
Université Grenoble Alpes Grenoble INP
UFR IM2AG ENSIMAG

Master 2 CyberSecurity
Software Security and Secure Programming

Exercices on Access Control and Information-Flow

Exercise 1

Let consider the following code, where security classes are ordered S > C > U
(constant values being in class U):

x : integer class S;
y,z : integer class C;
t : integer class U;

y := 2; z:= 3;

 x := y+z ;
 if (y<5) then

t := 4;
 else

t := 3;

We require that a user of given security class should not get access to
information belonging to a higher class.

Q1. Is this program correct for a user of class C ?

Q2. And for a user of class U ?

Exercise 2

Assuming parameters n and k are "high" (confidential), is this function potentially leaking
information ? And if yes, where and how ?

int crypto_secretbox_open
 (unsigned char *m, const unsigned char *c,

unsigned long long clen,
 const unsigned char *n, const unsigned char *k)
{
 int i;
 unsigned char subkey [32];
 if (clen < 32) return -1;
 subkey = crypto_stream_salsa20(32,n,k);
 if (crypto_auth_hmacsha512_verify(c,c+32,clen -32, subkey)!=0)
 return -1;
 crypto_stream_salsa20_xor(m,c,clen ,n,k);
 for (i = 0;i < 32;++i)
 m[i] = 0;
 return 0;
}

Exercise 3

We consider the following function:

1 void buildfname (char *gecos , char *login , char * buf)
2 {
3 char *p;
4 char *bp = buf ;
5
6 for (p = gecos ; *p != '\0 ' && *p != ',' && *p != ';' && *p != '%'; p ++){
7 if (*p == '&') {
9 strcpy (bp , login);
10 *bp = toupper (* bp);
11 while (* bp != '\0 ')
12 bp ++;
13 } else {
14 bp ++;
15 *bp = *p;
16 }
17 }
18 *bp = '\0 ';
19 }

The objective is to identify vulnerable statement able to write untrusted (i.e. user controlled)
values into memory. We use the following notation:

• a value is said tainted (T) if it depends on a user input;
• it is said untainted (U) otherwise.

Q0. Explain why/how this taint analysis problem is related to non-interference ?

Q1. Which instructions perform memory write operations (i.e, are potentially vulnerable) ?

Q2. Assuming both parameters gecos and login are tainted, how does this
taint propagate to potentially vulnerable instructions ?

Q3. Same question if only gecos is tainted

Q4. Same question if only login is tainted

Exercise 4

 In some languages like Java the compiler checks if (local) variables are initialized before being
used (objects and global variables are initialized by the compiler).

For instance compiling the following programs will fail:

P1 : { x := 3; y:= (x+3); z := (y+z); }
P2 : { x := 3; if (x > 10) then y:=1 ; else z:= 2 ; end ; x:= (y+3); }

Q1. With respect to variable initialization, several solutions can be adpoted depending on the
programming language semantics:

1) nothing is done (no verification)
2) uses of uninitialized variable are detected at runtime
3) variables are initialized by the compilers
4) uses of uninitialized variable are detected at compile time

Discuss these different options with respect to:
1) cost

2) consequences from a safety and/or security point of view

Q2. Propose an algorithm allowing to compute at compile time the set of non-initialized
variable for a small language (assignment, conditional statement, iteration).

Exercise 5

We consider a Java Class C1 with a public method m1() allowing to perform some computations
on a secret resource key and returning some integer value. Clearly, this method should not be
called by any untrusted caller. To ensure that, the caller should provide as a parameter to
m1() some credential as a string s.
A check is performed within m1() to verify that the caller is legitimate. When it is the case,
permission P, allowing to read key is granted. Later on this permission is disabled (when no
longer required). The corresponding code (in pseudo Java) is given below.

import java.util.* ;

class C1 {

int key[N] ; // secret resource of size N

public int m1 (String s, int length) {
 // s is used to authenticate the caller
 int i, sum, result ;
 b = checkAcess(s) ;
 if (b) enablePermission(P) ; // give read acces to buffer key
 try {
 if (b) {

 i=0 ;
 sum= 0 ;
 while (i<length) {

 sum = key[i] + sum ;
 i = i+1 ;

 } ;
 disablePermission(P) ; // disable acccess to buffer key
 if (sum>0)

 result = Hash(sum); // returns a positive hash value
 else

 result = -1 ;
 return result ;

 }
 } catch (IndexOutofBoudsException e) {

 // in case key is accessed out of bounds
 System.out.println("Error !") ;

 }
}
}

Q1. Why is it necessary/useful to explicitly enable permissions to read key inside m1()(since the
caller credential is already explicitly checked beforehand) ? Indicate in which conditions
enabling this permission is required or not required ...

Q2. The way permission P is enabled/disabled inside m1() is clearly insecure. Indicate why,
and how to correct it.

Q3. If this code was written in C or C++, it would not be possible to enable/disable permission
P like in Figure 2. Explain (in a few lines) which other solutions could be used in terms of access
control (indicating their advantages and drawbacks).

Q4. If a trusted caller executes method m1(), which information could it get about secret
buffer key ?Assuming that function call Hash(sum) returns no confidential information about
sum, does m1() leak some confidential information about key ? If yes, which information, if not,
why not ?

