
Software Security & Secure Programming (L. Mounier)

Written Exam - Tuesday January the 23rd, 2018

Duration: 2 hours - Answers can be written either in English or in Flench.
All documents allowed apart books - Calculators are forbidden.

This exam contains two distinct parts:

1. One exercise, supposed to be solved in about 30 minutes;

2. Some questions on a research paper, allow th30 to read the paper and answer these questions

Exercise. (- 6 pts)

We consider the following C program which contains a buffer-ouerfl,ow vulnerability at line 13:

int
n

x
T

Grenoble INP
Master CybserSecurity

scanf ("Td" , kx)
Y:x+1 ;

y-y*2;
r[v] :";

UGA
Year 2017-18

BO1

2

3
4
5

6
Fz
¡

8
I

10

11

t2
13

L4

15

1t 0

BI

while (y <: 5) {
if (x> 0) {

y-y*3;
x: x*2 ;

] else {

Ì
Ì

\l

Figure 1: A vulnerable program and its Control-Flow Graph (CFG)

First we try to detect this vulnerability using symbolic execution, for instance with a tool like PathCrawler.

Q1. We consider the CFG path E}0-81-82-85.

1. Give its path predicate.

2. Give a solution (i.e., an input value of x) for this path predicate (making this path executable).

3. Give a necessary condition to follow this path and activate the vulnerability.
Is there a solution (i.e., an input value of x) which satisfies this condition ?

scanf("Vod", &x);

Y=x+l;

Y<=5 ?

x>0 ? end

y = y*3;

x =x+2i

y = y*2;

TlYl = x;

Q2. We consider the CFG path B0-E}1-82-84-81-82-E}5.

1. Give its path predicate.

2. Give â necessary condition to follow this path and activate the vulnerability. Is there a solution (i.e.,
an input value of x) which satisfies this condition ? You may consider two situations:

o the C type int is interpreted as set Z

¡ the C type int is interpreted as fixed-size unsigned integers (e.g. 32 bits long)

Q3. We now consider a static verification approach based on abstract interpretation, for instance with
a tool like Frama-C "value analysis".

1. Add the assertions in the code allowing to detect runtime errors related to arithmet'ic ouerflnws and
out-of-bound, buffer accesses.

2. We would like to know which of these assertions could be discharged using the i,ntervo,l abstract doma'in
(i.e., the initial input value of x is in l-oo, +oo]) Explain your answer by giving the abstract values
obtained for x and y at entry and exit points ofeach basic block ofthe CFG (after one iteration, and,
if necessar¡ after several iterations).

Questions on a research paper. (- 14 pts)

Read the paper given in appendix, from the beginning to the end of section 5, answering the following
questions. The objective of this part of the exam is to evaluate your ability to understand a description of
a vulnerability detection tool (its strengths and limitations, with respect to other approaches you know).
When answering the following questions you should not copy entire sentences from the paper but rather
illustrate your point with examples from your own.

Ql [sections L and 2].

Explain the objective of Dowser and the workflow it follows. You should answer in about 10 lines, including
picture of the tool workflow, indicating what is produced by each intermediate step.

Q2. Step L [section 3].

1. What are the input/outputs of this step ?

2. Is it based on a static or dynamic code and,lvsis technique ?

3. Explain in a few lines how the "scores" are chosen and what is the motivation behind fsection 3.3]

4. Is there some example of buffer overflow patterns not caught by this heuristic
(i.e., with a score equal to 0) ?

Q3. Step 2 [section 4].

1. What are the input/outputs of this step ?

2. Is it based on a static or dynamic code analysis technique ?

3. Explain in a few lines how i,mpli,ci.t (or control) dependencies are dealt with, giving some examples

lsection 4.1]

4. Where do come "false dependencies", how are they weed out. What is the main requirement for this
step ? [section 4.2]

Q4. Step 3 [section 5.]

1. What are the input/outputs of this step ?

2. Is it based on a static or dynamic code analysis technique ?

3. Explain why loops are a problem for symbolic execution ? How is this problem solved in Dowser ?

fs it a sound, approach ? (why, illustrate your answer with some example ?)

Q5. To summarize ...
1. Is it possible to get false positives with Dowser ? And false negatives ?

2. Do you think a similar approach could be applied to other kinds of vulnerabilities (e.g., use-after-free) ?

Explain your a,nswer in a few lines

3. Is it mandatory to have the source code of the target program to run Dowser ? Why, or why not ?

4. Do you think Dowser would be able to detect the vulnerability illustrated in Exercise 1 ?

Dowsing for overflows: A guided fazzer to find buffer boundary violations

Istvan Haller
VU University Amste rdam

Asia Slowinska
VU Unive rsity Amsterdam

Herbert Bos
VU U nive rsity Amste rdam

Matthias Neugschwandtner
Vienna University of Technology

Memory protectors include common solutions like
shadow stacks and canaries [lll, and more elaborate
compiler extensions like WIT [3]. They are effective in
preventing programs from being exploited, but they do
not remove the overflow bugs themselves. Although it
is better to crash than to allow exploitation, crashes are

undesirable too!
Thus, vendors prefer to squash bugs beforehand and

typically try to find as many as they can by means of fuzz
testing. Fuzzers feed programs invalid, unexpected, or
random data to see ifthey crash or exhibit unexpected be-
haviorl. As an example, Microsoft made fuzzing manda-
tory for every untrusted interface for every product, and
their fuzzing solution has been running 2417 since 20O8
for a total of over 400 machine years [18].

