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Abstract 
From the type of a polymorphic function we can de- 
rive a theorem that it satisfies. Every function of the 
same type satisfies the same theorem. This provides 
a free source of useful theorems, courtesy of Reynolds’ 
abstraction theorem for the polymorphic lambda calcu- 
lus. 

1 Introduction 
Write down the definition of a polymorphic function on 
a piece of paper. Tell me its type, but be careful not 
to let me see the function’s definition. I will tell you a 
theorem that the function satisfies. 

The purpose of this paper is to explain the trick. But 
first, let’s look at an example. 

Say that r is a function of type 

r : vx. x* + X’. 

Here X is a type variable, and X’ is the type “list of 
X”. From this, as we shall see, it is possible to conclude 
that r satisfies the following theorem: for all types A 
and A’ and every total function tz : A -V A’ we have 

a*orA =rAtoa*. 

Here o is function composition, and a* : A* + A’* is 
the function “map a” that applies a elementwise to a 
list of A yielding a list of A’, and rA : A* ---t A’ is the 
instance of r at type A. 

The intuitive expIanation of this result is that r must 
work on lists of X for any type X. Since r is provided 
with no operations on values of type X, all it can do is 
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rearrange such lists, independent of the values contained 
in them. Thus applying a to each element of a list and 
then rearranging yields the same result as rearranging 
and then applying a to each element. 

For instance, r may be the function reverse : 
VX. X* + X* that reverses a list, and a may be the 
function code : Char + Int that converts a character to 
its ASCII code. Then we have 

code* (reuersech,, [‘a’, ‘b’, ‘c’)) 
= (99,98,97] 
= reversel,,t (code* [‘a’, ‘b’, ‘c’]) 

which satisfies the theorem. Or r may be the function 
tail : VX. X* + X* that returns all but the first element 
of a list, and a may be the function inc : Int + Int that 
adds one to an integer. Then we have 

inc’ ( tailrat [ 1,2,3]) 

1 y 
ht (inc* [LZ 31) 

which also satisfies the theorem. 
On the other hand, say r is the function odds : Int* -+ 

Int’ that removes all odd elements from a list of inte- 
gers, and say a is inc as before. Now we have 

inc* (oddsI,,, [ 1,2,3]) 

z !:;“’ 
= odds~,~(inc* [l&3]) 

and the theorem is not satisfied. But this is not a coun- 
terexample, because odds has the wrong type: it is too 
specific, Int* -+ Int’ rather than t/X. X’ ----* X’. 

This theorem about functions of type VX. X’ -+ X* is 
pleasant but not earth-shaking. What is more exciting 
is that a similar theorem can be derived for every type. 

The result that allows theorems to be derived from 
types will be referred to as the parametricity result, be- 
cause it depends in an essential way on parametric poly- 
morphism (types of the form VX. 2’). Parametricity is 
just a reformulation of Reynolds’ abstraction theorem: 
terms evaluated in related environments yield related 
values [Rey33]. The key idea is that types may be read 
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as relations. This result will be explained in Section 2 
and stated more formally in Section 6. 

Some further applications of parametricity are shown 
in Figure 1, which shows several types and the corre- 
sponding theorems. Each name was chosen, of course, 
to suggest a particular function of the named type, but 
the associated theorems hold for any function that has 
the same type (so long as it can be defined as a term in 
the pure polymorphic lambda calculus). For example, 
the theorem given for head also holds for last, and the 
theorem given for sort also holds for nub (see Section 3). 

The theorems are expressed using operations on func- 
tions that correspond to operations on types. Corre- 
sponding to the list type A* is the map operation a* 
that takes the function a : A -+ A’ into the func- 
tion a* : A* --) A’*. Similarly, corresponding to the 
product type A x B is the operation a x b that takes 
the functions a : A -+ A’ and b : B + B’ into the 
function a x b : A x B ---) A’ x B’; it is defined by 
(a x b) (2, Y) = ( a z, b y). As we shall see, it will be 
necessary to generalise to the case where a, b, a*, and 
a x b are relations. 

How useful are the theorems so generated? Only time 
and experience will tell, but some initial results are en- 
couraging: 

l In general, the laws derived from types are of a 
form useful for algebraic manipulation. For exam- 
ple, many of the laws in Figure 1 allow one to Upush 
map through a function”. 

l Three years ago I co-authored a paper on the 
derivation of an algorithm for compiling pattern- 
matching in functional languages [BWSS]. The 
derivation used nine general theorems about 
higher-order functions such as map and sort. Of 
the nine theorems, five follow immediately from the 
types. 

l Sheeran has developed a formal approach to the 
design of VLSI circuits that makes heavy use of 
mathematical laws. She has found that many of 
the laws she needs can be generated from types 
using the methods described here, and has already 
written a paper describing how to do so [She89]. 

Not surprisingly, using a more specific type system al- 
lows even more theorems to be derived from the type of 
a function; this has already been explored to a certain 
extent by Sheeran [She89]. So there is reason to believe 
that further research will further extend the applicabil- 
ity of this method. 

Many functional languages, including Standard 
ML [Mil84,Mil87], Miranda’ [Tur85], and Haskell 

‘Miranda is a trademark of Research Software Limited. 

