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Inversion, simple example

Even natural numbers
Inductive even : ∀ n, Prop :=

| Ev0 : even 0

| Ev2 n : even n → even (S (S n)).

Basic usage

Lemma even_plus_left n m : even n → even (n + m) → even m.

IHen : even (n + m) → even m

enm : even (S (S (n + m)))

=============================

even m
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Inversion

Purpose

Extract the information contained in a hypothesis H of type T

where T is an inductive relation

with some arguments having an inductive type

Expectations

For each case (constructor), decompose H into ALL its components

In particular, remove irrelevant cases

Essentially : (subtle) case analysis on H

Simultaneous case analysis on H and its arguments

game on dependent pattern-matching
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Smaller inversion (part of the Braga method)

Joint work with Dominique Larchey Wendling [TYPES’18],
[Proof&Computation II 2021]

Half of even numbers

Fixpoint half n (e: even n) {struct e} : nat :=

match n return even n → nat with

| O => λ _, 0

| 1 => λ e, match even_inv e with end

| S (S n) => λ e, S (half n (πeven e))

end e.

Projection: getting ONE STRUCTURALLY SMALLER component

Definition πeven n (e: even (S (S n))) : even n :=
match e in even m return

let n := match m with S (S n) => n | _ => n end in

let G := match m with S (S n) => True | _ => False end in G → even n

with

| Ev2 n e => λ _, e
| _ => λ fa, match fa with end

end I.
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Reasoning on half

Easy (induction on e)

Lemma double_half : ∀ n e, half n e + half n e = n.

Less easy: induction on e and inversion on e’

Lemma half_pirr : ∀ n (e e’ : even n), half n e = half n e’.

e : even n

e’ : even (S (S n))

================================

S (half n e) = half (S (S n)) e’
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Unicity of e

Again: induction on e and inversion on e’

Lemma even_unique : ∀n (e e’ : even n), e = e’.

But proof unicity should not be overrated here

The returned result (sort Set/Type)
cannot depend on an argument of sort Prop

Simple example: unbounded linear search algorithm
(see ConstructiveEpsilon.v in the std lib)
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More sophisticated inversions

Even bounded natural numbers

Half of even bounded natural numbers

Proof unicity for = and ≤ in nat

Bounded natural numbers

Inductive t : nat → Set :=

| FO {n} : t (S n)

| FS {n} : t n → t (S n).

Failures for standard inversion.
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Inversion technologies

Standard tactic of Coq: fully automated [Cornes & Terrasse, 1995 ; Murthy?]

Improved over the years, very impressive black box

lack of control

big underlying terms

failures with dependent inductive types

Small inversions: handcrafted [Monin 2010, Monin & Shi 2013]

Flexible approach with several variants

Developed for a big experiment with CompCert

Attempts towards automation (Braibant, Boutillier)

TYPE’2022

Made clearer with auxiliary inductive types

Improvement needed for dependent types
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Small inversions with auxiliary inductive types

Receipe

Given an inductive relation rel : Tx → Ty1 → ... Prop

with “input” argument x : Tx, define:

For each input case (constructor C) in Tx,
an auxiliary inductive relation of type Ty1 → ... Prop

by copy and paste of relevant telescopes of rel

No recursion

A dispatch function rel disp from x : Tx to Ty1 → ... Prop

by pattern matching on x

Inversion lemma rel inv : rel → rel disp (easy proof)

Usage

Given a hypothesis R : rel (C...) expr 1...

perform match rel inv R with...

Boils down to the relevant aux. inductive relation corresponding to (C...)
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Small inversion for dependent (data) types

Explicit injectivity

When R occurs as an argument in the goal we need also the left inverse
rel back of rel inv (trivial as well), and a proof of
R = rel back (rel inv R).

Then rewrite the occurrences of R with rel back (rel inv R) before
the pattern-matching on rel inv R.

Improvement: built-in injectivity

In the previous receipe, add a last argument of shape C...

Same code for rel disp and rel inv

Bonus: inline rel disp in the statement of rel inv
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Basic small inversion on even [2021 talks]

Inductive even : ∀ n, Prop :=

| Ev0 : even 0

| Ev2 n : even n → even (S (S n)).

Inductive even0 : Prop := even0_Ev0 : even0.

Inductive even1 : Prop :=.

Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.

Definition even_inv {n} (e : even n) :

match n return Prop with

| 0 => even0

| 1 => even1

| S (S n) => even2 n

end.

Proof. destruct e; constructor; assumption. Defined.

Definition even_back {n} (e : match n return Prop with...) : even n.

Proof... Defined.

Lemma even_inv_mono {n} (e : even n) : e = even_back (even_inv e).

Proof. destruct e; reflexivity. Qed.
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Improved small inversion on even with built-in injectivity

Inductive even : ∀ n, Prop :=

| Ev0 : even 0

| Ev2 n : even n → even (S (S n)).

Inductive is_Ev0 : even 0 → Prop := is_Ev0_intro : is_Ev0 Ev0.

Inductive no_Ev1 : even 1 → Prop :=.

Inductive is_Ev2 n : even (S (S n)) → Prop :=

is_Ev2_intro : ∀ (e : even n), is_Ev2 n (Ev2 n e).

Definition even_inv {n} (e : even n) :

match n return even n → Prop with

| 0 => is_Ev0

| 1 => no_Ev1

| S (S n) => is_Ev2 n

end e.