Unfortunatel¡ the effectiveness of most fuzzers is
poor and the results rarely extend beyond shallow bugs.
Most fuzzers take a 'blackbox' approach that focuses
on the input format and ignores the tested software tar-
get. Blackbox fuzzing is popular and fast, but misses
many relevant code paths and thus many bugs. Blackbox
fuzzing is a bit like shooting in the dark: you have to be
lucky to hit anything interesting.

\Vhitebox fuzzing, as implemented in [18, 7, 10], is
more principled. By means of symbolic execution, it ex-
ercises all possible execution paths through the program
and thus uncovers all possible bugs - although it may
take years to do. Since full symbolic execution is slow
and does not scale to large programs, it is hard to use it to
find complex bugs in large programs [7, 10]. In practice,
the aim is therefore to first cover as much unique code as

possible. As a result, bugs that require a program to ex-
ecute the same code many times Qike buffer overflows)
are hard to trigger except in very simple cases.

Eventual completeness, as provided by symbolic ex-
ecution, is both a strength and a weakness, and in this
paper, we evaluate the exact opposite strategy. Rather

lSee http : / / www . ftzzíng . org / for a collection of available
fuzzers

Abstract
Dowser is a 'guided' fuzzer that combines taint tracking,
program analysis and symbolic execution to find buffer
overflow and underflow vulnerabilities buried deep in a
program's logic. The key idea is that analysis of a pro-
gram lets us pinpoint the right areas in the program code
to probe and the appropriate inputs to do so.

Intuitively, for typical buffer overflows, we need con-
sider only the code that accesses an array in a loop, rather
than all possible instructions in the program. After find-
ing all such candidate sets of instructions, we rank them
according to an estimation of how likely they are to con-
tain interesting vulnerabilities. Vy'e then subject the most
promising sets to further testing. Specifically, we first
use taint analysis to determine which input bytes influ-
ence the anay index and then execute the program sym-
bolically, making only this set of inputs symbolic. By
constantly steering the symbolic execution along branch
outcomes most likely to lead to overflows, we were able
to detect deep bugs in real programs (like the nginx
webserver, the inspircd IRC servet and the ffmpeg
videoplayer). Two of the bugs we found were previ-
ously undocumented buffer overflows in f fmpeg and¡trhe

poppler PDF rendering library.

1 Introduction

We discuss Dowser, a 'guided' fuzzer that combines taint
tracking, program analysis and symbolic execution, to
find buffer overflow bugs buried deep in the program's
logic.

Buffer overflows are perennially in the top 3 most dan-
gerous software enors [2] and recent studies suggest

this will not change any time soon [41, 38]. There are

two ways to handle them. Either we harden the software
with memory protectors that terminate the program when
an overflow occurs (at runtime), or we track down the
vulnerabilities before releasing the software (e.g., in the
testing phase).

USENIX Association 22nd USENIX Security Symposium 49

than testing all possible execution paths, we perform spof
checks on a small number of code areas that look likely
candidates for buffer overflow bugs and test each in turn.

The drawback of our approach is that we execute a

symbolic run for each candidate code area-in an itera-
tive fashion. Moreover, we can discover buffer overflows
only in the loops that we can exercise. On the other hand,
by homing in on promising code areas directly, we speed

up the search considerably, and manage to find compli-
cated bugs in real programs that would be hard to find
with most existing fuzzers.

Contributions The goal we set ourselves was to de-
velop an efficient fuzzer that actively searches for buffer
overflows directly. The key insight is that careful analy-
sis of a program lets us pinpoint the right places to probe

and the appropriate inputs to do so. The main contribu-
tion is that our fuzzer directly zooms in on these buffer
overflow candidates and explores a novel 'spot-check'
approach in symbolic execution.

To make the approach work, we need to address two
main challenges. The first challenge is where to steer

the execution of a program to increase the chances of
finding a vulnerability. Whitebox fuzzers 'blindly' try to
execute as much of the program as possible, in the hope
of hitting a bug eventually. Instead, Dowser uses infor-
mation about the target program to identify code that is
most likely to be vulnerable to a buffer overflow

For instance, buffer overflows occur (mostly) in code
that accesses an array in a loop. Thus, we look for such

code and ignore most of the remaining instructions in the
program. Furthermore, Dowser performs static analysis
of the program to rank such accesses. We will evalu-
ate different ranking functions, but the best one so far
ranks the affay accesses according to complexity. The
intuition is that code with convoluted pointer arithmetic
and/or complex control flow is more prone to memory
errors than straightforward array accesses. Moreover,þy
focusing on such code, Dowser prioritizes bugs that are

complicated-typically, the kind of vulnerabilities that
static analysis or random fuzzing cannot find. The aim
is to reduce the time wasted on shallow bugs that could
also have been found using existing methods. Still, other
rankings are possible also, and Dowser is entirely agnos-
tic to the ranking function used.

The second challenge we address is how to steer the
execution of a program to these "interesting" code areas.

As a baseline, we use concolic execution [43]: a com-
bination of concrete and symbolic execution, where the
concrete (fixed) input starts off the symbolic execution.
In Dowser, we enhance concolic execution with two op-
timizations.

First, we propose a new path selection algorithm.
As we saw earlier, traditional symbolic execution aims

at code coverage-maximizing the fraction of individ-
ual branches executed t7, l8l. In contrast, we aim
for poínter value coverage of selected code fragments.
Wl:ren Dowser examines an interesting pointer derefer-
ence, it steers the symbolic execution along branches that
are likely to alter the value ofthe pointer.

Second, we reduce the amount of symbolic input as

much as we can. Speciflcally, Dowser uses dynamic
taint analysis to determine which input bytes influence
the pointers used for array accesses. Later, it treats only
these inputs as symbolic. While taint analysis itself is not
ne% we introduce novel optimizations to arrive at a set

of symbolic inputs that is as accurate as possible (with
neither too few, nor too many symbolic bytes).

