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Abstract. Twelve years ago we introduced a course in formal methods,
mainly based on the B method, at Ensimag, a renowned French school in
mathematics and computer science and engineering. Due to the evolution
of our curriculum and, above all, due to the evolution of the industrial
context w.r.t. formal tools, this course has evolved towards a new content,
that aims to train our students to understand and evaluate the variety
of existing static analysis tools. In this article we present this evolution,
the body of knowledge we have selected and some teaching resources.

1 Introduction

Twelve years ago we introduced a B course at Ensimag,® a renowned French
school specialized in mathematics and computer science and engineering. °

During this long period, this course has been subjected to many evolutions,
due first to our better understanding and knowledge of the domain and, more
importantly, to our perception of the notions that students are really able to ac-
quire and master. Furthermore, during the last two decades, the external context
has changed: formal techniques have acquired a new status in industry. Due to
safety and security requirements, a lot of tools and approaches have been devel-
oped, allowing to verify some dedicated classes of program properties. Teaching
formal methods, and more importantly the underlying concepts, is thus no more
considered an esoteric idea. We can even go further and affirm that future soft-
ware engineers have to be somewhat educated in formal methods.

The aim of this article is threefold: first to share our teaching experience
and exercises, secondly to explain why the B method supplies a well-adapted

® http://ensimag.grenoble-inp.fr/

5 In the company of Didier Bert, Marie-Laure Potet also gave lectures to the “Ecole
des jeunes chercheurs en programmation”, dedicated to PhD students in the domain
of programming. This school is supported by the French CNRS-GPL workgroup.
http://ejcp2010.inria.fr/programme10.htm.



framework for a formal method course and finally to present the evolution of the
content of this course from a top-down content (correct-by-design approach) to a
bottom-up content (code verification with abstraction). This article extends and
reuses [13], in which a fine presentation and evaluation of our B method course
is detailed. In Sec. 2, we present our experience about the B method course, with
an evaluation of how some notions have been introduced with which efficiency in
regard of students. In Sec. 3 we describe the new course relative to semantics and
program analysis, pointing out the objectives and how we try to reach them. We
conclude by an evaluation of this first year of the new course and our planned
improvements.

2 First Period: the B Correct-by-Design Method

The course dedicated to the formal aspects of programming takes place in the
second year of Ensimag, corresponding to the first year of a Master degree (fourth
year of higher education). It was initially optional, attracting students interested
by theoretical aspects of computer science. The audience was composed of fu-
ture engineers having a taste for technical and fundamental aspects and with
some abilities with abstraction, due to a solid background in mathematics.” Our
students thus have little difficulty with mathematical notions such as set theory.
More important, they are also able to manipulate several levels of formaliza-
tion such as syntax, semantics and reasoning about semantics without too much
difficulty. In addition, Ensimag students have some background in logic, com-
putability, compiling (implementation of a compiler for a small object-oriented
language) and rigorous algorithmics.

2.1 Objectives

The first version of the B method course was proposed as the successor of lectures
on formal specifications, in which many approaches were presented (algebraic
specifications, model-based specifications, refinement notions as in VDM and Z,
...). At this stage the choice was to focus on the B method, which integrates
the main steps of formal development into a single framework. Furthermore,
since this method was supported by robust tools, the challenge was to conciliate
practice with a fine understanding of theoretical concepts. The course had three
ambitious objectives, met according to students’ competences:

1. the ability to formalize behaviors and properties with the help of abstract
languages;

2. the ability to understand the semantics of programming languages and to
reason about programs in a formal way;

3. the ability to understand the methodological and theoretical concepts un-
derlying the correct-by-design principle.

In the sequel we detail these three objectives, and how we try to reach them.

" Most students come from “classes préparatoires aux grandes écoles” emphasizing
mathematics and preparing for competitive entrance examinations to e.g. Ensimag.



