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Contexte  et  positionnement  du  projet /  Context  and 
positioning of the proposal

From low confidence tools to high confidence results in software 
verification

Computer-aided verification technology aims at proving the correctness of software or hardware 
components with respect to a specification. In the case of software, the specification may be as simple 



as “the program does not crash”,  but it can also include higher-level requirements. The goal of 
verification is to prove that in no circumstance the software or hardware being analyzed can violate its 
specification. In comparison, “dynamic analysis” or “testing” approaches look for violations over a 
finite number of test cases, which the testers hope are representative of the usage of the component ; 
they cannot prove correctness in all usages.

Examples of verification tools (VTs, for short) include BDD-based model checkers 
(e.g. NuSMV, Cadence-SMV, enjoying much success in VLSI design), SAT-solvers 
(e.g. zChaff, Minisat, also used in VLSI design), refinement-based proof systems 
(e.g. the Atelier B, which was used for the development of the Paris Metro line 
14),  and static  analyzers  based on abstract  interpretation (e.g.  the Polyspace 
verifier, sold by Mathworks, or the Astrée tool, used by Airbus for its fly-by-wire 
controls).

A common objection is, however, that while the theory of software verification is 
mature  enough,  its  implementation  in  tools  may  contain  bugs.  Indeed, 
verification  tools  are  relative  large  software  items,  implementing  subtle 
algorithms  based  on  a  large  theoretical  background.  They  are  often  quasi-
prototypes, developed inside research projects. Users are rightly concerned that 
such tools may themselves contain bugs, and are reluctant to trust their results 
too much.

The purpose of  this  project  is  to  develop techniques so that  VTs produce,  in  
addition to a verdict (say, that the program conforms to some specification), a 
certificate for this fact. This certificate could then be used as evidence of the 
quality of the software. In the case of critical software with a certification process 
(e.g. avionics), the certificate could be given to the certification authorities.

A high-level of confidence can be reached by providing a certificate for each particular verdict of the 
tool. The idea of adding certificates to verdict of VTs was introduced in [Namjoshi] for model-
checkers of temporal formula. The tool is not trusted to be safe, and its output is considered as a mere 
guess. The certificate produced by the tool is then checked using a trusted certificate checker to 
demonstrate the accuracy of that guess.

Certificates provide a incredible gain of confidence in the verdict of a VT. The  
gain is confidence relies on the two following remarks:

● The certificate-checker uses much simpler algorithms than a verification 
tool.   It  does  not  search  for  a  solution;  instead,  it  only  checks  the 
correctness of the arguments that justify the verdict. In human terms, this 
is the difference between looking for the proof of a theorem (difficult and 
long)  and  checking  that  a  given  proof  is  correct  (much  simpler  and 
shorter). Since standards such as DO-178B require that tools upon which 
the safety of the system reside be certified to the same level of assurance 
as the system itself,  it is important that the proof checker is small  and 
simple  enough  for  its  certification  to  be  possible.  Small  proof-checkers 
(such as Coq or LF) are privileged candidates to play the role of certificate 
checkers. Coq has already been used in certification of security application 
at the highest level of assurance of the Common Criteria (an international 
norm for certification of security concerned applications).

● The  certificate  is  checked  independently  of  the  tool  that  produced  it. 
Hence  the  confidence  in  the  result  of  the  tool  only  depends  on  the 
confidence one have in the certificate-checker.  A verdict and certificate 



produced by an untrusted, unstable, prototype tool that is accepted by the 
certificate-checker can thus be used in certification.

The generation of certificates can bring prototypes of verification tools 
to  the  level  of  confidence  required  for  the  certification  of  critical  
systems.

Description  scientifique  et  technique  /  Scientific  and 
technical description

État de l'art / Background, state of art

Principles of verification tools
Software verification aims, on one hand, at ensuring that no execution of a given program can reach an 
error state (a state in which some local correctness condition has been violated), and, on the other 
hand, at ensuring that all executions of the program are finite. The first correctness criterion is called 
safety, whereas the second criterion (termination) belongs to the more general class of liveness 
properties (stating that infinitely often, something good must happen). 

A safety condition is provided to a verification tool as a (possibly infinite set of states), deemed to be 
safe. This condition can be expressed as an invariant in a logic used to reason about program states. 
The task of the verification tool is to verify that the set of reachable states of the program is included 
in the set of safe states. In other words, a verification condition reduces to (1) computing the set of 
reachable states of a program (or an over-approximation of it) and (2) verifying that the set of 
reachable states is included in the set of safe states. The first step is usually performed as a fixed point 
iteration of the transition relation of the program, whereas the second point reduces typically to 
verifying the validity of a logical entailment, or inclusion between the languages of two automata. 

The termination condition is, in general established by finding suitable ranking functions (mappings 
from the domain of program states to a well-founded domain). While guessing ranking functions is 
merely a heuristic task, proving that they decrease by each program step (more precisely, at least once 
in each program loop) can be done by checking the validity of an inequality in a domain-dependent 
logic. Equivalently, this inequality can be formulated as a language inclusion property (for a suitable 
class of automata) as well. 

Both safety and termination checks are based on (i) guessing (or inferring by fixpoint iteration) a 
formula describing a set of states or transitions, and then (ii) checking either validity of a logical 
entailment, or inclusion of the recognizable sets (languages). These problems are equivalent to 
checking satisfiability (or, equivalently, language emptiness) of the negated conditions. The given 
condition is valid if and only if the negated condition is unsatisfiable. Consequently, most verification 
tools use decision procedures (either SAT/SMT solvers or automata libraries). 

In almost all current automatic program analysis systems, the algorithms implementing the entailment 
checks provide a “yes” or “no” answer that the user has to trust, almost without means for guaranting 
that this answer is correct. For instance, if the VT proves relations between numerical variables using 



convex polyhedra, then the entailment check amounts to polyhedral inclusion, performed using the 
double representation of polyhedra (generators or constraints) — which involves some rather complex 
algorithms. This check can also be performed using a general purpose SMT-solver (in theory of linear 
inequalities). Recent work on abstract interpretation [Costan et al., CAV'05] [POPL'09] has tried to 
obtain invariants without using so-called widening operators in order to avoid the imprecisions and 
inefficiencies entailed by widening. Again, the correctness of these invariants can be proved by SMT 
(Satisfiability Modulo Theories) techniques.