In summary, Dowser is a new fuzzer targeted at ven-
dors who want to test their code for buffer overflows and
underflows. Vy'e implemented the analyses of Dowser as

LLVM [23] passes, while the symbolic execution step

employs S2E UOl. Finally, Dowser is apractícal solu-
tion. Rather than aiming for all possible security bugs, it
specifically targets the class of buffer overflows (one of
the most, if not the most, important class of attack vec-
tors for code injection). So far, Dowser found several
real bugs in complex programs like nginx, f fmpeg, and
inspircd. Most of them are extremely difficult to find
with existing symbolic execütion tools.

Assumptions and outline Throughout this paper, we
assume that we have a test suite that allows us to reach
the array accesses. Instructions that we cannot reach, we
cannot test. In the remainder, we start with a big picture
and the running example (Section 2). Then, we discuss
the three main components of Dowser in turn: the se-

lection ofinteresting code fragments (Section 3), the use

of dynamic taint analysis to determine which inputs in-
fluence the candidate instructions (Section 4), and our
approach to nudge the program to trigger a bug during
symbolic execution (Section 5). We evaluate the system
in Section 6, discuss the related projects in Section 7. We
conclude in Section 8.

2 Big picture

The main goal of Dowser is to manipulate the pointers
that instructions use to access an array in a loop, in the
hope of forcing a buffer ovemrn or undem¡n.

2.1 Running example

Throughout the paper, we will use the function in Fig-
ure 1 to illustrate how Dowser works. The example is
a simplifled version of a buffer undemrn vulnerability in
the nginx-O . 6. 32 web server []. A specially crafted

50 22nd USENIX Security Symposium USENIX Association

*u++ - ch;
opdons here */

input tricks the program into setting the u pointer to a lo-
cation outside its buffer boundaries. When this pointer is

later used to access memory, it allows attackers to over-
write a function pointer, and execute arbitrary programs
on the system.

Figure I presents only an excerpt from the original
function, which in reality spans approximately 400 lines
of C code. It contains a number of additional options in
the switch statement, and a few nested conditional i¡
statements. This complexity severely impedes detecting
the bug by both static analysis tools and symbolic exe-
cution engines. For instance, when we steered S2E t'l0l
all the way down to the vulnerable function, and made

solely the seven byte long uri path of the HTTP message

symbolic, it took over 60 minutes to track down the prob-
lematic scenario. A more scalable solution is necessary

in practice. Without these hints, S2E did not find the bug
at all during an eight hour long execution.2 In contrast,
Dowser finds it in less than 5 minutes.

The primary reason for the high cost of the analysis in
S2E is the large number of conditional branches which
depend on (symbolic) input. For each of the branches,

symbolic execution first checks whether either the con-
dition or its negation is satisfiable. When both branches

are feasible, the default behavior is to examine both. This

2All measurements in the paper use the sanre environment as in
Section 6.

(line 4), storing the result in a heap buffer pointed to by u=r->uri.data (line
5). The whlle-switch implements a state machine that consumes the input one
characûer at a time, and Eansform it into a canonical form in u.

The source of the vulnerabilþ is in the sr¡r-dot-doÈ state. When provided with a

carefully crafæd path, nginx wrongly sets the beginning of u to a location some-
where below r->uri.data. Suppose the uri is " / / . . /foo". When p reaches

" /foo", u points to (r->uri.dat.a+), and state is sw-dot-dot (line 30). The
routine now decreases u by 4 (line 32), so that it points to r->uri . data. As long
as the memory below r->uri.daÈa does not contain the character "/", u is fur-
ther decreased (line 33), even though it crosses buffer boundaries. Finally, the user
provided input (nfoo") is copied to the location pointed to by u.

In this case, the overwritten buffer contains a pointer ûo a function, which will
be eventually called by ngínx. Thus the vulnerability allows attackers to modify a

function pointer, and execute an arbitary program on the system.
It is a complex bug that is hard ûo ûnd with existing solutions. The many condi-

tional statements that depend on symbolic input are problematic for s¡¡mbolic execu-
tion, while input-dependent iadirectjumps are also a bad match for static analysis.

A buffer underrun vulnerability in nginx

Nginx is a web server-in ûenrìs of market share across the million busiest sites,
it ranls third in the world. At the time of writing, it hosts about 22 million domains

'it-ill:i*lTl;iomplex-ur¡(nsx-http-æquest-t
*r)

worldwide. versions prior ro 0.6.38 had a particularly nasty vulnerability [l j.state - sw usual;
,"-!¡{p-rtìql-sqrli 4.!:9Ilnp-u! -,,---..---,- When nginx receives an HTT? request, the parsing fr¡nctionu chaF u ' F>ur¡,datr; // store nomallzed uñ here
ujharch - *p++; //the curentchaEster nginx¡ttp-parse-complex-uri, frst nornalizes a uri path in p=r->uri-starÈ
whllê fD <- r->uri end) {

swii¿ñ (state) {-
caæ tw uauat:

ff(ch ---',f')
state - sw slash:

else ¡f t* man:y morè
ch - *p++; ôæak;

caæ tr tlathl
if {ch :- '/')

t++ r ch¡
etse if(ch -- '.')

state - sw dot; t¡++ - ch;
elæ If /* manÌmote opdons herc*/
ch _ *p++; öæak

- chi
here */

Fig. l: A simplified version of a buffer undemrn vulnerability in nsinx

caæ il dott
if (ch ¿- '.')

state = sw dot doti *g++
else ll f mant mõre ootlons
ch - *p++; öj€akt

u --a¡
7') u-¡
opdons here */

câæ tr dot dotl
lf {ch :- '/)

stôte ' sw slash:
rfrrra f*fu:ll t-

elæ lf /* many more
ch - *p++; break;

procedure results in an exponentially growing number of
paths.

