we employ to detect the root-cause of the Hack-
bench variations problem. At each step, we ask ourselves
several questions that arise from the knowledge we have ac-
quired previously. Then, we try to find a way to answer those
questions by selecting metrics provided by the kernel and
proposing resource-centric visualization techniques that en-
lighten us about the situation. Finally, with our understanding
of the root-cause of the performance issue, in Section 4.2 we
propose several solutions that can be used to avoid the slow
Hackbench runs.

4.1 Methodology
Application Phases
As a starting point, we build a view called process-view. The
process view is a timeline, where, on each line, we depict one
process behaviour, using different colored dots marking an
event.

Figure 1 is an example of such a view for an Hackbench run
with a long execution time. The bottom line (with red dots)
is the master line. One dot represents when the master enters
a “blocking state” on the socket: Hackbench uses blocking
read operations on the socket (i.e., the process reading on the

socket will be blocked and descheduled if there is no data to
read). We chose to select the blocking events instead of every
read event as the read event will happen 40000 times (once
per worker) whereas a blocking is more unexpected. On top
of this master line, we plot 40000 other lines, one per worker.
A green dot represents a blocking of a worker when it tries
to write inside the socket. This blocking appears when the
socket is full. A blue dot is used to mark when a previously
blocked worker is unblocked. We can observe that most of the
workers are blocked just after their creation. Indeed, a small
number of the first created workers will succeed in writing
their byte inside the socket. For the other ones, the socket is
full and they block on it. Secondly, some workers block more
than once in the socket. More surprisingly, there exists an in-
terval in the timeline of the master process during which there
is no blocking. By comparing a short and a long Hackbench
run, we conclude that the creation phase (from the first worker
creation up to the last one) is constant across runs. Thus, the
variation only comes from the synchronization phase.

Such a resource-centric view allowed us to detect several
things that could not be or hardly be detected by another ap-
proach: (i) the constant time of the workers creation phase,
(ii) the master blocking on an empty socket and (iii) the in-
terval where the master is not blocked. The reason of mas-
ter blocking is simple: when the master reads bytes from the
socket, it reads faster than the awaken workers are capable of
filling it back. Thus, the socket is empty and the master is
forced to block on it, resulting in a descheduling. The void
interval inside the master timeline can be the consequence
of two things: either there is an interval where the master
reads without being blocked, or there is a long phase where
the master is not executing.

To answer the previous question about the cause of this
long void interval inside the master timeline, we use another
technique that allows us to know if a process is currently run-
ning or descheduled. Our approach looks for process states
(e.g., running, blocked, descheduled), which is not done by
code-centric approaches. Moreover, such information exists
only at kernel level. A profiling tool that does not take advan-
tage of the underlying operating system may not be able to
fully understand some performance issues.

With the state information, we traced intervals for pro-
cesses between the moment they are blocked and the moment
they are scheduled back in Figure 2. A pink dot and a blue
dot respectively show when the master is blocked and then
descheduled on the empty socket and when it is unblocked
(when there is new data on the socket and the master starts to
run again on a CPU). We plot a green line between a blocking
event and an unblocking event when this interval takes more
than a given threshold. At the end of the synchronization
phase, we can see that there is long interval where the master
is blocked i.e., during which the master does not progress.

This is surprising: we chose to pin the master on its own
CPU to avoid master descheduling. To understand the reason
of these descheduling, we need to understand if the master is
suspended for a long time because it waits a long time for new
data inside the socket (and at this moment it will be marked

Figure 2: Timeline of master descheduling intervals

Blocked-to-
Runnable

Runnable-to-
Scheduled

Average 98% 2%
Relative Standard

Deviation 1% 0.06%

Table 1: Master blocking statistics for blocked – to – runnable
and runnable – to – scheduled intervals

as runnable) or because it takes a long time for the scheduler
to reschedule the master once it becomes runnable.

This time we again rely on kernel only information by cap-
turing the timestamps for three kinds of events: when the
master is blocked, when it is marked as runnable and when
it is rescheduled. With these three events, we can detect eas-
ily if a process is waiting on a specific condition and thus
understand why the condition takes so long to be satisfied or
if a process is competing for a CPU to be scheduled (and then
try to understand why there is a lack of available CPUs).

Table 1 shows the average time and the relative standard
deviation of the time spent by the master in the blocked-to-
runnable and in the runnable-to-scheduled time intervals. We
observe that during 98% of the suspension time of the mas-
ter, the master is blocked waiting for the condition (i.e., new
data is inside the socket) to be satisfied. Thus, we now know
that the master is not competing with other processes: our
initial pinning configuration (master on first core, workers on
all other cores except the first one) is effective. But we still
do not understand why the master is waiting so long for new
data: we saw previously that this long waiting interval ap-
pears at the end of the synchronization phase. At the end,
there are less workers competing for CPUs as the ones which
have written their byte are expected to be blocked inside the
poll syscall, waiting for the “go” notification from the mas-
ter.

We then focus on workers to know why the master waits so
long for the arrival of new data. To do so, we add tracepoints

Figure 3: Timeline of runnable states of workers

directly inside the Linux kernel at the exact moment when
a byte is written inside the socket and when a byte is read
from the socket. We then build two timelines for the socket
resource: when a byte is written inside this socket and when
a byte is read from this socket.

We generate the timeline of the size of the socket buffer
(not shown here due to a lack of space). At the beginning,
there are the writes for the first workers, which succeed be-
cause the socket is not full yet. After that, a long interval
without writes is seen: the master creates all workers but the
workers can not write inside the socket as it is full. Then
the master starts to free space on the socket and workers are
awakened to write their byte. At the end, the frequency of
reads and writes is low: the socket is not full, but the last
workers nonetheless take time to write their byte inside the
socket (we verified that a write happens just before a read by
looking manually at timestamps).

We now know that the last workers take a very long time
to write their byte. However, it should not be the case at the
socket is not full and there are less workers, thus less com-
petition for CPU time as workers having written their byte
should be blocked on the poll syscall, waiting for the “go”
notification from the master (after it has read all the workers
bytes). This leads us to the following question: why are the
last workers scheduled so late?

To understand why workers are scheduled so late, we chose
to capture the event when a worker process is marked as
runnable in addition to the reads of the master. With these
timelines, we hope to see why the last workers are perturbed
and by which processes.

We plot on Figure 3 a green dot and a purple dot respec-
tively for a master read and for the moment where a worker is
marked as runnable. The blue line joins two consecutive pur-
ple dots and the red line two consecutive green dots. Again,
the height of timelines is here to visually separate consecutive
points which are close in time.

The important thing to notice is the large amount of

ffffffff8104f942 ttwu_do_wakeup
...
ffffffff81118350 wait_on_page_bit_killable
ffffffff81118406 __lock_page_or_retry
ffffffff811187f7 filemap_fault
ffffffff811388b2 __do_fault
ffffffff8113b8c7 handle_pte_fault
ffffffff8113d5a9 handle_mm_fault
ffffffff8164fce0 do_page_fault
ffffffff8164c9f5 page_fault

7f6272e089f0 __poll
402ff2 create_worker

Figure 4: Call-chain of a runnable marking

runnable state marks at the end of the synchronization phase.
Indeed, there should be only one mark after one master read:
the master frees up one slot in the socket buffer and notifies a
worker that was blocked waiting for a slot. But surprisingly,
there are a lot of runnable marks that are not related to mas-
ter reads. And each of these newly runnable workers will be
scheduled, thus competing for CPU time. These workers will
perturb the execution of the workers that still need to write
their byte, and consequently will slow down the master read
and the whole synchronization phase.

We do not expect other workers (workers that have al-
ready written inside the socket) to run during this period, they
should be blocked inside the poll syscall. We now must un-
derstand why such workers are running: is it something re-
lated to the behaviour of the poll kernel mechanism? Or
something else?

Taking advantage of the event tracing mechanism of the
kernel, we observe the call-chains that lead a worker process
to be set as runnable. Such call-chains are only available at
kernel level and it is not common for profiling tools to use
them.

A typical example of such a call-chain can be seen on fig-
ure 4. On the left column, the memory address where func-
tion is located. On right column, the function symbol name
is provided. The call chain must be read bottom-up (e.g.,
create worker calls poll). Addresses starting with
ffffffff are inside the kernel. Thus the program enters
the kernel via page fault. Function create worker at
address 402ff2 is the Hackbench worker entry point. Fi-
nally, the function poll at address 7f6272e089f0 is lo-
cated inside the standard C library (i.e., libc).

From this call-chain we can understand that, after a worker
has written its byte inside the socket, it calls the poll func-
tion which internally calls the poll subroutine. The latter
function triggers a minor page fault which will be handled
by the kernel. We observed that all workers trigger this page
fault 3.

We believe that barely no experienced programmer could
have intuitively guessed that such kinds of page faults could

3The page that triggers the page fault is a page of data used by the
subroutine. Due to the copy-on-write kernel mechanism (which al-
lows lazy/on-demand page duplication), it will generate a page fault
to let the kernel duplicate the page.

Figure 5: Timeline of the number of worker processes (run-
ning or blocked) within the page fault handler

be related to the initial performance problem. Yet, at this
stage, there is not enough information to precisely understand
how the page faults are related to the variations of the Hack-
bench execution times.

Lock Contention
The kernel function lock page or retry is called to
acquire a lock on a shared kernel data structure called the
page cache. The role of the page cache is to keep the data
present in on-disk files (such as the libc shared library binary
file) in memory as a performance optimization. In a mas-
sive multi-processes application, it is not uncommon to see
lock contention: too many processes wait for the same lock,
thus leading to process descheduling. And in our case, when
the processes are rescheduled after finally obtaining the lock,
they compete for CPU time with the workers waiting to write
their byte inside the socket, causing performance degradation.

To validate our hypothesis about lock contention, we traced
on Figure 5 the timeline of workers entering and leaving the
page fault handler for a long run. When a worker enters
the page fault, we increment the height of the curve, when
a worker leaves the handler we decrement. The color gradi-
ent and the color of the curve is an indicator of the height.

In the case of a long Hackbench run, we observe that work-
ers accumulate inside the handler without leaving it during up
to 80% of the total execution time . These workers are seri-
alized by the lock on the page cache and have to wait for the
lock to be released, which is highly inefficient. On a short run
(not shown in this report due to a lack of space), we observe
that the curve goes up for a short time and then goes down,
thus avoiding contention on the lock. This leads us to deter-
mine the key factor(s) that causes lock contention in the case
of a long run: are there more workers requesting the lock at
the same time or something else?

To evaluate the parallelism of our application across time,
we build a view based on the scheduling events available from

Figure 6: Timeline of the number of CPUs where workers are
executing at the same time

the kernel. Such a view is highly valuable to observe the par-
allelism of the application across time and pinpoint where
bottlenecks preventing good parallelism appear.

On Figure 6, the vertical red line indicates when the master
reads the first byte from the socket (just after it has created all
workers). The vertical green line indicates the first time the
master blocks on the socket. The y-axis indicates the number
of CPUs that are currently executing a Hackbench worker at
a given point in time. The color gradient is a visual help for
curve height. We zoomed on a 1 second interval, around the
first master reads.

Before the first master read, we observe a few parallel pro-
cesses: the master and the newly created worker, which per-
forms its write and block on the socket. The time between the
worker creation and the worker blocking on the full socket is
short enough to avoid too many workers to run in parallel. In
the interval between the first master read and the first master
blocking, we can see up to 12 parallel executions flows. In a
short run, we see at most 2 parallel executions flows.

From this, we can conclude that the more parallel execution
flows there are on this interval, the more workers will trigger
the poll page fault at the same time. And these workers
will try to acquire the page cache lock at the same time, thus
leading to contention. A lower degree of parallelism causes
much less pressure on the lock, thus avoiding contention and
reducing the average execution time.

Scheduling
A followup question that arises from the previous discovery
is to understand why the workers are not always dispatched
on the same number of CPUs when the master starts to read
from the socket (in other words, why there is a greater degree
of parallelism in the case of a long Hackbench run). We chose
to look at the call-chains of the execution of migrate task
event. This event is raised when a task (i.e., an execution
flow) waiting for execution on the runqueue (list of processes
waiting for execution) of CPU A is migrated to another CPU
B. Changing the runqueue of a process will always trigger

Figure 7: Timeline of migrations of workers per CPU

a migrate task, thus tracking such events allows show-
ing where processes go and why. In the case of Hackbench,
processes are not dispatched on any CPU at creation but are
executed on the CPU on which it has been created (the master
CPU, the 0), until it forces itself into another CPU by pinning
on any other CPU except the first one (as described in 3.2).

We observe from the call-chain of a migration procedure
that the function to migrate a task is called by the function
load balance. The load balancing mechanism is a sched-
uler mechanism trying to improve parallel execution by al-
lowing a CPU which is not loaded to “steal” from the run-
queue of a busy CPU runqueue in order to unload it. This
kind of load balancing mechanism is run only on CPUs that
are not idle. A CPU is put idle thanks to CPU frequency scal-
ing: if a CPU has no work to do, the frequency of this core is
lowered and the core goes to an idle state where some timer
interrupts are disabled. This is done to save power. The load
balancing mechanism uses interrupts to periodically run load
balancing. Thus, if the CPU is idle, the load balancing will
not happen. The final step and last question we ask ourselves
is why in some cases CPUs are idle and sometimes not.

In Figure 7, we plot where the workers migrate. The ver-
tical red line indicates the first master read. There is one line
per CPU. We can see that, during the first master reads, there
are migrations on 8 CPUs. In contrast, for a short run, we
see only two CPUs where migrations happen. This confirms
our hypothesis that the more migrations on different CPUs
there are, the more contention there will be. However, to un-
derstand why CPUs are not idle (and perform migrations),
we chose to list the different processes (not only Hackbench
workers) running when the master does its first reads.

Several processes which are kernel helpers have been seen:
jbd2 (disk related), kworker (interruptions related), rcu sched
(kernel memory data structures related) and others. Such pro-
cesses are regularly executed on the system in response to
non-deterministic events: disk activity, timers, kernel garbage
collector, etc. However, depending on which CPU is not idle

(activated by a kernel helper process) when the master starts
reading from the socket, the migrations of the Hackbench
workers will be done on a different number of CPUs.

We can now give a complete explanation of what happens
in the case of a long Hackbench run. Many CPUs are ac-
tivated when the master performs its first reads. Those first
reads will mark workers as runnable. Load balancing on dif-
ferent CPUs is done, which will migrate workers on these
CPUs and allow more workers to execute in parallel. Just af-
ter doing their writes, the workers will call poll, each caus-
ing a page fault. These page faults are all related to the same
page inside the page cache, and accessing this page requires
to take a lock. Thus, the workers are blocked waiting for the
lock. When there are less workers that need to write their
byte inside the socket (end of the synchronization phase), the
contention on the lock will be reduced and workers will be
unblocked. All these unblocked workers will be marked as
runnable and will be scheduled on the different CPUs, just
before being descheduled again waiting for the “go notifica-
tion”. These workers will compete with the workers that have
not yet written their byte inside the socket, thus slowing them
down. As they take more time to write their byte, the master
will wait longer between two reads, and the synchronization
phase will take more time.

In the case of a short run, at the beginning there are less
CPUs that execute a process, less workers will be migrated
and less parallelism, less lock contention, less workers com-
peting for CPU time and overall, a shorter synchronization
phase.

