Small inversions for smaller inversions

Jean-François MONIN

Inversion, simple example

Even natural numbers

```
Inductive even : }\forall\textrm{n}\mathrm{ , Prop :=
    | Ev0 : even 0
    Ev2 n : even n }->\mathrm{ even (S (S n)).
```

```
Basic usage
Lemma even_plus_left n m : even n l even ( }\textrm{n}+\textrm{m}\mathrm{ ) }->\mathrm{ even m.
IHen : even (n + m) }->\mathrm{ even m
enm : even (S (S (n + m)))
```



```
even m
```


Inversion

Purpose

Extract the information contained in a hypothesis H of type T

- where T is an inductive relation
- with some arguments having an inductive type

Expectations

- For each case (constructor), decompose H into ALL its components
- In particular, remove irrelevant cases

Essentially : (subtle) case analysis on H

- Simultaneous case analysis on H and its arguments
- game on dependent pattern-matching

Smaller inversion (part of the Braga method)

Joint work with Dominique Larchey Wendling [TYPES'18], [Proof\&Computation II 2021]

Half of even numbers

Fixpoint half n (e: even n) \{struct e$\}$: nat := match n return even $\mathrm{n} \rightarrow$ nat with
$\mid 0 \quad \Rightarrow \lambda_{\ldots}, 0$
$\mid 1 \quad \Rightarrow \lambda e$, match even_inv e with end
| S (S n) $\Rightarrow \lambda e, S$ (half $n(\pi e v e n ~ e))$ end e.

Projection: getting ONE STRUCTURALLY SMALLER component

Definition π even n (e: even ($\mathrm{S}(\mathrm{S} \mathrm{n})$)) : even n :=
match e in even m return

```
let n := match m with S (S n) => n | _ => n end in
let G := match m with S (S n) => True | _ => False end in G }->\mathrm{ even n
```

with

```
    Ev2 n e => \lambda _, e
```

 \(\Rightarrow \lambda\) fa, match fa with end
 end I.

Reasoning on half

Easy (induction on e)

Lemma double_half : $\forall \mathrm{n}$ e, half n e + half $\mathrm{n} \mathrm{e}=\mathrm{n}$.

Less easy: induction on e and inversion on e'
Lemma half_pirr : $\forall \mathrm{n}$ (e e' : even n), half n e = half $\mathrm{n} \mathrm{e}^{\prime}$.
e : even n
e' : even (S (S n))
= =
S (half n e) $=$ half ($\mathrm{S}(\mathrm{S} \mathrm{n})$) $\mathrm{e}^{\text {, }}$

Unicity of e

Again: induction on e and inversion on e'
Lemma even_unique : $\forall \mathrm{n}$ (e e' : even n), e = e'.

But proof unicity should not be overrated here

- The returned result (sort Set/Type) cannot depend on an argument of sort Prop
- Simple example: unbounded linear search algorithm (see ConstructiveEpsilon.v in the std lib)

More sophisticated inversions

- Even bounded natural numbers
- Half of even bounded natural numbers
- Proof unicity for $=$ and \leq in nat

```
Bounded natural numbers
Inductive t : nat }->\mathrm{ Set :=
    | FO {n} : t (S n)
    | FS {n} : t n -> t (S n).
```

Failures for standard inversion.

Inversion technologies

Standard tactic of Coq: fully automated [Cornes \& Terrasse, 1995 ; Murthy?]

- Improved over the years, very impressive black box
- lack of control
- big underlying terms
- failures with dependent inductive types

Small inversions: handcrafted [Monin 2010, Monin \& Shi 2013]

- Flexible approach with several variants
- Developed for a big experiment with CompCert
- Attempts towards automation (Braibant, Boutillier)

TYPE'2022

- Made clearer with auxiliary inductive types
- Improvement needed for dependent types

Small inversions with auxiliary inductive types

Receipe

Given an inductive relation rel : Tx \rightarrow Ty1 $\rightarrow \ldots$ Prop with "input" argument $\mathrm{x}: \mathrm{Tx}$, define:

- For each input case (constructor C) in Tx, an auxiliary inductive relation of type Ty1 $\rightarrow \ldots$ Prop by copy and paste of relevant telescopes of rel No recursion
- A dispatch function rel_disp from $\mathrm{x}: \mathrm{Tx}$ to Ty1 \rightarrow... Prop by pattern matching on x
- Inversion lemma rel_inv : rel \rightarrow rel_disp (easy proof)

Given a hypothesis R
perform match rel_inv R
Boils down to the relevant aux. inductive relation corresponding to

Small inversions with auxiliary inductive types

Receipe

Given an inductive relation rel : Tx \rightarrow Ty1 $\rightarrow \ldots$ Prop with "input" argument $\mathrm{x}: \mathrm{Tx}$, define:

- For each input case (constructor C) in Tx, an auxiliary inductive relation of type Ty1 \rightarrow... Prop by copy and paste of relevant telescopes of rel No recursion
- A dispatch function rel_disp from $\mathrm{x}: \mathrm{Tx}$ to Ty1 \rightarrow... Prop by pattern matching on x
- Inversion lemma rel_inv : rel \rightarrow rel_disp (easy proof)

Usage

- Given a hypothesis R : rel (C...) expr_1... perform match rel_inv R with...
- Boils down to the relevant aux. inductive relation corresponding to (C. . .)

Small inversion for dependent (data) types

Explicit injectivity

When R occurs as an argument in the goal we need also the left inverse rel_back of rel_inv (trivial as well), and a proof of R = rel_back (rel_inv R).

Then rewrite the occurrences of R with rel_back (rel_inv R) before the pattern-matching on rel_inv R.

Improvement: built-in injectivity

- In the previous receipe, add a last argument of shape C. . .
- Same code for rel_disp and rel_inv
- Bonus: inline rel_disp in the statement of rel_inv

Basic small inversion on even [2021 talks]

```
Inductive even : \(\forall \mathrm{n}\), Prop :=
    | Ev0 : even 0
    | Ev2 \(\mathrm{n}:\) even \(\mathrm{n} \rightarrow \operatorname{even}(\mathrm{S}(\mathrm{S} \mathrm{n})\) ).
Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 \(n\) : Prop := even2_Ev2 : even \(n \rightarrow\) even2 n.
```

Definition even_inv $\{n\}$ (e : even n)
match n return Prop with
=> even0
=> even1
end
Proof. destruct e; constructor; assumption. Defined
Definition even_back $\{n\}$ (e : match n return Prop with...) : even n.
Proof... Defined.

Basic small inversion on even [2021 talks]

```
Inductive even : }\forall\textrm{n}\mathrm{ , Prop :=
    | EvO : even 0
    | Ev2 n : even n meven (S (S n)).
Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n }->\mathrm{ even2 n.
Definition even_inv {n} (e : even n) :
    match n return Prop with
    | 0 => even0
    | 1 => even1
    | S (S n) => even2 n
    end.
Proof. destruct e; constructor; assumption. Defined.
```


Basic small inversion on even [2021 talks]

```
Inductive even : }\forall\textrm{n}\mathrm{ , Prop :=
    | EvO : even 0
    | Ev2 n : even n meven (S (S n)).
Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n }->\mathrm{ even2 n.
Definition even_inv {n} (e : even n) :
    match n return Prop with
    | 0 => even0
    | 1 => even1
    | S (S n) => even2 n
    end.
Proof. destruct e; constructor; assumption. Defined.
Definition even_back {n} (e : match n return Prop with...) : even n.
Proof... Defined.
Lemma even_inv_mono {n} (e : even n) : e = even_back (even_inv e).
Proof. destruct e; reflexivity. Qed.
```