[HWSS], are based on the Hindley/Milner type system 
[Hin69,Mi178,DM82]. This system is popular because 
types need not, be given explicitly; instead, the principal 
(most general) type of a function can be inferred from 
its definition. However, for the purposes of this paper 
it is more convenient to use the Girard/Reynolds type 
system [Gir72,Gir86,Rey74,Rey83] (also known as the 
polymorphic lambda calculus, the second order lambda 
calculus, and System F). In the Girard/Reynolds sys- 
tem it is necessary to give the types of bound vari- 
ables explicitly. Further, if a function has a polymorphic 
type then type applications must be explicitly indicated. 
This is done via subscripting; for example, the instance 
of the function r : VX. X* + X‘ at the type A is written 
rA : A’ *A’. 

Every program in the Hindley/Milner system can 
automatically be translated into one in the Gi- 
rard/Reynolds system. All that is required is a straight- 
forward modification of the type inference algorithm to 
decorate programs with the appropriate type informa- 
tion. On the other hand, the inverse translation is not 
always possible, because the Girard/Reynolds system is 
more powerful than Hindley/Milner. 

Both the Hindley/Milner and the G&-d/Reynolds 
system satisfy the strong normalisation property: every 
term has a normal form, and every reduction sequence 
leads to this normal form. As a corollary, it follows that 
the fixpoint operator, 

cannot be defined as a term in these systems. For many 
purposes, we can get along fine without the fixpoint 
operator, because many useful functions (including all 
those shown in Figure 1) may be defined in the Gi- 
rard/Reynolds system without its use. Indeed, every re- 
cursive function that can be proved total in second-order 
Peano arithmetic can be written as a term in the Gi- 
rard/Reynolds calculus (FLO83,Gir72,GLT89]. This in- 
cludes, for instance, Ackerman’s function (see [Rey85]), 
but it excludes interpreters for most languages (includ- 
ing the Girard/Reynolds calculus itself). 

If the power of unbounded recursion is truly required, 
then f; can be added as a primitive. However, adding 
fixpoints weakens the power of the parametricity the- 
orem. In particular, if fixpoints are allowed then the 
theorems in Figure 1 hold in general only when the 
functions a and b are strict (that is, when a I = I 
and b I = 1)2. For this reason, the bulk of this pa- 
per assumes that fixpoints are not provided; but the 
necessary adjustment to allow fixpoints is described in 
Section 7. 

2This is similar to the restriction to strict coercion functions 
in [BCGS89], and is adopted for a similar reason. 
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Assume a : A + A’ and b : B -+ B’. 

head : VX. X’ + X 
a o headA = headAl o a* 

tail : vx. X” + X’ 
a* 0 tailA = tailA 0 a* 

(tt) : vx. x* ---t x* 4 x* 
4* (25 -H-A ys) = ( a* zs) +A’ (a* ys) 

concat : VX. X** - X” 
a* 0 concatA = concatA# 0 a*+ 

j.st:vx.wY.Xx Y-,X 
a 0 j8fAB = jStAl&V 0 (a x b) 

md :VX.VY. XX Y ---, Y 
b 0 EndAB = SndAtp 0 (a X b) 

tip : VX. VY. (X’ x Y’) --, (X x Y)* 
(a x b)* 0 tip.4~ = tipA’B’ 0 (a* X b*) 

filter : VX. (X - Bool) + X’ ---, X’ 
a* 0 filterA (p’ 0 a) = f;rterAl p’ o a* 

sort : vx. (X --) x 4 Bool) - x* -+ x* 
if for all z,y f A, (z c y) = (a z C’ a y) then 

a* 0 sorfA (<) = sortA’ (<‘) 0 a* 

fold : VX. VY. (X - Y + Y) - Y - X’ - Y 
if for all 2 E A, y E 8, b (z $ y) = (a z) @ (b y) and b tc = u’ then 

b 0 jOidAB (@) U = jofdA’p (a) Cc’ 0 a* 

I:Vx.X+X 
a o IA = IAt o a 

K:VX*VY.X-+Y+X 
a (KAB z Y) = KAIB~ (a ~1 (b Y) 

Figure 1: Examples of theorems from types 
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The fundamental idea of parametricity is not new. 
A restricted version of it appears in Reynolds’ origi- 
nal paper on the polymorphic lambda calculus [Rey74], 
where it is called the representation theorem, and a 
version similar to that used here appears in [Rey83], 
where it is called the abstraction theorem. Other 
versions include the logical relations of Mitchell and 
Meyer [MM85,Mit86]; and the dinatural transforma- 
tions of Bainbridge, Freyd, Girard, Scedrov, and Scott 
[BFSS87,FGSS88], from whom I have taken the name 
uparame tricity” . 

So far as I am aware, alI uses of parametricity to date 
have been ‘general”: they say something about possible 
implementations of the polymorphic lambda calculus 
(e.g. that the implementation is correct independent of 
the representation used) or about its models (e.g. that 
models should only be allowed that satisfy parametric- 
ity). The main contribution of this paper is to suggest 
that parametricity also has “specific” applications: it 
says interesting things about particular functions with 
particular types3. 

A second contribution of this paper is to present 
an updated proof of the abstraction theorem. The 
proof given here is based on that in [Rey83]. Unfor- 
tunately, that proof is expressed in terms of a %aive” 
set-theoretic model of the polymorphic lambda calcu- 
lus; Reynolds later proved that such models do not 
exist (Rey84]. Fortunately, the proof adapts easily 
to the frame models of Bruce, Meyer, and Mitchell 
[BM84,MM85], and that is the approach taken in this 
paper. (For other models of the polymorphic lambda 
calculus, see [BTC88,Mes89,Pit87].) 

