Bounded model checking, SAT-solving,
Sudoku and Mines

David Monniaux

CNRS / VERIMAG

14 février 2011

~—

Plan

Model-checking basics

BDD-based model-checking

» Compute the set of reachable states.

» Explicit state : memory use proportional to |S|, S set of
reachable states. . .but |S| = 2" where n is the memory
size |

» Implicit state : compression of the set of states, but
BDDs can still be exponential, choice of order of
variables. . . Memory explosion.

» Set of states reachable in any number of steps from
initialization.
» Reachability is PSPACE-complete.

The state explosion problem.

~—

Bounded model-checking

» Looks for a path of given length n from the initial
states to the undesirable states.

» Is NP-complete or worse (depending on kinds of data),
due exponential number of paths.

» Efficient SAT-based search algorithms(DPLL etc.). Do
not blow up memory.

» Time explosion with increased n.

Can search for bugs but not prove their absence !

eeeeee

~—

Distinguish two kinds of applications

» Find bugs.

» Prove their absence. Must be sound : should not say
“no bugs’ when bugs are present.

~—

Plan

Boolean programs

Transition relations

Let us suppose we have a Boolean formula 7 defining — :

» variables by, ..., b, for the m bits of state before
executing the computation step

» variables bf, ..., bl for the m bits of state after executing
the computation step

‘@

N

Unfolding

b(k) = (bﬁk), ce bf,lf)) value of the variables at step k.
7[b® /b, b*+1) /b/] links b, B to pKF L pltY).

Reminder : 7[a/b] = T where a is replaced by b

Unfolding the formula for n steps :

7[b® /b, b® /B A - A7[b" D /b, b /b]

b®. ..., b(" is the execution trace : value of all bits in the
system at every step.

L @ b

N

Looking for bugs

We impose that executions :
» Start in an initial state b(®) such that /[b©® /b] is true.
» Ends in an initial state b(") such that F[b(")/b] is true.

» F defines the negation of a desirable property or... a
kind of bug.

1[b® /b]A7[b® /b, b® /b]A- - -Ar[b™D /b, b(™ /B AF[b™ /b]

defines traces of exact length n starting in a state defined by /
and ending in a state defined by F.

‘@

JJ

|

Solving the problem

We have a Boolean formula with free variables
BO B e b

A solution of this formula is an assignment to these variables
that makes the formula true.

Example : formula ((a V b) A =b) V ¢ has solutions

N

Solving the problem

We have a Boolean formula with free variables
BO B e b

A solution of this formula is an assignment to these variables
that makes the formula true.

Example : formula ((a V b) A =b) V ¢ has solutions
» (a, b, c) = (true, false, false)

N

Solving the problem

We have a Boolean formula with free variables
BO B e b

A solution of this formula is an assignment to these variables
that makes the formula true.

Example : formula ((a V b) A =b) V ¢ has solutions
» (a, b, c) = (true, false, false)
» (a, b, c) = (false, false, true)

Try increasing values of n.

L @ b

N

Small example

m =5 bits by, ..., bpy.

Initial states : true...
Transition relation 7 :

by, =by ANby=by ANby =bs AN by=by N by =—b

L @ b

N

Small example

m = 5 bits by, ..., by.
Initial states : true...
Transition relation 7 :

by, =by ANby=by ANby =bs AN by=by N by =—b

In other words : b; alternates between 0 and 1, and bits
b1—>b2—>b3—>b4—>b5.
0,1,0,1,0,1... moving.

“Buggy"” final states : by A bs.
Are they reachable within n = 10 steps?

L @ b

N

Solution

For n = 0 : formula is b A béo), solution
(b§°), bgo), b§°’, bﬁo), béo)) = (false, false, false, true, true).

Don't forget the initial states!

L@ b

N

Solution

For n = 0 : formula is b A béo), solution
(b§°), bgo), b§°’, bﬁo), béo)) = (false, false, false, true, true).

Don't forget the initial states!
And for n = 10... solve
(b /b, b /B A+ A 7[b® /b, b1 /b A b = b

Our intuition is that this formula has no solution... but how to
automate this?

L@

N

Plan

SAT-solving

The problem

Given a Boolean formula :

» Test whether it has solutions.

» If it has solutions, give one.

Known to be NP-complete !

N

SAT in CNF

We have a formula F with nested A, V,—. ..
but most solvers accept only formulas in conjunctive normal
form (CNF).

CNF is conjunction of disjunction of literals. Ex :

(xVayVz)A(-xVyVz)A(yV2z)

eeeeee

~—

Tseiting encoding

Take as example : ((aV b) A=b) V ¢

Add variables x =aVv b,y =xA—-b, z=yVec.

x = aV b is equivalent to
(a=x)AN(b=x)N(x=(aVDh))

thus to
(maVX)A(=bVXx)A(-xVaVb)

N

Constraint solving : unit propagation

Each conjunct is a constraint on variables. We must satisfy
them all !