Improved small inversion on even with built-in injectivity

```
Inductive even : }\forall\textrm{n}\mathrm{ , Prop :=
    | EvO : even 0
    | Ev2 n : even n meven (S (S n)).
Inductive is_Ev0 : even 0 }->\mathrm{ Prop := is_EvO_intro : is_Ev0 Ev0.
Inductive no_Ev1 : even 1 }->\mathrm{ Prop :=.
Inductive is_Ev2 n : even (S (S n)) -> Prop :=
    is_Ev2_intro : }\forall\mathrm{ (e : even n), is_Ev2 n (Ev2 n e).
Definition even_inv {n} (e : even n) :
    match n return even n }->\mathrm{ Prop with
    | 0 => is_EvO
    | 1 => no_Ev1
    | S (S n) => is_Ev2 n
    end e.
Proof. destruct e; constructor. Defined.
(* Basic version *)
Inductive evenO : Prop := evenO_EvO : evenO.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n }->\mathrm{ even2 n.
```


Exercise: equality in nat with obvious UP

```
Inductive diag : nat }->\mathrm{ nat }->\mathrm{ Prop :=
| dia0 : diag 0 0
| diaS x y : diag x y }->\mathrm{ diag (S x) (S y).
```

(* small inversion : standard receipe with built-in injectivity *)
Inductive is_dia0 : diag $00 \rightarrow$ Prop : $=$ iiOO : is_dia0 dia0
Inductive is_diaS x y : diag (S x) (S y) \rightarrow Prop :=
iiSS : \forall (d : diag x y), is_diaS x y (diaS x y d)
Inductive no_diag $\mathrm{x} y: \operatorname{diag} \mathrm{x} \mathrm{y} \rightarrow$ Prop $:=$
Definition diag_inv $\{x$ y\} (d : diag x y)
match x, y return diag $x y \rightarrow$ Prop with
Proof. destruct d; constructor. Qed.

Exercise: equality in nat with obvious UP

```
Inductive diag : nat }->\mathrm{ nat }->\mathrm{ Prop :=
| dia0 : diag 0 0
| diaS x y : diag x y }->\mathrm{ diag (S x) (S y).
(* small inversion : standard receipe with built-in injectivity *)
Inductive is_dia0 : diag 0 0 -> Prop := ii00 : is_dia0 dia0.
Inductive is_diaS x y : diag (S x) (S y) -> Prop :=
    iiSS : }\forall\mathrm{ (d : diag x y), is_diaS x y (diaS x y d).
Inductive no_diag x y : diag x y }->\mathrm{ Prop := .
Definition diag_inv {x y} (d : diag x y) :
    match x, y return diag x y }->\mathrm{ Prop with
    | 0, 0 => is_dia0
    | S x, S y => is_diaS x y
    | x, y => no_diag x y
    end d.
Proof. destruct d; constructor. Qed.
```


Simple explicit UIP in nat

Definition diag_refl $\{\mathrm{x}\}$: diag x x.
Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.
Definition eq_diag $\{\mathrm{x} y\}(\mathrm{e}: \mathrm{x}=\mathrm{y})$: diag $\mathrm{x} y$.
Proof. case e. apply diag_refl. Defined.

[reflexivity | apply f_equal, (IHx _ d)]. Defined.

Proof. induction x as $[\mid x I H x]$; simpl; intro d; destruct (diag_inv d);
\qquad

Simple explicit UIP in nat

Definition diag_refl $\{\mathrm{x}\}$: diag x x. Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.
Definition eq_diag $\{\mathrm{x} y\}(\mathrm{e}: \mathrm{x}=\mathrm{y})$: diag $\mathrm{x} y$.
Proof. case e. apply diag_refl. Defined.
Definition diag_back $\{\mathrm{x}\}$: $\forall \mathrm{y}$, $\operatorname{diag} \mathrm{x} \mathrm{y} \rightarrow \mathrm{x}=\mathrm{y}$.
Proof. induction x; destruct y; intro d; destruct (diag_inv d);
[reflexivity | apply f_equal, (IHx _ d)]. Defined.
Lemma
Proof
Treflexivity | case (IHx d). cbn. reflexivityl. Qed
Lemma
Proof. destruct e; destruct x as $[\mid x]$; simpl

+ destruct (diag_inv dia); reflexivity. ${ }^{2}$ [d]. case (dias backiarafl d) : reflexivity

Corollary UIP_nat (x : nat) ($e: x=x$) : eq_refl $=e$.
Proof. rewrite (diap mono e). annly diap back isrefl. Ded