This is surprising: in the case of Hackbench, better paral-
lelism leads to performance anomalies. Besides, one would
expect the scheduler to dispatch the worker processes on the
CPUs at very early stages of the Hackbench execution. How-
ever, the scheduler is actually lazier: it waits for some CPU
runqueues to become loaded before attempting to increase the
degree of parallelism.

4.2 Solutions
Thanks to the insight that we have obtained through profiling,
we propose three solutions that can be easily implemented to
avoid the variations observed on Hackbench.

The first one is done by modifying the application. The so-
lution is to add a spinning loop (a loop keeping the CPU busy
without descheduling the process) between two master reads.
This has the effect to wake up workers more slowly, letting
them the time to do their page fault on the poll, avoiding
the next process to wait on the lock of the page cache. Re-
sults show that this algorithm improves the average execution
time by 13% and reduces the relative standard deviation of
the execution times (metric for the variation) by 75%.

Another one is to enlarge the size of the socket. If the
socket is large enough, there will be less workers that will
do their page fault at the same time. However this solution
can be not adapted to all situations as enlarging the default
socket buffer size impacts all sockets and may lead to mem-
ory exhaustion.

The last solution is to statically link libraries at compile
time. This allows workers to not trigger the problematic page

faults and avoid contention and thus long execution times.
With this technique, the average execution is improved by
75% and the relative standard deviation by 99%. Such a great
improvement is not only due to contention avoidance, but also
to a decrease of the overall number of page faults.

5 Lessons Learned
Several techniques have been used to pinpoint performance
issues. The process-view allows building timeline of pro-
cesses and to spot unexpected behaviours, which can be
unnoticed by profiling tools that use a statistical approach
(i.e., tools that only provide metrics aggregated over the to-
tal execution time). Capturing descheduling intervals and
the two different intervals (blocked-to-runnable, runnable-
to-scheduled) is useful to discover if a process does useful
work (is executed) or if it is either waiting on a condition (not
runnable) or waiting for a free CPU. This knowledge enables
performance optimizations either by giving more CPU time
to the process or searching why the condition is not satisfied.
Call-chains are invaluable to find the cause of an event. Eval-
uating lock contention by observing the number of processes
trying to acquire a lock and the number of processes releas-
ing the lock using a timeline enables focusing on a particular
moment of the application where contention can happen. We
do not think that statistical profilers can help to detect all lock
contention patterns such as bursts. Looking for the number
of parallel active execution flows is a good method to eval-
uate the speedup of a program and it can help pinpointing
sub-optimal speedups (e.g., due to bad load balancing on the
CPUs or hidden serialization points such as kernel locks) by
looking at intervals of time where all expected CPUs are not
fully utilized.

Our study of Hackbench highlights different patterns or in-
efficient interactions. The first one is related to the pinning
of the master. The expected result was to give it more CPU
time. However, the side-effect was to let it free the socket
too quickly and then being blocked and descheduled. Even if
this is not the root-cause of the variations, such a pattern is
inefficient. Another pattern is to let the scheduler efficiently
balance the processes over all the CPUs. The dispatching is
highly sensible to how many CPUs are available (i.e., a pro-
cess is running on the CPU). It is sometimes better to explic-
itly pin a process on a given CPU than to rely on the sched-
uler.

6 Conclusion and Future Works
Through the study of Hackbench, we have pinpointed dif-
ferent inefficient interactions (either explicit or implicit) be-
tween executions flows and resources. We used different
methods to find the root-cause of such a problem that may
be used, along with others, to automatically discover interac-
tions performance bottlenecks in the context server-side ap-
plications.

We plan to generalize our approach by automatizing it in
a profiling tool and analyzing real-world applications (e.g.,
the Apache web-server). We hope to find other metrics by
studying such programs.

References
[AMD, 2014] AMD. CodeXL - Powerful Debugging,

Profiling & Analysis. http://developer.
amd.com/tools-and-sdks/opencl-zone/
opencl-tools-sdks/codexl/, 2014. [Online;
accessed 01-June-2014].

[de Rochefort, 2014] Xavier de Rochefort. Noyau Linux
: À Propos Des Outils De Trace. In Conférence en
Parallélisme, Architecture et Système (ComPAS 2014),
Neuchâtel, Switzerland, Avril 2014.

[Fournier and Dagenais, 2010] Pierre-Marc Fournier and
Michel R. Dagenais. Analyzing Blocking to Debug Per-
formance Problems on Multi-Core Systems. Operating
Systems Review, 44(2):77–87, April 2010.

[Geimer et al., 2008] Markus Geimer, Felix Wolf, Brian
J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd
Mohr. The SCALASCA Performance Toolset Architec-
ture. In Proc. of the International Workshop on Scalable
Tools for High-End Computing (STHEC), pages 51–65,
Kos, Greece, June 2008.

[Giraldeau et al., 2011] Francis Giraldeau, Julien Desfossez,
David Goulet, Michel R. Dagenais, and Mathieu Desnoy-
ers. Recovering System Metrics from Kernel Trace. In
Linux Symposium, pages 109–115, Ottawa, Canada, June
2011.

[Intel, 2013] Intel. Intel VTune Amplifier XE 2013.
https://software.intel.com/en-us/
intel-vtune-amplifier-xe, 2013. [Online;
accessed 01-June-2014].

[Kalé and Sinha, 1993] L.V. Kalé and Amitabh Sinha. Pro-
jections: A Preliminary Performance Tool for Charm. In
Parallel Systems Fair, International Parallel Processing
Symposium, pages 108–114, Newport Beach, CA, April
1993. IEEE.

[Lachaize et al., 2012] Renaud Lachaize, Baptiste Lepers,
and Vivien Quéma. MemProf: A Memory Profiler for
NUMA Multicore Systems. In USENIX Annual Technical
Conference, pages 53–64, Boston, MA, USA, June 2012.
USENIX.

[Pillet et al., 1995] Vincent Pillet, Jesús Labarta, Toni
Cortes, and Sergi Girona. Paraver: A Tool to Visualize
and Analyze Parallel Code. In Proceedings of WoTUG-18:
Transputer and occam Developments, volume 44, pages
17–31, Amsterdam, April 1995. IOS Press.

[Wang et al., 2013] Chengwei Wang, Soila P. Kavulya, Jiaqi
Tan, Liting Hu, Mahendra Kutare, Mike Kasick, Karsten
Schwan, Priya Narasimhan, and Rajeev Gandhi. Perfor-
mance Troubleshooting in Data Centers: An Annotated
Bibliography. Operating Systems Review, 47(3):50–62,
January 2013.

[Weaver, 2013] Vincent M. Weaver. Linux perf event Fea-
tures and Overhead. In International Symposium on
Performance Analysis of Systems and Software (ISPASS
2013), pages 80–87, Austin, TX, USA, April 2013. IEEE.

[Wisniewski and Rosenburg, 2003] Robert W. Wisniewski
and Bryan S. Rosenburg. Efficient, Unified, and Scalable
Performance Monitoring for Multiprocessor Operating
Systems. In SuperComputing: Conference on High Per-
formance Networking and Computing (SC 2003), pages
3–17, Phoenix, AZ, USA, November 2003. ACM.

1

Magistere report
Jérémy SEGUIN

Supervised by : Vincent DANJEAN

Abstract—Evaluation of Xeon Phi’s communications means.
Keywords—Xeon Phi Intel MIC MPI

I. INTRODUCTION

The architectures of today’s supercomputers are often pre-
lude to tomorrow’s public machines. We can note it with
the appearance of multi cores processors in devices such as
mobiles phones or personal computers.

The Xeon Phi, an Intel coprocessor available since early
2013, is announced as a basis element of supercomputers. It
has many cores and a vectorial instruction set.

Xeon Phi is different from GPU accelerators because pro-
gramms can be written like any application using parallel
environment programming. It can be used as an accelerator
or as a MPI cluster.

The objective here will be to evaluate the different means
of communication of the Xeon Phi. We will restrict here to
one Xeon Phi and a computer. However, means can not be all
tested, only results of two of them will be presented here (MPI
and socket).

II. THE XEON PHI

A. Presentation
The Xeon Phi is a new generation of accelerators that

appeared in the year 2010. While more recent than GPU
accelerators such as nVidia Tesla, though it is different by it’s
architecture Intel MIC1. This permits to execute code working
on processor without having to rewrite it, contrary to actual
GPU. Indeed, execute code on graphical card needs to rewrite
it in it’s own language and use specific libraries.

With 60 cores at 1 Ghz and 4 threads per core (whether 240
threads), it is announced with a computing power of 1 Tflops2.
Moreover, vectorial instructions are available.

B. MPI programming models
We will take as convention "local" is the machine that

possesses the Xeon Phi, "mic" is the Xeon Phi.

Coprocessor-only model :
As known as "native model". The program executes on Xeon
Phi only. The code is the same as the one used for normal
machine, only an option is specified at compilation to get

Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr).

1Many Integrated Cores, x86 architecture
2FLoating Operations Per Second

binary code executable by the Xeon Phi (-mmic for mpiicc
compiler).

Symetric model :
Program is divided in jobs using MPI. These jobs are
executed in parallel on a list of hosts. Operation of these
jobs is comparable to process. Communication between jobs
is done using functions of the MPI library (Send, Receive,
Broadcast, ...).
This model will be used in the experiments presented later in
this paper.

Offload model :
A part of the calculations is offloaded either from local to
mic (direct acceleration) or from the mic to local (reverse
acceleration). Portions of code to offload are marked by pre-
processor directives.

Example :
#pragma offload target(mic) in (n) \

in (a:length(N)) out (b:length(N))
f (n, a, b);

This indicates that call to function f will be offloaded to the
mic. The type of dada (in, out or inout) used by the function
and it’s size is specified. Others options can be specified for
the data behaviour (allocation or not, ...). Programs thus coded
must be compiled with specific options.

III. GRID’5000

A. Presentation

Grid’5000 is a supercomputer network distributed on many
sites. Each site provides hardware and software tools in
order to conduct experiments simply, effectively and shared
way. Sites includes clusters. For example, the Xeon Phi is
accessible on Digitalis cluster of Grenoble site.

2

3

In order to use a machine of the network, it is necessary
to make a request (also called "submit") of job. This is done
using oarsub command. Many options are available to precise
the time needed for the job, the type of job (shared, reserved,
deploy, ...), the start time, etc.

If nothing specifies otherwise, a reservation is shared. So
several person can use the same resource together. Following
experiences have been done on Grenoble site which possesses
a Xeon Phi.

Here two examples of available tools :

chandler command to list running jobs and machines state.

Gantt permits to list jobs and machines state over time. At
the left is the list of machines. Each coloured square represents
a job. Colour is random and does not depends on the job.
Detailed informations can be seen on mouse hover. The red
bar represents the present moment (here at the left because
further in time).

3Images from grid5000.fr

B. Deploy with kadeploy

kadeploy is one of the many software tools available in
Grid’5000. This command permits to install a custom made
system on a reserved machine and have the root access on it,
very useful to install software or libraries not present in the
base system.

However, a deployed system can not be shared, so only to
use if necessary. For the following experiments using MPI,
deploy was mandatory to have MPI libraries installed on the
Xeon Phi.

IV. EXPERIMENTS

One program have been written to measure influences of
communications on calculation. This programs is in two ver-
sions : one using MPI4 for communications, another using
Sockets. The MPI version is designed for the symetric model,
it needs to be launched with mpirun. The Socket version was
written to compare results with the MPI version and be able
to tell if the MPI layer adds time in communications.

These experiments have been done using a computer (local)
connected to a Xeon Phi (mic).

There are 4 communications to measure : local -> local,
mic -> mic, local -> mic and mic -> local. For each test,
measures have been done a number of times to increase
accuracy (here 32/64 times), Results are the average of these
measures. Results are exported in csv5 file format.

Size of data are from 4B to 1BG, each time multiplying by
two.

A. CommunicationInfluences

This program, written using MPI, must be launch with two
jobs in parallel. Each job receive a rank. Rank 0 sends the data,
does calculus and measures times while rank 1 only receive
data. Here are the time calculated :
• t1 : time for calculus only
• t2 : time for transfert + wait
• tw : time for wait only
• ts : time for transfert only

4MPI (Message Passing Interface) is a message communication library
available in C, C++ and Fortran

5Coma Separated Values

3

CommunicationInfluences structure
if (rank == 0) {

//Calculus only
for (i = 1; i <= count; i++) {

gettimeofday (&tv1, &tz);
calculation (0);
gettimeofday (&tv2, &tz);
t1 = getTime (tv1, tv2, 1);

}

for (j = size; j <= toSize; j*=2) {
for (i = 1; i <= count; i++) {
//Transfert only
gettimeofday (&tv1, &tz);
MPI_Isend (data, j/sizeof (int), MPI_INT, 1, 0,

MPI_COMM_WORLD, &request);
MPI_Wait (&request,&status);
gettimeofday (&tv2, &tz);
ts = getTime (tv1, tv2, 1);

//Transfert + Calculus
gettimeofday (&tv1, &tz);

MPI_Isend (data, j/sizeof (int), MPI_INT, 1, 0,
MPI_COMM_WORLD, &request);

calculation (1);

gettimeofday (&tv3, &tz);
MPI_Wait (&request,&status);
gettimeofday (&tv4, &tz);

gettimeofday (&tv2, &tz);

t2 = getTime (tv1, tv2, 1);
tw = getTime (tv3, tv4, 1);

}
}

}
else if (rank == 1) {
for (...) {

MPI_Recv (data, j/sizeof (int), MPI_INT, 0, 0,
MPI_COMM_WORLD, &status);

}
}

MPI_Isend is an asynchronous data send function.
MPI_Wait must be use to wait for the end of the transfert.
The argument 0 or 1 in the calculation function call is used
to add or not calls to function MPI_Test periodically during
calculus. This function used to test the completion of a transfer
is used here to avoid transfer to "sleep" and be delayed.

●

●

● ● ● ● ● ● ● ● ●
● ●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

● ●
●

●
●

●

●
●

●

● ●

●
●

●
●

● ●
●

●
●

● ● ● ● ●
●

● ●

● ●
● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●
●

●
●

●
●

●

●

●
● ●

●

● ● ● ● ●
● ●

●
●

●
● ● ● ●

● ●
●

●

●

●

●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●● ●

●

● ● ●
● ● ●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

local.local local.mic

mic.local mic.mic

1e+00

1e+03

1e+06

1e+00

1e+03

1e+06

1e+02 1e+05 1e+08 1e+02 1e+05 1e+08
Size of transfert (bytes)

T
im

e
(u

s)

data

●

●

●

send

total

wait

At size 0, total time is calculus only time (no transfer), used
as a reference. This is why send and wait time are null.

Total time is constant until send time begins too important.
This is a proof that calculus and send are done in parallel and
don’t interfere each other. The additional time with big transfer
is because transfer takes more time than calculus.

Wait time is also constant, another proof that transfer don’t
interfere with calculus. It only increases with big transfer
because calculus ends first so more time is spent in the wait.

B. CommunicationInfluencesSocket
For this experience, MPI data transfer are replaced with

sockets transfer. This is used to verify if MPI cost in time
is important.

