Designing a CPU model:
from a pseudo-formal document to fast code

Fredéric Blanqui, Claude Helmstetter, Vania Joloboff,
Jean-Francois Monin, Xiaomu Shi

INRIA - LIAMA - FORMES

L — 7 E—
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘I 2011-01-22, at Rapido’11 (Heraklion) 1

Saturday, January 22, 2011

http://www.inrialpes.fr/vasy
http://www.inrialpes.fr/vasy

Functional simulators of Systems-on-Chip

» Functional full-system models (instruction-accurate):
= allows fast simulation of the real embedded software
= allows verification of system-level properties
= used as golden model for hardware verification
= loosely timed, because of low level code using “timeouts”

» Abstraction level: functional full-system models are:

= less abstract than “Software Development Kit”, used for the
development of applications (e.g., IPhone SDK)

- use native simulation => cannot simulate low level code

= more abstract than time-accurate models, used for performance
evaluation

- more accurate => simulations are slower

- -
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 2

Saturday, January 22, 2011

The open-source SimSoC simulator

»SimSoC: Simulator of Systems-on-Chip

= Based on SystemC and OSCI TLM-2.0.1 (Loosely-Timed level)

= Library of component models
- many processors models: ARM, PowerPC, MIPS (with GDB servers)
- Bus, memory, timers, interrupt controllers, UARTs, Ethernet, etc

= Many platforms (complete enough to boot Linux):
- 2 models of SoC based on ARMv5
- 1 model of SoC based on PowerPC (dual-core)

= Distributed as open-source
- libraries under LGPL license
- programs under GPL license

» http://gforge.inria.fr/projects/simsoc/

o [
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 3

Saturday, January 22, 2011

http://gforge.inria.fr/simsoc/
http://gforge.inria.fr/simsoc/

Development of simulators

» Developing a simulator is costly: ~50.000 lines of code
» Some parts can be reused (if nhorms are respected)

» Processors are the most complicated parts

= more and more instructions in new instructions sets
= bottleneck for simulation speed, so optimizations are needed

Processor Memory UART Ethernet card
> 10,000 LoC 400 LoC 800 LoC 2600 LoC
| Bus: 260 lines of code |
Interrupt controller Serial Flash Timers
600 LoC 600 LoC 360 LoC

— —
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 4

Saturday, January 22, 2011

Generation of an ARMvé6 ISS

» The code of an Instruction Set Simulator (ISS) is repetitive

> 15t idea: generate the code of the ISS from an in-memory
description

= Apply transformations and analysis before code generation

» Reference manuals contains pseudo-formal parts:
= The semantics of each instruction is described by pseudo-code
= |nstruction syntax, instruction encoding

»2nd idea: extract automatically the formal description
from the reference manual

» Application to the ARMvé6 instruction set
= Note: SimSoC provides an hand-written ARMvb5 ISS

| 7 -
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘(2011-01-22, at Rapido’11 (Heraklion) 5

Saturday, January 22, 2011

Outline & Architecture overview
T gD

\/
arm_ve6.txt

4

Q)atch & extracD @atch 8: extracD @atch & extracD

> Introduction

> Ext raCtion IS encoding<SM Syntai)pseudO-code

. merge & preprocess . ol
> Transformations (mampdmpes) date
> Generation L et 5 sl N

. (" SimSoC R
> Expe r] m e n tS Coq code (optimizations) test generator MMU
generator ARM
> C l . \ y 1SS v6
O n C u S] O n y @ode generatoD | decoder tests I B
specification
(Coq code) y mgmr?ry éli
fast ISS (.) peripherals
___________ C/C++) —{ integrated in
" ((C++/SystemC)
:/ equiv. proof i E
\ (further work)
C— E——
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 6

Saturday, January 22, 2011

The pseudo-formal parts of the manual

» Many parts of the instruction descriptions can be extracted
A415 B,BL| DDI01001 [3; 28 27 26 25 24 23

cond 1 O 1|L

B{L}{<cond>} <target_address>

if ConditionPassed(cond) then
if L == 1 then
LR = address of the instruction after the branch instruction
PC = PC + (SignExtend_30(signed_immed_24) << 2)

» Other parts (English text) are either:
= ighored (e.g., examples, instruction usage, etc)

= interpreted manually and injected into the OCaml analyser and
generator (e.g., validity constraints such as “W = Rn !|= PC”)

* interpreted manually and included in C/C++ libraries
(e.g., saturated arithmetic, memory model, etc)

o [
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 7

Saturday, January 22, 2011

Automatic extraction

» Automatic extraction avoids a manual step

= manual translation could introduce errors
= the extractor code is ad hoc but its development is simple

> |ssues

= the pseudo-code contains ambiguities
- type information
- ordering of side-effects
- exceptions not described in the code

= the pseudo-code contains bugs (in document ref. DDI 01001)
- syntax errors (e.g., unclosed parenthesis)

- code not conform with the textual description
(e.g., condition check missing in CLZ,
wrong assignment at the end of LDRBT)

— —
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 8

Saturday, January 22, 2011

Transformations and optimizations

» Transformations fixing ambiguities
= Transform “CarryFrom(A+B)” in “CarryFromAdd(A,B)”
= Correct the addressing mode of SRS and RFE
= Move the base register write-back to a proper place

» Optimizations

- Flattening: given some instructions I;,..,In and the related
addressing modes My, .., Mk, we generate nxk instructions I;M;

- Append the code, merge the binary encoding and the assembly syntax

= Pre-computation of static sub-expression

- some sub-expressions can be computed at decode-time instead of
execution time (e.g., “NbOfSetBitsIn(reg_list)*4”)