The characterisation of parametricity given in this pa 
per can be formulated more concisely in terms of cat- 
egory theory, where it can be re-expressed in terms of 
lax natural transformations. This will be the subject of 
a further paper. 

The remainder of this paper is organised as follows. 
Sections 2 and 3 present the main new results: Section 2 
presents the parametricity theorem, and Section 3 gives 
further applications. Sections 4-6 fill in the formali- 
ties: Section 4 describes the syntax of the polymor- 
phic lambda calculus, Section 5 shows how its syntax 
can be given using frame models, and Section 6 gives 
the full statement of the parametricity theorem. Sec- 
tion 7 shows how the parametricity theorem should be 
adjusted to account for languages that use the fixpoint 
operator. 

Acknowledgements. I am grateful to Harold Sim- 

3Since this paper was written, I have learned that Peter de- 
Bruin has recently discovered similar applications [deB89], and 
that John Reynolds already knew of the application in Section 3.8. 

mons for helping to formulate and prove the result 
about map in Section 3.5, and to Samson Abramsky, 
Val Breazu-Tannen, Peter Freyd, John Hughes, John 
Launchbury, John Reynolds, Andre Scedrov, and Mary 
Sheeran for their comments on this work. 

2 Parametricity explained 
The key to extracting theorems from types is to read 
types as relations. This section outlines the essential 
ideas, using a naive model of the polymorphic lambda 
calculus: types are sets, functions are set-theoretic func- 
tions, etc. The approach follows that in [Rey83]. 

Cognoscenti will recognise a small problem here- 
there are no naive set-theoretic models of polymorphic 
lambda calculus! (See [Rey84].) That’s ok; the essen- 
tial ideas adopt easily to frame models [BM84,MM85]. 
This section sticks to the simple but naive view; the i’s 
will be dotted and the t’s crossed in Sections 4-6, which 
explain the same notions in the context of frame models. 

The usual way to read a type is as a set. The type 
Boo1 corresponds to the set of booleans, and the type 
Int corresponds to the set of integers. If A and B are 
types, then the type A x B corresponds to a set of pairs 
drawn from A and B (the Cartesian product), the type 
A* corresponds to the set of lists with elements in A, and 
the type A -+ B corresponds to a set of functions from A 
to B. Further, if X is a type variable and A(X) is a type 
depending on X, then the type VX. A(X) corresponds 
to a set of functions that take a set B and return an 
element in A(B). 

An alternative is to read a type as a relation. If A 
and A’ are sets, we write A : A (r A’ to indicate that 
a is a relation between A and A’, that is, that A E 
A x A’. If z E A and 3;’ E A’, we write (2,~‘) E A 
to indicate that z and z’ are related by A. A special 
case of a relation is the identity relation IA : A + A, 
defined by 1~ = ((2, z) ] z E A}. In other words, if 
z, z’ E A, then (2,s’) E 1~ iff z = 2’. More generally, 
any function a : A ---, A’ may also be read as a relation 
((2, a z) ] z E A). In other words, if z E A and z’ E A’, 
then (z, 2’) E a iff a z = 2’. 

To read types as relations, we give a relational equiva- 
lent for constant types and for each of the type construc- 
tors Ax B, A*, A + B, and VX. A(X). Constant types, 
such as Boo1 and Int, may simply be read as identity 
relations, I~oOl : Boo1 # Boo1 and II~~ : Int f) Int. 

For any relations A : A + A’ and 3 : B N B’, the 
relation A x B : (A x B) * (A’ x B’) is defined by 

((2, Y), (z’s Y’)) E A x 3 

(2~~ 2’) E A a; (y, y’) E 8. 
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That is, pairs are related if their corresponding com- 
ponents are related. In the special case where a and 
b are function, then a x b is the function defined by 
(a x b) (5, Y) = (a z, b Y). 

For any relation A : A H A’, the relation A’ : A* H 
A’” is defined by 

(1 q, . . . , zn], [z;, . . ., XL]) E A’ 
iff 

(zr, 2:) E a and . ..and (z,,,zk) E A. 

That is, lists are related if they have the same length 
and corresponding elements are related. In the special 
case where a is a function, a* is the familiar ‘map” 
function defined by a* [zr , . . . , zn] = [u zl, . . . , a zR], 

For any relations A : A H A’ and R : B * B’, the 
relation A - 8 : (A -+ B) + (A’ -+ B’) is defined by 

(M’) E A-+8 ’ 

for all (2,~‘) E A:” (j 2,j’ 2’) E 8. 

That is, functions are related if they take related argu- 
ments into related results. In the special case where a 
and b are functions, the relation a -+ b will not neces- 
sarily be a function, but in this case (j, j’) E a + b is 
equivalent to j’ 0 a = 6 0 j. 

Finally, we have to interpret V as an operation on re- 
lations. Let 3(X) b e a relation depending on X. Then 
3 corresponds to a function from relations to relations, 
such that for every relation A : A ++ A’ there is a cor- 
responding relation 3(A) : F(A) w F’(A’). Then the 
relation VX. 3(X) : VX. F(X) e VX! F’(X’) is defined 
by 

(4% 8’) ‘;I- W) 

forallA:A+A’, (gA,gi’)E3(A). 

That is, polymorphic functions are related if they take 
related types into related results. (Note the similarities 
in the definitions of A + 8 and VX. 3(X).) 