The program has two modes : server that only receives
data and client that sends data, does calculus and measures
times. Data sending are done in a specific thread to have
asynchronous sends. Calculus and send are forced to be on
the same CPU. For these results, tests were done on CPU 0
and CPU 1.
• t1 : time for calculus only
• t2 : time for transfert + wait

if (rank == CLIENT) {
for (i = 1; i <= count; i++) {
gettimeofday (&tv1, &tz);
calculation ();
gettimeofday (&tv2, &tz);
t1 = getTime (tv1, tv2, 1);

}

for (j = size; j <= toSize; j*=2) {
for (i = 1; i <= count; i++) {
gettimeofday (&tv1, &tz);
pthread_create(&thread, NULL,

thread_write, NULL);
calculation ();

4

pthread_join(thread, &retval) != 0)
gettimeofday (&tv2, &tz);
t2 = getTime (tv1, tv2, 1);

}
}
else if (rank == SERVER) {
while ((nbData = read (sock_c, data, s)) > 0) {}

}

●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●

●●

●
●

●●

●

●

●●

●
●

●●

●
●

●●

●
●

●●

●
●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

1e+05

1e+06

1e+05

1e+06

0
1

1e+02 1e+05 1e+08
Size of transfert (bytes)

T
im

e
(u

s)

transfert

●

●

●

●

local.local

local.mic

mic.local

mic.mic

At size 0, time is still for calculus only.

Times are almost constant for every transfer type and CPU
This proves that transfer don’t interfere with calculus.

C. Other experiments

Others experiments were done before but not kept due to a
lack of data or accuracy.

a) LatencyMeasurement: This program permits to
measure time needed to transfer n bytes between 2 hosts. It
can be compared to ping command. Size tested here are from
1B to 1GB with x2 step.

With MPI :

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2
0

2
5

2
10

2
15

2
20

2
25

2
30

T
im

e
 (

u
s
)

Size (bytes)

Transfer time depending on the data size

local−>local
mic−>mic

local−>mic
mic−>local

With sockets :

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2
0

2
5

2
10

2
15

2
20

2
25

2
30

T
im

e
 (

u
s
)

Size (bytes)

Transfer time depending on the transfered data size

local−>local
mic−>mic

local−>mic
mic−>local

MPI and Socket version have both the same shape. We can
see two parts in these graphics : a constant part (from 1B to
4-8KB) and a linear part (to 1GB).

In the constant part, transfers are faster with Sockets (except
for mic->mic transfert). In the linear part, transfers to the
exterior (mic->local and local->mic) are the same for both.
However, for inter-hosts (mic->mic and local->local) are faster
with MPI. The most remarkable is for mic->mic that takes 10
times longer with Socket.

With these results, we can see that it is necessary to avoid
as much as possible much inter-hosts communications as they
are the slower. MPI has good results for sizes of data >= 8KB
and Sockets are only good for non mic->mic transfers of short
sizes (< 8KB).

b) CommunicationInfluences (the old version): This ver-
sion of the program measured only the total time. This only
measure is not enough to understand the behaviour with big
data.

With MPI :

5

10
2

10
3

10
4

2
0

2
5

2
10

2
15

2
20

2
25

2
30

T
im

e
 (

u
s
)

Size (bytes)

Transfer time depending on the data size

local−>local
mic−>mic

local−>mic
mic−>local

With sockets :

10
2

10
3

10
4

2
0

2
5

2
10

2
15

2
20

2
25

2
30

T
im

e
 (

u
s
)

Size (bytes)

Transfer time depending on the transfered data size

local−>local
mic−>mic

local−>mic
mic−>local

In both case, communications have negligible influences as
the transfers times stay constant and even to base time.

c) MatMultMPI: The first program written. This program
is a square matrix multiplication. A job called "root" generates
two square matrix and sends it to each job that calculates
a part of the result and sends it back to the root. Measured
times are data generation, data sending, calculus, and result
sent. These measure are not accurate because in seconds. So
all measurements were done 1000 times.

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

m
s
)

Size (MB)

Transfer time (average of 1000 transferts)

local−>local
mic−>mic

local−>mic
mic−>local

The results tendencies are the same than in the linear part of
LatencyMeasurement

d) LatencyMeasurement: First, this program were used to
calculate latency for a 1B data transfer. Here is the average for
107 transfers.

local->local mic->mic local->mic mic->local
0.2µs 2µs 1.7µs 50.3µs

local->local time is the best one but mic->local is the worst.
This confirms the previous statements : it is necessary to avoid
mic->local transfers. Average debit have been calculated from
these results :

local->local mic->mic local->mic mic->local
1228MiB/s 559MiB/s 123MiB/s 80MiB/s

V. CONCLUSION

Results of these experiments permit us to understand how
to set the process to decrease communication time and the
behaviour of data transfer using MPI and sockets in order to
improve future programs using hybrid model.

CommunicationInfluences and CommunicationInfluences-
Socket are the most accurate of the programs presented in
this paper. An adaptation for other models and other commu-
nication means could be a good idea in order to compare the
results. Moreover, only one Xeon Phi and one computer were
used here, it could be useful to test others configurations.

It is necessary not to forget that experiments presented here
were done in close environment, there were only one program
running on a machine and a Xeon Phi, also close each other.
Tests in disturbed environment (high latency, many running
connections, ...) would be more realistic.

Such experiments are essentials for an understanding of the
Xeon Phi communication specific. A little time spent testing
could spare more time in future developments.

ACKNOWLEDGEMENTS

I wish to thank
Vincent DANJEAN for providing this stage and helping me
along it,
Sébastien CURT and Pierre NEYRON for their help in my

6

research and expériences,
Inria for providing me new and interesting means of experi-
mentation.

REFERENCES

[1] www.grid5000.fr
[2] software.intel.com
[3] Intel R© Xeon PhiTM Coprocessor System Software Developers Guide

June, 2013 - 163 pages
SKU# 328207-002EN

[4] Jim JEFFERS & James REINDERS
Intel R© Xeon Phi Coprocessor High-Performance Programming
2013, Published by Elsevier Inc - 430 pages
ISBN: 978-0-12-410414-3

[5] Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal
Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais
HPC programming languages
October 2nd, 2013 - 197 pages

Hierarchy construction in large scale taxonomies

Moura Simon

Supervised by: Eric Gaussier

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract
Classification is a core procedure in computer sci-
ence and in others fields such as biology or statis-
tics. The objective is to classify items (e.g., doc-
uments, images, videos) into a predefined set of
categories. Several systems, like Wikipedia or the
DMOZ repository, organize their data in a struc-
tured manner where the categories are organized
in a hierarchical setting with parent-child relations
among them. In this context, hierarchical classifi-
cation methods aim to leverage this a-priori infor-
mation in order to build scalable classification sys-
tems.
However the given hierarchy may not be well suited
for automated classification as it may contain noise
or be subject to personal preferences of the editors
that designed it. A way to overcome this problem
is to construct a new hierarchy starting from a flat
setting or to alter the existing one.
In this article, we propose an heuristic algorithm
to construct a hierarchy of classes that increase the
speed of classification while minimizing the error
of the process.
During this internship, we implemented this heuris-
tic and tested it on a known data set (sampled from
LSHTC challenge) in order to evaluate our results.

1 Introduction
The problem of identifying relevant categories from sets of
objects and in which category an unknown object should be-
long is becoming more and more present in multiple scientific
field.

In chemistry, we could classify molecules searching for
shape patterns. In medicine, we could look for patterns in
diseases. In a library we would like to classify books and so
on.

A classical example in biology is the classification of a new
species of animal. This kind of work could be useful to find
the similarities between known and unknown species, get an

idea of possible parents (in the case of paleontology) or even
get multiple information about specific animal.

In the following figure 1, we show an example of a hierar-
chy which could be used for that purpose.

Animal kingdom

Vertebrate Invertebrate

Tetrapod Agnatha Insects Annelids

Figure 1: Animals taxonomy

One interesting point with this hierarchy is that if a new
living being was discovered, we could classify it and obtain
some useful information. For instance, if dogs were discov-
ered, it would belong to tetrapod class, which is a sub-class of
vertebrate class, which is a sub-sub-class of the animal king-
dom root class. Thus, this structure help us to classify new
animals regarding their similarities.

In computer science, classification is also widely used. For
example, in image analysis we could look for patterns to rec-
ognize holiday, artistic or journalistic photos. In information
retrieval, we would like to find the most relevant document
regarding a large set of documents and so on.

In machine learning (ML), one objective is to design new
methods for classification problems.

With the growth of available data, new problems are aris-
ing. Wikipedia has more than 4 million articles and more than
300.000 classes. Thus, the design of scalable applications,
which are fast and accurate is a challenge.

Last subject will be the focus of the current paper.
This article will be divided as follow. Section 2 and 3

will explain how classification works and present the current
approaches and ideas. Section 4 exposes the specific problem
we are trying to tackle and how we managed it. Section 5 we
will talk about our propositions for future work and conclude
this paper.

2 Generalities on machine learning
In this section we present the notations used throughout
this paper, the global idea of classification and supervised
ML and finally we will formalize it in order to get a better
understanding of what we are working on. Lastly, we will
shortly discuss SVM models.

2.1 Notations
In classification the training set is typically denoted as S =
(xi, yi)

n
i=1 , where xi is the feature vector (which repre-

sents the attributes of an object) of instance i and yi ⊂ C
is the set of classes in which the instance belongs, where
C = c1, ..., ck.
wi will represent a classifier for the class i.

2.2 Classification and ML
Machine learning is a broad subject but which can be divided
in two main approaches :

• Unsupervised algorithms which operate on unlabeled
data. The idea is to discover a structure in the data.

• Supervised ML algorithms which objective is to find a
function which map a training set to their correspond-
ing classes. Then this function is used to classify new
unknown objects.

On this paper, we will focus on supervised machine learn-
ing and so, labeled datasets.

The general idea of supervised ML is the following : we
consider a training set S = (xi, yi)

n
i=1 (e.g., a set of animals

from living in the nature and their corresponding classes) and
we try to discover a function h(xi) = yi which generalize or
map them the best. This function called a classifier.

Thus this classifier help us to determine in which class a
new object belongs.

There are two common ways to use these classifiers : flat
or hierarchical approaches.

Flat classification
For flat classification, we consider all the classes at once and
decide directly where to put the object. With this method only
one decision need to be taken but can be hard to take.

The classifier that we learnt from the training set will give
the distance between each class and the object to classify.
Thus, we will be able to decide where it belongs.

Hierarchical classification
On the other hand, hierarchical classification divide the prob-
lem of classification into several smaller problems. The idea
is to use classifiers which consider less and less object, and
thus are more and more accurate.

Then, the problem can be seen as a tree search. All nodes
are classifiers and leaves are final classes.

As we can see in the figure 2, if we start from the root, we
first have to take a decision between two sets using a first
classifier. Then we iterate on lower levels until we reach a

leaf, which is the final class.

Root (1st classifier)

Classifier Classifier

Class 1 Class 2 Class 3 Class 4

Figure 2: Hierarchical clustering

Accuracy vs Speed
When a method have been decided, hierarchical or flat clas-
sification, and a decision model have been established (for
example SVM), the last step is to check the quality of the
method using a test set(i.e. Stest = (xi, yi)

n
i=1). This dataset

contains known mapping between objects and classes.
The errors made during the test phase is called the gener-

alization error. It is on this error that we are going to work
to build an accurate and fast hierarchy for classification algo-
rithm.

Both of the previous classification methods have there ad-
vantages and drawbacks.

Three criterion are relevant to decide for the quality of a
method: the time spent for pre-processing (such as hierarchy
construction), the classification speed and finally, the accu-
racy.

Usually, we are looking for the best trade-off between
these three measurement tools.

2.3 Support Vector Machines (SVM)
There is a lot of algorithms that aim to determine classifiers.
On this paper, we are going to focus on SVM which are quite
recent supervised ML models. It allows to recognize accu-
rately patterns in sets of data.

It is based on two main ideas :

1. Kernel trick Consider an higher space than the original
one which allow to separate the objects in a different
way. Then the boundary decision will be an hyperplane
of this new space. In the remainder of this paper, we will
note w these boundaries.
The following picture illustrate the kernel trick. We can
see that it would be hard to find an accurate frontier sep-
arating the data in a 2d space while it easier in three a 3d
space : we just need to find an hyperplane.

2. Find the maximum-margin between objects : find the hy-
perplane which divide the objects in two sets with the
highest distance possible with the hyperplane.
Then, the closest vectors of the hyperplane are called
support vectors.
We can observe the principle of the maximum margin
for a specific set on the image 4.

ε(gf) ≤
1

m

m∑
i=1

A(gf (x
(i), y(i))) + 2 ∗Rm(GFB ,S) + 3

√
ln(2/δ)

2m
) (1)

Rm(GFB ,S) ≤
2

m
E

 sup
‖W‖H

∑
(v,v′)∈V2,v′∈D(v)

‖wv − wv′‖‖
∑

i:c(f,x(i),y(i)=(v,v′)

σiφ(x
(i))‖H

 (2)

Figure 3: Kernel trick. (source: http://www.dtreg.
com/svm.htm)

Figure 4: Max-margin (source: http://www.sussex.
ac.uk/Users/christ/crs/ml)

3 State of the art and interesting ideas
When it comes to build a hierarchy, there is two main
approaches :

• Top-down : we start considering the whole set of
classes, train a classifier to divide it, iterate the process
on both subsets and iterate until we have one class left
per set.

• Bottom-up : we begin from leaf with one class per set
and gather them in an upper levels until only one set left.

3.1 Common approach
[Bengio et al., 2010] proposed an efficient solution to build a
hierarchy reducing the generalization error.

The article is based on a top-down strategy and on two
main ideas :

• For each node, they make a prediction on the subset of
labels to be considered by its children;

• They used a method to reduce the feature space involved
in the training in order to boost the learning speed and
optimize the overall generalization error.

Both ideas have been re-used and improved in the follow-
ing papers [Gao and Koller, 2011], [Deng et al., 2011] and
[Yang and Tsang, 2012].

3.2 Interesting improvement
Among all articles cited in last section, one of them had an
innovative idea to handle the generalization error.

In fact, [Gao and Koller, 2011] proposed a method which
aims to reduce the ambiguity while building a hierarchy in a
top-down approach.

Basically, the idea consists in pushing back the ambiguous
decisions and decide about them later.

As we can observe in 5 for the first node classifier, the
boundary decision for classes 3 and 4 are not obvious. Thus,
instead of cutting down the problem in two, we have to
deal with an higher number of classes. It may increase the
complexity but it is a trade for a better accuracy.

Figure 5: Image from [Gao and Koller, 2011]

4 Our contribution
In this section, we expose and formalize the proposed heuris-
tic for the construction of an accurate and fast classification
hierarchy based on recent results obtained by the AMA team.

http://www.dtreg.com/svm.htm)
http://www.dtreg.com/svm.htm)
http://www.sussex.ac.uk/Users/christ/crs/ml)
http://www.sussex.ac.uk/Users/christ/crs/ml)

∑
(v,v′)∈D(root),v′∈D(v)

‖w(1)
v − w

(1)
v′ ‖22 +

∑
v∈Lvl1(v)

∑
(vi,vj)∈D(v),vi 6=vj

‖w(1)
vi − w

(1)
vj ‖

2
2 (3)

4.1 Problem Formalization
In a recent paper [Babbar et al., 2013] published by the AMA
team, a theorem have been proven giving a formal upper
bound on error generalization for a given hierarchy.