This real world example shows the need for (l) fo-
cusing the powerful yet expensive symbolic execution on
the most interesting cases, (2) making informed branch
choices, and (3) minimizing the amount of symbolic
data.

2.2 High-leveloverview

Figure 2 illustrates the overall Dowser architecture.
First, it performs a data flow analysis of the target pro-

gram, and ranks all instructions that access buffers in
loops @. While we can rank them in different ways and
Dowser is agnostic as to the ranking function we use,

our experience so far is that an estimation of complexity
works best. Specifically, we rank calculations and con-
ditions that are more complex higher than simple ones.

In Figure I, u is involved in three diff'erent operations,
i.e., u++, u--, and u-=4, in multiple instructions inside a

loop. As we shall see, these intricate computations place
the dereferences of u in the top 37o of the most complex
pointer accesses across nginx.

In the second step @, Dowser repeatedly picks high-
ranking accesses, and selects test inputs which exercise
them. Then, it uses dynamic taint analysis to determine
which input bytes influence pointers dereferenced in the
candidate instructions. The idea is that, given the for-

USENIX Association 22nd USENIX Security Symposium 51

anil2'i4l = o:

while0 {
aÍ{i++l = x'

I
stat¡can¿ly6¡s
frnds ¡ntersst¡ng
âtray aæesses
¡n loops:

....and ranks lhem using ta¡nl analys¡s. Oowser
dêtom¡n6s wh¡ch inputs ¡nlluen@
the nost ¡nterest¡ng accesses

symbol¡c oxêdlion gxplorgs paüìs to th8
/-å\ ¡nt€resting âcæss€s (mãk¡ng only lhe
\, relevant ñelds symbol¡c) wlth a preferenæ

for paths that may lead lo ov€rlows
@

Addresssanit¡zer (or sme other
bufgt ovg.flow detector) ¡s ussd tc
detect lhe aclual ovôrflowso Ø

Fig. 2: Dowser- highJevel overview.

mat of the input, Dowser fuzzes (i.e., treats as sym-
bolic), only those fields that affect the potentially vul-
nerable memory accesses, and keeps the remaining ones
unchanged. In Figure 1, we learn that it is sufficient to
treat the uri path in the HTTP request as symbolic. In-
deed, the computations inside the wlnerable function are
independent of the remaining part of the input message.

Next @, for each candidate instruction and the input
bytes involved in calculating the array pointsr, Dowser
uses symbolic execution to try to nudge the program to-
ward overflowing the buffer. Specifically, we execute
symbolically the loop that contains the candidate instruc-
tions (and thus should be tested for buffer overflows)-
treating only the relevant bytes as symbolic. As we shall
see, a new path selection algorithm helps to guide execu-
tion to a possible overflow quickly.

Finally, we detect any overflow that may occur. Just

like in whitebox fuzzers, we can use any technique to do
so (e.g., Purify, Valgrind [30], or BinArmor [37]). In our
work, we use Google's AddressSanitizer [34] @. It in-
struments the protected program to ensure that memory
access instructions never read or write so called, "ûqi-
soned" red zones. Red zones are small regions ofmeln-
ory inserted inbetween any two stack, heap or global ob-
jects. Since they should never be addressed by the pro-
gram, an access to them indicates an illegal behavior.
This policy detects sequential buffer over- and under-
flows, and some of the more sophisticated pointer cor-
ruption bugs. This technique is beneficial when search-
ing for new bugs since it will also trigger on silent
failures, not just application crashes. In the case of
nginx, AddressSanitizer detects the underflow when the
u pointer reads memory outside its buffer boundaries
(line 33).

We explain step @ (static analysis) in Section 3,

step @ (taint analysis) in Section 4, and step @ (guided
execution) in Section 5.

3 Dowsing for candidate instructions

Previous research has shown that software complexity
metrics collected from software artifacts are helpful in
finding vulnerable code components [16, 44,35,32].
However, even though complexity metrics serve as useful
indicators, they also suffer from low precision or recall
values. Moreover, most ofthe current approaches oper-
ate at the granularity of modules or files, which is too
coarse for the directed symbolic execution in Dowser.

As observed by Zimmermann et al. [44], we need met-
rics that exploit the unique characteristics of vulnerabili-
ties, e.g., buffer overflows or integer overuns. In princi-
ple, Dowser can work with any metric capable of ranking
groups of instructions that access buffers in a loop. So,
the question is how to design a good metric for complex-
ity that satisfies this criterion? In the remainder of this
section, we introduce one such metric: a heuristics-based
approach that we specifically designed for the detection
of potential buffer overflow vulnerabilities.

We leverage a primary pragmatic reason behind com-
plex buffer overflows: convoluted pointer computations
are hard to follow by a programmer. Thus, we focus on
'complex' anay accesses realized inside loops. Further,
we limit the analysis to pointers which evolve together
with loop induction variables, i.e., arc repeatedly updated
to access (various) elements of an anay.

Using this metric, Dowser ranks buffer accesses by
evaluating the complexity of data- and control-flows in-
volved with the array index (pointer) calculations. For
each loop in the program, it first statically determines
(l) the set of all instructions involved in modifying an ar-
ray pointer (we will call this a pointer's analysís group),
and(2) the conditions that guard this analysis group, e.9.,
the condition of an j- f or whi le statement containing the
array index calculations. Next, it labels all such sets with
scores reflecting their complexity. We explain these steps
in detail in Sections 3.1,3.2, and 3.3.