Hence, software verification can often be reduced to to proving the unsatisfiability of a formula in a 
suitable logic. Indeed, many verification tools use a SAT/UNSAT solver modulo theory (SMT-solver 
for short). After 30 years of verification, two main classes of SAT/UNSAT algorithms have emerged: 
those based on standard mathematics and deductive reasoning and those based on automata. In the 
Certo project we identified a logic that is used in many program verification tools [Sumit+]: it can 
handle properties on simple data (boolean, integers, rationals) and arrays (or equivalently vectors of 
indexes and uninterpreted functions). Then, our effort to extend tools SAT/UNSAT algorithms for this 
logic can benefit to many verification tools.

A verification tools can be split in two parts (1. searching then 2. checking). Step 1 consists in finding 
(or guessing using heuristics) the reason for unsatisfiability ; then Step 2 uses the guess to checks the 
unsatisfiability. The former is difficult and time consuming ; the latter is simpler, efficient but it needs 
to be justified to certify the verdict of the tools. In the Certo project we shall focus on Step 2, 
extending tools to produces justifications. 

Since the seminal work of Floyd and Hoare [Floyd, Hoare], it has been known that the total 
correctness of a program can be split into: safety and termination. Checking safety properties of 
programs (e.g., assertion checking) amounts to (1) finding inductive invariants for loops and recursive 
functions, (2a) checking that these invariants are inductive, (2b) and then checking that these 
invariants entail the desired properties. On the other hand, proving program termination is done 
(traditionally) by (1) finding ranking functions and (2) checking that they decrease at least once in 
each program loop. 

Remark that the soundness of the final result does not reside in the correct guessing of the invariant (or 
the ranking function), but in the correctness of the verification done in Step 2: invariant inductiveness 
and entailment (or ranking function decreasing). 

Intensive use of SMT-solvers in software verification
Static  analyzers  based  on  predicate  abstraction,  steps  (2a,b)  use 
automated proving, often by SMT-solving. SMT-solving is also used for 
bounded  model  checking,  and  for  model  generation   for  unbounded 
model-checking. 

In almost all current automatic program analysis systems, the algorithms implementing steps (2a,b) 
provide a “yes” or “no” answer that the user has to trust, almost without means for guaranteeing that 
this  answer is  correct.  For instance, if  the VT proves relations between numerical variables using 
convex polyhedra, then the entailment check amounts to polyhedral inclusion, performed using the 
double representation of polyhedra (generators or constraints) — which involves some rather complex 
algorithms. This check can also be performed using a general purpose SMT-solver (in theory of linear 
inequalities). Recent work on abstract interpretation [Costan et al., CAV'05] [POPL'09] has tried to 
obtain invariants without using so-called widening operators in order to avoid the imprecisions and 
inefficiencies entailed by widening. Again, the correctness of these invariants can be proved by SMT.

SMT solvers, and, more generally, automatic provers, are also used as building blocks for analysis 



systems  based  on  predicate  abstraction  and  counterexample-based  refinement  (CEGAR).  Notable 
examples of such analyzers include Microsoft's SLAM tool, integrated into the product “device driver 
verifier”.  Again,  the  soundness  of  the  tool  relies  on  the  soundness  of  the  prover.  Many analysis 
systems use the prover Simplify as a “black box”. 

State-of-the-art  SMT solvers include Barcelogic1 (University of  Barcelona),  Yices2 (SRI),  and Z33 
(Microsoft Research). The source code of these tools is not available. Moreover, they do not provide 
proofs. Users are thus requested to trust “black boxes”. 

When a formula is satisfiable, all SMT-solvers return a witness: an assignment of the free variables of 
the formula that makes the formula true. In cases where a formula is unsatisfiable, the existing tools do 
not output any (unsatisfiability) arguments. Because of this asymmetry, we must, in general, trust their 
implementation. Some SAT solvers (e.g. Minisat) can provide unsatisfiability cores and some log that 
can be used to reconstruct a proof. Some SMT solvers (e.g., Yices) can be made to list the theory 
lemmas that they use. 

Nevertheless,  the gap between the existing state  of  art  and an SMT tool  that  is  able to output  
checkable proofs, is still big.

Crisis of confidence in software / Reliable software using certificates

More generally, the problem described for verification tools (how can we trust 
their  output for  critical  systems?)  also applies to  compilers.  There have been 
several  projects  of  formally  verified  compilers.  Xavier  Leroy  is  working  on  a 
project  to  build  a  C  to  PowerPC  compiler  with  formal  proofs  of  correctness 
[Leroy].  Interestingly,  instead  of  proving  the  full  compiler  to  be  correct,  he 
sometimes only proves the correctness of some verification phase. For instance, 
the  register  allocation  phase  colors  an  interference  graph,  and  this  complex 
procedure is not proved correct;  but then, its output is checked by a certified 
checker. 

Optimizing  compilers  also  use  automatic  provers  to  simplify  numerical  constraints.  The  Omega 
procedure  is  a  partial  decision  procedure  for  quantified  Presburger  arithmetic  that  was  originally 
developed to  perform loop optimization in  compilers.  It  has  known bugs.  A restricted version of 
Omega has been implemented as a tactic inside the Coq proof assistant. It produces a proof when it 
succeeds.  However no interface is  provided to use the  Omega  tactic out  of  Coq as  an automatic 
decision procedure. In many tools, the Omega procedure is still used (e.g. in Dfinder, see further) with 
no guarantee. 

The CompCert projet and other research projects  have focused on building correct-by-construction 
compilers [Leroy] and static analyzers [Pichardie+] based on a development in Coq. This is a salutary 
approach, but it cannot benefit to all valuable existing verification tools. One difficulty with correct-
by-construction static analyzers is that each abstract domain must be proved correct, by hand. The 
Certo projet aims at providing a justified SMT-solver that could be reused in many VTs and compiler 
optimizer instead of the current untrusted solvers.