The generalization error is the one made during classifica-
tion of new objects using a predefined model.

Based on this proof, the generalization error, ε(gf) (1), is
upper bounded by three terms.

Where D(v) denotes the daughters of node v, wv is the
classifier for the node v and V is the set containing all the
nodes of the hierarchy, A is a Lispschitz function, 0 < δ < 1
and m is the number of objects in the training set.

The first and the third part of the bound are empirical er-
rors, we are not working on them.

Thus, our efforts will be focused on the second term, 2.
This term can itself be divided in two. The second one,

‖
∑

i:c(f,x(i),y(i)=(v,v′)

σiφ(x
(i))‖H

is linked to the input and fixed in advance. On the other hand,
the first term usable for an optimization.

Finally, we are going to focus our interest on minimizing
the following value while building the hierarchy :∑

(v,v′)∈V 2,v′∈D(v)

‖wv − wv′‖ (4)

4.2 Choices & hypothesis
Bottom-Up VS Top-Down choice
In regards to the equation 4 and considering that we sum
on the daughters, the first intuition would be a top-down ap-
proach. Nevertheless, we spent some time thinking about this
approach but it was computationally too costly and turned out
to be an NP-complete problem.

Thus, we decided to use a bottom-up approach with a hier-
archical agglomerative clustering method.

These methods are often used for such problems. The idea
is to group up close elements step by step.

Hypothesis
At this point, we still need some hypothesis in order to use
the formula 4 for hierarchy construction.

Starting from a flat hierarchy as in 6, the only parent for
all the classes is the root. Thus, the formulas 4 will only be
about the first flat level.

On the opposite, for upper level, we need to minimize the
formula 3, which involve both, the current level and all the
daughters in the lower structure. The figure 7 illustrate the
idea and all the nodes on which we need to sum.

In order to reduce the computation time, we make a first
hypothesis for levels upper than bottom most one. Regarding
the formula 3 and considering that there is less sets at level
i+1 than at level i, we admit thatA� B thenmin(A,B) =

root

w0
0 w0

k

. . .

Figure 6: Level 0 of the construction

root

{w1
0, w1

1} {w1
k−1, w1

k}
. . .

w1
0 w1

1 w1
k−1 w1

k

Figure 7: Level 1 of the construction

min(B). Where A represents the first term of the sum and B
represent the second one.

The second hypothesis is that if two sets of classifiers are
close in space i, then they will be close in space i+ 1.

With this two hypothesis, we are now able to create an
heuristic. However, we still need a tool, in order to compare
two sets of classifiers with a different cardinal.

Comparing sets of classifiers
In order to represent the distance between classifiers (which
are vectors), we used a similarity matrix. A similarity ma-
trix S is a matrix where s(i,j) represents the distance or the
similarity between the object i and the object j.

Since we are going to group up some classifiers (which are
vectors that represent a boundary decision between classes),
we need a notion of distance to compare set of different size.
For that purpose, we will use the complete link which is de-
fined as follow in the book [Amini and Gaussier, 2013]:

dist(Gk,Gl) = max
d∈Gk,d′∈Gl

dist(w,w′) (5)

Where w and w′ are classifiers in the set k and the set
l. The idea behind this choice is to group two sets of
classifiers in which all elements are close. Elements are
going to be grouped only if they are not only close in average.

Dendrogram representation
We decided to group the classifiers two by two and represent
them as dendrogams. A dendrogram is a representation of a
binary tree with a notion of distance between the nodes. As
we can see on the next picture 8, the further a node is from
another one, the further they are in term of distance.

Figure 8: Dendrogram example

4.3 Proposed algorithm
With the help of the previous tools and based on decisions
made earlier we proposed a new algorithm. In order to
build it, we worked on classifiers instead of classes since the
theorem in [Babbar et al., 2013] give us terms to optimize.
Building a hierarchy using classifiers was part of the chal-
lenge of this internship as we did not know if the bound was
exploitable.

Proposed algorithm
1. For each class of the training set, train a classifier in one-

vs-rest;
2. Compute a similarity matrix between the freshly trained

classifiers;
3. Look for the two closest sets of classifiers wi in the sim-

ilarity matrix using the complete link distance;
4. Replace this two classifiers by the union in a same set

considered as the parent and update similarity matrix;
5. Go to step 2. until there is only one set left. At his point

we get a dendrogram representation based on classifiers.
6. Cut the dendrogram at an ”arbitrary” height to keep only
p sets.

7. Go to step 1. and learn classifiers considering the p sets
until. Here, if a set contain more than one class, we
consider them as a flat problem and apply one VS rest
algorithm.

Highlights
1 vs rest is a usual method to compute classifiers while using
SVM. The idea is the following. For each classes, compute
a classifier considering the elements of all classes as a whole
entity. Then, the hyperplane we obtain give an information
about how to differentiate this specific class among all others.

For step 6 we decided to cut the dendrogram at
√
n subsets.

Where n is the total number of classes at start.
The cut down in the dendrogram in step 7 is a key point

for accuracy. The idea is to compute a new classifier using

a flat approach for classes which are the closest. As we are
considering close classes, these classifiers are more precise
to differentiate one class from another.

4.4 Complexity analysis

We can analyze each steps of the proposed algorithm and the
classification of new documents considering that we have n
classes and k features.

Hierarchy construction
1. Training classifiers for all classes in one-vs-rest is

known to be aO(k∗n2) problem [Chang and Lin, 2011];

2. Build dendrogram consists in two parts :

(a) Compute a similarity matrix between the freshly
trained classifiers : we need to compare each classi-
fier (one per class) to all the others. Thus the com-
plexity will be : 0(n2);

(b) Update the similarity matrix grouping the two clos-
est sets wi using the complete link distance, and do
it 1 time for each grouping. The complexity of this
part will be O(n);

Classification of unknown object
In the worst case, if the dendrogram is totally unbalanced,
the classification is not faster than the flat method. Only few
objects will need to be checked once. Thus, classification
time will be close to O(n).

On the other hand, if the dendrogram is well balanced and
the classification time will be closer to O(log(n)), as the one
of the binary search problem.

4.5 Training sets

In order to test our algorithm, we worked with two datasets
which represent written documents with their corresponding
classes. The features are the tf-idf (term frequencyinverse
document frequency).

• LSTHC training data set. It can be found at http://
lshtc.iit.demokritos.gr/ and contain a train-
ing set and a test set of 1000 classes;

• A smaller dataset of documents with 64 classes and
50000 features, which is a sample of the last one.

4.6 Implementation

Implementation of an algorithm which use the bound of paper
[Babbar et al., 2013] was the second aim of this internship.
This part have been divided in two phases :

1. Build a hierarchy;

2. Implement hierarchical classification for testing phase.

http://lshtc.iit.demokritos.gr/
http://lshtc.iit.demokritos.gr/

Choices
We used Python as programming language as it is widely used
in ML for is simplicity to manipulate array and list. Thus, a
large choice of library dedicated to learning are available.

We particularly used scikit, which is an open-source ML
library. It allows to learn classifiers using a wide range of
algorithm (including SVM), and much more.

Algorithm implementation
The algorithm discussed in 4.3 have been implemented in two
parts.

First, parse and sort data in order to build dendrogram.
Then build the hierarchy and store it for further computation.

Secondly, cut off in the dendrogram and consider subsets
as a flat problem. Then, learn classifiers for new nodes and
flat problems.

Testing phase
When it comes to testing phase, we had all needed classifiers
yet. Thus, the idea was to evaluate all instance of the testing
dataset regarding the current classifier until we meet a leaf.

This part needed to be done from scratch as no tool does it
on generic data.

4.7 Results
In the following section, we analyze the results we obtained
on the 64 classes training set.

Dendrograms
On the following figure 9 we can observe the results on a
dataset of containing 64 classes and 49978 features for the
dendrogram construction.

Figure 9: Dendrogram representation with 64 classes and
complete link distance

We observe that the dendrogram is really unbalanced.
These results are linked to the type of data we used. This
is one of the worst case which could happen in term of pro-
cess speed : we will need to compute classifiers twice in 57
cases.

The below picture 10 illustrate what we obtained at the step
6 of the algorithm after the cut in the dendrogram.

Figure 10: Dendrogram 8 classes (after dendrogram cut)

Accuracy and running time
In order to test our implementation, we used another sample
from the same dataset. The purpose was to classify 506 new
unknown objects in one of the 64 original classes.

Accuracy of SVM on flat hierarchy was 76.28% while the
accuracy of our hierarchy implementation is 75.09%. The re-
sults are worse than flat SVM approach, but yet encouraging.

On the other hand, running time of both implementations
were about 1.5s. These results are not relevant and hard to
compare because of the small size of the test dataset.

We can note an important point here : the hierarchy con-
struction takes time (about 20s) but it can be pre-computed
for a given set of classes.

5 Conclusion and future work
This internship show some encouraging results and open
some interesting perspectives for future work in the same
subject field.

5.1 Apply algorithm on larger dataset
It would be interesting to test the proposed algorithm on a
larger dataset for both : running time and precision checks.
We could use the data from the DMOZ project which is a
representation of the Internet.

5.2 Hierarchical classification library for scikit
Hierarchical classification is a widely used tool in ML.
However, there is no tool yet in the sickit-learn library which
handle this problem in a generic way. Even though it can be
a substantial work to do, it would be interesting to implement
a generic tool in order to fasten the future works.

5.3 Compare results with another approach
We could use another well known clustering algorithms to
group up our classes and build the hierarchy. For example,
the current approach could be compared with kmeans + +
(an improved version of the kmeans algorithm).

In that case, if we start with n object, we could first pick√
n centroids considering the euclidean distance. These

centroids would represent the first level of the hierarchy.
Then we would apply the same principle on first level we just
obtained which contain

√√
n object to cluster. And so on

until we have only one centroid where all objects are grouped
: it would be the root.

5.4 Top-Down approach
As explained before, top-down approach are often used to
avoid one-vs-rest algorithm in order to speed up the process
of hierarchy construction. Thus, it would be interesting to
look up for a new algorithm which allow both, a top-down
approach and the use of the bound while building the hierar-
chy.

The idea of prediction on children developed in [Bengio et
al., 2010] could be useful as it would give us information the
needed information about the lower tree level.

5.5 Conclusion
In this paper, we have presented a set of tools used in ML.
We have seen that hierarchical SVM classification can be
an efficient learning method, yet committing generalization
error. We proposed an algorithm to minimize this error
lowering an upper bound and the time spent for classifica-
tion. After implementing this algorithm, we finally tested it
on a small dataset. The results obtained show that further
work in the same direction could theoretically lead to some
improvements for classification speed, and to a lesser extent,
for accuracy.

Acknowledgments
I would like to thank Eric Gaussier which allowed me to do
my master internship and my magistere in the AMA team
and helped all the way. Ioannis Partalas and Rohit Babbar
for their patience and all the time they spent explaining me
machine learning basis.

References
[Amini and Gaussier, 2013] Massih-Reza Amini and Éric

Gaussier. Recherche d’Information - applications,
modèles et algorithmes. Eyrolles, 2013.

[Babbar et al., 2013] Rohit Babbar, Ioannis Partalas, Eric
Gaussier, and Massih-Reza Amini. On flat versus hier-
archical classification in large-scale taxonomies. In C.J.C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 26, pages 1824–1832. Curran Associates,
Inc., 2013.

[Bengio et al., 2010] Samy Bengio, Jason Weston, and
David Grangier. Label embedding trees for large multi-
class tasks. In J.D. Lafferty, C.K.I. Williams, J. Shawe-
Taylor, R.S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23, pages 163–
171. Curran Associates, Inc., 2010.

[Chang and Lin, 2011] Chih-Chung Chang and Chih-Jen
Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27, 2011. Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm.

[Deng et al., 2011] Jia Deng, Sanjeev Satheesh, Alex Berg,
and Li Fei-Fei. Fast and balanced: Efficient label tree
learning for large scale object recognition. In Proceed-
ings of the Neural Information Processing Systems (NIPS),
2011.

[Gao and Koller, 2011] Tianshi Gao and Daphne Koller. Dis-
criminative learning of relaxed hierarchy for large-scale
visual recognition. In Proceedings of the 2011 Interna-
tional Conference on Computer Vision, ICCV ’11, pages
2072–2079, Washington, DC, USA, 2011. IEEE Computer
Society.

[Yang and Tsang, 2012] Jian-Bo Yang and Ivor W. Tsang.
Hierarchical maximum margin learning for multi-class

classification. CoRR, abs/1202.3770, 2012.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Comparison of geometrical and model based retargeting methods for
imitation games using an RGB-D sensor

Maxime Portaz
Etienne Balit

Dominique Vaufreydaz

Abstract

Humanoid robots allow to imagine many ap-
plications for Human-Robot Interaction. Hu-
manoid robots can be used as therapist tools
in the treatment of social disorders. Imita-
tion games are exploited to exercise social skills
of children with autism spectrum disorder and
evaluate their progression. When using a robot
as training partners, the robot needs to perceive
moves either to imitate or to validate mirror im-
itation from the user. The NAO robot has been
chosen because it is well accepted by autistic
children, thanks to its size, cuteness and facial
neutrality. As a humanoid robot, NAO can per-
form a lot of human movements. To track the
child skeleton, a RGB-D sensor is added to the
setup.

This paper investigates different ways to com-
pute the joint configuration of the NAO robot
that best matches a tracked skeleton. A first
method directly computes the joint configura-
tion on the skeleton and applies it to NAO.
A second approach uses inverse kinematics to
find the NAO joint configuration. NAOqi and
iTaSC inverse kinematics solvers are examined.

1 Introduction
In the context of serious games for child with Autism
Spectrum Disorders (ASD), we want to create an imita-
tion game enabling child to enhance their social skills.
We need to measure theirs progresses, thus we have to
maintain interaction for a while in a fluid and natural
way.

Robots have shown to be efficient partners in such
tasks [1]. With companion robots and moreover with
humanoid robots, Human-Robot Interaction is of impor-
tance. As claimed by [6] and [8], one challenge concerns
social competences of robots. While interacting with
humans, they must perceive all social cues and act ac-
cordingly to enhance quality and pertinence of the in-
teraction. For our serious game, looking at literature,
we cannot envision a Wizard of Oz [3] experiment or a
robot with staged behaviors [15].

The choice was made to focus on an open imitation
game with a NAO robot. Due to its design and its size,
it is a good choice to work with children. NAO can eas-
ily imitate a lot of human movements [4]. As a bipedal
robot, NAO can fall, and it’s a limitation for some ap-
plications. Our imitation game requires capture of be-
haviors from a human and control of the robot. Human
skeleton is tracked using an RGB-D sensor. With this
skeleton, articulation positions are given in 3D space. A
conversion from the skeleton space to NAO moves, i.e.
to control commands for the robot, must be computed.

In this paper, we will compare 3 different approaches
to fulfill this task. The first one is to calculate angles for
each articulation to control the robot. The two others
use Inverse Kinematics (IK) to match as close as pos-
sible the robot stature to the human skeleton tracked
using the RGB-D sensor. The first implementation uses
NAOqi IK, the standard IK solver from the NAO SDK
NAOqi. The second use Blender as an Integrated De-
velopment Environment for the iTaSC solver [12] for its
ease of use and good performances.