Using the definitions above, any closed type T (one 
containing no free variables) can be read as a relation 
7 : T ++ T. The main result of this paper can now be 
described as follows: 

Proposition. (Parametricity.) If t is a 
closed term of type T, then (t, t) E T, where 
7 is the relation corresponding to the type T. 

A more formal statement of this result appears in Sec- 
tion 6, where it is extended to types and terms contain- 
ing free variables. 

3 Parametricity applied 
This section first explains in detail how parametricity 
implies some of the theorems listed in the introduction 
and then presents some more general results. 

3.1 Rearrangements 
The result in the introduction is a simple consequence 
of parametricity. Let r be a closed term of type 

r:vx.x*-+x*. 

Parametricity ensures that 

(r, f) E vx. X’ 4 x*. 

By the definition of V on relations, this is equivalent to 

forallA:A#A’, 
(TA, Q’) E A’ + A* 

By the definition of + on relations, this in turn is equiv- 
alent to 

for all A : A * A’, 
for all (zs, zs’) E A*, 

(fA 23, rA’ zs’) E A* 

This can be further expanded in terms of the definition 
of A*. A more convenient version can be derived by 
specialising to the case where the relation A is a function 
a : A --r A’. The above then becomes 

for all a : A -3 A’, 
for all zs, 

a* 2s = 2s’ implies u* (r&4 2s) = fA’ 2s’ 

or, equivalently, 

for all a : A 3 A’, 
u*or~=r~oa*. 

This is the version given in the introduction, 

3.2 Fold 
The function fold has the type 

jo2d : VX. VY. (X + Y 4 Y) -+ Y + X‘ + Y. 

Parametricity implies that 

(fold, fold) E VX. Vy. (X -+ Jl + 9) + IJ -+ X* + Y. 

Let a : A + A’ and b : B -+ B’ be two functions. Ap- 
plying the definition of V on relations, twice, specialised 
to functions, gives 

(joldAB,joldAIp) E (a + b + 6) -+ b -+ a* -+ b 
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Applying the definition of -+ on relations, twice, gives 

for all (@, 63’) E (u ---) 6 3 b), 
for all (u, u’) E b, 

Here (CB) is just the name of a function of two argu- 
ments; by the usual convention, (@) z y may be written 
in the infix form z a y. Further expansion shows that 
the condition (@, @‘) E ( a -+ b + b) is equivalent to 

for all z E A, z’ E A’, y E B, y’ E B’, 
a z = z’ and b y = y’ implies 6 (z @ y) = x’ GY y’. 

The result as a whole may then be rephrased, 

for all a : A -+ A’, b : B -+ B’, 
iffyb”,” 2 ~‘-4, y E B, b (z ~3 y) = (a x) ~3’ (1 y), 

=U 
then b o foldAB (@) u = foldA*p (e’) u’ o a*. 

The theorems derived from types can often be given a 
reading with an algebraic flavour, and the result about 
fold provides an illustration of this. Let (A, B,@, u) 
and (A’, B’, CB’, u’) be two algebraic structures. The 
functions a and b form a homomorphism between 
these if b (z @ y) = (u z) @’ (b y) for all z and y, 
and if b u = u’. Similarly, let (A*, B, joldAB (a) u) 
and (A’*, B’ , foldAlp (@‘) u’) also be two algebraic 
structures. The functions u* and b form a home 
morphism between these if b (joidAB (CB} u ZJ) = 
fOidA'B' (@') U' (U* 29). The result about fold 
states that if u and 6 form a homomorphism between 
(A, B, c, n) and (A’, B’, c’, A’), then a* and b form 
a homomorphism between (A*, B, foldAB (G3) u) and 
(A”,B’, fOidAlB# (CB') u'). 

3.3 Sorting 
Let s be a closed term of the type 

s : VX.(X + X --t Bool) ---) (X’ ---) X’) 

Functions of this type include sort and nub: 

~0~ht(<m)[3,L 4% 51 = [1,2,3,4,5] 
nuhnt (=znt)[L L&Z a11 = [I, 2911 

The function sort takes an ordering function and a list 
and returns the list sorted in ascending order, and the 
function nub takes an equality predicate and a list and 
returns the list with adjacent duplicates removed. 

Applying parametricity to the type of s yields, for all 
a : A + A’, 

if for all 2, y E A, (z 4 y) = (u z 4’ a y) then 
a* o sA (4) = SA’ (+‘) 0 a* 

(Recall that Bool as a relation is just the identity rela- 
tion of booleans.) As a corollary, we have 

if for all z, y E A, (z < y) = (a z <’ a y) then 
SortAl (<) 0 a* = a* 0 SortA (<‘) 

so maps commute with sort, when the function mapped 
preserves ordering. (If < and <’ are linear orderings, 
then the hypothesis is equivalent to requiring that a is 
monotonic.) As a second corollary, we have 

if for all z, y E A, (z 3 y) = (u z E’ a y) then 
nubA’ (Z) 0 Q* = U* 0 nubA (E’) 

so maps commute with nub, when the function mapped 
preserves equivalence. (If = and s’ are equality on A 
and A’, then the hypothesis is equivalent to requiring 
that u is one-to-one.) 

3.4 Polymorphic equality 
The programming language Miranda [Tur85] provides a 
polymorphic equality function, with type 

(=) : VX X ---t X - Book 

Applying parametricity to the type of (=) yields, for all 
a : A 4 A’, 

for au X,y E A, (2 =A y) = (a Z =A’ a y). 