Some mathematical theorems, most notably the 4-color theorem (all planar graphs can be colored with 
3 colors) and Kepler's conjecture (the best stacking for spheres is hexagonal), have been proved using 
computers : typically, the problem is reduced to a finite number of cases, and each case is checked 
algorithmically. Mathematicians have voiced concerns that such “proofs” could be erroneous due to 
bugs. In the case of Kepler's conjecture, Thomas Hales' proof relied on many numerical inequalities. 
Hales  has  since then launched a worldwide effort  to  produce formal  proofs  of  these  inequalities, 

1http://www.barcelogic.org/  

2http://yices.csl.sri.com/  

3http://research.microsoft.com/projects/Z3/  

http://research.microsoft.com/projects/Z3/
http://yices.csl.sri.com/
http://www.barcelogic.org/


known as project Flyspeck.4 One crucial difference though between Flyspeck and the problems that we 
plan to look into is that they target a specific class of formulas and can use human guidance (in a 
recent  PhD thesis,  a  few nonlinear  inequalities  were  proved),  while  we want  to  obtain automatic 
techniques suitable for a wide range of applications.

Objectifs  et  caractère  ambitieux/novateur  du  projet  /  Rationale 
highlighting the originality and novelty of the proposal

Transfer and [Valorisation] of the research in software verification

VERIMAG has been a pioneer in the development of model-checking techniques – software 
verification based on mathematical models.  Those techniques go beyond testing: Whereas a system 
cannot be exhaustively tested – the number of possible executions is in general infinite – exhaustivity 
can be achieved by mathematical means. Then, VERIMAG has, throughout time, developed a number 
of verification and analysis tools, based on various techniques (automata, polyhedral constraints, 
BDDs, SAT-solving...). 

None of these tools produced any independently checkable proofs, which limits their usefulness for 
some industrial applications. Industrial partners may be reluctant to trust academic tools developed 
without the costly procedures and testing enforced by the standards of critical industries. This lack of 
confidence limits the potential transfer and valorisation from research to industry. The proposal 
therefore builds upon laboratory expertise, but brings in a definite difference.

We plan to: evaluate various methods for producing proofs from commonly used proving techniques 
(invariant generation, SMT-solving, automata), instrument existing tools and develop prototypes tools 
implementing these verification techniques and generating proofs.

The main difficulty is bridging the gap between the “proof sketches” obtained by the instrumentation, 
and the level of details required by proof checker such as Coq. It may be necessary to design some 
intermediate models. Another difficulty is producing proofs of a reasonable length, within acceptable 
time, and for which the proof-checking is efficient. Experimentations on actual verification tools are
needed to drive research on proof reduction.

In addition to scientific publication, final products should include: 
– A system for producing proofs from SMT-solving. None of the SMT-solvers available now 

(Yices, Barcelogic, Z3...) produce such proofs.
– Extension of two verification tools developed in Verimag. These experimentations should 

demonstrate the feasibility of instrumentation and will be used in demonstrations to industrial 
partners and certification authorities.

4http://code.google.com/p/flyspeck/  

http://code.google.com/p/flyspeck/


Programme  scientifique  et  technique,  organisation  du 
projet  /  Scientific  and  technical  programme,  project 
management

Programme  scientifique  et  structuration  du  projet  /  Scientific 
programme, specific aims of the proposal

1. Algorithms
There are mainly two approaches to satisfiability checking. For Boolean Logic (SAT), graph-based 
methods are used. For Quantifier-free First Order Logic with linear real arithmetic propositions (SMT-
LRA)  a  combination  of  classical  SAT  solving  and  linear  programming  is  used;  other  kinds  of 
propositions  may use  e.g.  a  combination of  SAT and integer  linear  programming.  For  quantified 
logics,  such  as  Monadic  Second  Order  Logic  interpreted  over  words  and  trees  automata-based 
techniques  are  used.  When  developing  certification  methods,  we  must  take  into  account  the  two 
existing approaches to satisfiability checking. 

1.1 SAT/SMT Constraint Solving/Linear Programming Algorithms

Many current verification systems, internally use satisfiability testing (SAT) combined with a theory 
prover (satisfiability modulo theory, SMT). SMT algorithms generally combine DPLL SAT-solving 
with a decision procedure for theory conjunctions.

SMT first replaces each atomic proposition by a propositional variable (if necessary following some 
canonization),  then  solves  the  resulting  propositional  problem  using  SAT-solving  (DPLL 
algorithm).The resulting propositional instantiation is then interpreted as a conjunction in the theory, 
using a theory decision procedure. Either the conjunction is non contradictory and we have a model 
(actually, a collection of models), either it is contradictory; a minimal contradiction is extracted, and 
then its negation is added to the problem as a “theory lemma” and the SAT procedure is restarted. If 
the SMT problem is unsolvable, the SMT procedures terminates by proposing an unsolvable SAT 
problem consisting of the original problem plus the theory lemmas.5

SMT unsatisfiability proof certificates will thus need to include both a SAT unsatisfiability certificate 
and theory lemma certificates. For instance, a theory lemma certificate for the unsatisfiability of a 
system of linear real inequalities L1,...,Ln consists in positive coefficients α1,...,αn such that  α1 L1 

+ ... + αn  Ln is trivially unsatisfiable. SAT unsatisfiability certificates are more complex, and one task 
of the research project will be to find ways to use them in tractable ways.

Several approaches are possible, in isolation or combination : instrumenting an existing SMT solver, 
such as  Yices,  creating our  own SMT solver,  using the  unsatisfiability core  extraction and proof 
logging features of existing SAT solvers such as Minisat. Experiments will be needed to know the best 
method.

1.2 Automata

An important class of satisfiability checking methods is based on automata theory. Given a formula F 
we build an automaton A which recognizes (suitable encodings of) the models of F. The satisfiability 
problem is thus reduced to checking emptiness of automata. To apply this method, one usually needs 

5This  is  the  description  of  the  “lazy  theory”  approach,  where  SAT  is  solved  eagerly  and  the  resulting 
conjunction is then checked. In  practice,  one uses a more “eager” approach,  where partial  instantiations are 
tested for satisfiability.  For instance, for the theory of linear inequalities, incremental  simplex algorithms are 
used. This is only for efficiency reasons and does not change the final result, this is why we explained the 
simpler algorithm.



to work within a class of automata closed under boolean operations (union, intersection, complement) 
and has a decidable emptiness problem.  