Section II presents general context and motivation of
these researches. The following section introduces re-
lated work and depicts our experimental setup. Section
IV and V show joint configuration retargeting, and then
model based retargeting, with NAOqi IK and iTaSC.

2 Serious game and autism

Serious games are entertaining activities with hidden
goals like education, frailty evaluation or reeducation for
elderly or people with disabilities [10], etc. In Human-
Robot Interaction, games are interesting because they
allow keeping people’s interest without constraint. Par-
ticularly, children need to be focused, and a game seems
to be the better way.

Children with Autistic Spectrum Disorders (ASD)
have to be treated with effective interventions like be-
havioral therapies. Psychologist or therapist use differ-
ent games and activities to improve child social skills.
One of the most interesting games with these children
is imitation game [2]. Usually done with the therapist,
some games can be played with robots [11] as partners.
Robots are often loved by children, and with autistic

children this is even more important. A human face is re-
ally expressive and human facial features can overwhelm
those with an autism disorder [1]. In the case of an im-
itation game, a humanoid robot is adequate because of
its likeness to a child.

The NAO humanoid robot has successfully been used
in similar applications for these reasons [13]. NAO is
a small humanoid robot with 25 degrees of freedom,
57 centimeters tall. He is equipped with two cameras,
four microphones to compute sound azimuth and several
bumpers. NAO can film people and do face recognition
and tracking. We only use face tracking during interac-
tion, due to a bad quality of the face recognition. There
is the same issue with microphones. We have sound lo-
calization, but speech recognition is really difficult to use
even more for children with ASD in a noisy room.

Another aspect of our work concerns the body track-
ing. Unlike other approaches, we cannot envision specific
suit or motion capture techniques with autistic children.
Using the embedded camera from the NAO will not pro-
vide body tracking. In imitation game, NAO may turn
his head and not see the gamer anymore. For this reason,
mounting an RGB-D sensor on the NAO like in [7] is not
an option. Thus, we compute skeleton using an RGB-D
sensor overhanging the robot. The setup is depicted in
Fig. 1.

Figure 1: Setup for the imitation game. The RGB-D
sensor overhangs the NAO and tracked the gamer skele-
ton.

3 From gesture to imitation

3.1 Related work

Several methods are described in the literature to im-
plement a real time imitation of human on a humanoid
robot. In [9], they developed an interaction between
Zeno, a humanoid robot, and children with ASD. For

the motion capture and child gesture recognition, they
equipped the person with sensors. This does not allow
natural and fluent games, usable during psychological
session.

In [15], a method to make an imitation game with a
NAO using an RGB-D for posture tracking is depicted.
They calculated every angle on the human skeleton to
send them to the NAO. A problem rises for reverse imi-
tation, i.e. skeleton position from joint configuration, as
needed in a turn tacking imitation. We have to compare
position in joint space only, and we want to keep both
options, joint space and 3D space.

In [5] is presented a method to enable humanoid robots
to imitate complex whole-body motions of humans in
real time. They use an Xsens MVN, a suit for motion
tracking, so people need to be equipped with sensors.
This method has the same issue for reverse imitation as
the previous one.

3.2 Experimental setup

NAO can be enacted using the NAOqi API provided by
Aldebaran1. NAOqi allows controlling each motor in po-
sition and speed. There is also a way to control hands,
feet and head positions instead of joint angles. The NAO
Inverse Kinematics (IK) solver finds the joint configura-
tion to reach the target positions. There is no control
on how the IK is resolved. NAO may fall or not move in
case of unbalanced or unreachable posture. NAO include
a fall manager that we can active or deactivate. But pos-
ture corrections are not perfect and not fast enough. So
we have to avoid as possible wobbly positions.

As previously said, while moving, the NAO embed-
ded sensors may not provide reliable information. To
complete sensing facilities in our experimental setup, a
static RGB-D sensor overhangs NAO (see Fig. 1). The
RGB-D sensor is set in the room, behind NAO. RGB and
depth streams are used to compute the player’s skeleton
and face. A skeleton is composed of 20 points, one for
each joint, in 3D position. Sound localization and speech
recognition will enhanced our imitation game with vocal
commands.

The main program runs on a computer connected to
the RGB-D sensor and sends orders wirelessly to the
robot (see Fig. 3.2). The latency depends of how an-
gle and order are computed. In the three applications,
latency is short enough to allow real time applications.

4 JOINT CONFIGURATION
RETARGETING

The first approach to convert the skeleton given by an
RGB-D camera in a joint configuration for NAO is to
calculate each articulation angle on this skeleton. We
can extract angles from the tracked skeleton and trans-
pose them to NAO. NAO have relatively few degrees of
freedom (fig. 3) associated to motors, so we can com-
pute an angle for each one. We need to know every joint

1http://www.aldebaran.com/

http://www.aldebaran.com/

Figure 2: Software implementation scheme. The com-
mutable component is made to allow comparison of dif-
ferent methods. There is a main application, named
Server. It receive skeleton positions and send commands
to NAO.

orientation and angle limitation. Formulas are specifics
to NAO v3 and v4.

Figure 3: NAO’s degrees of freedom for arms (source :
http://community.aldebaran.com/)

We calculate the angles of both arms. First, we com-
pute elbow vector (1) and shoulder vector (2) for the left
side. Symmetrical formulas are used for the right side.

−−−−−→vElbowL =
elbowPosL− shoulderPosL
‖elbowPosL− shoulderPosL‖

(1)

−−−−−−−→vShoulderL =
hipPosL− shoulderPosL
‖hipPosL− shoulderPosL‖

(2)

These vectors allow the computation of ShoulderPitch
left angle (3). We use geometrical angle between these
two vectors. This value must be within a range from
-2.857 to 2.857 rad, identically for the right side.

LShoulderP itch = arccos
−−−−−→vElbowL.

−−−−−−−→vShoulderL

‖−−−−−→vElbowL‖.‖−−−−−−−→vShoulderL‖
− π

2
(3)

We need the hip vector (4), between left and right hip,
to find ShoulderRoll angle left (5) and right (6). This is
in fact angle between arm vector and torso’s plan.

This formula work in the most of case. But if the per-
son use a torsion between pelvis and shoulder, imitation
can fail. We can use a more complete formula, but in
our case, we just need a simple imitation and see the
limitation of this method. LShoulderRoll angle must be
set between -0.3142 and -1.3265 rad and RShoulderRoll
between -1.3265 and 0.3142 rad.

−−→vHip =
hipPosR− hipPosL
‖hipPosR− hipPosL‖

(4)

LShoulderRoll =
π

2
− arccos

−−−−−→vElbowL.
−−→vHip

‖−−−−−→vElbowL‖.‖−−→vHip‖
(5)

RShoulderRoll = −π
2

+ arccos
−−−−−→vElbowR.−−−→vHip

‖−−−−−→vElbowR‖.‖−−→vHip‖
(6)

We compute hand vectors, between elbows and
hands (7), to evaluate LElbowYaw (8) and REl-
bowYaw (9) angles. LElbowYaw and RElbowYaw angles
must stay within the [−2.0857, 2.0857] interval.

−−−−→vHandL =
ElbowPosL−HandPosL
‖ElbowPosL−HandPosL‖

(7)

LElbowY aw = arccos
−−−−→vHandL.

−−−−−−−→vShoulderL

‖−−−−→vHandL‖.‖−−−−−−−→vShoulderL‖
− π

2
(8)

RElbowY aw =
π

2
− arccos

−−−−→vHandR.
−−−−−−−→vShoulderR

‖−−−−→vHandR‖.‖−−−−−−−→vShoulderR‖
(9)

LElbowRoll (10) and RElbowRoll (11) are calculated
with forearm and arm vectors. LElbowRoll must stay
between -1.5446 and 0.3142 rad and RElbowRoll be-
tween 0.0349 and 1.5446 rad.

LElbowRoll = − arccos
−−−−→vHandL.− (−−−−−→vElbowL)

‖−−−−→vHandL‖.‖−−−−−→vElbowL‖
(10)

RElbowRoll = arccos
−−−−→vHandR.− (−−−−−→vElbowR)

‖−−−−→vHandR‖.‖−−−−−→vElbowR‖
(11)

Using limits on motor angles permits to avoid the
problem of unreachable positions.

Imitation and control game using this method is
playable in real time. Nevertheless, every move made
by humans is not possible for NAO (Fig. 4). Indeed,
some movements seem to not be similar, because NAO
do not have exactly same proportions and same member
forms. An arm configuration on human does not neces-
sarily match with the exact same configuration on NAO.

http://community.aldebaran.com/

Figure 4: Impossible move. At left, one movement computed without constrains on joints, asking Nao to touch its
shoulder. At right, the maximal corresponding position.

To produce a similar posture, sometimes joints configu-
ration must be different. Looking at Fig. 1, one can see
that raising NAO’s arms lead to non-human shoulder
rotation. In this case, using directly joint configuration,
it is impossible to compare NAO and human posture.
Making a turn taking imitation game using this method
is not relevant due to the need of posture comparison.

5 Model based retargeting
Inverse Kinematics can provide improved results. Move-
ments are not exactly identical compared to human, but
they are more adequate for NAO. Impossible configura-
tions and joints limitations can be better handled.

5.1 NAOqi IK and scaling
NAOqi API provides an automatic inverse kinematics.
The method takes hands, feet or head positions, and
computes the path to reach them, this is an end-effector
retargeting. In order to have a good control of NAO
posture, we must have an accurate position. Arms, neck
and legs must have the same size as NAO’s, to match
its skeleton. To have these positions, we re-scale the
skeleton provided by the RGB-D camera. We compute
the scaling coefficient and use the Matrix (12) on the
skeleton. It can be done for each member for better
results. We have to know the exact size of the robot
and suppose that the Kinect gives always exactly same
point on same position on human body. Considering
that NAO and Kinect space basis are different, we have
to rotate space with the matrix (13) used to change space
orientation. NAO basis is relative to robot position and
tilt. c 0 0 0

0 c 0 0
0 0 c 0
0 0 0 1

 (12)

with c = Robot size
Person size−1 0 0 0

0 − cos θ − sin θ 0
0 − sin θ cosθ 0
0 0 0 1

 (13)

with θ = 90 deg +robot tilt

This method have an important advantage compare to
the previous one. Comparison between NAO’s and hu-
man end-effectors positions can be obtain directly. But
we have to compute elbow or knee positions, so this
method cannot be directly transpose to different robots.
The main issue concerns unreachable positions for NAO.
In these cases, the robot does not even try to reach them.
The transformation between the two spaces must be ac-
curate to avoid theses situation. But unreachable po-
sitions still exist, due to limited NAO’s DoF. Another
problem is that the RGB-D sensor does not give exact
joint position. On two consecutive frame, joint posi-
tion can change, like elbow or wrist, not always placed
on same position. This is a problem to compute joint
length, to scale the skeleton. It is needed to compute
length several time, to avoid unreachable positions. An-
other issue is that we have only an end-effector retarget-
ing, so we cannot totally control NAO’s arms. A position
of the hand can be reach with an infinity of joint configu-
rations. As the elbow orientation is not controllable, we
cannot be certain of correct imitation. If the goal is to
reach a specific position for an end-effector, this method
is applicable. But to match a posture for an imitation
game, this is not usable.

5.2 iTaSC within Blender

Blender is an open-source software for 3D modeling and
animation. Blender integrates a Game Engine and the
iTaSC solver [12]. In this work, iTaSC is used to find the

robot joint configuration that most match the tracked
skeleton.

We started from a 3D mesh of the NAO provided by
Aldebaran, to have accurate proportions. We created a
kinematic chain for this model, i.e. a chain of “bones”
linked by universal joints on which meshes are fixated.
Each of these joints can be constrained on each degree
of freedom with maximum and minimum limits. Blender
provides a 3D representation of each joint degrees of free-
dom to help in this process (Fig. 5). So, we copy and
set NAO’s limits on each articulation in order to have
the virtual skeleton of NAO.

Figure 5: One Articulation set in Blender

Then, we created a virtual object for each joint of
the tracked skeleton. In the beginning, before launching
Blender Game Engine, they are placed on each bone ex-
tremity. They represent the positions that we want the
robot joints to be in. We set each of them as target for
the robot corresponding joint in the kinematic chain.

When we receive a skeleton, we consider shoulders cen-
ter as the origin. Then, we compute the vector from this
point to the left and right shoulders. We scale this vector
to match the bones size in Blender. With this informa-
tion, we are able to position the shoulder target. We
repeat the same process to position elbow target rela-
tively to the shoulder and wrist target relatively to the
elbow.

Finally, the iTaSC solver is used to find a joint config-
uration with all the constraints defined. The kinematic
chain degrees of freedom are hard constraints and joints
targets are soft constraints.

The iTaSC solver tries to get the closest reachable po-
sition, considering every NAO’s limits. Then, the angles
of the actual NAO joints are set to the value given by
the iTaSC solver using the Joint Control API in NAOqi.
The complete scheme of our implementation is described
Fig. 6.

This method allow to simplify turn-taking imitation
with a comparison between human and NAO positions
made using targets positions. Using Blender add a la-
tency. This is not an issue, because we use Blender for
prototyping. Once the program is complete and connec-
tion between Kinect and iTaSC made, we can use iTaSC
alone. Blender is a tool to simplify target positioning.

The inverse kinematic method is able to generalize the
retargeting of motion to various robots. Moreover, us-
ing Blender to define the kinematic chain and iTaSC as
inverse kinematic solver enable to rapidly reproduce the
process described above to a different robot. To demon-
strate this generalization, we use a virtual robot with
tentacles, each one composed of 8 segments with univer-
sal joint on each articulation. On Fig. 7, the targets
are placed at the same location. One can see that for a
tracked skeleton, this method permits to compute con-
trols for several robots.

6 Discussion and conclusion

To make strong social interaction between humans and
robots, we have to find a way to measure how human and
robots interact. To record it, we need to induce a nat-
ural interaction. Serious games seem to be a good way
to provide a natural and constant interaction between
a child and a humanoid robot. As a game for typical
children and as a therapy for autistic children, imitation
and control games are an easy way to do this.

In this paper, we described 3 different methods to im-
plement an imitation game, particularly on making cor-
respondence between the robot joint space and the skele-
ton tracked by an RGB-D sensor. Each method has their
own advantages and drawbacks (table 1).

The direct retargeting of joint configuration is a light
and fast way to solve this problem. But we can not
easily control falling issues. There is no generalization
without recalculating all formulas for a different robot.
Also, to implement an imitation game that works both
ways, we have to compare human and robot positions in
joint space and not in 3D space.

Using NAOqi IK is a simple and reversible method.
We can easily compare human posture to NAO posture.
But the scaling is an issue and this method only imple-
ments end-effectors retargeting. Unreachable postures
are not handle at all.

