
Software Security

Application-level sandboxing

Erik Poll

1

Sandboxing

Runtime access control aka sandboxing is one of the standard ways to

provide security.

This involves rights and policies – to specify who is allowed to do what

1. conventional OS acccess control

2. language-level sandboxing in safe languages

• eg Java sandboxing using stackwalking

3. hardware-based sandboxing also for unsafe languages

• eg safe enclaves using Intel SGX

2

access control

within an

application

access control

of applications and

between applications

1. Operating System (OS) Access Control

See also Chapter 2 of the lecture notes

3

Classical OS-based security (reminder)

4

Hardware (CPU, memory, I/O peripherals)

process

A

Operating System (incl. file system)

process

B

access

control

rights &

policies

Signs of OS access control

5

Problems with OS access control

1. Size of the TCB

The Trusted Computing Base for OS access control is

so there will be software security flaws in the code.

The only safe assumption: a malicious process on a typical OS (Linux,

Windows, BSD...) will be able to get super-user/administrator rights.

2. Complexity

The tools & languages for expressing access control are very complex,

so people will make mistakes in access control policies and giving

access control rights

3. Expressivity / granularity

The OS cannot always provide the access control we want, because

policies are not expressive enough or because OS access control is at

the wrong 'level' to provide the level of granularity we want.

Note the fundamental conflict between the need for expressivity and the

desire to keep things simple.

6

huge

Complexity problem (resulting in privilige escalation)

UNIX access control used 3 permissions (rwx), for 3 categories of users

(owner, group, others), for files & directories.

Windows XP uses 30 permissions, 9 categories of users, and 15 kinds of

objects.

Example configuration flaw in XP access control, in 4 steps:

1. Windows XP uses Local Service or Local System services for privileged
functionality (where UNIX uses setuid binaries)

2. Permission SERVICE_CHANGE_CONFIG allows changing the

executable associated with a service

3. But... it also allows to change the account under which it runs, incl. to

Local System, which gives maximum 'root' privileges.

4. Many services mistakenly grant SERVICE_CHANGE_CONFIG to all

Authenticated Users...

7

Unintended privilige escalation in Windows XP

Unintended privilige escalation due to misconfigured access rights of

standard software packages in Windows XP:

[S. Govindavajhala and A.W. Appel, Windows Access Control Demystified, 2006]

Moral of the story (1) : KEEP IT SIMPLE

Moral of the story (2) : If it is not simple, check the details

8

Limits in granularity

The OS cannot distinguish components within a process, so cannot

differentiate access control for these, or access control between them

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

9

??

?

?

Limitation of classic OS access control

• A process has a fixed set of permissions

– Usually, all permissions of the user who started it

– But OS can fine-tune this, eg demanding access for additional

permissions at runtime

• Execution with reduced permission set may be needed temporarily

when executing untrusted/less trusted code.

For this OS access control is too coarse

One solution:

split a process into multiple processes,

with different access rights

Note: this can also reduce the size of the TCB, as some large & untrusted

components can run with reduced rights

10

The Chrome browser process is split into multiple OS processes

• (complex!) rendering engine is black box for browser kernel

• plugins also run as different processes

• Advantage: size of the TCB drastically reduced

Other browsers now do the same thing

Example: compartementalisation in Chrome

rendering engine:

handling HTML, CSS

javascript, XML, DOM,

rendering

rendering engine:

handling HTML, CSS

javascript, XML, DOM,

rendering

browser kernel:

cookie & passwd database, network

stack, SSL/TLS, window management

rendering engine:

handling HTML, CSS

javascript, XML, DOM,

rendering

11

one rendering engine per tab,
plus one for trusted content
(eg HTTPS certificate warnings)

no access to local file system
and to each other

one browser kernel
with full user privileges

rendering engine:

handling HTML, CSS

javascript, XML, DOM,

rendering

2. Language-level

access control

Chapter 4 of the lecture notes

12

Access control at the language level

In a safe programming language, access control can be provided within a

process, at language-level, because interactions between components can

be restricted & controlled

This makes it possible to have security guarantees in the presence of

untrusted code (which could be malicious or simply buggy)

• Without memory-safety, this is impossible. Why?