This approach to satisfiability stems from the seminal works of Büchi [Büchi] and Rabin [Rabin], who 
established in this way powerful decidability results for the Monadic Second Order Logic interpreted 
over  (infinite)  words  and  trees,  respectively.  Subsequently,  Vardi  and  Wolper  [VardiWolper] 
developed the automata-based approach to model checking for linear-time temporal logic, which has 
become the mainstream technique for the verification of concurrent and/or reactive systems.  Their 
approach uses a proof-theoretic like tableaux construction that produces Büchi automata from Linear 
Temporal Logic formulas. 

Recently,  in  [HIV08a,HIV08b]  we  have  applied  automata-based  techniques  to  checking  the 
satisfiability of logics interpreted over vectors of integers. In this work,  we use flat counter automata 
to encode (possibly infinite) strings of integers.

From  a  practical  point  of  view,  the  main  difficulty  in  applying  automata-based  techniques  to 
satisfiability problems (that are raised usually as verification conditions) is twofold: 

1. Guaranteeing the faithfulness of encodings.

2. Ensuring  the  correct  implementation  of  boolean  operations  (union,  intersection  or 
complementation) on automata. As an example, recent tests performed with a mainstream tree 
automata library revealed a situation in which the intersection between an automaton and its 
complement was not empty. 

One of the goals of this project is certifying satisfiability checkers developed for integer vector logics. 
Since we use counter automata to encode the set of models of a formula, an unsatisfiability result is 
given in terms of a counter automaton that has no run leading to a final state.  The emptiness of a 
counter automaton is usually due to the unsatisfiability of a guard at certain control location, which 
can  be  detected  automatically.  The  challenge  is  to  use  the  emptiness  argument  for  the  counter 
automaton in order to build a certificate of unsatisfiability for the given formula. This certificate can 
be expressed, for instance, as a derivation in quantifier-free Presburger arithmetic with uninterpreted 
functions, and can be automatically checked by a dedicated proof checker. 

Even though the techniques used to generate certificates of unsatisfiability seem to pertain to a certain 
logic/class of automata, we aim at inferring general guidelines from particular techniques such as e.g., 
the ones used to attest emptiness of Büchi automata [KupfermanVardi]. A major obstacle here is that 
formal  proofs  usually  rely  on  axiomatized  domains,  whereas  automata  work  with  recognizable 
structures. To date, there are no feasible attempts to axiomatize general-purpose recognizable domains 
(e.g. words, trees, etc.) in order to generate proofs of emptiness automatically. This is currently an 
important open problem that we would like to tackle in this project.

2. Applications
As shown by the pioneering works of Floyd [Floyd] and Hoare [Hoare], verification of sequential 
programs rely on the two key concepts of (1) invariance and (2) progress. In this project, we aim at 
applying general unsatifiability certificates.

2.1 Soundness of abstractions

Abstraction is a technique that is used to reduce the mathematical model to check; it is intensively 
used in verification tools. When doing program analysis by either abstract interpretation or by model 
checking combined with predicate abstraction, it is important that the abstract model really represents 
all behaviors of the concrete system, otherwise the system may infer false properties. SMT-solving 
techniques can be used to check that an abstraction is correct by showing the unsatisfiability of a 
formula defining the behaviors not captured by the abstraction. If we have a proof-logging version of 
the SMT solver, then we automatically obtain a proof of correctness of the abstraction. This contrasts 



with more manual assisted-proof approaches [Pichardie+].

2.2 Correctness of invariants

An assertion in a program is an invariant property if it always holds when the execution reaches that 
program point.  The verification of a safety property is based on the computations of  an invariant 
property, followed by the verification that it entails the desired property. A certificate should contains 
(1) a proof of this entailment  which is obtained using a SMT-solving algorithm (noticing that the 
validity of Inv ⇒ Safe is equivalent to the unsatisfiability of Inv ∧ not(Safe)), and (2) a proof of the 
invariance of the Inv property. The latter consists in a proof by induction based on the 

The latter is based on Floyd-Hoare's proof techniques [Hoare,Floyd] which requires to prove that Inv 
holds as initial conditions of the program and that it is preserved by each program step, meaning that, 
if Inv holds as a precondition of an instruction then it still holds as a postcondition. All these subgoals 
of the proof are done using Hoare's triple {Precondition} Instruction {Postcondition}, they are 
acheived using Hoare's calculus of weakest liberal precondition (wlp) that transforms the triple into the 
equivalent implication Precondition ⇒ wlp(Inst,Postcondition), followed once again by a call to a 
SMT-solver. 
This well-known proof technique relies on an induction principle, thus it only works for invariants that 
can be proved by induction (they are called inductive invariants). Whereas the proof of inductive 
invariant can easily be generated, precise inductive invariants are difficult to discover. Often VTs 
computes non-inductive invariants that still are invariant properties and precise enough to get the 
proof (1) of entailment. Non-inductive invariants are easier to obtain but there is no straightforward 
technique for conducting the proof (2) of their invariance. So, one has to strengthen the invariants to 
make it inductive using refinement by counter examples proposed by [Bradley07].

We plan to use the standard proof technique for inductive invariants and we propose a new technique 
to prove  non inductive invariants which avoid strengthening. In general the inductive quality of an 
invariants  is  lost  during  abstraction  step  that  are  used  in  VTs  to  reduce  the  formula  using  non 
conservative simplifications. The tools computes a simplified formula F' that is implied by the original 
formula F. Recording the implication F ⇒F' and its proofs of validity it can then be used in the proof 
of invariance, avoiding the appeal to an inductive invariant. This novel technique can be though as 
successive refinements of invariants; it requires a strong connection with the computation steps of the 
VT.  It  should result  in less compact  and elegant  proofs than the standard technique for inductive 
invariants but it can be automated and avoid the difficult problem of strengthening invariants to make 
them inductive.

2.3 Termination

The  termination  problem  asks,  for  a  given  program  and  a  (possibly  infinite)  set  of  initial 
configurations, whether there exists an initial configuration in the set, starting with which the program 
has an infinite execution. Even though this problem is different in nature from the invariance problem 
(the difference is the same as between safety and liveness properties), the existing approaches are 
similar. 

