
Bounded model checking, SAT-solving,
Sudoku and Mines

David Monniaux

CNRS / VERIMAG

14 février 2011

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

BDD-based model-checking

I Compute the set of reachable states.
I Explicit state : memory use proportional to |S |, S set of

reachable states. . .but |S | = 2n where n is the memory
size !

I Implicit state : compression of the set of states, but
BDDs can still be exponential, choice of order of
variables. . .Memory explosion.

I Set of states reachable in any number of steps from
initialization.

I Reachability is PSPACE-complete.

The state explosion problem.

Bounded model-checking

I Looks for a path of given length n from the initial
states to the undesirable states.

I Is NP-complete or worse (depending on kinds of data),
due exponential number of paths.

I Efficient SAT-based search algorithms(DPLL etc.). Do
not blow up memory.

I Time explosion with increased n.

Can search for bugs but not prove their absence !

Distinguish two kinds of applications

I Find bugs.
I Prove their absence. Must be sound : should not say

“no bugs” when bugs are present.

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

Transition relations

Let us suppose we have a Boolean formula τ defining → :
I variables b1, . . . , bm for the m bits of state before

executing the computation step
I variables b′1, . . . , b

′
m for the m bits of state after executing

the computation step

Unfolding

b(k) = (b(k)
1 , . . . , b(k)

m) value of the variables at step k .

τ [b(k)/b,b(k+1)/b′] links b(k)
1 , . . . , b(k)

m to b(k+1)
1 , . . . , b(k+1)

m .

Reminder : τ [a/b] = τ where a is replaced by b

Unfolding the formula for n steps :

τ [b(0)/b,b(1)/b′] ∧ · · · ∧ τ [b(n−1)/b,b(n)/b′]

b(0), . . . ,b(n) is the execution trace : value of all bits in the
system at every step.

Looking for bugs

We impose that executions :
I Start in an initial state b(0) such that I [b(0)/b] is true.
I Ends in an initial state b(n) such that F [b(n)/b] is true.
I F defines the negation of a desirable property or... a

kind of bug.

I [b(0)/b]∧τ [b(0)/b,b(1)/b′]∧· · ·∧τ [b(n−1)/b,b(n)/b′]∧F [b(n)/b]

defines traces of exact length n starting in a state defined by I
and ending in a state defined by F .

Solving the problem

We have a Boolean formula with free variables
b(0)

1 , . . . , b(0)
m , . . . , b(n)

1 , . . . , b(n)
m .

A solution of this formula is an assignment to these variables
that makes the formula true.

Example : formula ((a ∨ b) ∧ ¬b) ∨ c has solutions

I (a, b, c) = (true, false, false)
I (a, b, c) = (false, false, true)

Try increasing values of n.

Solving the problem

We have a Boolean formula with free variables
b(0)

1 , . . . , b(0)
m , . . . , b(n)

1 , . . . , b(n)
m .

A solution of this formula is an assignment to these variables
that makes the formula true.

Example : formula ((a ∨ b) ∧ ¬b) ∨ c has solutions
I (a, b, c) = (true, false, false)

I (a, b, c) = (false, false, true)

Try increasing values of n.

Solving the problem

We have a Boolean formula with free variables
b(0)

1 , . . . , b(0)
m , . . . , b(n)

1 , . . . , b(n)
m .

A solution of this formula is an assignment to these variables
that makes the formula true.

Example : formula ((a ∨ b) ∧ ¬b) ∨ c has solutions
I (a, b, c) = (true, false, false)
I (a, b, c) = (false, false, true)

Try increasing values of n.

Small example

m = 5 bits b1, . . . , bm.
Initial states : true...
Transition relation τ :

b′2 = b1 ∧ b′3 = b2 ∧ b′4 = b3 ∧ b′5 = b4 ∧ b′1 = ¬b1

In other words : b1 alternates between 0 and 1, and bits
b1 → b2 → b3 → b4 → b5.
0, 1, 0, 1, 0, 1 . . . moving.

“Buggy” final states : b4 ∧ b5.
Are they reachable within n = 10 steps ?