This is obviously false; it does not hold for all a, but 
only for functions a that are one-to-one. 

This is not a contradiction to the parametricity theo- 
rem; rather, it provides a proof that polymorphic equal- 
ity cannot be defined in the pure polymorphic lambda 
calculus. Polymorphic equality can be added as a con- 
stant, but then parametricity will not hold (for terms 
containing the constant). 

This suggests that we need some way to Utamen the 
power of the polymorphic equality operator. Exactly 
such taming is provided by the “eqtype variables” of 
Standard ML [Mil87], or more generally by the “type 
classes” of Haskell [HW88,WB89]. In these languages, 
we can think of polymorphic equality as having the type 

(=) : V(=)X. X ---) X ----, Book 

Here V(=)X. F(X) is a new type former, where X ranges 
only over types for which equality is defined. Corre- 
sponding to the type constructor tl= is a new relation 
constructor: 

(g, g’) E v(=)x. ?(X) 

for all ff : A 0 A’ respecA:g (=), (gA, gx,) E ?(A). 
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A relation A : A * A’ respects (=) if whenever z =A y 
and (2, CC’) E A and (y , y’) E 4 then 2’ =A’ y’, where 
(=A) is equality on A and (=A,) is equality on A’. In 
the case where A is a function a, this is equivalent to 
requiring that a be one-to-one. 

With this definition, we can prove that the polymor- 
phic equality operator, typed as above, satisfies the 
parametricity theorem. In our extended language we 
can define, for example, the function 

nub : v(=)x. x* -+ x* 

and the corresponding parametricity condition is the 
same as that for the previous version of nub. 

Thus, the more refined type structures of Standard 
ML and Haskell add exactly the information necessary 
to maintain parametricity. In Standard ML this trick 
works only for equality (which is built into the lan- 
guage), whereas in Haskell it works for any operators 
defined using the type class mechanism. r 

3.5 A result about map 
Suppose that I tell you that I am thinking of a function 
m with the type 

m : VX.VY.(X + Y) + (x* + Y*) 

You will immediately guess that I am thinking of the 
map function, m(j) = j*. Of course, I could be thinking 
of a different function, for instance, one that reverses a 
lit and then applies f’ to it. But intuitively, you know 
that map is the only interesting function of this type: 
that all others must be rearranging functions composed 
with map. 

We can formalise this intuition as follows. Let m be 
a function with the type above. Then 

mAB(f) = f* o mAA = mBL? (&3) Of* 

where IA is the identity function on A. The function 
mAA ii3 a rearranging fUnCtiOn, as discussed in the 
preceding section. Thus, every function m of the above 
type can be expressed as a rearranging function com- 
posed with map, or equivalently, as map composed with 
a rearranging function. 

The proof is simple. As we have already seen, the 
parametricity condition for m is that 

iff’oa = b of then mA’B’(f’) o a* = b* o mAB(f) 

Taking A’ = B’ = B, b = f’ = IB, a = f satisfies the 
hypotheses, giving as the condusion 

W&?(b) Of’ = (b)* 0 mAB(f) 

which gives us the second equality above, since (IB)* = 
IB’. The first equality may be derived by commuting 
the permuting function with map; or may be derived 
directly by a different substitution. 

3.6 A result about fold 
Analogous to the previous result about map is a similar 
result about fold. Let j be a function with the type 

j: VX.VY.(X --+ Y “+ Y) --+ Y-X’ - Y 

Then 

fAB C n = foidAB C n 0 fAA* COnSA nil.4 

Note that jAR* ConsA nilA : A* -+ A* is a function that 
rearranges a list, so this says that every function with 
the type of fold can be expressed as fold composed with 
a rearranging function. 

The proof is similar to the previous one. The para- 
metricity condition for j is that 

if c’o (a x b) = b o c and n’ = b(n) then 
fA’B’ c’ n’ 0 a+ = b 0 fAB c n 

Taking A = A’, B = A*, a = IA, b = foldA(Bi c’ n’, 
c = consA, n = nilA satisfies the hypothesis, giving as 
the conclusion 

fABt c’ n’ 0 Ii = foldAB, C’ IL’0 fAA. COnSA ?dA 

The 12 term is just an identity, and so drops out, leaving 
us with the desired equality if we rename c’, n’, I?’ to 
c, n, B. 

3.? A result about filter 
Let j be a function with the type 

f: VX.(X+ Bool) +X* + X* 

Three functions with this type are jilter, takewhile, and 
dropwhile. For example, 

filter odd [3,1,4,5,2] = [3,1,5] 
takewhile odd (3,1,4,5,2] = [3, l] 
dropwhile odd [3,1,4,5,2] = [4,5,2] 

See [BW88) for the definitions of these functions. 
For every such f we can define a corresponding func- 

tion of type 

g : VX.(X x Bool)’ ---t X* 

such that j and g are related by the equation 

fA(P) = gA o (IA, P) (*) 

where (IA, p) z = (z, p z). That is, Jo is passed a pred- 
icate p of type A --t Boo1 and a list of A, whereas gA is 
passed a list of A x Boo1 pairs, the second component 
of the pair being the result of applying p to the first 
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component, Intuitively, this transformation is possible 
because the only values that p can be applied to are of 
type A, so it suffices to pair each value of type A with 
the result of applying p to it. 

