
Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion) 1

Designing a CPU model:
from a pseudo-formal document to fast code

Frédéric Blanqui, Claude Helmstetter, Vania Joloboff,
Jean-François Monin, Xiaomu Shi

INRIA - LIAMA - FORMES

http://formes.asia/

Saturday, January 22, 2011

http://www.inrialpes.fr/vasy
http://www.inrialpes.fr/vasy

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Functional simulators of Systems-on-Chip

Functional full-system models (instruction-accurate):
 allows fast simulation of the real embedded software
 allows verification of system-level properties
 used as golden model for hardware verification
 loosely timed, because of low level code using “timeouts”

Abstraction level: functional full-system models are:
 less abstract than “Software Development Kit”, used for the

development of applications (e.g., IPhone SDK)
• use native simulation => cannot simulate low level code

 more abstract than time-accurate models, used for performance
evaluation

• more accurate => simulations are slower

2

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

The open-source SimSoC simulator

 SimSoC: Simulator of Systems-on-Chip
 Based on SystemC and OSCI TLM-2.0.1 (Loosely-Timed level)
 Library of component models

• many processors models: ARM, PowerPC, MIPS (with GDB servers)
• Bus, memory, timers, interrupt controllers, UARTs, Ethernet, etc

 Many platforms (complete enough to boot Linux):
• 2 models of SoC based on ARMv5
• 1 model of SoC based on PowerPC (dual-core)

 Distributed as open-source
• libraries under LGPL license
• programs under GPL license

http://gforge.inria.fr/projects/simsoc/

3

Saturday, January 22, 2011

http://gforge.inria.fr/simsoc/
http://gforge.inria.fr/simsoc/

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Development of simulators

Developing a simulator is costly: ~50.000 lines of code
 Some parts can be reused (if norms are respected)
Processors are the most complicated parts

 more and more instructions in new instructions sets
 bottleneck for simulation speed, so optimizations are needed

4

Bus: 260 lines of code

Processor
> 10,000 LoC

Memory
400 LoC

UART
800 LoC

Ethernet card
2600 LoC

Interrupt controller
600 LoC

Serial Flash
600 LoC

Timers
360 LoC

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Generation of an ARMv6 ISS

The code of an Instruction Set Simulator (ISS) is repetitive
1st idea: generate the code of the ISS from an in-memory

description
 Apply transformations and analysis before code generation

Reference manuals contains pseudo-formal parts:
 The semantics of each instruction is described by pseudo-code
 Instruction syntax, instruction encoding

2nd idea: extract automatically the formal description
from the reference manual

Application to the ARMv6 instruction set
 Note: SimSoC provides an hand-written ARMv5 ISS

5

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Outline & Architecture overview

6

ARMv6.pdf
DDI 01001 pdftotext

arm_v6.txt

patch & extract patch & extractpatch & extract

ASM syntax pseudo-codeIS encoding

merge & preprocess

internal OCaml representation
ASTs + encoding tables + token lists

optimizationsCoq code
generator

code generator

fast ISS
(C/C++)

specification
(Coq code)

equiv. proof
(further work)

integrated in

test generator

decoder tests

SimSoC

ISS

MMU

memory &
peripherals

(C++/SystemC)

ARM
v6

profiling
data

 Introduction
Extraction
Transformations
Generation
Experiments
Conclusion

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

The pseudo-formal parts of the manual

Many parts of the instruction descriptions can be extracted

Other parts (English text) are either:
 ignored (e.g., examples, instruction usage, etc)
 interpreted manually and injected into the OCaml analyser and

generator (e.g., validity constraints such as “W ⇒ Rn != PC”)

 interpreted manually and included in C/C++ libraries
(e.g., saturated arithmetic, memory model, etc)

7

 DDI 01001 ARM Instructions

ARM DDI 0100I Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-11

Operation

if ConditionPassed(cond) then
if L == 1 then

LR = address of the instruction after the branch instruction
PC = PC + (SignExtend_30(signed_immed_24) << 2)

Usage

Use BL to perform a subroutine call. The return from subroutine is achieved by copying R14 to the PC.
Typically, this is done by one of the following methods:

• Executing a BX R14 instruction, on architecture versions that support that instruction.

• Executing a MOV PC,R14 instruction.

• Storing a group of registers and R14 to the stack on subroutine entry, using an instruction of the form:

STMFD R13!,{<registers>,R14}

and then restoring the register values and returning with an instruction of the form:

LDMFD R13!,{<registers>,PC}

To calculate the correct value of signed_immed_24, the assembler (or other toolkit component) must:

1. Form the base address for this branch instruction. This is the address of the instruction, plus 8. In
other words, this base address is equal to the PC value used by the instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is always a multiple
of four, because all ARM instructions are word-aligned.