Using Blender and iTaSC as described is a general
and simple method to control the robot. We can com-
pare human position to robot position in 3D space. This
method is not limited to the NAO robot and could be
used for other humanoid robot. This method gives the
best results, but has 3 principal limitations which will
need future work for improvement:

• Our current system tracks the skeleton using the
first version of the Kinect RGB-D sensor. The
tracked skeleton lacks many degrees of freedom
which would be useful in an imitation game, mainly
the head pan and the wrist roll. The new Kinect 2 is
able to track these joints and many others. Adding

Figure 6: Software and hardware architecture of our implementation. Circles represent Hardware, and rectangles
Software

Figure 7: Full process and generalization. At left, the depth view and the skeleton extracted from the RGB-D sensor.
In the middle, the NAO position computed using iTaSC and Blender. Last, retargeting on a robot with tentacular
arms using the same method and same targets.

rotation to targets of the inverse kinematics solver,
it could be possible to control every NAO’s degrees
of freedom, improving imitation.

• Our method, as presented in this paper, implements
upper body imitation only. For the NAO to be able
to imitate someone whole-body movement with this
method, we need to tackle balancing of the NAO.

The NAOqi software suite provides a Fall Manager.
Our preliminary tests using this tool were not con-
clusive. Another option would be to directly inte-
grate the balancing constraint in the inverse kine-
matics task as done by Koenemann et al. [5].

• Currently, we need to manually scale the target at
the size of the robot skeleton and to assign them the

Table 1: Advantages and inconvenients of geometrical and model based retargeting methods

different bones of the kinematic chain. We plan to
investigate the integration of an automated or par-
tially automated method as developed in the con-
text of motion capture retargeting to non-human
characters [14].

The third retargeting method using iTaSC allowed us
to implement a turn taking imitation game. Experi-
ments with therapist are planned for a longitudinal study
to train social skills of autistic children.

7 Acknowledgment

The author would like to thank Inria and French Min-
istry of Education and Researches. This project was con-
ducted using facilities from the Amiqual4Home EquipEx
(ANR-11-EQPX-0002).

References

[1] John-John Cabibihan, Hifza Javed, Marcelo Ang Jr,
and Sharifah Mariam Aljunied. Why robots? a
survey on the roles and benefits of social robots in
the therapy of children with autism. International
Journal of Social Robotics, 5(4):593–618, 2013.

[2] Angelica Escalona, Tiffany Field, Jacqueline Nadel,
and Brenda Lundy. Brief report: Imitation effects
on children with autism. Journal of autism and de-
velopmental disorders, 32(2):141–144, 2002.

[3] Jing Guang Han, John Dalton, Brian Vaughan,
Catharine Oertel, Ciaran Dougherty, Céline
De Looze, and Nick Campbell. Collecting multi-
modal data of human-robot interaction. In Cogni-
tive Infocommunications (CogInfoCom), 2011 2nd
International Conference on, pages 1–4. IEEE,
2011.

[4] JingGuang Han, Nick Campbell, Kristiina Jokinen,
and Graham Wilcock. Investigating the use of non-
verbal cues in human-robot interaction with a nao
robot. In Cognitive Infocommunications (CogInfo-
Com), 2012 IEEE 3rd International Conference on,
pages 679–683. IEEE, 2012.

[5] Jonas Koenemann, Felix Burget, Maren Bennewitz,
F Burget, M Cenciarini, B Meier, H Bast, M Ben-
newitz, W Burgard, C Maurer, et al. Real-time imi-

tation of human whole-body motions by humanoids.
Autonomous Robots, 2013.

[6] Nicole C Krämer, Sabrina Eimler, Astrid von der
Pütten, and Sabine Payr. Theory of companions:
what can theoretical models contribute to appli-
cations and understanding of human-robot interac-
tion? Applied Artificial Intelligence, 25(6):474–502,
2011.

[7] Daniel Maier, Armin Hornung, and Maren Ben-
newitz. Real-time navigation in 3d environments
based on depth camera data. In Humanoid Robots
(Humanoids), 2012 12th IEEE-RAS International
Conference on, pages 692–697. IEEE, 2012.

[8] Sylvie Pesty and Dominique Duhaut. Artificial com-
panion: building a impacting relation. In Robotics
and Biomimetics (ROBIO), 2011 IEEE Interna-
tional Conference on, pages 2902–2907. IEEE, 2011.

[9] Isura Ranatunga, Monica Beltran, Nahum A Tor-
res, Nicoleta Bugnariu, Rita M Patterson, Carolyn
Garver, and Dan O Popa. Human-robot upper body
gesture imitation analysis for autism spectrum dis-
orders. In Social Robotics, pages 218–228. Springer,
2013.

[10] Philippe H Robert, Alexandra König, Hélene
Amieva, Sandrine Andrieu, François Bremond,
Roger Bullock, Mathieu Ceccaldi, Bruno Dubois,
Serge Gauthier, Paul-Ariel Kenigsberg, et al. Rec-
ommendations for the use of serious games in peo-
ple with alzheimer’s disease, related disorders and
frailty. Frontiers in aging neuroscience, 6, 2014.

[11] Ben Robins, Kerstin Dautenhahn, R Te Boekhorst,
and Aude Billard. Robotic assistants in therapy
and education of children with autism: can a small
humanoid robot help encourage social interaction
skills? Universal Access in the Information Society,
4(2):105–120, 2005.

[12] Ruben Smits, Tinne De Laet, Kasper Claes, Her-
man Bruyninckx, and Joris De Schutter. itasc: a
tool for multi-sensor integration in robot manipu-
lation. In Multisensor Fusion and Integration for
Intelligent Systems, 2008. MFI 2008. IEEE Inter-
national Conference on, pages 426–433. IEEE, 2008.

[13] J. Wainer, B. Robins, F. Amirabdollahian, and
K. Dautenhahn. Using the humanoid robot kas-
par to autonomously playtriadic games and facili-
tate collaborative play among children with autism.
Autonomous Mental Development, IEEE Transac-
tions on, PP(99):1–1, 2014.

[14] Katsu Yamane, Yuka Ariki, and Jessica Hodgins.
Animating non-humanoid characters with human
motion data. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation, SCA ’10, pages 169–178, Aire-la-Ville,
Switzerland, Switzerland, 2010. Eurographics Asso-
ciation.

[15] Fernando Zuher and Roseli Romero. Recognition
of human motions for imitation and control of a
humanoid robot. In Robotics Symposium and Latin
American Robotics Symposium (SBR-LARS), 2012
Brazilian, pages 190–195. IEEE, 2012.

Combining interactive visualisation and UI plasticity to go beyond conventional
homescreens
Gregory Cano

M1 Informatique
LIG - IIHM

Supervised by: Gaelle Calvary

I understand what plagiarism entails and I declare that this report
is my own, original work.
Gregory Cano, 20/08/14:

Abstract
With the growing popularity of smartphones and
mobile devices in general comes an increasing sup-
ply of applications and services. Therefore, it is
legitimate to wonder how to display this much in-
formation on a small screen while keeping the in-
teractivity. Enhancing the size of the screen is not
a viable option, considering the difference in order
of magnitude between the number of applications
displayable at the same time and the amount of ap-
plications available. That’s why we need a new ap-
proach that can display applications in a smart way,
rather than displaying all the applications. More-
over, the majority of mobile devices only have a
choice between a view of all the apps and a view of
an actual running app. Our approach tries to break
that in order to keep the context while running an
application. The design space provides a general
pattern displaying the application’s most important
features while keeping the context. It not only al-
lows the user to see the context, but it also provides
a more efficient way to use apps, given he doesn’t
need every function of it. The design space gives
leads to the developer to build an adaptable inter-
face while keeping it as stable as possible. This
way, the user doesn’t have to relearn the interface
for every app. We also explored leads regarding
the feed forward possibilities it offers. The device
being aware of its environment can help providing
relevant application choices automatically.

1 Introduction
With the increasing diversity of interaction devices together
with the user’s need for mobility, User Interfaces (UIs) must
nowadays be usable everywhere, and capable of adaptation to
the possibly changing context of use. This ability is named
plasticity. Plasticity has so far mostly been studied from a
methodological perspective. The research question was how
to build UIs so that to ensure a potential for adaptation. The
findings are:

• A clear distinction between the problem setting and the
solution finding. The problem is defined as a set of mod-
els: the user’s goal as rationale of the system, and the
context of use as constraints for the solution. The solu-
tion is the outcome of an as large as possible exploration
of the design space [Buxton, 2007]: it is modelled along
four levels of abstraction (task, abstract, concrete and fi-
nal UIs) [Calvary et al., 2003]. Plasticity comes from
the multiplicity of possible models at each level of ab-
straction;

• The promotion of Model Driven Engineering (MDE)
and especially of models at runtime for supporting dy-
namic adaptation. The models can be carefully created
at design time or generated at run time, e.g. for coping
with contexts of use no pre-designed model is suited for;

• The need for combining MDE with other programming
paradigms (e.g., service oriented approaches, compo-
nent based approaches) so that to go beyond simple UIs
made of classical widgets (e.g., labels, radio buttons).

These works have significantly contributed to maturing
knowledge in the engineering of Human Computer Interac-
tion (e.g., the W3C standardization of description languages
of UIs). However progress made in plasticity remains rather
limited as no convincing solution has emerged so far. This
paper rewrites the problem of plasticity in the light of inter-
active visualization. It considers plasticity as a context-driven
process of overviewing, zooming in, and filtering [Shneider-
man, 1996]. Next section browses the state of the art in the
field and related fields.

2 Related Work
2.1 Multi-Platform
Responsive design
Adapt the interface on the go as the display area
grows/shrinks. Depending on the size of the area available, it
uses a specific template. Once the size reaches a breakpoint,
the interface switches to another template adapted to the new
size. This way, several devices with different screen size can
display the interface smoothly.

Graceful Degradation
This technic purpose is to develop UIs for multiple platforms.
The idea is to build a base for the least constrained one and

apply transformation rules to develop the others [Florins et
al., 2006]. The service provided by UIs on several platforms
has to be usable and consistent. Usable because it’s not easy
to cope with the changing capabilities from one platform to
another. Consistent because users from a platform expect to
take advantage of their knowledge on another UI of the same
service.

2.2 Prompting
Feed forward
Environment can be used to enhance user experience with in-
terfaces. For example, the android documentation website.
As it is a development oriented website, it supposes you come
here to get information about android development. As you
type, it supplies several results that match what you search
for.
Past experience can also improve the user experience by
learning a user’s habits. Automatic queries completion in
search engines is a fine example. Prefixes used to gener-
ate completion can be associated to several propositions de-
pending on gender, geographic position, and age [Shokouhi,
2013].

Ephemeral adaptation
When a collection of items is displayed, some of them are
considered more relevant and appears directly. The others
fade in a short while after [Findlater et al., 2009]. This allows
for a faster focus on the statistically more important items of
the list hence better performance in using the application.

2.3 Interactive Visualisation
Mantra
[Shneiderman, 1996]

Overview : See the whole collection plus a detailed view.
It is really helpful in map browsing. While the user looks at
a detailed part, it is convenient to have a general view of the
map. This way, he knows where he is and where he can go.

Zoom : Zoom in on parts of a collection. On large col-
lection, it is often impossible to display enough details about
every item. Zoom in on point of interest give more details and
enables the user to browse conveniently among the collection.

Filter : Display only a specific kind of data in the collec-
tion. Filter by keyword or category narrows down the amount
of items. It allows efficient and distraction-free data brows-
ing.

Details-on-demand : Keep a view of the collection and get
details about a subgroup when needed.

Semantic Zoom
In some datasets, zoom into parts of them isn’t useful enough.
Semantic zoom technic enables a specific amount of informa-
tion to be displayed for a given zoom degree. I.e. map brows-
ing [Frank and Timpf, 1994]. On a country scale, states, main
roads and cities are displayed. On a city scale, the whole

Figure 1: Sketch of the camera magnified within the home
screen

road network with streets names is displayed, as well as some
points of interest such as a museum or a train station eventu-
ally. These levels of detail depend on the current zoom de-
gree: the more the user zooms in, the more information he
gets.

Focus+Context
Allows having a single continuous view displaying the con-
text and one or more focus points [Cockburn et al., 2009].
For instance, the Fisheye magnifies one or more areas within
the context. The user can then know where he is among the
collection while still be able to see more details on some ar-
eas.

3 Design space
3.1 Idea
The device screen size being limited, it has to be used as effi-
ciently as possible. We chose to take a multi-scale approach
to display applications. Today, they are, for the most part,
used in full-screen, losing the context. To keep the context
while using an application, we chose to give several repre-
sentations of an application that don’t take the whole screen.
An application can be magnified to reveal some of its func-
tions, but on a fraction of the screen. This magnification can
be pushed automatically given the context is relevant, or trig-
gered by the user. The goal is to provide an adaptable inter-
face that will enhance user performance but it has to remain
stable enough, so the user experience isn’t altered. On Fig-
ure 1, we can see the home screen with a magnified camera
app. We are then able to use the camera or interact with an-

Figure 2: Multi-scale responsive design space

other app instead. Figure 1 and Figure 2 are sketches of the
phone home screen modified with an image editing software.

3.2 Multi-scale Data / Task
To magnify an app, we considered four breakpoints along two
axes: Task and Data. Task represents the amount of features
of the application available for the user, such as the camera
trigger. Data represents the amount of data available for the
user to browse, such as the photos he has taken. The break-
points are as follow: None, Mono, Multi and All. Figure 2

• None: no additional Task/Data
• Mono: one additional Task/Data
• Multi: several (3+) additional Task/Data
• All: as much Task/Data as it is relevant to display with-

out actually
launching the app

The property of this representation is that we can easily
apply it to another application with the same pattern. It helps
the developer to adapt his application and keeping it coherent.

4 Working Prototype
4.1 Description
Through the process of implementation, some restrictions due
to the Android language made me reconsider my project.
There is no satisfying way in Android to scale an User Inter-
face (UI) element both horizontally and vertically and keep

the global aspect of the interface. Considering that fact, I had
to implement it horizontally only, thus lowering the multi-
scale aspect of the solution. However, having it horizontally
only make it possible to add multitasking easily, as we can
see on Figure 3 Several applications are magnified and the
user can interact with them independantly.
On Figure 4 we can see a magnified Camera application with
one task (camera trigger) and one data (last photo taken). On
the modified home screen, one tap on an application icon
make it grow up to a certain point. Each tap adds a task or
a data, and collapse when it is at maximum growth. A long
touch on the application icon opens the application itself.

4.2 Architecture
The application is written in Android language, which mostly
uses Java and XML languages. The interface (see Figure 5) is
made of 5 horizontal LinearLayout put together by one ver-
tical LinearLayout. Each horizontal LinearLayout contains
4 horizontal LinearLayout. They are the applications icons,
coded with TextView. This way, we can easily add other UI
elements such as buttons or images to each application. To
add more space when we add UI elements, we increase the
attribute weight of the LinearLayout child views. The more
weight an element has, the more space it has compared to
others of the same LinearLayout. The whole interface is put
together in a XML file, to which we can add UI elements
programmatically in the Java Activity. The elements added
to an application can be simple elements such as buttons, or

Figure 3: Multitask

new LinearLayout (as we can see on Figure 4 with the camera
preview and trigger of the second Camera app).

5 Further Work
5.1 Context-aware system
The context can be the environment. The application is
able to know where the user is and can act accordingly. For
instance, given the environment is favourable (good exposi-
tion) and/or the spatiotemporal context is suitable (holiday).
It may promote the Camera application by enhancing its
dedicated space and adding Tasks/Data.
The context can be the device’s position and movement in
space, given by the accelerometer. As the smartphone is
often, if not always, held horizontally, the vertical position
can indicate a change in the user’s intentions [Taylor and
Bove, 2009].
The context can be the past experience, which implies some
machine learning. The more we use the application, the
more it learns about our habits and the way we use the
different applications. That leads to better results regarding
the relevance of each app/features for an app.