Proof. destruct e; constructor. Defined.

(* Basic version *)

Inductive even0 : Prop := even0_Ev0 : even0.

Inductive even1 : Prop :=.

Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.
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Exercise: equality in nat with obvious UP

Inductive diag : nat → nat → Prop :=

| dia0 : diag 0 0

| diaS x y : diag x y → diag (S x) (S y).

(* small inversion : standard receipe with built-in injectivity *)

Inductive is_dia0 : diag 0 0 → Prop := ii00 : is_dia0 dia0.

Inductive is_diaS x y : diag (S x) (S y) → Prop :=

iiSS : ∀ (d : diag x y), is_diaS x y (diaS x y d).

Inductive no_diag x y : diag x y → Prop := .

Definition diag_inv {x y} (d : diag x y) :

match x, y return diag x y → Prop with

| 0, 0 => is_dia0

| S x, S y => is_diaS x y

| x, y => no_diag x y

end d.

Proof. destruct d; constructor. Qed.
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Simple explicit UIP in nat

Definition diag_refl {x} : diag x x.

Proof. induction x as [ | x IHx]; constructor. apply IHx. Defined.

Definition eq_diag {x y} (e : x = y) : diag x y.

Proof. case e. apply diag_refl. Defined.

Definition diag_back {x} : ∀ y, diag x y → x = y.

Proof. induction x; destruct y; intro d; destruct (diag_inv d);

[reflexivity | apply f_equal, (IHx _ d)]. Defined.

Lemma diag_back_isrefl {x} : ∀ (d : diag x x), eq_refl = diag_back d.

Proof. induction x as [ | x IHx]; simpl; intro d; destruct (diag_inv d);

[reflexivity | case (IHx d). cbn. reflexivity]. Qed.

Lemma diag_mono {x y} (e : x = y) : e = diag_back (eq_diag e).
Proof. destruct e; destruct x as [ | x]; simpl.

+ destruct (diag_inv dia0); reflexivity.

+ destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.

Qed.

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.

Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.
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Horribly simpler proof of UIP in nat along the same scheme...

Fixpoint diagTF (x y : nat) : Prop :=

match x, y with

| 0, 0 => True

| S x, S y => diagTF x y

| _, _ => False

end.

Definition diagTF_refl x : diagTF x x :=...

Definition eq_diagTF {x y} (e : x = y) : diagTF x y :=...

Definition diagTF_back {x} : ∀ y, diagTF x y → x = y :=...

Lemma diagTF_back_isrefl {x} : ∀ (d : diagTF x x), eq_refl = diagTF_back d.

Lemma diagTF_mono {x y} (e : x = y) : e = diagTF_back (eq_diagTF e).

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.

Proof. rewrite (diagTF_mono e). apply diagTF_back_isrefl. Qed.

... without diag and its inversion :(
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Equality is too easy, what about ≤ ?

Inversion performed “as if” ≤ was defined as

Inductive le n : nat → Prop :=

| le_e_0 : n = 0 → n ≤ O

| le_e_S m : n = S m → n ≤ S m

| le_S m : n ≤ m → n ≤ S m.

Definition eq_le n m (e : n = m) : n ≤ m :=

match e with eq_refl => le_n n end.

Inductive le_0 [n] : n ≤ 0 → Prop :=

| le_0_e : ∀ e, le_0 (eq_le e).

Inductive le_Sm [m n] : n ≤ S m → Prop :=

| le_Sm_e : ∀ e, le_Sm (eq_le e)

| le_Sm_S : ∀ l, le_Sm (le_S n m l).

Lemma le_inv {n m} (l : n ≤ m) :

match m with

| O => le_0

| S m => @le_Sm m

end n l.
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Unicity of proofs of ≤

Lemma eq_is_le_n {n} (e : n = n) : le_n n = eq_le e.

Proof. rewrite (UIP_refl_nat n e). reflexivity. Qed.

Lemma lenn_unique {n} (l : n ≤ n) : le_n n = l.

Proof.
destruct n; destruct (le_inv l); try apply eq_is_le_n. case (lt_irrefl _ l).

Qed.

Inductive is_le_S {n m} : n ≤ S m → Prop :=

| is_le_S_intro : ∀ l, is_le_S (le_S n m l).

Lemma leS_is_le_S n m (lS : n ≤ S m) : n ≤ m → is_le_S lS.

Proof.
destruct (le_inv lS) as [ e | ll ]; intro l; try constructor.

exfalso; rewrite e in l; apply (lt_irrefl _ l).

Qed.

Fixpoint le_unique {n m} (p : n ≤ m) : ∀ q, p = q.
Proof.

destruct p as [ | m p]; intro q; cbn.

- destruct (lenn_unique q); reflexivity.

- destruct (leS_is_le_S q p). apply f_equal, le_unique.

Qed.
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Material

The Braga method

https://github.com/DmxLarchey/The-Braga-Method

Dominique Larchey-Wendling and Jean-François Monin.

The Braga Method: Extracting Certified Algorithms from Complex Recursive
Schemes in Coq, chapter 8, pages 305–386.

In Klaus Mainzer, Peter Schuster, and Helmut Schwichtenberg, editors.

Proof and Computation II: From Proof Theory and Univalent Mathematics to
Program Extraction and Verification.

World Scientific, September 2021.

Small inversions

http://home/jf/www/Proof/Small_inversions/2022/
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