2.2 Modeling Aspects

Here the aim is that students should be able to write formal specifications and ex-
pected properties. With respect to this aim, the B method offers a very pleasant
framework, because students do not have to learn wholly new languages. First
order logic and set theory are expressive enough and, above all, well known by
our students. Abstract behaviors are described using the generalized substitu-
tion language, which is not much more difficult to comprehend. Contrary to
assertion languages or pre/postconditions, two difficulties are avoided: we do
not have to introduce the notion of before-after variables (variables and their
primed versions as in Z or TLA for instance), and we stay within an imperative
specification style, natural for our students. Variables that are not assigned are
implicitly left unmodified.

The difficulties met by our students are intrinsically related to the speci-
fication activity, in particular nondeterministic behaviors in specifications, an
unnatural concept for programmers. It is also not obvious for them to see pro-
gramming data structures as mathematical objects. Let us see here examples
illustrating data structure modeling, non determinism and properties (see the
Ref. column for references).

Examples Mustrated notions Ref.
a memory allocator nondeterministic behaviors 8]
a dynamic class loader specification based on relations [17]
or a RBAC security policy and hierarchy as trees [13]
a simple elevator expected properties formalized 8]

by invariants and dynamic behaviors
arrays, lists, ... data structures are mathematical objects| [1]

The allocator example introduces two sources of non-determinism: we do not
know whether the allocator can or cannot supply a memory cell, and we do not
know which address will be returned.

2.3 Reasoning about Properties and Programs

The second objective was that students should be able to reason about behaviors
(specifications or programs) in order to prove some properties. Here we introduce
the weakest precondition calculus [5] and the notion of proof obligations (or
verification conditions). For the generalized substitution language used in B,
the weakest precondition is not too complex to comprehend. but richer than
the classical while language because it includes nondeterministic specification
constructs. It is an opportunity to discuss the different forms of non determinism
(angelic versus demoniac).

Even though our students have some knowledge about decidability vs un-
decidability, it is very hard for them to be confronted with this notion: if my
property is not proved, is it due to my specification or to the weakness of the
automatic prover? To alleviate these difficulties, we have introduced exercises



tailored for lab classes: components are partially specified and, if students state
the right formulae, proofs are automatically established® (see sources in [7]).

Examples Notions that are used
ged program proofs of iteration
and absence of overflows
finding a given element in an array | a sophisticated iteration invariant

2.4 Semantic Modeling

Another aim is that students should be able to specify and understand some
fine aspects of programming language semantics and to reason about them. Two
new features are considered: function calls and exceptions.

The first extension, not detailed here, consists in formally defining function
calls for two modes of parameter passing and in studying these definitions w.r.t.
invariant preservation. We prove that call-by-value preserves invariant, contrary
to call-by-reference (see [2,13] for details). In the second example, following
Lilian Burdy’s work [3], we extend the generalized substitution language with
exceptions and two new primitives (raise and catch). We also illustrate the notion
of correctness by proving that this extension is consistent with the classical
weakest precondition calculus, up to a program transformation, as proposed in
[13].

First, students have to define a new weakest precondition calculus wpe(S, F')
with F' a function mapping exceptional exits to postconditions, i.e. F' € EXC
+ Predicate with EXC' the set of exception names, including a distinguished
constant no corresponding to normal behaviors. Secondly, they have to define a
translation C(S) from programs with exceptions into equivalent programs with-
out any. Let here some very simple examples (with exc a new variable):

Clx:=v)=x:=v; exc:=no C(RAISE ¢€) = exc:=e

Finally they have to prove the correctness of their wpe calculus, w.r.t. the C
translation, in establishing the following equivalence, for some substitutions as
assignment and sequencing (see [8] for these proofs):

wpe(S, F) < [C(9)] /\ (exc =e; = F(e;))
e;€dom(F)
2.5 Correct-by-Design Development Process

The third objective was to provide students with an initiation to the correct-by-
design principle, using refinement. We focused on the following notions:

— refinement: its intuitive definition in term of proof obligations
— refinement properties like transitivity and monotonicity allowing us to use
refinement in a development process (stepwise and partwise refinement)

8 depending on the way the formula is written.