52 22nd USENIX Security Symposium USENIX Association

5 5

5:u1=r+uri.datai

tr; ... 26:u6=u2++i 32.v7=t2-4ì

cult to keep track of, so is the value ofp. To assess the

complexity of var, Dowser analyzes its data flow, and
determines the analysis group, AG (var) (as discussed
in Section 3.1). Moreover, we recursively analyze the
analysis groups ofother variables influencing var and p
inside the loop. Thus, we obtain a number of analysis
groups which we rank in the next step (Section 3.3).

3.3 Scoring array accesses

For each amay access realized in a loop, Dowser assesses

the complexity of the analysis groups constructed in Sec-
tions 3.1 and 3.2. For each analysis group, it consid-
ers all instructions, and assigns them points. The more
points an AG cumulatively scores, the more complex it
is. The overall rank of the array access is determined
by the maximum of the scores. lntuitively, it reflects the
most complex component.

The scoring algorithm should provide roughly the
same results for semantically identical code. For this rea-
son, we enforce the optimizations present in the LLVM
compiler (e.9., to eliminate common subexpressions).
This way, we minimize the differences in (the amount
of) instructions arising from the compiler options. More-
over, we analyzed the LLVM code generation strategies,
and deflned a powerful set of equivalence rules, which
minimize the variation in the scores assigned to syntac-
tically different but semantically equivalent code. Vy'e

highlight them below.
Table I introduces all types of instructions, and dis-

cusses their impact on the final score. In principle, all
common instructions involved in array index calculations
are of the order of 10 points, except for the two instruc-
tions that we consider risþ: pointer casts and functions
that return non-pointer values used in pointer calculation.

The absolute penalty for each type of instruction is not
very important. However, we ensure that the points re-
flect the difference in complexity between various code
fragments, instead of giving all array accesscs the same
score. That is, instructions that complicate the array in-
dex contribute to the score, and instructions that compli-
cate the index a lot also score very high, relative to other
instructions. In Section 6, we compare our complexity
ranking to alternatives.

4 UsÍng tainting to find inputs that matter

Once Dowser has ranked array accesses in loops in or-
der of complexity, we examine them in tum. Typically,
only a small segment of the input affects the execution
of a particular analysis group, so we want to search for
a bug by modifying solely this part of the input, while
keeping the rest constant (refer to Section 5). In the cur-
rent section, we explain how Dowser identifies the link

{
I u1,u10)

33:u8=O(u7.u9)

(t

+ ,u6,u9)

t
Fig. 3: Data flow graph and analysis group associated with
the pointer u from Figure l. For the sake of clarity, the figure
presents pointer arithmetic instructions in pseudo code. The
PHI nodes represent locations where data is merged from dif-
ferent control-flows. The numbers in the boxes represent points
assignedby Dowser.

3.1 Building analysis groups

Suppose a pointer p is involved in an "interesting" array
access instruction accn in a loop. TIrc analysís group as-
sociated with acco, AG (accp) , collects all instructions
that influence the value of the dereferenced pointer dur-
ing the execution of the loop.

To determine AG (accp), we compute an intraproce-
dural data flow graph representing operations in the loop
that compute the value ofp dereferenced in accn. Then,
we check ifthe graph contains cycles. A cycle indicates
that the value of p in a previous loop iteration affects its
value in the current one, so p depends on the loop induc-
tion variable.

As mentioned before, this part of our work is built on
top of the LLYMIZ3I compiler infrastructure. The static
single assignment (SSA) form provided by LLVM trans-
lates directly to data flow graphs. Figure 3 shows an ex-
ample. Observe that, since all dereferences of pointrjnu
share their data flow graph, they also form a slngle anll-
ysis group. Thus, when Dowser later tries to find an il-
legal anay access within this analysis group, it tests all
the dereferences at the same time-there is no need to
consider them separately.

3.2 Conditions guarding analysis groups

It may happen that the data flow associated with an array
pointer is simple, but the value of the pointer is hard to
follow due to some complex control changes. For this
reason, Dowser ranks also control flows: the conditions
that influence an analysis group.

Say that an instruction manipulating the anay pointer
p is guarded by a condition on a variable var, o.g.,
if (var<l0) {*p++=0; }. If the value of var is diffi-

USENIX Association 22nd USENIX Security Symposium 53

Instructions RationaleÆquivalence rules Points
Array index manipulations
Basic index arithmetic instr.,
i.e., addition and subtraction

GetEl-emPtr, that increases or decreases a pointer by an index, scores the same.

Thus, operations on pointers are equivalent to operations on offsets. An instruction
scores I if it modifies a value which is not passed to the next loop iteration.

1or5

Other index a¡ithmetic instr
e.g., division, shift, or xor

These instructions involve more complex pointer calculations than the standard
add or sub. Thus, we penalize them more.

10

Dift'erent constant values Multiple constants used to modify a pointer make its value hard to follow.
It is easier to keep track of a pointer that always increases by the same value.

l0
per value

Constants used to access

fields of structures

We assume that compilers handle accesses to structures correctly. We only consider
constants used to compute the index of an anay, and not the address of a field.

0

Numerical values

determined outside the loop
Though in the context of the loop they are just constants, the compiler cannot
predict their values. Thus they are difficult to reason about and more error prone.

30

Non-inlined functions
returning non-pointer values

Since decoupling the computation of a pointer from its use might easily lead to
mistakes, we heavily penalize this operation.

500

Data rnovement instructions Moving (scalar or pointer) data does not add to the complexity of computations. 0
Pointer manipulations
Load a pointer calculated
outside the loop

It denotes retrieving the base pointer of an object, or using memory allocators. We
treat all remote poinTers in the same way - all score 0.