5.2 Predictions
Prediction choice
The applications have a function hierarchy. I.e. the camera
trigger is not on the same level as the photo resolution choice.
The fact of displaying several functions that are not on the

Figure 4: Camera Mono-Mono

Figure 5: Architecture

same level may improve the usability. It can also confuse the
user’s representation of this hierarchy. However, displaying
only functions of the same level can be too restrictive and lack
flexibility, which is the opposite of plasticity. The same prob-
lem occurs in the case of applications structured with folders
(iOS or Android desktop). The folder organisation results in a
tree structure. If an application from the bottom of the tree is
promoted, it comes to the same level as the one on the top of
the tree. It may improve the efficiency but breaks the mental
representation that the user has of the tree. The solution here
would be to represent the application within its own context,
i.e. with the folder that contains it. Therefore, the choice of
applications to promote goes from 2D to a 3D representation.

Prediction use
The predictions can fail and the system must be able to learn
from these mistakes. I.e. the context seems to give poten-
tial to an application in particular but the prediction’s self-
evaluation does not get a good score. Then no predictions are
given. It is better not to do anything than use power, space
and time resources for nothing. I.e. the user doesn’t make
use of the given predictions. There are two possibilities for
next time here:

• change the predictions: it isn’t stable and may confuse
the user if they change every time

• do nothing: it makes the system pointless

They are not really satisfying and that’s why we can allow the
user to take control of these predictions.

User control
Give control of the display to the user is important for him:
for both the number and the choice of predictions. The num-
ber of predictions stands for the level of granularity (Fig. 4).
According to the context, the level given automatically may
not satisfy the user. Be able to zoom in semantically can im-
prove efficiency.
The choice of predictions may be wrong for the user. Be able
to change the functions he wants can improve efficiency and
can help the system to learn how to predict better.
This ability to control the display may improve efficiency but
it needs interaction means to do so. Having too much param-
eter to set may burden the interface and make it unusable or
make the user confused.

Ephemeral adaptation
The ephemeral adaptation [Findlater et al., 2009] can also be
an interesting way to improve this system: displaying only the
most relevant applications for a short period of time to let the
user decide, and fade in the others as time goes by. However,
we have to adapt this technic to 2D, if not 3D, representation
of items instead of 1D.

Evaluation
To define in what extent and at what point the user can have
control over the predictions, we need to experiment it on
multiple levels. I.e. the way of changing the number of
tasks/datas displayed at once. It could be a pinch-to-zoom
on the icon or buttons that we add to the representation. It
could be automatic, or a combination of both. I.e. change the

tasks/datas displayed. It could be possible on a menu with a
customisation option.

6 Conclusion
We have described a generic multi-scale pattern for smart-
phone applications that provides adaptable yet stable repre-
sentations. It uses a focus+context strategy combined with a
semantic zoom that allows maximum details while keeping
the context.
This is a cross-sectors project in the UI fields of research,
we cannot achieve the conception with only one perspective.
We need Interactive Visualisation to display a great amount
of information, Plasticity to adapt the UI and enhance user’s
performance, Machine Learning to provide smart predictions
to the user and Human Science to evaluate in what extent we
can rely on the automatic nature of predictions and where is
the user’s place in this scheme.

7 Acknowledgements
I would like to thank Gaelle Calvary for the internship and for
all the useful advices and support she gave me.

References
[Buxton, 2007] Bill Buxton. Sketching User Experiences:

Getting the Design Right and the Right Design. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

[Calvary et al., 2003] Gaelle Calvary, Joelle Coutaz, David
Thevenin, Quentin Limbourg, Laurent Bouillon, and Jean
Vanderdonckt. A unifying reference framework for multi-
target user interfaces. INTERACTING WITH COMPUT-
ERS, 15:289–308, 2003.

[Cockburn et al., 2009] Andy Cockburn, Amy Karlson, and
Benjamin B. Bederson. A review of overview+detail,
zooming, and focus+context interfaces. ACM Comput.
Surv., 41(1):2:1–2:31, jan 2009.

[Findlater et al., 2009] Leah Findlater, Karyn Moffatt,
Joanna McGrenere, and Jessica Dawson. Ephemeral
adaptation: The use of gradual onset to improve menu
selection performance. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’09, pages 1655–1664, New York, NY, USA, 2009.
ACM.

[Florins et al., 2006] Murielle Florins, Francisco Montero
Simarro, Jean Vanderdonckt, and Benjamin Michotte.
Splitting rules for graceful degradation of user interfaces.
In Proceedings of the Working Conference on Advanced
Visual Interfaces, AVI ’06, pages 59–66, New York, NY,
USA, 2006. ACM.

[Frank and Timpf, 1994] Andrew U. Frank and Sabine
Timpf. Multiple representations for cartographic objects
in a multi-scale tree - an intelligent graphical zoom. Com-
puters and Graphics, 18(6):823–829, 1994.

[Shneiderman, 1996] Ben Shneiderman. The eyes have it:
A task by data type taxonomy for information visualiza-
tions. IEEE Visual Languages (UMCP-CSD CS-TR-3665),
pages 336–343, 1996.

[Shokouhi, 2013] Milad Shokouhi. Learning to personalize
query auto-completion. In Proceedings of the 36th Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’13, pages 103–
112, New York, NY, USA, 2013. ACM.

[Taylor and Bove, 2009] Brandon T. Taylor and V. Michael
Bove, Jr. Graspables: Grasp-recognition as a user inter-
face. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, pages 917–926,
New York, NY, USA, 2009. ACM.

Analysis of spatial phenomena using multi-scale aggregation

Geoffrey Danet
Grenoble, France

geoffrey.danet@e.ujf-grenoble.fr

Supervised by: Jean-Marc Vincent & Christine Plumejeaud-Perreau.

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Geoffrey Danet - 26/08/14

Abstract
In order to use any aggregation process for a multi-
scalar spatial analysis of landscape organization,
the study of landscape metrics properties become
primordial. According to the multi-scaling pro-
cess used by the aggregation algorithm define by
Lamarche-Perrin in his previous study [Lamarche-
Perrin et al., 2014], several parameter must be de-
fined. In this paper, we identify the properties
of metrics necessary for their usage on different
scales and provide the definition of some calcula-
tion with their implementations in some languages
(SQL, C++).

1 Introduction
Nowadays, in many disciplines, scientists have to use a vast
quantity of data in order to work on their study. However,
the huge quantity of data is often difficult to manipulate due
to their microscopic and fragmented aspect. In order to re-
solve this problem, they use aggregation process to simplify
calculations, but the result of those aggregations is not always
pertinent and can induce too much loss of information for the
analysis.

For example, in the ecological field, in rural areas with a
predominance of agricultural activities, it has been proven
that the study of environmental issues such as biodiversity
preservation, soil erosion by water and tillage, erosive runoff,
water pollution and gene fluxes may benefit from the long-
term analysis of the crop mosaic resulting from farming prac-
tices. The arrangement, the shape and the nature of crops
impact ecological processes at various scales [Lazrak et al.,
2010; Schaller et al., 2012]. Thus ecology has developed
methods for studying the spatial organization of landscapes
based on the use of landscape metrics [Gustafson, 1998;
Jiao and Liu, 2012]. In this paper, we take the case of the
analysis of a crop mosaic resulting from farming practices
for 5 years, observed on one municipality, la Foye-Monjault
(Figure 1). We will show that the use of such metrics raise

many questions in term of scalability, interpretation, and even
data representation.

Figure 1: Categorized land lots of la Foye-Monjault for the
year 2005.

1.1 Problematic
One of the main problem is that the use of metrics applied to
agricultural parcels produces a vast quantity of data, that one
has then to segmentize and re-aggregate, in order to make
emerge interesting features in the structure of a landscape.
Like in the case of the Modifiable Area Unit Problem [Open-
shaw and Taylor, 1979] we are facing a high complexity prob-
lem, not only due to the vast quantity of data, but also due to
the meaning of the aggregations themselves. In fact, there
is an infinite number of combinations to explore not only in
the spatial dimension or temporal dimension, but even for any
single classification of one metric measurement. Like in the
approach developed by [Lamarche-Perrin et al., 2014], it is
very tempting to decompose the problem into smaller calcu-
lable pieces, and then to reaggregate. However, in spatial di-
mension, the variability of the produced signal is highly de-
pendent upon the number, the size and the shape of the spatial
division.

Furthermore, most of the previous studies were based on a
matrix representation of the information, due to the nature of

data sources (mainly satellites imagery [Jiao and Liu, 2012]).
Here we dispose of a spatio-temporal database with a vecto-
rial representation of the information issued from an accurate
observation on the ground. We are wondering whether an
approach based on a vectorial representation of information
could be more efficient for such calculus.

1.2 Goal
The objective of this study is to create synthetic representa-
tions of spatio-temporal data by using semantic aggregation
of objects in order to characterize the spatial structures of an
agricultural landscape and to be able to quantify what is stable
or changing through time (looking for different recurrences
of form/disposition according to the time). This raise firstly
the question of the semantic that can be associated to the ag-
gregation of metrics computed on parcels. It is necessary to
find out measurements having scalable properties, in order to
be able to quantify the loss of information each time we ag-
gregate data together. The second question we are interested
in is the data representation : which is the best suited for an
efficient calculus ?

1.3 Data description
Since 1994, land uses of 19,000 land lots (mainly agricultural
parcels) are recorded from the field each year by a program
named Zone Ateliers1 lead by the CNRS. A land lot is de-
fined as a management unit, a polygon surrounded by entities
having different land use in successive years (typically four).
Each land lot is bounded by physical limits such as a road,
a river, a field path or a single field boundary. It contains
only one type of land use, and belongs to one unique person.
It differs from the cadastral parcel, but also from the blocks
stored in the RPG 2 which are updated every two years and
distributed by IGN3.

For this study, a data sample of 4203 tuples describes the
Foye-Monjault town in Deux-Sèvres county (France), be-
tween 2005 and 2010. Data are stored in a PostgreSQL
database associate with PostGIS plugin for geometric manip-
ulation. For each land lot, there is the following attributes:
• Plot identification: identify uniquely each land lot,
• Year: the year of the observation,
• Geometry: a polygon representing its shape in 2D,
• Land use code (OCS) : identify the type of culture or

land use for the given year,
• Land use name: gives the name of the type of culture or

land use for the given year.
Another table describes the various hierarchies of categories
of land use. For instance, in the typology ”biodiv”, wheat,
corn and sun flowers are grouped into the cereals category,
and the cereal category belongs to the non-SUA category, op-
posed to the SUA category containing built parcels into the
village.

1http://www.za-inee.org
2Database recording the identification of agricultural parcels for

the French government
3http://www.geoportail.gouv.fr/donnee/48/registre-parcellaire-

graphique-rpg-2010

2 Measuring the landscape
In order to describe data of Crop Rotation System (CRS),
we were interested in the usage of several landscape met-
rics. Landscape metrics are used to give a measurement of the
forms, the configuration and the content of land lots. These
metrics will allow to create a land lot inventory which in-
creases the interpretation and the using of CRS data. For in-
stance, it has been shown that landscape metrics can be used
for the identification of land use [Jiao and Liu, 2012] : the in-
tensive cultures of cereal are more often related to rectangular
or simple land lots with big surface, whereas the vineyards
with the same form are more often on lengthened and small-
est land lots. What are particularities of the various landscape
metrics? Do they possess an unique peculiarity according to
a specific data type? Are they reusable on several scales? For
example the ratio between the land lot area and the total area
of the map are invariant whatever the scale. First of all, we
need to better understand the nature of the information that
landscape metrics provide to us, and their behavior during
the aggregation process.

Among the various metrics, we can distinguish two types
of metrics :
• The localization, the size and the form indexes concern

the individual geometric properties of land lot.
• The arrangement and the neighborhood indexes which

express spatial relations between several spatial objects
groups (the arrangement correspond to the relative posi-
tions of objects, whereas neighborhood implies the use
of a metric for distance computing).

In the following paragraphs, we take examples for each
kind of index. There is an infinity of metrics, it is for this rea-
son we choose to use the most used metrics to illustrate their
behavior. We illustrate their spatial dispersion through a map
using a divergent palette. We arbitrary choose to discretize
the obtained index’s range of values into 4 regular intervals
classes.

2.1 Size indexes
The size indexes allow to describe charateristics related to the
size of the land lot.

Perimeter index
The perimeter index allows to measure the external size of
an entity. Like the area index, the perimeter is used in other
metrics calculations.

The polygon perimeter is defined by the sum of its sides :

p =

n−1∑
i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2

With n being the count of points contained by the external
ring of the polygon.

The Multipolygon perimeter correspond to the sum of each
polygon’s perimeter :

p =

n∑
i=0

pi

Min. 1st Qu. Median Mean 3rd Qu. Max.
72.06 401.90 607.50 690.70 882.80 5747.00

Table 1: Statistical summary of perimeter values.

With n being the count of polygon composed by the multi-
polygon.

Figure 2: Perimeter histogram of la Foye-Monjault for 2005.

Figure 3: Spatial dispersion of the perimeter index of la Foye-
Monjault for 2005. The palette is composed by 4 intervals
(red for biggest perimeter and blue for smallest).

As we can see, land lots have mainly a perimeter included
between 0 and 3,000 meters. The figure 3 shows that agri-
cultural parcels, woods or hedge land lots have often a bigger
perimeter than village land lots (which match the SUA of the
figure 1).

Area index
The area index allows the surface measurement of an entity
according to the units used to define the geometry. The area
index is often used in other metrics calculations.
The area index calculation for a simple polygon follows the
formula :

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi)

With n being the count of external points defining the shell
of the polygon.

Min. 1st Qu. Median Mean 3rd Qu. Max.
274.9 7065 17340 26440 33660 226600

Table 2: Statistical summary of area values.

However, this formula can not be used for certain poly-
gons due to their complexity (like polygons which look like
a ”8”). In order to calculate the area of this type of polygons,
it is needed to decompose it in more simple forms like for in-
stance triangles. For that, the Delaunay triangulation is used
to decompose the polygon into a set of triangles.

A =

n∑
i=0

ai

With n being the count of triangles and a the area expressed
by the following formula:

a =
1

2
|(xB − xA)(yC − yA)− (xC − xA)(yB − yA)|

Figure 4: Area histogram of la Foye-Monjault for 2005.

Figure 5: Area index of la Foye-Monjault for 2005. The
palette is composed by 4 intervals (Red for biggest area and
blue for smallest).

Like the perimeter, the area index shows a concentration
between 0 and 50,000 square meters and a more uniform
repartition between the interval 50,000 and 200,000 square
meters. We observe that like the perimeter index, the area
index have more big values on agricultural, hood and hedge

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4161 0.9035 0.9733 0.9313 0.9973 1.0000

Table 3: Statistical summary of solidity values.

land lots than village land lots for instance.

Despite their apparent similarities, one should not conclude
that the area and perimeter index are correlated : they can
vary in opposite directions for the same object. For instance,
a none convex land lot having several cavities on the circum-
ference and an area of 10 square meters can have a more im-
portant perimeter than a land lot of the same area with a sim-
ple convex form.