— correctness and completeness of refinement proof obligations w.r.t. a seman-
tic characterization of refinement.

Our students do not have particular difficulty writing refinement examples
with their associated invariants, because they are familiar with abstraction and
data representations. Nevertheless, the definition of refinement proof obligations
is intrinsically abstruse for them (in particular in the case of data refinement)
and general properties (transitivity, correctness . .. ) seem very very abstract and
meaningless. Here are examples we used as laboratory exercises:

Examples Notions that are used |Ref.
modeling and controlling a lock| a simple data refinement | [7]
a booking service example a global development

The last example is developed in several documents? (in French). It is also
used to illustrate proof obligations relative to iteration and how these proof
obligations depend on the initial specification. More concretely, depending on
whether the specification only imposes to choose a free seat or the free seat with
the smallest number, the concrete invariant differs (see [13] for more details).

Correctness and completeness properties w.r.t. B refinement proof obligations
are interesting for several reasons: first they are based on a semantic definition of
refinement in term of component substitution principle (the contract metaphor)
and secondly they allow to illustrate the classical notions of correctness and
completeness of an operational procedure with respect to a semantic definition.
Teaching material can be founded in [13] and is inspired by [14]. Incompleteness
of B refinement proof obligations (equivalent to L-simulation) is illustrated by
the casino example, borrowed from Steve Dunne [6].

2.6 Conclusions Relative to the Correct-by-Design Course

In a top-down design process (from abstract models until implementations) stu-
dents become comfortable when implementations are tackled. They rediscover
known notions and a formalization of their usual practice. Furthermore, it seems
difficult for them to integrate in the same time many theoretical notions such as
a specification language, the weakest precondition calculus and the refinement
theory, in addition to the methodological aspects of formal development process.
Then a seemingly more appealing approach for students is to focus first on a
proof of program approach, starting from their background and knowledge. The
fact remains that some non trivial notions, such as formal semantics and reason-
ing about programming data structures as mathematical objects, are not easy
to master. Furthermore, because we are at the program level, students are ex-
pecting that we can deal with real programs, that make the semantics definition
more complex.

9 http://www-verimag.imag.fr/~potet/presentationB.acc.ps.



The B framework has proved to be a very nice framework for teaching and
has been reused for the new draft of this course. In particular the use of a unique
language (the generalized substitution language) to write both specification and
program in an imperative style is really an advantage, as well as the free AtelierB
tool, which is very easy to download and install.

3 Current Period: a Pragmatic Static Analysis Course

3.1 The New Context

The curriculum of Ensimag is being modified in order to be closer of the “LMD”
format.!? In the Information System Engineering curriculum, it was decided to
impose a compulsory course with some formal contents. The audience should
now be around 50-60 students.

Furthermore, as pointed out in the introduction part, formal methods have
acquired a new status in industry. Due to safety and security constraints, a lot
of tools and approaches have been developed, allowing to verify some dedicated
classes of program properties. Because our future engineers have to know the
state-of-the-art technologies, we have decided to study a larger set of formal
verification techniques, from rapid and very approximate tools to precise but
interactive approaches, depending on the goals of the verification process (bug
finding, verification of some particular form of properties, proof of assertions. . . ).
Our aim is that, at the end of this course, our students must be able to evaluate
the appropriateness of a given tool in regards of some needs or, equivalently,
which techniques can be deployed for a given problem. That means that they
should become acquainted to:

— advanced formal verification analysis techniques;

— undecidability and complexity results (Rice’s theorem for instance);

— theoretical and methodological difficulties (aliases, compiler or processor de-
pendent analysis ... ).