Because B can access any memory used by A

• Without type-safety, it is hard. Why?

Because B can pass ill-typed arguments to A's interface

process

trusted

module A

untrusted

module B

13

Language-level sandboxing

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

Execution engine

(eg Java or . NET VM)

14

Extensible applications

Sandboxing individual parts of a program is useful if you trust some parts

less than others

This is especially the case for extensible applications, where at runtime an

application can extend itself

15

Resources

OS

Internet

P

Code extension

Example: browser plugin

16

Resources

OS

Internet

Firefox

Browser plugin

libraries

Example: Java applet

17

Resources

OS

Internet

Firefox

Java applet

libraries

Java VM

Example: JavaCard smartcard

18

smartcard hardware

Java Card VM & APIs

mobile

phone

network

applet

1code download

applet

2

applet

n

controlled by

digital signatures

on code

Sand-boxing with code-based access control

 Language platforms such as Java and .NET provide code-based access

control which treats different parts of a program differently

 on top of the user-based access control of the OS

 Ingredients for such access control, as usual

1. permissions

2. components or protection domains

• in traditional OS access control, this is the user ID

3. policies

• which gives permissions to components,

ie. who is allowed to do what

19

code-based access control in Java

20

Example configuration file that expresses a policy

grant

codebase "http://www.cs.ru.nl/ds", signedBy "Radboud",

{ permission

java.io.FilePermission "/home/ds/erik","read";

};

grant

codebase "file:/.*"

{ permission

java.io.FilePermission "/home/ds/erik","write";

}

protection domains

permissions

• Permissions represent a right to perform some actions.

Examples:

– FilePermission(name, mode)

– NetworkPermission

– WindowPermission

• Permissions have a set semantics, so one permission can be a superset

of another one.

– E.g. FilePermission("*", "read")

includes FilePermission("some_file.txt", "read")

• Developers can define new custom permissions.

21

protection domains

• Protection domains based on evidence

1. Where did it come from?

• where on the local file system (hard disk) or where on the internet

2. Was it digitally signed and if so by who?

• using a standard PKI

• When loading a component, the Virtual Machine (VM) consults the

security policy and remembers the permissions

22

Virtual Machine

package trusted;

class Good {

void m1 ()

{

System.delete file; }

}

package evil;

class Bad {

void f1 () { System.delete file; }

}

23

Complication: methods calls

24

Virtual Machine

package trusted;

class Good {

void m1 ()

{

System.delete file; }

}

package evil;

class Bad {

Good g;

void f1 () { System.delete file; }

void f2()

{ g.m1(); }

}

Should

the file be

deleted ?

Complication: method calls

There are different possibilities here

1. allow action if top frame on the stack has permission

2. only allow action if all frames on the stack have permission

3.

Pros? Cons?

1. is very dangerous: a class may accidentally expose dangerous

functionality

2. is very restrictive: a class may want to, and need to, expose some

dangerous functionality, but in a controlled way

More flexible solution: stackwalking aka stack inspection

25

Exposing dangerous functionality, (in)securely

Class Good{

public void unsafeMethod(File f){

delete f; } // Could be abused by evil caller

public void safeMethod(File f) {

.... // lots of checks on f;

if all checks are passed, then delete f;} // Cannot be abused,

// assuming checks are bullet-proof

public void anotherSafeMethod(){

delete “/tmp/bla”; } // Cannot be abused, as filename is fixed.

// Assuming this file is not important..

}

26

Using visibility to restrict access to dangerous functionality?