A little thought show8 that a suitable definition of g 
is 

gA = f-St* O~AXBOOJ(J~L~ 

We can use parametricity to show that f and g sat- 
isfy (*), for all function8 f of the given type. The 
parametricity conditions for f tell8 us that for any 
U.: A 4 A’ and any p : A + Boo1 and p’ : A’ 4 Boo1 
we have 

if p’ 0 a = IBooJ 0 p then f.# (p’) 0 a* = a* 0 f...t (p) 

Take A’ = A x Boo1 and o = &,p) and p’ = snd. 
Then the hypothesis becomes and o (IA, p) = p, which 
is satisfied, yielding the conclusion 

fAxBooJ(~~d)o(~A~P)* = v..,P)OfA(P)* 

Compose both sides with Ist*, giving 

fit* O~AXBOO.I(SA~) O (IA,P)* =fat* 0 (IASP) O!A(P)- 

Then apply the definition of g, and observe that f.st o 
(IA, p) = IA, resulting in the equation 

gA o (h, P)’ = fA (P) 

as desired. 

3.8 An isomorphism 
The preceding application8 can all be expressed in the 
Hindley/Milner fragment of the polymorphic lambda 
calculus: all universal quantifier8 appear at the outside 
of a type. This section presents an application that 
utilises the full power of the Girard/Reynolds system. 

Let A be an arbitrary type. Intuitively, this type 
is isomorphic to the type VX. (A ---) X) - X, which 
we will abbreviate a8 A. The apparent isomorphism 
between A and i is expressed by the functions: 

i : A-A 
i = Xz:AAX.Xg:A-+X.gz 

j : i--+A 
i = Ah : ;i. hA (XX : A Z) 

That is, a’ takes an element x of A to the element of i 
that maps a function g (of type A + X) to the value 
g z (of type X). The inverse function_ j recovers the 
original element by applying a value in A to the identity 
function. 

To prove that this truly is an isomorphism, we must 
verify that j o i and i o j are both identities. It is easy 
enough to verify the former: 

i (i xl 
= j (AX. Xg : A - X. g x) 
= (Xg : A + A g z) (Xz: A z) 
= &:A z) z 
= 2 

However, the inverse identity is problematic. We can 
get a8 far as 

i (i h) 
= i (hA (AZ : A 2)) 
= Ax. xg : A - x. g (hA (kz : A 2)) 

and now we are stuck. Here is where parametricity 
helps. The parametricity condition for h : VX. (A + 
X)-+Xisthat,forallB:B-,B’andallf:A--+B, 

Taking B = A, B’ = X, b = g, and f = (Xz : A z) 
gives 

AX. Xg : A + x. g (hA (AZ : A s)) 
= AX.Xg:A--,X. hx (go(k:Az)) 
= AX.Xg:A-,X. hx g 
= h 

which completes the second identity. 
The second identity depends critically on parametric- 

ity, so the isomorphism holds only for model8 in which 
all element8 satisfy the parametricity constraint. Alas, 
the parametricity theorem guarantee8 only that ele- 
ments of the model that correspond to lambda terms 
will be parametric; many models contain additional el- 
ements that are non-parametric. One model that con- 
tains only parametric elements is that in [BTC88]. 

4 Polymorphic lambda calculus 
We now turn to a more formal development of the 

parametricity theorem. We begin with a quick review 
of the polymorphic lambda calculus. 

We will use X, Y, 2 to range over type variables, and 
T, U, V to range over types. Types are formed from 
type variables, function types, and type abstraction: 

T::=XI T--t Uj AX. T 

We will use z, y, z to range over individual variables, 
and t, u, u to range over terms. Terms are formed from 
individual variables, abstraction and application of in- 
dividuals, and abstraction and application of types: 
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VI 
X;zi- t: T 

X,X;zl-AX. t:QX. T 

Qp X;zi- t:QX. T 
X;z k tv : T(U/X] 

Figure 2: Typing rules 

We write TlUlXl to denote substitution of U for the 
free occurrences of X in T, and t[ u/r] and t[ U/X] sim- 
ilarly. 

A term is legal only if it is well typed. Typings are 
expressed as assertions of the form 

X;zt- t: T 

where X is a lit of distinct type variables Xl,. . . , X,,,, 
and z is a list of distinct individual variables, with types, 
x1 : TI,...,x,, : T,,. This assertion may be read as 
stating that t has type T in a context where each zi 
has type Ti. Each individual variable that appears free 
in t should appear in Z, and each type variable that 
appears free in T of z should appear in x. The type 
inference rules are shown in Figure 2. 

Two terms are equivalent if one can be derived from 
the other by renaming bound individual or type vari- 
ables (01 conversion). In addition, we have the familiar 
reduction rules: 

(p) (AZ : u. t) u =+ t[u/z] 
(AX. t)u =+ W/Xl 

(4 Az:u.tx * t 
AX. tx =+ t 

where in the q rules z and X do not occur free in t. 
As is well known, familiar types such as booleans, 

pairs, lists, and natural numbers can be defined as types 
constructed from just + and V; see for example [Rey85] 
or [GLT89]. Alternatively, we could add suitable types 
and individual constants to the pure language described 
above. 

5 Semantics of polymorphic 
lambda calculus 

We will give a semantics using a version of the frame 
semantics outlined in (BM&4] and (MM85]. We first 
discuss the semantics of types, and then discuss the se- 
mantics of terms. 