The ranking functions method [Bradley] consists in defining a function that maps program states into a 
well-founded domain,  and showing that,  for  all  program loops and for all  states,  the value of the 
function decreases with each iteration of the loop. As the range of the ranking function is usually a 
domain which is known to be well-founded (positive integers, tuples of positive integers, multisets, 
etc.) the progress test is usually implemented as a validity condition. If the negation of the verification 
condition is unsatisfiable, then the choice of the ranking function is valid, and the program is shown to 
terminate.  The transition invariants method [PodelskiRybalchenko] is a generalization of the ranking 
functions method.



Proving termination of non-deterministic systems exhibits problems that are beyond the reach of the 
techniques above. Such is  the case of counter automata with non-deterministic transition relations 
(e.g., difference bound constraints) whose termination can be proved by different means. Namely, the 
termination problem for a counter automaton with difference bound transition relations is reduced to 
the presence of a cycle of negative weight in the constraint graph representing the execution of the 
automaton.

In  [BIL06],  we  have  developed  a  method  for  detecting  the  presence  of  such  negative  cycles  in 
constraint  graphs  of  unbounded  size.  The  method  is  based  on  a  translation  of  difference  bound 
relations  to  weighted  finite  automata.  A  certification  method  for  this  translation  will  be  used  to 
automatically generate termination proofs for counter automata. More generally, this would increase 
the confidence of the users in the implementation of the analysis method provided in [BIL06]. 

2.4 Exchange

Many verification tools deal with transition systems (a mathematical representation of programs) and 
variants of the logic of [Sumit+]  on arrays  and simple data. They internally use different  formats 
preventing cooperation between tools.  Producing  certificates  for  the  same  proof-checker  naturally 
provide an exchange format. It becomes possible for a tool to call another tool specialized on specific 
sub-problems (like a SMT-solver) and to integrate the resulting certificate in the construction of the 
main certificate. This generalizes the cooperation principle of [NelsonOppen] which was originally 
restricted to the exchange of equality relations. We shall use this feature in our experimentations on 
VTs using SMT-solvers.

[NelsonOppen] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. 
ACM Transactions on Programming Languages and Systems, 1(2):245–257, . (TOPLAS) 

3. Experiments

3.1 Péron-Halbwachs' analyser of programs manipulating arrays

Péron & Halbwachs developed a static analyzer that discovers properties of programs manipulating 
arrays [PéronHalbwachs]. The PH's analyzer is based on a fixpoint computation of inductive invariants 
using abstract interpretation.  We plan to instrument the tool to make it producing on-demand a 
certificate of invariance of the discovered property. The certificate will take the form of a proof based 
on the standard Floyd-Hoare's proof techniques for inductive invariant.

The source code of the tools is available and the developer of the tools is located in Verimag. 
Therefore we can then experiment a direct instrumentation of the code: we distinguish functions that 
implement the heuristics of the tools (they are responsible of precision, termination) and semantic 
functions which are accountable for correctness. Only those functions need to be instrumented. A 
justified result is a couple (e, ∇ϕ) made of a data e and a proof that the property  holds for e. Aϕ  
semantic function f (e1,..., en) = e is instrumented by replacing each parameter with a justified entry, 
leading to f ( (e1,∇ 1ϕ ),...,(en,∇ nϕ ) ) = (e,∇ϕ). The proof ∇ϕ is build from the justifications ∇ 1ϕ , ... ,∇ nϕ  of 
the entries. All the efforts then lie in combining the appropriate deduction rules of the deduction 
system to demonstrate fromϕ ϕ1 ...∧ ∧ϕn.

We can use a two phases process to produce a certificate. First, we run the tool without
instrumentation to preserve efficiency in searching invariant. The tools ends up with a invariant Inv 
that is a fixpoint of its computation, meaning that if we run the tools once again Invas an initial 
invariant, it will stop after 1-iteration of its computation (of post(Inv)), discovering that this invariant 
is stable henceforth inductive. Second ,we run the instrumented version of the tool on the discoved 
invariant Inv, the instrumented computation of post(Inv)and the instrumented test of stability should 
provides the arguments for the proof that Invis a n inductive invariant.



To summarize: We believe that direct instrumentation will be simpler that a posteriori generation of  
proof in a proof assistant. The goal of this experimentation is to evaluate this claim, by instrumenting 
the code of a verification tool so that it builds certificate of its results on-demand while not sacrificing 
its performance. 

[PéronHalbwachs] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in 
simple programs. In ACM Conference on Programming Language Design and Implementation, 
pp.339–348. ACM Press, 2008. (PLDI’08)

3.2 The Deadlock Finder

DFinder [Bensalem+] is a symbolic model-checker developed in Verimag that 
verifies the deadlock freedom in multi-threaded applications. It is used in a tools 
chain that generates embedded code for robotic system from mathematical 
model [Basu+]. DFinder computes invariants by refinement based on  the initial 
conditions and the symbolic computation of the post operator. DFinder uses two 
external ools, the Yices SMT-solver and the Omega simplification procedure. They 
are used to simplify symbolic constraints (eliminating useless quantifier and 
discovering unsatisfiable constraints).

The case of DFinder is interesting and differ from PH's analyzer for several 
reasons: (1) The logic of Dfinder is strict subset of  the one used in PH's analyzer 
but the systems to verify have a richer semantics that deals with threads and 
synchronizations;  (2) DFinder is already a gray box, since it sends requests to 
Omega and Yices; (3) DFinder is a large tool that consists in several stages where 
it applies aggressive simplifications to reduce the size of the mathematical 
models; (4) It often produces non inductive invariant due to lost of precision in 
simplifications, henceforth forbidding the standard proof by induction.

DFinder computes a invariant Inv that entails the deadlock freedom. Again the 
proof can be decomposed into (1) a proof of invariance and (2) a proof of 
entailment. The latter can be obtained using the justified SMT-solver that will be 
developed in the project. We plan to focus on the proof of invariance.

In the case where the property Inv is not inductive the proof of preservation 
post*(Inv) ⇒ Inv will fail. We can still try to prove the invariance of Inv following 
the refinement steps of DFinder.  It starts from the trivial invariant Inv0 := true 
and computes finer invariants Inv1,Inv2,... until it reaches a invariant, say Inv, 
precise enough to proof the deadlock freedom. Using the  definition of the 
invariant refinement process it is possible to prove at each step that Inv[i] is a 
invariant (reusing the fact that Inv[i-1] was an invariant). This proof includes a 
justification that the abstraction process (done by Omega) always preserves 
implication (meaning that F⇒Abst(F)). This technique shall result in less compact 
and elegant proofs than the standard technique for inductive invariants but it can 
be automated and avoid the difficult problem of strengthening invariants to make 
them inductive. 