Small example

m = 5 bits b1, . . . , bm.
Initial states : true...
Transition relation τ :

b′2 = b1 ∧ b′3 = b2 ∧ b′4 = b3 ∧ b′5 = b4 ∧ b′1 = ¬b1

In other words : b1 alternates between 0 and 1, and bits
b1 → b2 → b3 → b4 → b5.
0, 1, 0, 1, 0, 1 . . . moving.

“Buggy” final states : b4 ∧ b5.
Are they reachable within n = 10 steps ?

Solution

For n = 0 : formula is b(0)
4 ∧ b(0)

5 , solution
(b(0)

1 , b(0)
2 , b(0)

3 , b(0)
4 , b(0)

5) = (false, false, false, true, true).

Don’t forget the initial states !

And for n = 10... solve

τ [b(0)/b,b(1)/b′] ∧ · · · ∧ τ [b(9)/b,b(10)/b′] ∧ b(10)
4 = b(10)

5

Our intuition is that this formula has no solution... but how to
automate this ?

Solution

For n = 0 : formula is b(0)
4 ∧ b(0)

5 , solution
(b(0)

1 , b(0)
2 , b(0)

3 , b(0)
4 , b(0)

5) = (false, false, false, true, true).

Don’t forget the initial states !

And for n = 10... solve

τ [b(0)/b,b(1)/b′] ∧ · · · ∧ τ [b(9)/b,b(10)/b′] ∧ b(10)
4 = b(10)

5

Our intuition is that this formula has no solution... but how to
automate this ?

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

The problem

Given a Boolean formula :
I Test whether it has solutions.
I If it has solutions, give one.

Known to be NP-complete !

SAT in CNF

We have a formula F with nested ∧,∨,¬. . .
but most solvers accept only formulas in conjunctive normal
form (CNF).

CNF is conjunction of disjunction of literals. Ex :

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z)

Tseiting encoding

Take as example : ((a ∨ b) ∧ ¬b) ∨ c

Add variables x = a ∨ b, y = x ∧ ¬b, z = y ∨ c .

x = a ∨ b is equivalent to

(a⇒ x) ∧ (b ⇒ x) ∧ (x ⇒ (a ∨ b))

thus to
(¬a ∨ x) ∧ (¬b ∨ x) ∧ (¬x ∨ a ∨ b)

Constraint solving : unit propagation

Each conjunct is a constraint on variables. We must satisfy
them all !

Work with partial assignments : give values to some of the
variables.
“Try a = false, b = false and see what happens.”

We must satisfy ¬x ∨ a ∨ b : if a = b = false, then ¬x must
be true, thus x = false. Unit propagation.

Practical example

Is there a mine at the light blue square ?

Practical example

The pink square imposes a constraint : total number of
mines in neighbourhood is exactly 1. Since there is already one
mine, the pink square cannot contain one.

Unit propagation

I You have already made a number of choices on some
variables.

I These choices, through constraints, impose values to
other variables.

I Valid for SAT as well as for Mines or Sudoku.

Branching

Sometimes, unit propagation does not suffice. One must “work
on a hypothesis”.
Is there a mine on the light blue square ?

Method

Search with backtracking :
I Make a “work hypothesis”.
I Propagate the consequences (unit propagation).
I If encountering an absurdity, backtrack.

When solving Sudoku
I If the problem is “easy”, unit propagation suffices.
I The more difficult the problem is, the more one has to

make choices and backtrack.

Method

Search with backtracking :
I Make a “work hypothesis”.
I Propagate the consequences (unit propagation).
I If encountering an absurdity, backtrack.

When solving Sudoku
I If the problem is “easy”, unit propagation suffices.
I The more difficult the problem is, the more one has to

make choices and backtrack.

DPLL algorithm

I Unit propagation.
I Make choices : select a variable, assign it to true or false.
I If reaching a contradiction : the last assignment was

absurd ; backtrack and replace last assignment by its
negation.

Time complexity ?

Still exponential, of course !

DPLL algorithm

I Unit propagation.
I Make choices : select a variable, assign it to true or false.
I If reaching a contradiction : the last assignment was

absurd ; backtrack and replace last assignment by its
negation.

Time complexity ? Still exponential, of course !