Class Good{

private void unsafeMethod(File f){

delete f; } // could be abused by evil caller

public void safeMethod(File f) {

.... // lots of checks on f;

if all checks are passed, then delete f;} // cannot be abused,

// assuming checks are bullet-proof

public void anotherSafeMethod(){

delete “/tmp/bla”; } // Cannot be abused, as filename is fixed

// Assuming this file is not important

}

Making the unsafe method

invisible to untrusted code

helps, but is error-prone..

Some code in a big trusted

package might indirectly

expose access to this function.

Hence: stackwalking

27

Stack walking

• Every resource access or sensitive operation protected by a

demandPermission(P) call for an appropriate permission P

– no access without asking permission!

• The algorithm for granting permission is based on stack inspection aka

stack walking

Stack inspection first implemented in Netscape 4.0,

then adopted by Internet Explorer, Java, .NET

28

Components and permissions in VM memory

29

Component 2
Permissions

of component 2

System

Component

all

Permissions

Component 1
Permissions

of component 1

30

Process

C1 C2

C3

C5

C4

C8

C7

C6

Thread

Protection

domains

Stack walking: basic concepts

Suppose thread T tries to access a resource

Basic algorithm:

access is allowed iff

all components on the call stack have the

right to access the resource

ie

– rights of a thread is the intersection of

rights of all outstanding method calls

31

C3

C2

C7

C5

Stack for thread T:

C5 called by C7

called by C2 and C3

Stack walking

Basic algorithm is too restrictive in some cases

E.g.

– allowing an untrusted component to delete some specific files

– giving a partially trusted component the right to open speciallay

marked windows (eg. security pop-ups) without giving it the right to

open arbitrary windows

– giving an app the right to phone certain phone numbers (eg. only

domestic ones, or only ones in the mobile’s phonebook)

32

Stack walk modifiers

• Enable_permission(P):

– means: don’t check my callers for this permission, I take full

responsibility

– This is essential to allow controlled access to resources for less

trusted code

• Disable_permission(P):

– means: don’t grant me this permission, I don’t need it

– This allows applying the principle of real privilege (ie. only giving or

asking the privileges really needed, and only when they are really

need)

33

Stack walk modifiers: examples

34

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) fails because PD1 does not have

Permission P1

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

35

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) succeeds

EnablePermission(P1)

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

36

PD1 PD3PD2 demandPermission(P2)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P2) fails

DisablePermission(P2)

Will DemandPermission(P2) succeed ?

callscalls

Stack walking: algorithm

On creating new thread:

new thread inherit access control context of creating thread

DemandPermission(P) algorithm:

1. for each caller on the stack, from top to bottom:

if the caller

a) lacks Permission P: throw exception

b) has disabled Permission P: throw exception

c) has enabled Permission P: return

2. check inherited access control context

37

Using stack walking to restrict access to functionality

Class Good{

public void unsafeMethod(File f){

delete f; }

public void safeMethod(File f) {

... // lots of checks on f;

enablePermission (FileDeletionPermission);

delete f;}

public void anotherSafeMethod(){

enablePermission (FileDeletionPermission);

delete “/tmp/bla”; }

}

“I take full

responsibility

for my callers”

38

Typical programming pattern

The typical programming pattern in privileged components,

esp. in public methods accessible by untrusted code:

public methodExposingScaryFunctionality (A a, B b){

....; do security checks on arguments a and b

enable privileges (P1,P2);

do the dangerous stuff that needs these privileges;

disable privileges;

.... }

in keeping with the principle of least privilege

39

Spot the security flaw?

Class Good{

public void m1 (String filename) {

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

public void m2(byte[] filename){

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

}

40

TOCTOU attack (Time of Check, Time of Use)

Class Good{

public void m1 (String filename) {

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

public void m2(byte[] filename){

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

}

m1 is secure,

because Strings are

immutable

m2 is insecure,

because byte arrays

are mutable;

an attacker could

change the value

of filename after the

checks, in a multi-

threaded execution

41

Programming language platform vs OS

Note the similarity between

– a method call in which some permissions are enabled

– a Linux setuid root program or Windows Local System Service

that can be started by any user but runs in administrator mode

Both are trusted components that elevate the privileges of their clients

– hopefully in a secure way...