0

GetEfemPtr An LLVM instruction that computes a pointer from a base and offset(s). (See add.) I or5
Pointer cast operations Since the casting instructions often indicate operations that are not equivalent to

the standard pointer manipulations (listed above), they are worth a close inspection
100

Table 1: Overview of the instructions involved in pointer arithmetic operations, and their penalty points.

between the components of the program input and the

different analysis groups. Observe that this result also
benefits other bug finding tools based on fuzzing, notjust
Dowser and concolic execution.

We focus our discussion on an analysis group
AG (accp) associated with an array pointer dereference
accp. We assume that we can obtain a test input r
that exercises the potentially vulnerable analysis group.
While this may not always be true, we believe it is a rea-

sonable assumption. Most vendors have test suites to test
their software and they often contain at least one input
which exercises each complexloop.

4.1 Baseline: dynamic taint analysis

As a basic approach, Dowser perfoms dynamic taint
analysis (DTA) t3ll on the input r (tainting each input
byte with a unique color, and propagating the colors on
data movement and arithmetic operations). Then, it logs
all colors and input bytes involved in the instructions in
AG (accp) . Given the format of the input, Dowser maps
these bytes to individual fields. In Figure l, Dowser frnds
out that it is sufficient to treat uri as symbolic.

The problem with DTA, as sketched above, is that it
misses implicit flows (also called control dependencíes)

entirely |4,211. Such flows have no direct assignment
of a tainted value to a variable-which would be prop-
agated by DTA. Instead, the value of a variable is com-
pletely determined by the value of a tainted variable in
a condition. In Figure l, even though the value of u in

line 12 is dependent on the tainted character ctr in line
11, the taint does not flow directly to u, so DTA would
not report the dependency. Implicit flows are notoriously
hard to track [36, 9], but ignoring them completely re-
duces our accuracy. Dowser therefore employs a solu-
tion that builds on the work by Bao et al. [6], but with a

novel optimization to increase the accuracy of the analy-
sis (Section 4.2).

Like Bao et al. [6], Dowser implements stíct control
dependencies. Intuitivel¡ we propagate colors only on
the most informative (or, information preserving) depen-
dencies. Specifically, we require a direct comparison be-
tween a tainted variable and a compile time constant. For
example, in Figure l, we propagate the color of cn in line
l l to the variables state and u in line 12. However, we
would keep state and u untainted if the condition in
line I I for instance had been either 'if (ch t:' /' ') " or
"if (ch<'/') u. As implicit flows are not the focus of
this paper we refer interested readers to [6] for details.

4.2 Field shifting to weed out false dependencies

Improving on the handling of strict control dependen-
cies by Bao et al. [6], desøibed above, Dowser adds a

novel technique to prevent overtainting due to false de-
pendencies. The problems arise when the order of fields
in an input format is not fixed, e.9., as in HTTP, SMTP
(and the commandline for most programs). The approach
from [6] may falsely suggest that a field is dependent on
all fields that were extracted so far.

54 22nd USENIX Security Symposium USENIX Association

I nput:

il-Ã-B-eDEE
FDÃE*EE-I
f,BDTEET

lÃEÕ-..l

Fig. 4: The figure shows how Dowser shuffles an input
to determine which fields really influence an analysis group.

Suppose a parser extracts fields of the input one by one, and the
analysis group depends on the fields B and D (with colors B and
D, respectively). Colors in handlers show on which flelds the
subsequent handlers are strictly dependent [6], and the shaded

rectangle indicates the colors propagated to the analysis group.
Excluded colors are left out of our analysis.

For instance, liqhttpd reads new header flelds in a
loop and compares them to various options, roughly as

follows:
whjle O {

if (cmp (field. "Content") == 0)

åfse lrtcmptrietd, ¡Range'ir) =:0)

ålse exit t-rl;
field = extract*new header fieldO;

l

As the parser tests for equivalence, the implicit flow will
propagate from one field to the next one, even if there
is no real dependency at all! Eventually, the last field
appears to depend on the whole header.

Dowser determines which options really matter for the
instructions in an analysis group by shijling the fields
whose order is not fixed. Refer to Figure 4, and suppose
we have run the program with options A, B, C, D, and E,
and our analysis group really depends on B and D. Once
the message gets processed, we see that the AG does not
depend on E, so E can be excluded from further analysis.
Since the last observed color, D, has a direct influence on
the AG, it is a true dependence. By performing a circular
shift and re-trying with the order D, A, B, C, E, Dovìþr
finds only the colors corresponding to A, B, D. Thus, we
can leave C out of our analysis. After the next circular
shift, Dowser reduces the colors to B and D only.

The optimization is based on two observations: (l) the
last field propagated to the AG has a direct influence on
the AG, so it needs to be kept, (2) all flelds beyond this
one are guaranteed to have no impact on the AG. By per-

forming circular shifts, and running DTA on the updated
input, Dowser drops the undue dependencies.

Even though this optimization requires some minimal
knowledge ofthe input, we do not need full understand-
ing of the input grammar, like the contents or effects of
fields. It is sufficient to identify the flelds whose order is
not fixed. Fortunately, such information is available for
many applications---especially when vendors test their
own code.

5 Exploringcandidateinstructions

Once we have leamt which part of the program input in-
fluences the analysis group Ac (accp) , wefi)zz this part,
and we try to nudge the program toward using the pointer
p in an illegal way. More technically, we treat the inter-
esting component of the input as symbolic, the remaining
part as fixed (concrete), and we execute the loop associ-
ated with AG (accp) symbolically.