3. If the byte offset is outside the range 33554432 to 33554428, use an alternative code-generation
strategy or produce an error as appropriate.

4. Otherwise, set the signed_immed_24 field of the instruction to bits{25:2] of the byte offset.

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space is UNPREDICTABLE.

ARM Instructions

A4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100I

A4.1.5 B, BL

B (Branch) and BL (Branch and Link) cause a branch to a target address, and provide both conditional and
unconditional changes to program flow.

BL also stores a return address in the link register, R14 (also known as LR).

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<target_address>

Specifies the address to branch to. The branch target address is calculated by:

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits.

2. Shifting the result left two bits to form a 32-bit value.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8 bytes.

The instruction can therefore specify a branch of approximately 32MB (see Usage on
page A4-11 for precise range).

Architecture version

All.

Exceptions

None.

31 28 27 26 25 24 23 0

cond 1 0 1 L signed_immed_24

ARM Instructions

A4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100I

A4.1.5 B, BL

B (Branch) and BL (Branch and Link) cause a branch to a target address, and provide both conditional and
unconditional changes to program flow.

BL also stores a return address in the link register, R14 (also known as LR).

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<target_address>

Specifies the address to branch to. The branch target address is calculated by:

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits.

2. Shifting the result left two bits to form a 32-bit value.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8 bytes.

The instruction can therefore specify a branch of approximately 32MB (see Usage on
page A4-11 for precise range).

Architecture version

All.

Exceptions

None.

31 28 27 26 25 24 23 0

cond 1 0 1 L signed_immed_24

ARM Instructions

A4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100I

A4.1.5 B, BL

B (Branch) and BL (Branch and Link) cause a branch to a target address, and provide both conditional and
unconditional changes to program flow.

BL also stores a return address in the link register, R14 (also known as LR).

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<target_address>

Specifies the address to branch to. The branch target address is calculated by:

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits.

2. Shifting the result left two bits to form a 32-bit value.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8 bytes.

The instruction can therefore specify a branch of approximately 32MB (see Usage on
page A4-11 for precise range).

Architecture version

All.

Exceptions

None.

31 28 27 26 25 24 23 0

cond 1 0 1 L signed_immed_24

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Automatic extraction

Automatic extraction avoids a manual step
 manual translation could introduce errors
 the extractor code is ad hoc but its development is simple

 Issues
 the pseudo-code contains ambiguities

• type information
• ordering of side-effects
• exceptions not described in the code

 the pseudo-code contains bugs (in document ref. DDI 01001)
• syntax errors (e.g., unclosed parenthesis)
• code not conform with the textual description

(e.g., condition check missing in CLZ,
 wrong assignment at the end of LDRBT)

8

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Transformations and optimizations

Transformations fixing ambiguities
 Transform “CarryFrom(A+B)” in “CarryFromAdd(A,B)”
 Correct the addressing mode of SRS and RFE
 Move the base register write-back to a proper place

Optimizations
 Flattening: given some instructions I1,..,In and the related

addressing modes M1,..,Mk, we generate n×k instructions IiMj
• Append the code, merge the binary encoding and the assembly syntax

 Pre-computation of static sub-expression
• some sub-expressions can be computed at decode-time instead of

execution time (e.g., “NbOfSetBitsIn(reg_list)*4”)

 Specialize instructions, using feedback from the simulator

9

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Instruction specialization

An ARM instruction such as “ADD”,
 checks the condition field, to decide whether the instruction

must be executed or skipped
 checks the S bit, to decide whether the flags must be updated

Most of the time (as known by running testbeds):
 “ADD” is used with “S=false” and “condition=always”

A specialized instruction “ADD_S0_Always” is generated
 the AST is duplicated
 the condition check is removed
 S is replaced by false
 That’s simple using OCaml

10

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Outline & Architecture overview

11

ARMv6.pdf
DDI 01001 pdftotext

arm_v6.txt

patch & extract patch & extractpatch & extract

ASM syntax pseudo-codeIS encoding

merge & preprocess

internal OCaml representation
ASTs + encoding tables + token lists

optimizationsCoq code
generator

code generator

fast ISS
(C/C++)

specification
(Coq code)

equiv. proof
(further work)

integrated in

test generator

decoder tests

SimSoC

ISS

MMU

memory &
peripherals

(C++/SystemC)

ARM
v6

profiling
data

 Introduction
Extraction
Transformations
Generation
Experiments
Conclusion

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Generation of a fast ISS

Generated components:
 The types used to store an instruction after decoding.
 Two decoders: one for the main ARM instruction set and another

for the Thumb instruction set.
 The semantics functions, corresponding to the extracted and

optimized pseudo-code.
 The ASM printers, used to print debug traces.
 The “may_branch” predicate that detects basic block terminators

(i.e., branch instructions).