Simple explicit UIP in nat

Definition diag_refl $\{\mathrm{x}\}$: diag x x. Proof. induction x as [$\mid \mathrm{x}$ IHx]; constructor. apply IHx. Defined.
Definition eq_diag $\{\mathrm{x} y\}(\mathrm{e}: \mathrm{x}=\mathrm{y})$: diag $\mathrm{x} y$.
Proof. case e. apply diag_refl. Defined.
Definition diag_back $\{\mathrm{x}\}: \forall \mathrm{y}$, $\operatorname{diag} \mathrm{x} \mathrm{y} \rightarrow \mathrm{x}=\mathrm{y}$.
Proof. induction x ; destruct y ; intro d ; destruct (diag_inv d);
[reflexivity | apply f_equal, (IHx _ d)]. Defined.
Lemma diag_back_isrefl $\{\mathrm{x}\}$: \forall (d : diag x x), eq_refl = diag_back d. Proof. induction x as [। x IHx]; simpl; intro d; destruct (diag_inv d); [reflexivity | case (IHx d). cbn. reflexivity]. Qed.

```
Lemma diag_mono \(\{x y\}(e \quad: x=y): e=d i a g \_b a c k ~\left(e q \_d i a g e\right)\).
    Proof. destruct e; destruct \(x\) as \([\mid x] ;\) simpl.
        + destruct (diag_inv dia0); reflexivity.
        + destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
```

Qed.

Corollary UIP_nat $(x: \operatorname{nat})(e: x=x):$ eq_refl $=e$.
Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed

Simple explicit UIP in nat

Definition diag_refl $\{\mathrm{x}\}$: diag x x. Proof. induction x as [$\mid \mathrm{x}$ IHx]; constructor. apply IHx. Defined.
Definition eq_diag $\{\mathrm{x} y\}(\mathrm{e}: \mathrm{x}=\mathrm{y})$: diag $\mathrm{x} y$.
Proof. case e. apply diag_refl. Defined.
Definition diag_back $\{\mathrm{x}\}: \forall \mathrm{y}$, $\operatorname{diag} \mathrm{x} \mathrm{y} \rightarrow \mathrm{x}=\mathrm{y}$.
Proof. induction x ; destruct y ; intro d ; destruct (diag_inv d);
[reflexivity | apply f_equal, (IHx _ d)]. Defined.
Lemma diag_back_isrefl $\{\mathrm{x}\}$: \forall (d : diag x x), eq_refl = diag_back d. Proof. induction x as [। x IHx]; simpl; intro d; destruct (diag_inv d); [reflexivity | case (IHx d). cbn. reflexivity]. Qed.
Lemma diag_mono $\{x$ y $\}(e, x=y): e=d i a g _b a c k ~\left(e q _d i a g e\right)$. Proof. destruct e; destruct x as $[1 \mathrm{x}]$; simpl.

+ destruct (diag_inv dia0); reflexivity.
+ destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
Qed.
Corollary UIP_nat (x : nat) (e : x = x) : eq_refl = e.
Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.

Horribly simpler proof of UIP in nat along the same scheme...

Fixpoint diagTF (x y : nat) : Prop :=
match x, y with
| $0,0 \quad \Rightarrow$ True
| S x, S y => diagTF x y
| _, _ \quad False
end.
Definition diagTF_refl x : diagTF x x :=...
Definition eq_diagTF $\{x$ y $\}$ (e : $\mathrm{x}=\mathrm{y}$) : diagTF x y :=...
Definition diagTF_back $\{\mathrm{x}\}: \forall \mathrm{y}$, $\operatorname{diagTF} \mathrm{x} \mathrm{y} \rightarrow \mathrm{x}=\mathrm{y}:=\ldots$
Lemma diagTF_back_isrefl $\{\mathrm{x}\}: \forall$ (d : diagTF x x), eq_refl = diagTF_back d.
Lemma diagTF_mono $\{x y\}(e: x=y): e=d i a g T F _b a c k ~\left(e q _d i a g T F ~ e\right) . ~$
Corollary UIP_nat (x : nat) (e : x = x) : eq_refl = e.
Proof. rewrite (diagTF_mono e). apply diagTF_back_isrefl. Qed.
... without diag and its inversion :(

Equality is too easy, what about \leq ?