5.1 Types 
A type model consists of a universe U of type values, 
and two operations, -) and Q that construct types from 
other types. There is a distinguished set [U + U] of 
functions from U to U. If A and B are in U, then 
A--,BmustbeinU,andifFisin\U+U),thenQF 
must be in U. 

Let T be a type with its free variables in X. We say 
that A is a type environment for X if it maps each type 
variable in X into a type value in U. The corresponding 
value of T in the environment A is written (ITl]?i and is 
defined as follows: 

Here ;ilXn is the value that a maps X into, and a[A/X] 
is the environment that maps X into A and otherwise 
behaves as ;i. (The reader may find that the above 
looks more familiar if d is replaced everywhere by a 
Greek letter such as q.) 
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5.2 Terms 
Associated with each type A in U is a set DA of the 
values of that type. 

For each A and B in U, the elements in DA-B repre- 
sent functions from DA to Dg. We do not require that 
the elements are functions, merely that they represent 
functions. In particular, associated with each A and B 
in U there must be a set [DA --+ DB] of functions from 
DA to Dg, and functions 

$A,B : DA+B ---, [DA ---, DB] 

+A,B : [DA - DB] - DA-~B 

such that +A,B 0 $A,B is the identity on [DA 4 DB]. 
We will usually omit the subscripts and just write 4 and 
6 

If F is a function in [U -+ U], the elements in Dvr 
represent functions that take a type A into an element 
of D=(A). In particular, associated with each F there 
must be a set [VA : U. Dp(A)] of functions that map 
each A in U into an element of Dr(A), and functions 

@F : DVF - [VA : u. DF(A)] 
QF : [VA : U. Dp(A)] -t DVF 

such that @F o q~ is the identity on [VA : U. DF(Al]. 
Again, we will usually omit the subscripts and just write 
(9 and Q’. 

Let t be a term such that X; z l- t : T. We say that 
A, B are environments respecting X, Z if A is a type 
environment for X and a is an environment mapping 
variables to values such that for each q r Ti in 2, we 
have that a[zil E DgTipa. The value of t in the envi- 
ronments A and zi is written [tna B and is defined as 
follows: 

Here a[zj is the value that a maps z into, and a[a/z] 
is the environment that maps z into a and otherwise 
behaves as a. 

A frame is a structure specifying U, +,V and 
D, 4, +, a, Q satisfying the constraints above. A frame 
is an environment model if for every x; z t t : T and ev- 
ery A, 7i respecting X, 2, the meaning of [tnA a as given 
above exists. (That is, a frame is a model if the sets 
[U - Ul, [PA -+ DB], and [VA : U. DF(.J)] are “big 
enough” .) 

We write X; Z b t : T if for all environments A, a 
respecting X, Z, we have [[tl)ii 2 E DI,la. 

Proposition. (Soundness of types.) For all 
X,%,t and T,ijX;Zt- t: T thenW;%bt: 
T. 

The type soundness result simply states that the mean- 
ing of a typed term corresponds to the meaning of the 
corresponding type. The proof is a straightforward in- 
duction over the structure of type inferences. Para- 
metricity is an analogue of this result, as we shall see in 
the next section. 

6 The parametricity theorem 
In the previous section, we defined a semantics where 
a type environment A consists of a mapping of type 
variables onto types, and the semantics of a type T 
in the environment A is a set denoted DgT 1. In this 
section, we define an alternative semantics w 8, ere a type 
environment ;R consists of a mapping of type variables 
onto relations, and the semantics of a type T in the 
environment A is a relation denoted [ Tna. 

We can then formally state the parametricity theo- 
rem: terms in related environments have related val- 
ues. We can think of environments ?i and 2’ as specify- 
ing two different representations of types, related by A, 
which is why Reynolds’ called his version of this result 
“the abstraction theorem”. A key point of this paper 
is that this theorem has applications other than change 
of representation, hence the change in name from “ab- 
straction” to “parametricity” 

A function type may be regarded as a relation as fol- 
lows. If .4 : A e, A’ and B : B ($ B’ are two relations, 
then we define ’ 

A - B : (A 4 B) # (A’ 4 B’) 

to be the relation 

A + B = ( (j, f’) ] (a, is’) E A implies 
w df’a’) E B ) 

In other words, functions are related if they map related 
arguments into related results. 

A type abstraction may be regarded as a relation as 
follows. Let F be a function from U to U, and F’ be a 
function from U’ to U’, and for each A in U and A’ in 
U’, let 3 be a function that takes a relation A : A G+ A’ 
and returns a relation 3(A) : F(A) M F’(A’). Then we 
define 

V3:VF+VF’ 

356 



to be the relation 

V3 = ( (g, g’) 1 for all A, A’, and A : A H A’, 
MWWWW’N E 3(A) > 

In other words, type abstractions are related if they map 
related types into related results. 

A relation environment maps each type variable into 
a relation. Let A be a relation environment for X, and 
let ;I, A’ be two type environments for X. We write 
A : A o A’ if for each X in X we have &l[X] : zl[XI] + 
A’pq. 

Given a relation environmenb A we can interpret a 
type T as a relation [ Z’]a as follows: 

Let ?i, ii respect X, z and A’, TL’ respect x, 2. We 
say that A, 2, a’, ii, a’ respect X, z if A : ?I * A’ and 
(a[[rijl, a’[qn) E I[Ti]a for each zi : Ti in z. It is easy to 
see that if A, ?i, A’, 7i, pi’ respect X, z then 2, B respect 
x, z and A’, it’ respect X, Z. 