Work with partial assignments : give values to some of the

variables.
“Try a = false, b = false and see what happens.”

We must satisfy —=x V aV b : if a = b = false, then —x must
be true, thus x = false. Unit propagation.

~—

Practical example

Is there a mine at the light blue square?

Practical example

The pink square imposes a constraint : total number of
mines in neighbourhood is exactly 1. Since there is already one
mine, the pink square cannot contain one.

Unit propagation

» You have already made a number of choices on some
variables.

» These choices, through constraints, impose values to
other variables.

» Valid for SAT as well as for Mines or Sudoku.

N

Branching

Sometimes, unit propagation does not suffice. One must “work
on a hypothesis”.
Is there a mine on the light blue square?

Method

Search with backtracking :
» Make a “work hypothesis”.
» Propagate the consequences (unit propagation).
» If encountering an absurdity, backtrack.

N

Method

Search with backtracking :
» Make a “work hypothesis”.
» Propagate the consequences (unit propagation).
» If encountering an absurdity, backtrack.

When solving Sudoku
» If the problem is “easy”, unit propagation suffices.

» The more difficult the problem is, the more one has to
make choices and backtrack.

L @ b

N

DPLL algorithm

» Unit propagation.
» Make choices : select a variable, assign it to true or false.

» If reaching a contradiction : the last assignment was
absurd ; backtrack and replace last assignment by its
negation.

Time complexity ?

‘@

N

DPLL algorithm

» Unit propagation.

» Make choices : select a variable, assign it to true or false.

» If reaching a contradiction : the last assignment was
absurd ; backtrack and replace last assignment by its
negation.

Time complexity ? Still exponential, of course !

‘@

N

DPLL with learning

(avbVeV-d)A(—aV-bV-cV-d)A(=bVc)

Choose d = true. Constraints become :
(avbVec)A(maV bV -ac)A(=bVc)
Choose a = true. Constraints become :
(=bV —c)A(=bV <)

Choose b = true. The formula becomes (—c) A c.
Contradiction !
Thus F A aA b unsat. In other words, F = (—aV —b).

Thus | can add —a V —b to the original problem without
changing solutions ! rimae

Modern SAT solving

DIMACS standardized file format.

Advanced technology.
» Solvers zChaff, MiniSAT etc.

» Many improvements, heuristics. . .

» Very clever implementation techniques.

» Mass industrial use.

eeeeee

~—

Mass industrial use of SAT solving

In EDA (electronic design automation).

Prove that two circuit designs (without memory) are
equivalent : F(by,...,by) and G(by,..., by) equivalent iff
Vby,...,bm F(b1,...,bn) = G(b1,..., by).

How ?

~—

Mass industrial use of SAT solving

In EDA (electronic design automation).

Prove that two circuit designs (without memory) are
equivalent : F(by,...,by) and G(by,..., by) equivalent iff
Vby,...,bm F(b1,...,bn) = G(b1,..., by).

How ?

Show that F(b, ..., bm) # G(by, ..., bn) is unsat.

NB : (XI;X27X37Xm’) 7é (}/17}/2,)/3a}’m’) Iﬂ:
(x1 D y1) V-V Xy ® Yar), Where @ is exclusive-or (XOR).

eeeeee

~—

For circuits with memory

Unroll execution traces, as seen before !

~—

Plan

SMT-solving

How about numbers?

int x, y, z;

assume(0 >= x && x <=2 || x >= 4 \land x <= 6);
assume(0 >=y && y <= 5);
z =X+ Yy,

assert(x + y <= 12);

How can we prove unsat :

(0< xleq2V4d < x<BH)AN0O<y<B5Ax=x+yAx+y>12

L@

Bit-blasting

Assume int is 32-bit.

Expand 0 > x, z = x + y... into Boolean gates using adders,
comparators, etc.

Obtain a pure Boolean circuit.

(Same as C-to-hardware compilation.)

Apply SAT-solving !

L @ b

N

DPLL(T)

Add Boolean variables :

(0<xleq2vV4d < x<B6)A0<y<B5Ax=x+yAx+y>12
(1)

Withaé()ZX,béX§5,CéOZy,déySE),
A A N A
e=x=x+y, f=x+y>12, g=x>4 h=x<6.

Formula 1 becomes

((anb)Vv(gAh)ANcAdANeNnf (2)

L @ b

N
N

DPLL(T) suite

((anb)V(gAh))ANcAdANeNT (3)

Solution : every variable to true!

But this means b 2 x <2and g = g > 4 both true! This is
impossible with respect to integer arithmetic !

Add =(b A g) (—bV —g) to the Boolean constraints, and start
again.

N

DPLL(T) explained

» Find a Boolean solution using DPLL.
» Check if feasible with respect to arithmetic.

» If not, add a Boolean constraint and restart.

In practice : DPLL interleaved with arithmetic (theory) solving.

Linear arithmetic over reals/rationals : simplex algorithm.

‘@

N

	Model-checking basics
	Boolean programs
	SAT-solving
	SMT-solving