– if not: privilege elevation attacks

In any code review, such code requires extra attention!

42

Hardware-based sandboxing

- also for unsafe languages

43

Sandboxing in unsafe languages

• Unsafe languages cannot provide sandboxing at language level

• An application written in an unsafe language could still use sandboxing at

the level of the OS (like eg. Chrome does)

– ie. by splitting the code across different OS processes

• An alternative approach:

use sandboxing support provided by underlying hardware

• Additional benefit: drastically reducing the size of TCB, esp. keeping the

main OS outside of the TCB when executing security-sensitive code.

– less flexible that eg Java sandboxing,

but more secure by having a smaller TCB:

• the "platform", incl. VM and OS, no longer in the TCB

44

Example: security-sensitive code in larger program

45
Example from [N. van Ginkel et al, Towards Safe Enclaves, HotSpot 2016]

bugs or

malicious

code could

access

secret data

Isolating security-sensitive code with secure enclaves

46
Example from [N. van Ginkel et al, Towards Safe Enclaves, HotSpot 2016]

Enclave

Isolating security-sensitive code with secure enclaves

47
Example from [N. van Ginkel et al, Towards Safe Enclaves, HotSpot 2016]

Enclave

untrusted code

cannot access

sensitive data

Isolating security-sensitive code with secure enclaves

48
Example from [N. van Ginkel et al, Towards Safe Enclaves, HotSpot 2016]

Enclave

untrusted code

cannot jump to

the middle of procedure

(recall return-to-libc & ROP)

Secure enclaves

• Enclaves isolates part of the code together with data

– Code outside the enclave cannot access the enclave's data

– Code outside the enclave can only jump to valide entry points for the

code in the enclave

• Less flexible than stack walking:

– code in the enclave cannot inspect the stack as the basis for security

decisions

– not such a rich collection of permissions, and programmer cannot

define his own permissions

• More secure, because

– OS & VM are not in the TCB

– also some protection against physical attacks is possible

49

Analogy: SIM card in phone

A SIM also provide a secure enclave for providing some trusted functionality

(with a small TCB) to a larger untrusted application (with a larger TCB)

50

main CPU

OS

trusted

functionality

untrusted

applicationcalls

Realising safe enclaves

Different hardware-based mechanisms proposed to provide the isolation for

secure enclaves aka protected modules. incl.

1. Flicker: processor switches to a different mode, suspending the main

OS, with the help of a TPM

2. Physically separate hardware, eg SIM card or Secure Element in phone

3. Using Trusted Execution Enviroments (TEEs), where processor can run

in two modes, to offer a secure & an insecure world

– eg Intel SGX and ARM Trustzone

4. Using processor that can do memory access control based on the value

of the program counter: execution-aware memory protection (discussed

as buffer overflow countermeasure)

– more lightweight approach than TEE

51

Different attacker models for software

1. I/O attacker

2. malicious code attacker

inside the application

3. the platform level attacker

'inside' the platform under the application

Java sandboxing protects against 2, SGX enclaves also against 3

In all cases, the application itself will still have to make sure it exposes only

the right functionality, correctly & securily (eg. with all input validation in place) 52

application

malicious

component

malicious input

application

application

VM

OS

observable output

Recap

• Language-based sandboxing is a way to do access control within a

application: different access right for different parts of code

We want this

– to reduce the TCB for some functionality provided by that application

– when we run code from many sources on the same VM and don’t trust all of

them equally

– to limit code review to small part of the code

– ...

• Safe programming language like Java offer language mechanisms for this

• Hardware-based sandboxing can also achieve this also for unsafe

programming languages

– has much smaller TCB: OS and VM are no longer in the TCB

– but a less expressive & flexible mechanism

53