We say that jk; z IF t : T iff for every 2, A, ?i’, zi, ii’ 
that respect x, z we have (fit]&%, [t&&9) E [!f]A. 

Proposition. (Purametricity.) For all X, 
~,t,andT,i/~;~~t:TthenX;zI~tt: T. 

Proof. The proof is 3 straightforward induction over 
the structure of type inferences. For each of the infer- 
ence rules in Figure 2, we r ?place !- by IF and show that 
the resulting inference is valid. (End of proof.) 

As mentioned previously, data types such as booleans, 
pairs, lists, and natural numbers can be defined in terms 
of -+ and V. 

As an example, consider the construction for pairs. 
The type X x Y is defined as an abbreviation: 

xx Yd~fvz.x--+ Y--t2 

Every term of type X x Y is equivalent to a term of the 
form pairxv z y, where x : X and y : Y, and pair is 
defined by 

paw - . dsf AX. A Y. xx : x. xy : Y. 
AZ.Xp:X-+ Y-+Z.pzy 

The type of pair is, of course, 

pair:VX.VY.X--+ Y--+Xx Y 

where X x Y stands for the abbreviation above. It 
follows from the parametricity theorem that if A : A - 
A’ and B : B --+ B’, and (a, a’) E A and (b, b’) E 8, 
then 

( UP~~~XY x yll[AlX, B/ Yl [a/x, b/y], 
[W-XY x yll[A’lX, B’/ Yl Ia’lx, b’lyl ) 

E [X x Y][A/X, B/Y]. 

That is, pairs are related if their corresponding compo- 
nents are related, as we would expect. 

It can be shown similarly, using the standard con- 
struction for lists, that lists are related if they have the 
same length and corresponding elements are related. 

Alternatively, suitable type constructors and individ- 
ual constants may be added to the pure polymorphic 
lambda calculus. In this case, for each new type con- 
structor an appropriate corresponding relation must be 
defined; suitable definitions of relations for pair and list 
types were given in Section 2. Further, for each new 
constant the parametricity condition must be verified: 
if c is a constant of type T, we must check that I+ c : T 
holds. It then follows 
terms built from the 
stants. 

that parametricity holds for any 
new type constructors and con- 

7 Fixpoints 

Every term in typed lambda calculus is strongly nor- 
malising, so if a fixpoint operator is desired it must be 
added as a primitive. This section mentions the addi- 
tional requirements necessary to ensure that the fixpoint 
primitive satisfies the abstraction theorem. 

Frame models associate with each type A a set DA. 
In order to discuss fixpoints, we require that each set 
have sufficient additional structure to be a domain: it 
must be provided with an ordering G such that each 
domain has a least element, I, and such that limits of 
directed sets exist. Obviously, we also require that all 
functions are continuous. 

What are the requirements on relations? The obvious 
requirement is that they, too, be continuous. That is, 
if A : A H A’, and xi is a chain in A, and 2: is a 
chain in A’, and (zi, xi’) E A for every i, then we require 
that (u xi, u xi) E A also. But in addition to this, we 
need a second requirement, namely that each relation 
A is strict, that is, that (IA, J-A,) E A. If we restrict 
relations in this way, then it is no longer true that every 
function a : A -+ A’ may be treated as a relation; only 
strict functions may be treated as such. 

With this restricted view of relations, it is easy to 
show that the fixpoint operator sati&es the parametric- 
ity theorem. As usual, for each type A define fixA as 
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he function 

sllch that fizz f = Uj’ 1~. Parametricity holds if 
(fix, fix) E VA (A -+ A) ---) A. This will be true 
if fcr each A : A # A’ and each (j,f’) E A -+ A 
we have (fizA f,fiz..~f f’) E A. Recall that the con- 
clition on f and f’ means that if (2,~‘) E A then 
(f c, j’ 5’) E A. Now, since all relations are strict, it fol- 
lows that (IA, IA!) E A; hence (f IA, f’ 1~‘) E A; and, 
in general, (j’ IA, f” IA’) E 4. It follows, since all re- 
lations are continuous, that (Uji IA, u f” LA!) E 4, 
as required. 

Note that the restriction to strict relations here is 
similar to the restriction to strict coercion functions in 
[BCGS89], and is adopted for similar reasons. 

The requirement that relations are strict is essen- 
tial. For a counterexample, take A to be the domain 
{I, true, false}, and take A : A 4 A to be the constant 
relation such that (z, true) E A for all 5. The relation 
A is continuous but not strict. Let j be the constant 
function f z = fake and let f’ the identity function 
f’ z = z. Then A --) A relates f to f’, but A does not 
relate fixA f = f&e to fizA f’ = 1. 

The restriction to strict arrows is not to be taken 
lightly. For instance, given a function r of type 

r : VA.A’ -) A* 

parametricity implies that 

TA’ 0 a* = a* 0 TA 

for all functions a : A - A’. If the fixpoint combinator 
appears in the definition of r, then we can only conclude 
that the above holds for strict a, which is a significant 
restriction. 

The desire to derive theorems from types therefore 
suggests that it would be valuable to explore program- 
ming languages that prohibit recursion, or allow only 
its restricted use. In theory, this is well understood; we 
have aheady noted that any computable function that is 
provably total in second-order Peano arithmetic can be 
defined in the pure polymorphic lambda calculus, with- 
out using the fixpoint as a primitive. However, practical 
languages based on this notion remain terra incognita. 
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