3.2 DMotivating examples

Here is a motivating example for understanding the possible levels of verification
accuracy. In Java, for security reasons, variable initialization is mandatory. Local
variables are not initialized by default, then conforming compilers must verify
that these variables are initialized according to simple dataflow rules. For in-
stance the following example is rejected at the compile time (generally students
do not believe it!):

class Securityl {
public static void main (String args|[])
{int i =1 ; Ol ol ; 02 o2 ;

10 Following the Bologna Accords, higher education should be structured in 3 years of
Bachelor (“licence”), 2 years for master and 3 for doctorate.



if (i==1) ol=mew O1(); else 02 = new 02();
if (i==1) System.out.println (ol.f1());
else System.out.println(o2.f2());}}

On the contrary, compilers must accept the following code, including type-
casts that could be proved correct (they never result in failed dynamic checks)
with more sophisticated techniques:

class Security2 {
public static void main (String args|[])
{int i = 1 ; Object o ;
if (i==1) o=new O1(); else o = new 02();
if (i==1) System.out.println (((Ol)o).fl1());
else System.out.println (((02)o).f2());}}

We also used the MISRA standard (Motor Industry Software Reliability As-
sociation) [10] to illustrate coding guidelines that require different analysis al-
gorithms (from lexical constraints to undecidable ones, through control flow
analysis). Here is some MISRA rules associated to pointers and arrays:

1. pointer arithmetic shall not be used (rule 101) or no more than 2 levels of
pointer indirection should be used (rule 102)

2. Relational operators shall not be applied to pointers except where both
operands are of the same type and point to the same array, structure or
union (rule 103)

3. the null pointer shall not be dereferenced (rule 107)

Rules 101 and 102, on the one hand, can be implemented with simple syntac-
tic and typing rules. Rules 103 and 107, on the other hand, are undecidable in
general; thus checking them could require more sophisticated algorithms, based
on value analysis and possibly a fine-grained memory model. Furthermore, such
techniques are bound to be incomplete (they reject correct programs) and/or
unsound (they accept incorrect programs).

The MISRA standard is a good example of the confusion faced by students.
The standard mixes indistinctly stylistic rules and rules with serious semantic
impact, decidable requirements and undecidable ones. It is thus impossible to
write an exact checker for conformance to MISRA-C; at best, one can perform
exact checks for the decidable rules, and conservative checks for the undecidable
rules: a warning is given unless the tool can prove that the program abides by
the rule. Thus, one objective of the course is to impact the knowledge of such
distinctions to the students.

3.3 Course content and sessions

The two challenges related to our objectives are:

1. To present a variety of static analysis approaches (from simple analyzes
such as dependency analysis, to abstract interpretation and even interactive



proofs) as a continuum and, as much as possible, within the same framework,
in order to minimize notations. So we present forward and backward asser-
tion propagation analyzes (with their pros and cons) and introduce abstract
interpretation technique as a restricted form of assertions for which proper
algorithms are tailored.

2. To convince as much as possible our public. Some students feel content with
theory, but many have to practice to be convinced. We therefore have a series
of exercises that have to be developed using tools.

The duration of this course is 36 hours including exercises and the first edition
takes place in 2010. Here is the precise content of this course (lesson resources
are available at [15]):

Session 1 Introduction

Sessions 2-4 |Assertions, WP, proof obligations

Session 5 AtelierB exercises: examples presented section 2.3

Session 6-7  |Model-checking, predicate abstraction principle

Session 8 Intervals and polyhedra

Session 9 Polyspace Verifier from MathWorks company

Session 10 TP Polyspace Verifier: an exercises suit and student codes
Session 11 Beyond simple programs: thread, pointer, floating numbers . ..
Session 12 Back on static analysis techniques and code verification

First part reuses a significant part of resources presented in the previous
sections. The abstract interpretation part does not introduce too much the-
ory but mainly focuses on automation (fixed point iteration) and accuracy (see
subsection 3.4). Session 11 is dedicated to problems introduced by non trivial
programming language features. In particular we detail alias analysis (Steens-
gaard’s algorithm [16]) and several form of memory models. In Session 12 we
come back to the notion of approximation (false positive/false negative), how
notion of correctness and completeness can be defined (applied here to run-time
error detection) and which analysis can be chosen, depending on the verification
objectives. For instance some tools, such as Coverity, prioritize efficiency and
speed over soundness; a tool may for instance skip parts of programs that it
cannot analyze precisely. This is very reasonable for finding bugs, but of limited
use for certification.