In order to conduct this experiment we have to develop a justified version of the 
Omega procedure (or part of it) and a justified SMT-solver. Both can be reused in 
many verification tools, since simplification, elimination of useless quantifier, 
unsatisfiability of constraints are largely used in software verification.



To summarize:  The challenge in this experimentation is to develop a proof 
technique for non inductive invariant which avoids the difficult problem of 
strengthening the invariant to make it inductive.

[Bensalem+] S.Bensalem, M.Bozga, J.Sifakis, T.Nguyen. Compositional Verification for Component-
based  Systems  and  Application.  In:  International  Symposium  on  Automated  Technology  for  
Verification and Analysis, 2008, (ATVA'08)

[Basu+] A.Basu, M.Gallien, C.Lesire,  T.Nguyen,  S.Bensalem, F.Ingrand and J.Sifakis. Incremental 
Component-Based Construction and Verfication of a Robotic System. In:  European Conference on 
Artificial Intelligence, 2008, (ECAI'08)

3.3 Applications to program analysis

Program analyzers by abstract interpretation do fairly complex computations in order to infer program 
invariants. For instance, the ASOPT project at VERIMAG aims at inferring invariants using numerical 
algorithms,  or  even  at  producing  abstract  transfer  functions  automatically.  In  general,  checking 
invariants is easier than inferring them; simpler algorithms may be used. We plan to use SMT-solving 
to obtain proofs of correctness of invariants and transfer functions.

3.4 FLATA

The FLATA system is a tool developed at VERIMAG for the analysis of counter automata models. 
This tool relies essentially on the results of [ComonJurski,BIL06] for non-deterministic flat counter 
automata with difference bound constraints.  The tool  is moreover used as analysis  engine for  the 
counter automata produced from formulae in the integer vector logic of [X]. In the near future, we 
plan to extending FLATA by developing an entire program analysis framework on top of it. 

Since FLATA is developed by a part of this project's consortium, it is feasible to envisage certification 
techniques for the implementation of the tool. In order to describe the directions we intend to follow in 
what concerns certification, we need to give an overview of the system's workflow: 

a) Given a formula in the logic of [HIV08b], it is translated into a counter automaton. The translation 
needs to be instrumented in order to turn a proof of emptiness of the counter automaton in a certificate 
of unsatisfiability of the formula. This certificate can be e.g., a derivation in quantifier-free Presburger 
arithmetic with uniniterpreted function symbols. 

b) A given counter  automaton is abstracted into a flat  counter  automaton,  by merging transitions, 
eliminating unfeasible paths, and eventually over-approximating strongly-connected components with 
elementary  loops.  These  transformations  need  to  preserve  the  semantics  of  the  automaton.  The 
implementation of the abstraction techniques needs to be certified. 

c) sFinally, for each loop in the counter automaton we compute the transitive closure of its transition 
relation. The implementation of this computation is to be also certified. 

Together, the above three certification steps can be combined in order to obtain a trusted analysis tool 
for counter automata models. 

Coordination du projet / Project management

 The project has been divided in relativity independent tasks, in order to ease the work-flow. 
Yet, strong synergies exist. For instance, one possible option for the certificates of the 
automata-theoretic approach is to reduce certain problems with respect to numerical 
constraints in the automaton to some SMT-problem, which can then be decided using a proof-



logging SMT-solver.
The researchers involve also organize a “program analysis and verification” workgroup, 
where researchers from VERIMAG and surrounding laboratories meeting. 

Description des travaux par tâche / Detailed description of the work 
organised by tasks

Tâche 1 / Task 1
Generation of certificates as foundational proofs. Participant: Michaël Périn.

Several forms of certificates have been proposed for model-checking [KupfermanVardi,Tan+]. They 
all require dedicated checking algorithms. Meanwhile it has been recognized in the Proof-Carrying 
Code community that foundational proof-checkers are more reliable [Appel]. Foundational proofs are 
deductive proofs conducted in restricted proof systems such as the axiomatization of first order logic 
and standard mathematics.  The challenge is  then to  produce foundational  proofs form VTs.  Each 
evidence must  be provided in term of a few elementary deduction rules.  We plan to use the Coq 
environment developed at Inria as the trusted foundational proof-checker.

Our goal is to extend two verification tools to produce certificate in the form of Coq proofs.

− We shall consider two types of verification tools with two different domains of application: HP's 
static  analyser  for  program manipulating  arrays  and  Dfinder,  a  model-checker  that  discovers 
deadlocks in multi-threaded applications used in robotics. 

−  We'll experiment two instrumentation techniques: (1) a white box approach on HP's analyser, that 
is  a  direct  instrumentation  of  the  source  code  so  that  it  builds  the  certificate  along  the 
computations, and (2) a gray box instrumentation of Dfinder asking the developper to output some 
additional informations needed to a posteriori build the certificate.

− We'll apply two techniques for proving invariance: (1) the standard Floyd-Hoare's induction for 
inductive  invariants  provided  by  HP's  analyser,  and  (2)  the  invariant  refinment  technique 
presented in  Section (2.2 Correctness  of  invariants)  for  non-inductive  invariants  computed  by 
DFinder.

− We'll factorize the work by making use of the SMT developed in the project for subgoals that 
require proofs of unsatisfiability (they are intensively used in both tools).

− We'll develop a justified version of a simplification procedure based on Omega. 

− We'll develop an intermediate format of certificate suitable for proof involving Hoare's triple. This 
will  help  reducing  the  size  of  proofs  and  getting  ''understandable''  proofs.  We'll  provide  an 
automatic translation into Coq format. This translation will automatically add (with justification) 
the uninteresting simplification and normalisation steps that need to be justified in foundational 
proofs.

To summarize: We shall conduct actual experimentations instrumenting two existing verification tools 
based on invariant comptations and using SMT-solvers to make them produce foundational proofs for  
the Coq proof-checker.

Tâche 2 / Task 2

SMT solving. Participants: David Monniaux, Michaël Périn.

The goal is to obtain a SMT-solver that can produce proofs, and then to postprocess these proofs for 



use in a proof assistant.