However, since in principle the cost of a complete loop
traversal is exponential, loops present one of the hard-
est problems for symbolic execution [19]. Therefore,
when analyzing a loop, we try to select those paths that
are most promising in our context. Specifically, Dowser
prioritizes paths that show a potential for knotty pointer
arithmetic. As we show in Section 6, our technique sig-
nificantly optimizes the search for an overflow.

Dowser's loop exploration procedure has two main
phases: learning, and bug finding. lnthe learning phase,
Dowser assigns each branch in the loop a weight approx-
imating the probability that a path following this direc-
tion contains new pointer dereferences. The weights are
based on statistics on the variety of pointer values ob-
served during an execution of a short symbolic input.

Next, in the bug finding phase, Dows¿r uses the
weights determined in the first step to filter our unin-
teresting parts of the loop, and prioritize the important
paths. Whenever the weight associated with a certain
branch is O, Dowser does not even try to explore it fur-
ther. In the vulnerable nqinx parsing loop from which
Figure I shows an excerpt, only 19 out of 60 branches
scored a non-zero value, so were considered for the ex-
ecution. In this phase, the symbolic input represents a
real world scenario, so it is relatively long. Therefore, it
would be prohibitively expensive to be analyzed using a
popular symbolic execution tool.

In Section 5.1, we briefly review the general con-
cept ofconcolic execution, and then we discuss the two
phases in Sections 5.2 and 5.3, respectively.

5.1 Baseline: concrete + symbolic execution

Like DART and SAGE U7, l8l, Dowser generates new
test inputs by combining concrete and symbolic execu-
tion. This technique is known as concolic execution [33].
It runs the program on a concrete input, while gather-
ing symbolic constraints from conditional statements en-
countered along the way. To test altemative paths, it sys-
tematically negates the collected constraints, and checks
whether the new set is satisfiable. If so, it yields a new
input. To bootstrap the procedure, Dowser takes a test
input which exercises the analysis group AG (accp) .

As mentioned already, a challenge in applying this ap-
proach is how to select the paths to explore flrst. The

Colors ¡n handlers:
A_hand0 B,hand0 C handO D_hand0 E-hand()

EFfir];¡aCeOA
tD--l tÃ6"CpEl
lEt--f:nceoe

Excluded
colors:

-
rcF---t
aeF--]

USENIX Association 22nd USENIX Security Symposium 55

classic solution is to use depth first exploration of the
paths by backtracking 1221. However, since doing so

results in an exponentially growing number of paths to
be tested, the research community has proposed various
heuristics to steer the execution toward unexplored re-
gions. We discuss these techniques in Section 7.

5.2 Phase 1: learning

The aim of the learning phase is to rate the rrue and
fal- se directions of all conditional branches that depend
on the symbolic input in the loop r,. For each branch, we
evaluate the likelihood that a particular outcome will lead
to unique pointer dereferences (i.e., dereferences that we
do not expect to find in the alternative outcome). Thus,
we answer the question of how much we expect to gain
when we follow this path, rather than the alternative. We
encode this information into weights.

Specifically, the weights represent the likelihood of
unique access pattems. An access pattern of the pointer
p is the sequence of all values of p dereferenced during
the execution of the loop. In Figure 1, when we denote
the initial value of u by u6, then the input " / / . . /" tng-
gers the following access pattem of the pointer ui (us,
uo+1, uo t2, ug-2, .. .).

To compute the weights, we leam about the effects
of individual branches. In principle, each of them may
(a) directly affect the value of a pointer, (b) be a precon-
dition for another important branch, or (c) be irrelevant
from the computation's standpoint. To distinguish be-
tween these cases, Dowser analyzes all possible execu-
tions of a short symbolic input. By comparing the sets

of p's access patterns observed for both outcomes of a
branch, it discovers which branches do not influence the
diversity of pointer dereferences (i.e., are irrelevant).

Symbolic input In Section 4, we identified which part of
the test input r we need to make symbolic. We denote
this by rs. In the learning phase, Dowser executes the
loop I exhaustively. For performance reasons, we thJi;-
fore further limit the amount of symbolic data and make

only a short fragment of r5 symbolic. For instance, for
Figure l, the learning phase makes only the first 4 bytes

of uri symbolic (not enough to trigger the bug), while
scaling up to 50 symbolic bytes in the bug flnding phase.

Algorithm Dowser exhaustively executes r, on a short
symbolic input, and records how the decisions taken at
conditional branch statements influence pointer derefer-
ence instructions. For each branch n along the execu-
tion path, we retain the access pattern ofp realized dur-
ing this execution, Ap (p) . We informally interpret it as

"ifyou choose the true (respectivel¡ ratse) direction
of the branch b, expect access pattern Ap (p) (respec-

tively, ae/ (p))". This procedure results in two sets of
access pattems for each branch statement, for the taken

and non-taken branch, respectively. The final weight of
each direction is the fraction of the access patterns that
were unique for the direction in question, i.e., were not
observed when the opposite one was taken.

The above description explains the intuition behind
the leaming mechanism, but the full algorithm is more
complicated. The problem is that a conditional branch ¡
might be exercised multiple times in an execution path,
and it is possible that all the instances of u influence the
access pattem observed.

Intuitively, to allow for it, we do not associate access
patterns with just a single decision taken on b (rrue or
fatse). Rather, each time b is exercised, we also retain
which directions were previously chosen for b. Thus, we
still collect "expected" access patterns if the true (re-
spectively, f a j-se) direction of ¡ is followed, but we aug-
ment them with a precondition. This way, when we com-
pare the true and fafse sets to determine the weights
for b, we base the scores on a deeper understanding of
how an access pattern was reached.