Certain features of the C language and their common implementations are
often largely misunderstood. For instance, the following C program may, depend-
ing on the architecture,’! the compiler and optimization options [11], produce
an assertion failure on the z != 0 condition, which is surprising given that z is
not modified between the two z != 0 tests; in fact, a prover based on Hoare logic
will typically assume that the two z != 0 expressions have the same truth value.
The reason is that between the two tests, z, originally a 80-bit floating point

1 The problem occurs on Intel x86 processors with 32-bit Linux or Windows operating
systems.



value, may be spilled to a 64-bit memory location and rounded to zero, depend-
ing on register allocation. Thus, one should be careful about results obtained
on high-level languages, since their implementation semantics may be different
from expected.
void do_nothing(double *x) { }
int main(void) {

double x = 0x1p—1022, y = 0x1pl00, z;

do_nothing(&y);

z=x/y;

if (z != 0) { do_nothing(&z); assert(z != 0); } }

3.4 Session and laboratory exercises

We present here an example, in C, that allows comparing several verification

techniques. We recall that global variables are initialized to O.

int t[20];

int main() {
int i;

for (i=0; i<20; i++) { t[i] = 1; } }

1. What is the strongest postcondition of function main ? Give an invariant for
the loop allowing us to prove this postcondition.

2. We now apply abstract interpretation over intervals. All cells in the array t
are represented as a single abstract variable ¢ (and thus a single intervals).
What is the best interval we can infer?

. Same question if now we represent each cell t[n] by a variable t,.

4. In the previous question we have a very fine-grained memory model, the price
being the number of variables and computations. One solution, as proposed
in [9], is to consider array slices. Propose some slices suitable for obtaining
an accurate invariant.

w

Laboratory exercises use the AtelierB tool [4] (see section 2.3) and the Polyspace
verifier product developped by MathWorks [12]. We provide a set of programs
with some errors pointed by the tool that have to be corrected (see [15], ses-
sion 11). Examples are tailored such that simple corrections to the code lead
to no warnings from the verifier (“green” in the Polyspace interface). We also
proposed that students may use their own programs. But in general this exper-
iment was not conclusive: they use some non standard primitives or libraries
and programs written by students generally do not take into account arithmetic
overflows. One student came with an implementation of the RSA asymmetric
encryption method. The Polyspace verifier revealed several potential important
errors (prime numbers generation with potential overflows, uninitialized vari-
ables ...) that led to important improvements in the code.

4 Conclusion and perspectives

We presented a new evolution of formal method teaching at Ensimag, a math-
ematics and computer engineering school. We explained why we have evolved



from a correct-by-design course to a more pragmatic course, with the objective
to give to our future engineers an initiation to the state of the art in the theo-
retical and practical aspects of static analysis techniques. We evaluated this new
course: polled students were convinced that these techniques can no longer be
ignored. Laboratory exercises, using industrial tools, largely contributed to this
success.

For the next year, one objective is to better integrate the presented techniques
and notations. We also plan to test a general platform allowing to experiment
several types of analysis within the same framework (as the Frama-C platform).
Finally, when we work with tools flirting with undecidability or approximation,
an important activity is to build appropriate examples (errors are pointed and
corrected in an exact manner).

A course with the same objectives but a different format is to be started in
2010-2011 at Ecole polytechnique in Paris.
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