We envision several methods for obtaining these proofs from SMT-solving:
– Instrument a SMT solver such as Yices and get it to print out theory lemmas, then feed both the 

propositional model the the theory lemmas into a SAT solver that does proof logging.
– Implement a SMT solver from scratch. This would give us better control on the system, given that 

most available SMT-solvers are closed-source, proprietary “black boxes”. The disadvantage is that 
these tools have been implemented by groups who have worked on these issues for years and have 
introduced many improvements, not necessarily documented in open publications, so it seems 
difficult to reach comparable performance..

The output from this step should then be transformed into a model acceptable by a proof assistant such 
as Coq or PVS. It seems desirable to have an intermediate model, if only so as to be able to target 
multiple assistants.

Applications targeted include the analysis tools developed within the ANR ASOPT project: we plan to 
evaluate whether it is possible to get them to output proofs (by making their final step log proofs or by 
running an additional checking phase with proof logging).

Since David Monniaux has already developed small SMT-solvers and works with Yices for his tools 
based quantifier elimination, he will be heading this task.

The risks are very limited if the goal is to develop a prototype without regard to scalability – we do not 
envision any strong difficulty there. What is yet unknown, though, is how to instrument the tool so as 
not to penalize too much its efficiency, and how to keep the proofs small ― both characteristics are 
needed for the method to be applicable beyond mere academic toy cases.

To summarize: We will  implement  a SMT-solver  (for,  say,  the  theory of  linear inequalities),  or 
instrument an existing one, so that it prints proof sketches, and implement a postprocessing scheme to 
convert these proofs into proofs accepted by a proof assistant.

Tâche 3 / Task 3

Participants: Radu Iosif

The goal of this task is to provide certificates for the satisfiability checking method for the integer 
vector logic described in [HIV08b]. This technique consists in translating a formula on integer vectors 
into  a  flat  counter  automaton  with  difference  bound  transition  relation  and  then  checking  the 
automaton for emptiness. The latter problem is solved using a method described in [BIL06]. On one 
hand, we need to certify the correctness of the emptiness checking of counter automata. On the other 
hand,  and more  importantly,  an empty automaton  provides  an argument  of  unsatisfiability of  the 
integer vector formula. This argument has to be translated into a mechanical-checkable proof that can 
be given to a proof checker. The techniques developed by this task will be implemented as part of the 
FLATA system. 

Radu Iosif is in charge of this task.

To summarize: We will investigate how to produce proofs out of these computations on automata, 
and possibly implement research prototypes.

Calendrier  des  tâches,  livrables  et  jalons  /  Planning  of  tasks, 
deliverables and milestones

[t0,t0+12] 
T1.1.1  Design of a certificate exchange format as foundational proofs in a friendly, human 
readable syntax



T1.1.2  Translation into Coq proof format
T1.1.3  Development of an justified version of the Omega procedure
T2.1 Experiments with a prototype SMT-solver for linear inequalities with logging features 
and/or instrumentation of Yices.
T3.1 From empty counter automata to unsatisfiable integer vector formulae. 
   - This subtask deals with the generation of unsatisfiability certificates of an array formula, 
given a proof of emptiness of the corresponding counter automaton. 

[t0+12,t0+24]
T1.2.1 Instrumentation of PH's analyser and DFinder. 
T2.2.1 Experiments with SMT-solver for other logics (integer linear relations...)
T2.2.2 Experiments with scalability and optimization of SMT-solver.
T3.2 Certification of counter automata decision procedures. 
   - The analysis of counter automata is based on a transitive closure algorithm for simple 
loops with difference constraints. This subtask aims at certifying the reduction steps involved 
by this decision procedure. 

[t0+24,t0+36]
T1.3.1 Experimentations running the instrumented tools on systems to verify
T1.3.2 Evaluation of the size of certificates and development of reduction techniques
T1.3.3 Dissemination to industrial partners
T2.3: Use of proof-logging SMT-solver as back-end to tools developed within project ASOPT 
(synthesis of abstract transfer functions).
T3.3 Certification of automata-based satisfiability techniques. 
   - This task is of a more exploratory nature. Its goal is to investigate certification techniques 
for general-purpose automata-based satisfiability techniques, such as decision procedures for 
Presburger arithmetic or Monadic Second Order Logic. 

Stratégie  de  valorisation  des  résultats  et  mode  de  protection  et 
d’exploitation  des  résultats  /  Data  management,  data  sharing, 
intellectual property and results exploitation

We plan the usual scientific dissemination through peer-reviewed international journals and 
peer-reviewed proceedings of international conferences.
In addition, we plan to make our software available under a free license, so as to maximize the 
impact on the scientific community. Since we plan only academic prototypes, not industrial-
strength software packages (which we do not have the manpower to develop, anyway), we 
think this licensing is appropriate.

We expect the following industrial relations:

1) VERIMAG is is contact with Airbus regarding their static and dynamic analysis 
needs.  In  december  2008,  Airbus  is  organizing  a  grand  meeting  with  tool 
suppliers  and  academic  laboratories  to  help  them  defined  their  long-term 
strategy regarding software reliability. David Monniaux will  present the ASOPT 
project,  whose  goal  is  to  introduce  numerical  optimization  techniques  and 
geometrical  methods  into  static  analysis.  We envision  that  within  the  CERTO 
project, we can build automated techniques capable of certifying some classes of 



invariants or transfer functions produced by the ASOPT technologies.

2) VERIMAG is in contract with ASTRIUM, the aerospace service of EADS, to develop a prototype 
of code generation for robotic applications from mathematical models written in the Verimag's BIP 
language (Project MARAE). This prototype will then be evaluated as a candidate for programming 
satellites and drone applications. We plan to apply our certification techniques to a crucial verification 
tools (DFinder) used in  the BIP framework to guaranty the absence of deadlock in multi-threaded 
applications.

3) VERIMAG has been involved in two RNTL projects (EDEN1, EDEN2) on Certification of security 
applications for smart cards in the Common Criteria.The Common Criteria is an international norm for 
certification of applications with security requirements. At the highest level of assurance, the 
developer must formally demonstrate that the application conforms to the security policy. Recently, a 
certification has been achieved by Gemalto on the basis of a development in the Coq proof assistant. 
Coq is then trusted by the DCSSI (the French certification authorities). It then becomes worthwhile to 
produce Coq proofs from verification tools. The benefits of certificates is discussed with the industrial 
partners of EDEN2 (Gemalto, Trusted logic) and the involved certification authorities (CEA-LETI, 
DCSSI).