Furthermore, the scale changes have a different impact on
these metrics. In other words, if we multiply the scale by 2,
the area is not multiplied by 2 but by 4, unlike to the perimeter
which is multiplied by 2. Consequently, it is not possible to
directly compare it on different scales.

2.2 Form indexes
Solidity index
The solidity index corresponds to the ratio between the en-
tity with his convex envelope. Always positive, the index ap-
proaches 1 when the entity is convex. When, on contrary, an
entity have one or more concavities (which we qualify as a
complex form), the solidity index is much lower than 1. The
solidity index is defined by the following formula :

Is =
Area

ConvexEnvelopeArea

Figure 6: Solidity index of la Foye-Monjault for 2005. The
palette is composed by 4 intervals (Red for convex land lot).

The repartition of the solidity index is concentrated in val-
ues closed to 1, which seems to show that land lots are most
often of convex shape. The solidity index seems to show a
more important concavity of shapes on forest, wood, build
land lots. The index don’t change on different scale.

Fractal index
The fractal index allows to determine the shape complexity
of an entity (value between 1 and 2). More the land lot is
complex, more its value approaches 2 and more it is simple

more the value approaches 1. For that, the formula compares
the perimeter with the area. An important difference between
the area and the perimeter shows that the external contour of
the land lot is irregular and consequently complex.

If =
2lnPerimeter

lnArea

Figure 7: Fractal index of la Foye-Monjault for 2005. The
palette is composed by 4 intervals (Red for complex land
lots).

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.234 1.290 1.318 1.330 1.362 1.545

The fractal index seems be dispersed on a small interval
: that shows a similarity of the land lots complexity (small
complexity). As the solidity index, we can notice a bigger
complexity on build or wood land lots for instance. However,
the fractal index is not the same on different scales.

2.3 Arrangement indexes
Density index
The density index allows to determine the quantity of con-
centrated units into a zone. In our case, the density index is
measured with the difference between the number of unity
and the class area (External area of all entities). The density
index is defined by the following formula :

MPS =
ClassArea

Numberofobjects

3 Scalability of metrics
In order to use landscape metrics in an aggregation process
as the one proposed in the previous study in trace aggre-
gation for big distributed system by Robin Lamarche-Perrin
[Lamarche-Perrin et al., 2014], we must determine if land-
scape metrics can be scalable in order to be able to do a com-
parison on several scales. According to the previous part, we
have seen that a metric is not always invariant at different
scales.

3.1 Examples of scalable/non scalable metrics
The figure 8 is an aggregation example using the fractal
mean of each land lot contained in the cell (zone of 1 square
kilometer). This aggregation type have some problems,

particularly on the quantity of data loss and with his rele-
vance. Indeed, as shown the figure 9, the land lot aggregation
have been realized using the fractal index without taking
into account the area. Consequently, if a zone with a big
fractal value (thus complex) covering 80% of the total area
is aggregated with another land lot with weak fractal value
(simple) covering 20% of the area. The result are the average
value of these two fractals indexes when the ”weak” land
lot represent only 1/5 of the Total Area of the Zone (TAZ).
Furthermore, we must take in account the definitive loss of
geometrical information after the aggregation process.

Figure 8: Example of fractal index aggregation with 1 square
kilometer grid of La Foye-Monjault for 2005. (6 categories).

Figure 9: Example of fractal index aggregation with 1 square
kilometer grid.

To solve this problem, it is required to proceed to a metric
normalization. A good example of normalization is the
Miller circularity index which uses the ratio between the
land lot area and a circle with the same perimeter. The result
is always limited between 0 and 1 where 1 mean a high
circularity and 0 the opposite. Consequently, the index value
never change whatever the scale and it is possible to compare
land lots on different scales levels.

mc =
4 ∗ π ∗Area
Perimeter2

The land lots aggregation must take in account spatial
indicators. In other words, in the case of grid aggregation,

the land lot area aggregated is an essential factor to obtain a
coherent spatial aggregation. In the case of aggregation using
grid or quadtree model, it is necessary to normalize the in-
formation. For instance, we can use the area like a coefficient.

Let us take the following case :
Land lot 1 (p1): 20% of the TAZ, mc = 0,12 (Miller circular-
ity index)
Land lot 2 (p2): 80% of the TAZ, mc = 0,85

If we do the aggregation process of the cell without taking
into account the area, we obtain :

cel =
0.12 + 0.85

2
= 0, 485

Now, if we apply the aggregation by taking into account the
area :

cel =
0.12 ∗ 2 + 0.85 ∗ 8

10
= 0, 704

thus we obtain the following formula :

p =

n∑
j=0

(I(j) ∗ (a(j) ∗ 100
a(c)

))

I: Metric index, a: Area, c: Cell, j: Land lot

Be careful to the used method to define the land lot belong-
ing’s to a cell. In order to prevent false results, each land lot
which intersects a set of cells must be divided in a set of little
land lots according to each cells, otherwise a normalization
of the surface can be useless.

3.2 Gravity center calculation
To find neighbors of a land plot, the most used method is to
use the centrod of a land lot and take any polygon contained
in the area of a circle. In this part, we are interested to find
a specific point with additive property, unlike centrod, and
which can be used with all kind of polygons. The gravity
center has the additive property, but the main problem is the
formula to calculate it on a polygon. in fact, the formula used
to calculate the gravity center of a polygon depends of their
form. Consequently, it is difficult to create an adaptive algo-
rithm for all possible cases.

For this reason we have made a new approach to calcu-
late the gravity center of any kind of polygon (multipolygon
included). The solution is simple, knowing that gravity cen-
ter has the additive property, we have chosen to divide the
polygon into a set of triangles by using the Delaunay’s trian-
gulation. The triangles have the advantage to have only one
formula to calculate it :

XTG =
1

3
(XA +XB +XC)

YTG =
1

3
(YA + YB + YC)

After the calculation of each gravity center of triangles, we
weight each gravity center using its area. We obtain finally

the following formula to calculate the gravity center of a poly-
gon :

XG =
1

A(p)

n∑
i=0

(XTG(i) ∗A(i))

YG =
1

A(p)

n∑
i=0

(YTG(i) ∗A(i))

Where A is the area, p the polygon and i the current triangle.

Gravity center additivity property
If we take the following example :

Figure 10: Set of polygon (each color represent a polygon).

On this example we have decomposed the land lot (Red +
Green + Blue) in 3 land lot (Red, Green and Blue). To de-
termine the additivity property of the gravity center, we cal-
culate the gravity center of each part and weight the result by
their respective area in order to obtain the gravity center of
the initial polygon (see table 4 (R+G+B)) ; then, we compare
the result with the gravity center calculate directly with the
initial land lot (initial gravity center see table 4 (RGB)).

4 Computing landscape metrics
Now, we would like to study which kind of data representa-
tion optimizes the performance of the computation. That is to
say we would increase the speed of the calculation, but also
its accuracy, and lower the size of memory consumption.

Nowadays, spatial data representation are divided into two
main approaches [Rigaux et al., 2000]. The first representa-
tion, named grid or raster, allows to represent spatial data into
a regular mesh, where each cell is localized by a row index
and a column index, as shown on figure 11. This kind of
representation accelerates the research of neighborhood data
for instance, because the distance computation is simplified
by the structure: there is only an addition of cells size to
perform. However, the accuracy of the results is dependent
from the scale of the mesh (the size of the cells). Moreover,
there is a lot of redundancy in the data storage. This acts

Polygon Area Gravity center

Green 2

XG =
0 + 0 + 1 + 1

4
= 1

YG =
0 + 1 + 1 + 0

4
=

1

2

Red 3

XG =
0 + 0 + 1 + 1

4
=

1

2

YG =
1 + 4 + 4 + 1

4
=

5

2

Blue 3

XG =
1 + 1 + 2 + 2

4
=

3

2

YG =
1 + 4 + 4 + 1

4
=

5

2

RBG 8

XG =
0 + 0 + 2 + 2

4
= 1

YG =
0 + 4 + 4 + 0

4
= 2

R+B+G 2+3+3=8

XG =
1 ∗ 2 + 1

2 ∗ 3 +
3
2 ∗ 3

8
= 1

YG =
1
2 ∗ 2 +

5
2 ∗ 3 +

5
2 ∗ 3

8
= 2

Table 4: Calculation table.

Figure 11: Extract of a 10 by 10 meters resolution grid of La
Foye-Monjault for 2005. Coloration by distinct land lot.

Vectorial Grid 10m
Number of tuples 656 202,889

Weight
2 * size of float *

n (number of
points)

4 * size of float

Estimated Total
Weight (bit)

2 (x and y) * 8
(float) * 14,959
(total number of
points from all
polygons)

= 239,344 bits

202,889 (cells
number) * 4
(xmin, xmax,

ymin, ymax) * 8
(float)

= 6,492 448 bits
Request time
(ms) select *
from table

365 5,598

Table 5: Storage comparing.

directly on the performance of the metrics computation.

The second representation is the vectorial representation,
which allows to make precise spatial data using sets of points,
lines, polygons or multipolygons. These geometric forms are
constituted by points localized in the space by coordinates.
This representation have the advantage of preserving a good
information accuracy during the data entry and to store a min-
imum quantity of data. Furthermore, vectorial data have the
advantage to allow the use of vectorial formulae already used
in mathematics and physics without requiring modifications
to adapt them.

4.1 Comparing vectorial to raster representation
In order to evaluate differences between these two methods,
we have processed a set of indices to determine characteristics
(execution time, complexity, ...) of each representation. All
calculations are realized on our use case of La Foye-Monjault
and with a C++ structure using the CGAL and GDAL library
for the calculation of geometry.

As we can see, the quantity of information needed by vec-
torial representation is less important than the raster structure.
It seems that the quantity of data required by grid directly im-

Vectorial Grid 10m
C++ Convertion

(ms) 382 15,520

Gravity center
calculation (ms)

2,052
(Delaunay’s
triangulation

included)

704

Area calculation
(ms) 9 263

Complete
execution time
(postgresql to

c++ and gravity
center calcul)

(ms)

2,514 16,223

Area Precision

Depends of the
data precision

(+/-
0.00000001m
from postGIS)

+/- 100m

Complexity

Delaunay
triangulation:
O(nlogn)

Gravity center:
O(n2) +

O(nlogn)
Area: O(n)

Gravity center:
O(n2)

Area: O(1)

Table 6: Values of C++ execution.

pacts the quantity of memory and the performance in SQL
request processing.

Execution of the C++ implementation
Despite a more important algorithm complexity, the vectorial
representation seems faster than grid model. It can be ex-
plained by the smaller quantity of information used than the
grid representation.

Spatial index calculation

Listing 1: Area SQL code
1 s e l e c t sum (s t a r e a (< g e o m a t t r i b u t e >)) as CA
2 from <t a b l e n a m e >;

Index Tuple Execution time
(ms)

Miller circularity 4203 82
Solidity 4203 82
Strain 4203 75
Fractal 4203 71

Dispersal 1 91
Area 1 11

Perimeter 1 11
Form 1 11

Density 1 11

Table 7: Values of metrics calculation.

Listing 2: Perimeter SQL code
1 s e l e c t sum (s t p e r i m e t e r (< g e o m a t t r i b u t e >)) as

TE
2 from <t a b l e n a m e >;

Listing 3: Miller circularity SQL code
1 s e l e c t (4∗ p i () ∗ s t a r e a (< g e o m a t t r i b u t e >)) / pow

(s t p e r i m e t e r (< g e o m a t t r i b u t e >) , 2) as im
2 from <t a b l e n a m e >;

Listing 4: Solidity SQL code
1 s e l e c t s t a r e a (< g e o m a t t r i b u t e >) / s t a r e a (

s t c o n v e x H u l l (< g e o m a t t r i b u t e >)) as I s
2 from <t a b l e n a m e >;

Listing 5: Fractal SQL code
1 s e l e c t (2∗ l n (s t p e r i m e t e r (< g e o m a t t r i b u t e >)))

/ l n (s t a r e a (< g e o m a t t r i b u t e >)) as I f
2 from <t a b l e n a m e >;

Listing 6: Form SQL code
1 s e l e c t sum (2∗ l n (s t p e r i m e t e r (< g e o m a t t r i b u t e

>)) / l n (s t a r e a (< g e o m a t t r i b u t e >))) / count
(∗) as MPFD

2 from <t a b l e n a m e >;

Listing 7: Density SQL code
1 s e l e c t sum (s t a r e a (< g e o m a t t r i b u t e >)) / count

(∗) as MPS
2 from <t a b l e n a m e >;

5 Conclusion and perspectives
Basing on a real use case issues from the observation of agri-
cultural land lot for many years in a town, we tried to discuss
the various problems linked to the use of landscape metrics
in an aggregation process, and to propose some ways of effi-
ciently compute them.

Almost all of landscape metrics which can not be used di-
rectly in the aggregation process due to their none matching
in several scale. To solve this problem, the metrics must be
normalized.

Another question is the type of representation which must
be used to represent and calculate all landscape metrics. For
that, the vectorial representation should be the best solution
according to the low quantity of data stored and the adapta-
tive property with other vectorial formula. Furthermore, the
difference of the execution time between raster and vectorial
representation are more or less similar according to the type
of calculation.

We have :
• Determined all potential useful indexes, and their behav-

ior when changing of scale,
• Shown that vectorial representation is the best solution

to represent geometric data for our purpose,
• Determined the best solution to find neighbors from

polygonal representation, basing on gravity centers
This have been implemented inside a framework that can be
easily reused by geographers or ecologists.

References
[Gustafson, 1998] Eric J. Gustafson. Quantifying landscape

spatial pattern: What is the state of the art? Ecosystems,
1(2):143–156, 1998.

[Jiao and Liu, 2012] Limin Jiao and Yaolin Liu. Analyzing
the shape characteristics of land use classes in remote sens-
ing imagery. ISPRS Ann. Photogramm. Remote Sens. Spat.
Inf. Sci, pages 135–140, 2012.

[Lamarche-Perrin et al., 2014] Robin Lamarche-Perrin, Lu-
cas Mello Schnorr, Jean-Marc Vincent, and Yves De-
mazeau. Agrégation de traces pour la visualisation de
grands systèmes distribués. Technique et Science Infor-
matiques, 2014.

[Lazrak et al., 2010] ElGhali Lazrak, Jean-Franois Mari, and
Marc Benot. Landscape regularity modelling for envi-
ronmental challenges in agriculture. Landscape Ecology,
25(2):169–183, 2010.

[Openshaw and Taylor, 1979] Stan Openshaw and P.J. Tay-
lor. A million or so correlation coefficients: Three experi-
ments on the modifiable areal unit problem. In N. Wrigley,
editor, Statistical methods in the spatial sciences, pages
127–144. Pion, London, 1979.

[Rigaux et al., 2000] Philippe Rigaux, Michel Scholl, and
Agnès Voisard. Introduction to Spatial Databases: Ap-
plications to GIS. Morgan Kaufmann, 2000.

[Schaller et al., 2012] Nomie Schaller, ElGhali Lazrak,
Philippe Martin, Jean-Franois Mari, Christine Aubry, and
Marc Benot. Combining farmers decision rules and
landscape stochastic regularities for landscape modelling.
Landscape Ecology, 27(3):433–446, 2012.