12

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

The “may_branch” predicate

Fast simulation requires to recognize “basic blocks”
 basic block = sequence of instructions always executed in a row

(i.e., only the last instruction may be a branch)

ARM architecture: PC = the general purpose register R15
 => there are a lot of branch instructions (e.g., ADD R15, R0, #8)
 an “ADD <rD>, <Rn>, <oper.>” instruction may branch if “d==15”

For each instruction, the code is analyzed to deduce the
“may_branch” condition (e.g., “d==15”)
 Fully automatic for most instructions
 Some special cases are managed by hand (e.g., LDM instruction)

13

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

More outputs: decoder tests

A decoder test =
 a binary word
 + the corresponding instruction (e.g., in assembly syntax)

Can be generated using the same internal representation
 we have developed a random test generator

Results:
 1 serious bug (BKPT not recognized)
 2 minors bugs (in printers) found

14

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

More outputs: Coq specification

Generation of a formal Coq specification (done)
 based on the same internal representation
 no optimizations are applied
 allows to simulate simple tests

• extremely slow, because the code is tailored to formal proof

 Long-term goal: (!ongoing work!)
 Evaluate whether a proof assistant such as Coq can be used to

improve the confidence in virtual prototypes
 Idea: prove that the C code used in the ISS is equivalent to the

Coq code
 Work not finished; still too early to say whether it will succeed.

15

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

More outputs: ARM ➞ LLVM translator

 LLVM: library including an optimizing runtime compiler
Compiling frequently executed ARM code to optimized

native code allows to speed up the simulations
Part of the ARM to LLVM translator is generated from the

same internal representation

16

fetch decode execute

MEMORY
binary instruction & data

INSTRUCTION CACHE
executable representation

cached?

inv
ali

da
te

OPTIMIZER
1. translate to LLVM

2. optimize
3. compile to native code

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Outline & Architecture overview

17

ARMv6.pdf
DDI 01001 pdftotext

arm_v6.txt

patch & extract patch & extractpatch & extract

ASM syntax pseudo-codeIS encoding

merge & preprocess

internal OCaml representation
ASTs + encoding tables + token lists

optimizationsCoq code
generator

code generator

fast ISS
(C/C++)

specification
(Coq code)

equiv. proof
(further work)

integrated in

test generator

decoder tests

SimSoC

ISS

MMU

memory &
peripherals

(C++/SystemC)

ARM
v6

profiling
data

 Introduction
Extraction
Transformations
Generation
Experiments
Conclusion

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

ISS validation

 ISS first validated and debugged using unitary tests
Decoder validated using the automatically generated tests
Next, after integration of the ISS into SimSoC

 Linux boot on the STMicroelectronics SPEArPlus600 SoC
• a few bugs found (e.g., in case of memory exception)

 Linux boot on the Texas Instrument AM1707 SoC
• no more bugs

18

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

ISS performances

3 benchmarks
 loop (extremely simple), sorting (pretty simple), crypto (more

complex)
 compiled with different compilations flags (O0/O3, thumb mode)
 tested using 3 computers: Linux 32, Linux 64, MacOSX (64)
 benchmarks compatible with ARMv5

 Compared to our previous ARMv5 hand-written ISS
(without using LLVM)
 on Linux 64: 107 Mi/s vs. 103 Mi/s (+4.3 %)
 on Linux 32: 78 Mi/s vs. 84 Mi/s (-6.8 %)
 on MacOSX: 92 Mi/s vs. 88 Mi/s (+4.5 %)

19

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Reusability: SH4 (!ongoing work!)

Question: Is the framework reusable for another
architecture?

We (Frédéric Blanqui and Frédéric Tuong) have started the
same work for the SH4 architecure

 In the SH4 reference manual
 no problem for syntax and binary encoding
 the instruction semantics are described by C-like code (>90% is

real C code)

Method:
 new extraction code, new parser (based on G.C.Necula parser)
 same OCaml internal representations (same ASTs, same coding

tables, etc)

20

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Conclusion

Development cost
 developing the generation framework is likely longer than

developing one simple ISS
 Refactoring the ISS is a lot faster if it has been generated from

the presented framework
 Adding one new output is a lot easier with this framework

Documentation uses “pseudo-code”. Why not “code”?
Using code:
 Easier to generate ISS, tests, etc
 Allow to validate the documentation

The generated code is distributed (in SimSoC 0.7.1)
 the generator will be.

21

Saturday, January 22, 2011

