
Software security, secure programming

A brief introduction to Frama-C

Master M2 Cybersecurity, CSI & MoSiG

Academic Year 2018 - 2019

The Frama-C plateform

An open-source collaborative plateform for the analysis of C programs
http://frama-c.com/index.html

I developed by the CEA List and INRIA Saclay

I offers an integrated set of code analysis plug-ins:
I runtime-error detection (RTE)
I value analysis (VSA)
I dependency analysis and slicing
I control-flow-grah and call-graph computations
I property proof using weakest preconditions computations (WP)
I etc.

→ we are going to use essentially RTE, VSA, and (possibly) WP . . .

2 / 8

Some reminders about Value-Analysis1

Goal: staticaly compute an (over-approximated !) set of values, for each
variable, at each program location

Principle

Abstract Interpretation

I “compute” the program behavior using an abstract semantics
(using abstract domains of values and abstract operations)
as an iterative fix-point computation

I loop termination enforced/accelerated using widening & narrowing
operators
(over-approximate the loop behavior)

Outcomes
I help to detect potential runtime errors (arithmetic overflow, invalid

memory access, etc.)
I may produce false positives (i.e., non existing bugs) when the

over-approximation is too coarse

1(see previous lectures for more details !)
3 / 8

Using Frama-C

Through its graphical user interface:
frama-c-gui example.c or, to produce runtime error

assertions: frama-c-gui -rte -rte-all example.c or, to
run value analysis (VSA): frama-c-gui -val example.c

Plugin Access also through the Analyses menu:
Rtegen, Value analysis and WP

A possible workflow (for each example):

1. Generate the runtime assertions (Rtegen)
→ verify that you understand them . . .

2. Run the value analysis
→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
I try to add some extra assertions (and loop invariants ?)
I optionally, try to use WP to prove them ?
I re-run the VSA with these new assertions . . .

4 / 8

Using Frama-C

Through its graphical user interface:
frama-c-gui example.c or, to produce runtime error

assertions: frama-c-gui -rte -rte-all example.c or, to
run value analysis (VSA): frama-c-gui -val example.c

Plugin Access also through the Analyses menu:
Rtegen, Value analysis and WP

A possible workflow (for each example):

1. Generate the runtime assertions (Rtegen)
→ verify that you understand them . . .

2. Run the value analysis
→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
I try to add some extra assertions (and loop invariants ?)
I optionally, try to use WP to prove them ?
I re-run the VSA with these new assertions . . .

4 / 8

Using Frama-C

Through its graphical user interface:
frama-c-gui example.c or, to produce runtime error

assertions: frama-c-gui -rte -rte-all example.c or, to
run value analysis (VSA): frama-c-gui -val example.c

Plugin Access also through the Analyses menu:
Rtegen, Value analysis and WP

A possible workflow (for each example):

1. Generate the runtime assertions (Rtegen)
→ verify that you understand them . . .

2. Run the value analysis
→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
I try to add some extra assertions (and loop invariants ?)
I optionally, try to use WP to prove them ?
I re-run the VSA with these new assertions . . .

4 / 8

Using Frama-C

Through its graphical user interface:
frama-c-gui example.c or, to produce runtime error

assertions: frama-c-gui -rte -rte-all example.c or, to
run value analysis (VSA): frama-c-gui -val example.c

Plugin Access also through the Analyses menu:
Rtegen, Value analysis and WP

A possible workflow (for each example):

1. Generate the runtime assertions (Rtegen)
→ verify that you understand them . . .

2. Run the value analysis
→ verify that you understand the results
Why some (obvious ?) assertions may not be validated ?

3. If you thing the code is incorrect/unsecure, try to strengthen it and goto 1

4. Otherwise, if you think the code is correct:
I try to add some extra assertions (and loop invariants ?)
I optionally, try to use WP to prove them ?
I re-run the VSA with these new assertions . . .

4 / 8

The assertion language ACSL
Ansi-C Specification Language

I first order logic

I use C types (int, float, pointers, arrays, etc.) + Z + R

I built-in predicates for memory access: valid, separated
→ allows to express memory-level requirements (beyond the C
semantics)

I used as special comments:

/*@ */

⇒ have a look to the short tutorial:
http://frama-c.com/acsl_tutorial_index.html

5 / 8

Example of assertion

I valid memory access:
\valid(a) means that address a refers to
a memory location correctly allocated (w.r.t. the C type of a)

\valid(p)
\valid(t+i)

\valid(t+)(0..n-1)

I pre- and post- conditions

\requires x<= n && \valid(t+x)
\ensures (t+x) = x

I loop invariants, assertions

loop invariant z==x+y
assert x>=0

I etc.

6 / 8

The value analysis plug-in

(Evolved) Value Analysis

I Based on Abstract Interprattion to compute abstract variable domains
I Fully automated, but can be user-guided through ACSL annotations
I mainly used to discharge runtime-error asssertions (RTE), but internaly

used by other plugins . . .

Some practical informations

I abstract domains = value sets and intervals (non relational domains)
I controlling approximations (time vs memory)

I syntactic loop unrolling (-ulevel)
I semantic unrolling (-slevel)

→ useful when widenning operators are too coarse
I adding ACSL loop invariants, or extra assertions . . .

7 / 8

Lab Session

Objective:

Evaluate the strengths and weaknesses of static analysis tools
(like Frama-C) for source-level vulnerability detection . . .

1. Play with the examples/exercices provided in the course web page . . .

2. You can also check if the vulnerabilities in the C files of Lab session 1
are detected by Frama-C ?

8 / 8

	Overview