DPLL with learning

(a ∨ b ∨ c ∨ ¬d) ∧ (¬a ∨ ¬b ∨ ¬c ∨ ¬d) ∧ (¬b ∨ c)

Choose d = true. Constraints become :

(a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) ∧ (¬b ∨ c)

Choose a = true. Constraints become :

(¬b ∨ ¬c) ∧ (¬b ∨ c)

Choose b = true. The formula becomes (¬c) ∧ c .
Contradiction !
Thus F ∧ a ∧ b unsat. In other words, F ⇒ (¬a ∨ ¬b).

Thus I can add ¬a ∨ ¬b to the original problem without
changing solutions !

Modern SAT solving

DIMACS standardized file format.

Advanced technology.
I Solvers zChaff, MiniSAT etc.
I Many improvements, heuristics. . .
I Very clever implementation techniques.
I Mass industrial use.

Mass industrial use of SAT solving

In EDA (electronic design automation).
Prove that two circuit designs (without memory) are
equivalent : F (b1, . . . , bm) and G (b1, . . . , bm) equivalent iff
∀b1, . . . , bm F (b1, . . . , bm) = G (b1, . . . , bm).
How ?

Show that F (b1, . . . , bm) 6= G (b1, . . . , bm) is unsat.

NB : (x1, x2, x3, xm′) 6= (y1, y2, y3, ym′) iff
(x1 ⊕ y1) ∨ · · · ∨ (xm′ ⊕ ym′), where ⊕ is exclusive-or (XOR).

Mass industrial use of SAT solving

In EDA (electronic design automation).
Prove that two circuit designs (without memory) are
equivalent : F (b1, . . . , bm) and G (b1, . . . , bm) equivalent iff
∀b1, . . . , bm F (b1, . . . , bm) = G (b1, . . . , bm).
How ?

Show that F (b1, . . . , bm) 6= G (b1, . . . , bm) is unsat.

NB : (x1, x2, x3, xm′) 6= (y1, y2, y3, ym′) iff
(x1 ⊕ y1) ∨ · · · ∨ (xm′ ⊕ ym′), where ⊕ is exclusive-or (XOR).

For circuits with memory

Unroll execution traces, as seen before !

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

How about numbers ?

i n t x , y , z ;
assume (0 >= x && x <= 2 | | x >= 4 \ l and x <= 6) ;
assume (0 >= y && y <= 5) ;
z = x + y ;
assert (x + y <= 12) ;

How can we prove unsat :

(0 ≤ xleq2∨ 4 ≤ x ≤ 6)∧ 0 ≤ y ≤ 5∧ x = x + y ∧ x + y > 12

Bit-blasting

Assume int is 32-bit.
Expand 0 ≥ x , z = x + y ... into Boolean gates using adders,
comparators, etc.
Obtain a pure Boolean circuit.
(Same as C-to-hardware compilation.)

Apply SAT-solving !

DPLL(T)

Add Boolean variables :

(0 ≤ xleq2∨ 4 ≤ x ≤ 6)∧ 0 ≤ y ≤ 5∧ x = x + y ∧ x + y > 12
(1)

with a 4= 0 ≥ x , b 4= x ≤ 5, c 4= 0 ≥ y , d 4= y ≤ 5,
e 4= x = x + y , f 4= x + y > 12, g 4= x ≥ 4, h 4= x ≤ 6.

Formula 1 becomes

((a ∧ b) ∨ (g ∧ h)) ∧ c ∧ d ∧ e ∧ f (2)

DPLL(T) suite

((a ∧ b) ∨ (g ∧ h)) ∧ c ∧ d ∧ e ∧ f (3)

Solution : every variable to true !

But this means b 4= x ≤ 2 and g 4= g ≥ 4 both true ! This is
impossible with respect to integer arithmetic !

Add ¬(b ∧ g) (¬b ∨ ¬g) to the Boolean constraints, and start
again.

DPLL(T) explained

I Find a Boolean solution using DPLL.
I Check if feasible with respect to arithmetic.
I If not, add a Boolean constraint and restart.

In practice : DPLL interleaved with arithmetic (theory) solving.

Linear arithmetic over reals/rationals : simplex algorithm.

	Model-checking basics
	Boolean programs
	SAT-solving
	SMT-solving