Inversion performed "as if" \leq was defined as

$$
\begin{aligned}
& \text { Inductive le } \mathrm{n} \text { : nat } \rightarrow \text { Prop := } \\
& \text { | le_e_0 : } \mathrm{n}=0 \quad \rightarrow \mathrm{n} \leq 0 \\
& \text { | le_e_S m : } \mathrm{n}=\mathrm{S} m \rightarrow \mathrm{n} \leq \mathrm{S} m \\
& \text { | le_S m : } \mathrm{n} \leq \mathrm{m} \rightarrow \mathrm{n} \leq \mathrm{Sm} \text {. }
\end{aligned}
$$

```
Definition eq_le n m (e : n = m) : n \leq m :=
    match e with eq_refl => le_n n end.
```

Inductive le_Sm [m n] : $\mathrm{n} \leq \mathrm{S} \mathrm{m} \rightarrow$ Prop :=

Equality is too easy, what about \leq ?

Inversion performed "as if" \leq was defined as

$$
\begin{aligned}
& \text { Inductive le } \mathrm{n}: \text { nat } \rightarrow \text { Prop }:= \\
& \text { | le_e_0 }: n=0 \rightarrow n \leq 0 \\
& \text { le_e_S m }: n=S m \rightarrow n \leq S m \\
& \mid l e _S m \quad: n \leq m \rightarrow n \leq S m .
\end{aligned}
$$

```
Definition eq_le n m (e : n = m) : n \leq m :=
    match e with eq_refl => le_n n end.
Inductive le_0 [n] : n \leq 0 -> Prop :=
| le_0_e : }\forall\textrm{e}, le_0 (eq_le e)
Inductive le_Sm [m n] : n \leq S m -> Prop :=
| le_Sm_e : }\forall\mathrm{ e, le_Sm (eq_le e)
| le_Sm_S : \forall l, le_Sm (le_S n m l).
Lemma le_inv {n m} (l : n sm) :
    match m with
    | 0 => le_0
    | S m => @le_Sm m
    end n l.
```


Unicity of proofs of

Lemma eq_is_le_n $\{n\}$ (e : $n=n$) : le_n $n=$ eq_le e. Proof. rewrite (UIP_refl_nat n e). reflexivity. Qed.

Lemma lenn_unique $\{n\}$ ($1 \quad \mathrm{n} \leq \mathrm{n}$) : le_n $\mathrm{n}=1$.
Proof.
destruct n; destruct (le_inv l); try apply eq_is_le_n. case (lt_irrefl _ 1).
Qed.
Inductive is_le_S $\{\mathrm{n} m\}: \mathrm{n} \leq \mathrm{S} m \rightarrow$ Prop :=
| is_le_S_intro : \forall l, is_le_S (le_S n m l).
Lemma leS_is_le_S n m (lS : n \leq S m) : n $\leq m \rightarrow$ is_le_S lS.
Proof.
destruct (le_inv 1S) as [e | ll]; intro 1; try constructor. exfalso; rewrite e in 1; apply (lt_irrefl - 1).

Qed.
Fixpoint le_unique $\{\mathrm{n} m\}(\mathrm{p}: \mathrm{n} \leq \mathrm{m}): \forall \mathrm{q}, \mathrm{p}=\mathrm{q}$.
Proof.
destruct p as [1 m p]; intro q ; cbn.

- destruct (lenn_unique q); reflexivity.
- destruct (leS_is_le_S q p). apply f_equal, le_unique.

Qed.

Material

The Braga method

https://github.com/DmxLarchey/The-Braga-Method
Dominique Larchey-Wendling and Jean-François Monin.
The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8, pages 305-386.
In Klaus Mainzer, Peter Schuster, and Helmut Schwichtenberg, editors.
Proof and Computation II: From Proof Theory and Univalent Mathematics to Program Extraction and Verification.
World Scientific, September 2021.

Small inversions

http://home/jf/www/Proof/Small_inversions/2022/