Organisation  du  projet  /  Consortium  organisation  and 
description

Description,  adéquation  et  complémentarité  des  participants  /  
Relevance  and  complementarity  of  the  partners  within  the 
consortium

David Monniaux has done extensive work in static analysis by abstract interpretation. 
Between 2001 and 2007, he was involved in the development of the Astrée static analyzer, a 
tool used at the aircraft manufacturer Airbus in order to prove the absence of runtime errors in 
critical embedded programs, including fly-by-wire controls. Many publications have ensued, 
both on theoretical and practical aspects.6

Since moving to VERIMAG in 2007, David Monniaux has been interested in, on the one 
hand, methods for analyzing programs in a modular way (Astrée implements monolithic 
analysis), and on the other hand deciding numerical formulas. He works on including 
techniques such as SMT, numerical optimization, BDDs, into abstract analyzers [LPAR '08, 
POPL '09].

David Monniaux has past experience with the use of proof assistants, including Coq and PVS, 
for the formalization of abstract interpretation, thus his interested in making such proofs 
automatic.

Radu Iosif  obtained his MSc in 1997 from the Polytechnic University of Bucharest and his PhD in 
2001 from the "Politecnico" University of Turin, in the area of software model checking. Between 2001 
and 2002, he worked as a post-doctoral fellow within the BANDERA program analysis project at 
Kansas State University. Since Radu Iosif has been hired as a CNRS researcher in the VERIMAG 
laboratory in 2002, he has done work in the fields of program verification (both safety and termination 
checking) and automated reasoning. His main interests are applying logics and automata theory to 
program verification, by identifying classes of programs for which verification is decidable (and 

6 A complete list of publications is available from http://www-verimag.imag.fr/~monniaux/biblio/David_Monniaux.html

http://www-verimag.imag.fr/~monniaux/biblio/David_Monniaux.html


tractable), and designing suitable logics and classes of automata to fit the verification problems raised 
by these classes.  His research mainly targeted programs with dynamic recursive data structures  (e.g. 
lists, trees, arrays) and the analysis of counter automata models.

Qualification du porteur du projet / Qualification of the principal investigator

Michaël Périn (36 years old) is associated professor since 2001 at the University of Grenoble 
1 and Verimag lab. His research interests are program verification and certification using 
formal proof, applied to security applications and concurrent programming. He participated in 
the developpement of a verification tool for cryptographic protocols, that he instrumented to 
produce certificates for the Coq proof-checker. His recent works focus on certification. 

He was responsible of the RNTL EDEN 1 (2002-2005) and EDEN 2 (2006-2009) project 
on Certification of Security Applications for Smart Cards in Common Criteria. These 
two projects involved industrial partners (Gemalto, Trusted Logic), research labs (CEA-LIST, 
VERIMAG) and certification autorithies (CEA-LETI, DCSSI). The goal was to  
the design of  a methology supported by tools for establishing the conformance of an 
application to a security policy, fullfilling the requirements of the Common Criteria. The 
project Eden1 focused on simulation which helps finding bugs whereas the Eden2 project 
generalizes the methodology to symbolic model-checking that is more amenable to produce 
formal certificates of conformance.  As a result of Eden2 we proposed a methodology for 
establishing the conformance relation between two mathematical models, one representing the 
application (described in the JavaCard language) and the other representing the security 
policy (described as an extended state machine). The method is an extension of the Floyd-
Hoare's technique of  Section 2.2 for proving invariant assertions between a pair of  models  
[SAC'09]. The DCSSI (Direction centrale de la sécurité des systèmes d'information, the 
french  certification authorities) recently delivers a certificate on the basis of a development in 
Coq. This offers opportunities to get certified verdicts of verification tools accepted in 
certification process.  The tool developed in EDEN2 is currently not mature enough to be 
instrumented, but it will benefit from result of the Certo project. Indeed, it is based on 
generation of invariants and uses the Yices SMT-solver.

Here is a list of his recent publications:

 [SAC'09] Certification of Smart-Card Applications in Common Criteria, with I.Narasamdya. 
In ACM Symposium on Applied Computing / Software Verification and Testing track 
(SAC/SVT'09), 2009.

 [SafeCert'08] Convincing proofs for program certification, with M.Garnacho. In 
International Workshop on Certification of Safety-Critical Software Controlled Systems 
(SafeCert'08), 2008.

 [ITCES'06] Certification of Cryptographic Protocols by Abstract Model-Checking and Proof 
Concretization, with  R.Janvier, Y.Lakhnech. In Workshop on Innovative Techniques for the 
Certification of Embedded Systems (ITCES'06), 2006.

 [STTT'06] Pattern-based Abstraction for verifying Secrecy in Protocols, with L. Bozga, Y. 
Lakhnech. In International Journal on Software Tools for Technology Transfer, vol. 8, 2006.
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Justification scientifique des moyens demandés / Scientific 
justification of requested budget

Personnel / Staff

Requested budget: 93300€ for recruiting of a post-doctoral researcher for two years (or 2 
post-docs each for one year).
In addition to purely scientific work (e.g. inventing algorithms or schemes), the project 
involves substantial programming tasks in order to produce reasonably practical tools. It does 
not seem possible to achieve these goals with only the limited manpower of the permanent 
scientific staff.  

Missions / Missions 

Requested budget: 20000€. The project aims at dissemination of new scientific results, and in 
computer science, international conferences with editorial committees and peer reviewers are 
the major vector of dissemination. A one-week conference in the United States costs 
approximately 2500€ overall. There are four researchers on this project (3 permanent staff and 
1 post-doc).

In addition, if industry (e.g. Airbus) gets interested in the project, then it will be necessary to 
visit them. 

Autres dépenses de fonctionnement / Other expenses

Toute dépense significative relevant de ce poste devra être justifiée.



Requested budget 11500€ as follows:
 3 new personal computers: 6000€
 Various operating costs of the laboratory (estimated at 500€ per permanent staff per 

year): 4500€
 Books, stationery, printing costs for the poster: 1000€
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