Discussion It is important for our algorithm to avoid
false negatives: we should not incorrectly flag a branch
as irrelevant-it would preclude it from being explored
in the bug finding phase. Say that j-nstr is an instruction
that dereferences the pointer p. To leam that a branch
directly influences insrr, it suffices to execute it. Sim-
ilarly, since branches retain full access patterns of p, the
information about instr being executed is also 'rpropa-
gated" to all its preconditions. Thus, to completely avoid
false negatives, the algorithm would require full cover-
age of the instructions in an analysis group. We stress
that we need to exercise all instructions, and not all paths
in a loop. As observed by [7], exhaustive executions of
even short symbolic inputs provide excellent instruction
coverage in practice.

While false positives are undesirable as well, they only
catse Dowser to execute more paths in the second phase

than absolutely necessary. Due to the limited path cov-
erage, there are corner cases, when false positives can
happen. Even so, in nginx, only 19 out of 60 branches
scored a non-zero value, which let us execute the com-
plex loop with a 50-byte-long symbolic input.

5.3 Phase 2: hunting bugs

In this step, Dowser executes symbolically a real-world
sized input in the hope of finding a value that triggers a
bug. Dowser uses the feedback from the learning phase
(Section 5.2) to steer its symbolic execution toward new
and interesting pointer dereferences. The goal of our
heuristic is to avoid execution paths that do not bring any
new pointer manipulation instructions. Thus, Dowser
shifts the target of symbolic execution from traditional
code coverage to pointer value coverage.

56 22nd USENIX Security Symposium USENIX Association

Dowser's strategy is explicitly dictated by the weights.
As a baseline, the execution follows a depth-ûrst explo-
ration, and when Dowser is about to select the direction
of a branch o that depends on the symbolic input, it ad-
heres to the following rules:

o If both the true and fal-se directions of b have

weight 0, we do not expect b to influence the vari-
ety of access patterns. T1tus, Dowser chooses the
direction randomly, and does not intend to examine
the other direction.

o If only one direction has a non-zero weight, we ex-
pect to observe unique access pattems only when
the execution paths follows this direction, and
Dowser favors it.

o If both of u's directions have non-zero weights, both
the true and fal-se options may bring unique ac-
cess pattems. Dowser examines both directions,
and schedules them in order oftheir weights.

Intuitively, Dowser's symbolic execution tries to select
paths that are more likely to lead to overflows.

Guided fuzzing This concludes our description of
Dowser's architecture. To summarize, Dowser helps
fuzzing by: (l) finding "interesting" array accesses,

(2) identifying the inputs that influence the accesses, and
(3) fuzzing intelligently to cover the anay. Moreover,
the targeted selection procedure based on pointer value
coverage and the small number of symbolic input values

allow Dowser to find bugs quickly and scale to larger ap-
plications. In addition, the ranking of array accesses per-
mits us to zoom in on more complicated array accesses.

6 Evaluation

In this section, we first zoom in on the running exanlBle
of nginx from Figure I to evaluate individual compo-
nents of the system in detail (Section 6. 1). In Section 6.2,
we consider seven real-world applications. Based on
their vulnerabilities, we evaluate our dowsing mecha-

nism. Finally, we present an overview of the attacks de-

tected by Dowser.

Since Dowser uses a 'spot-check' rather than 'code
coverage' approach to bug detection, it must analyze
each complex analysis group separately, starting with the
highest ranking one, followed by the second one, and so

on. Each of them runs until it finds a bug or gets termi-
nated. The question is when we should terminate a sym-
bolic execution run. Since symbolic execution of a single
loop is highly optimized in Dowser, we found each bug
in less than I I minutes, so we execute each symbolic run
for a maximum of 15 minutes.

60 80 100 120 1,r0

Analysis groups

Fig. 5: Scores ofthe analysis g¡oups in nginx.

Our test platform is a Linux 3.1 system with an
Intel(R) Core(TM) i7 CPU clocked at 2.7GHz with
4096K8 L2 cache. The system has 8GB of memory. For
our experiments we used an OpenSUSE 12.1 install. V/e
ran each test multiple times and present the median.

6.1 Case study: Nginx

In this section, we evaluate each of the main steps of our
fuzzer by looking at our case study of nginx in detail.

6.1.1 Dowsing for candidate instructions

We measure how well Dowser highlights potentially
faulty code and filters out the uninteresting fragments.

Our first question is whether we can filter out all the
simple loops and focus on the more interesting ones.
This turns out to be simple. Given the complexity scor-
ing function from Section 3, we find that across all appli-
cations all analysis groups with a score less than 26 use
just a single constant and at most two instructions modi-
fying the offset ofan array. Thus, in the remainder ofour
evaluation, we set our cut-offthreshold to 26 points.

As shown in Table 2, ngínx has 517 outermost loops,
and only 140 analysis groups that access arrays. Thus,
we throw out over TOVo of the loops immediately3. Fig-
ure 5 presents the sorted weights of all the analysis
groups in nginx. The distribution shows a quick drop
after a few highly complex analysis groups. The long
tail represents the numerous simple loops omnipresent in
any code. 55.7Vo of the analysis groups score too low to
be of interest. This means that Dowser needs to examine
only the remaining 44.37o, i.e., 62 out of 140 analysis
groups, or at most l2Vo of all loops. Out of these, the
buffer overflow in Figure I ranks 4th.

6.1.2 Taint analysis in context of hunting for bugs

In Section 4 we mentioned that 'traditional' dynamic
taint analysis misses implicit flows, i.e., flows that have

3In principle, if a loop accesses multiple arrays, it also contains
multiple access groups. Thus, these 140 analysis groups are located in
fewer than 140 loops.

E.oo
H000

Ë 800
'õ
€!600

Ë
4oo

Szoo
Eo

0 20 40

USENIX Association 22nd USENIX Security Symposium 57