= Specialize instructions, using feedback from the simulator

- -
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 9

Saturday, January 22, 2011

Instruction specialization

» An ARM instruction such as “ADD”,

= checks the condition field, to decide whether the instruction
must be executed or skipped

= checks the S bit, to decide whether the flags must be updated
» Most of the time (as known by running testbeds):
= “ADD” is used with “S=false” and “condition=always”

» A specialized instruction “ADD_S0_Always” is generated
= the AST is duplicated
= the condition check is removed

= S is replaced by false
= That’s simple using OCaml

| 7 -
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘(2011-01-22, at Rapido’11 (Heraklion) 10

Saturday, January 22, 2011

Outline & Architecture overview
T gD

\/
arm_ve6.txt

4

Q)atch & extracD @atch 8: extracD @atch & extracD

> Introduction

> EXt ract-io n IS encoding<SM Syntai)pseudocode

. merge reprocess D ieilling
> Transformations (__mergo & prep)

data

\ 4

internal OCaml representation
ASTs + encoding tables + token lists

> Generation

. (SimSoC)
> EXpe r] m e n tS Coq code (optimizations) test generator MMU
generator ARM
> C l ° \/ \ 1SS v6
O n C u S] O n Y @ode generatoD | decoder tests I B
specification
(Coq code) y mgmr?ry éli
fast ISS (.) peripherals
C/C++) —{ integrated in
oo e “ ((C++/SystemC)
:/ equiv. proof : E
\ (further work)
L E— 7 E——
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘I 2011-01-22, at Rapido’11 (Heraklion) 11

Saturday, January 22, 2011

Generation of a fast ISS

> Generated components:

= The types used to store an instruction after decoding.

= Two decoders: one for the main ARM instruction set and another
for the Thumb instruction set.

= The semantics functions, corresponding to the extracted and
optimized pseudo-code.

= The ASM printers, used to print debug traces.

- The “may_branch” predicate that detects basic block terminators
(i.e., branch instructions).

— —
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 12

Saturday, January 22, 2011

The “may_branch” predicate

» Fast simulation requires to recognize “basic blocks”

= basic block = sequence of instructions always executed in a row
(i.e., only the last instruction may be a branch)

» ARM architecture: PC = the general purpose register R15
= => there are a lot of branch instructions (e.g., ADD R15, RO, #8)
= an “ADD <rD>, <Rn>, <oper.>" instruction may branch if “d==15"

» For each instruction, the code is analyzed to deduce the
“may_branch” condition (e.g., “d==15")

= Fully automatic for most instructions
= Some special cases are managed by hand (e.g., LDM instruction)

| 7 -
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘(2011-01-22, at Rapido’11 (Heraklion) 13

Saturday, January 22, 2011

More outputs: decoder tests

» A decoder test =
= a binary word
= + the corresponding instruction (e.g., in assembly syntax)

» Can be generated using the same internal representation
= we have developed a random test generator

» Results:

= 1 serious bug (BKPT not recognized)
= 2 minors bugs (in printers) found

— —
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 14

Saturday, January 22, 2011

More outputs: Coq specification

» Generation of a formal Coq specification (done)
= based on the same internal representation
* no optimizations are applied

= allows to simulate simple tests
- extremely slow, because the code is tailored to formal proof

» Long-term goal: (!ongoing work!)
= Evaluate whether a proof assistant such as Coq can be used to
improve the confidence in virtual prototypes

 |dea: prove that the C code used in the ISS is equivalent to the
Coq code

= Work not finished; still too early to say whether it will succeed.

— —
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 15

Saturday, January 22, 2011

More outputs: ARM — LLVM translator

» LLVM: library including an optimizing runtime compiler

» Compiling frequently executed ARM code to optimized
native code allows to speed up the simulations

» Part of the ARM to LLVM translator is generated from the
same internal representation

MEMORY
binary instruction & data

INSTRUCTION CACHE
executable representation

cached? OPTIMIZER)
1. translate to LLVM
2. optimize
3. compile to native code
N——

— —
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 16

Saturday, January 22, 2011

Outline & Architecture overview

> Introduction

> Extraction

» Transformations
» Generation

> Experiments

» Conclusion

‘ ARMV6.pdf
DDI 01001 —’deﬁ‘DeXt

\/
arm_ve6.txt

4

Q)atch & extracD @atch 8: extracD @atch & extracD

\ \

\4

IS encoding QSM syntaxA)pseudo-code
\

(merge & preprocess)4——

profiling
data

\ 4

internal OCaml representation
ASTs + encoding tables + token lists

test generator

Coq code (optimizations)
generator

\

A4

\ 4

@ode generatoD | decoder tests I

specification
(Coqg code) A4

—»(integrated in)

fast ISS
------------- « (C/C++)

' equiv. proof |

:‘ (further work) |

(" SimSoC

~N

MMU

ISS

ARM
v6

memory &
peripherals

C

C— 7 E——
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘I 2011-01-22, at Rapido’11 (Heraklion)

17

(C++/SystemC)

Saturday, January 22, 2011

ISS validation

> ISS first validated and debugged using unitary tests
» Decoder validated using the automatically generated tests

» Next, after integration of the ISS into SimSoC

= Linux boot on the STMicroelectronics SPEArPlus600 SoC
- a few bugs found (e.g., in case of memory exception)

= Linux boot on the Texas Instrument AM1707 SoC
- no more bugs

- -
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 18

Saturday, January 22, 2011

ISS performances

> 3 benchmarks

= loop (extremely simple), sorting (pretty simple), crypto (more
complex)

= compiled with different compilations flags (00/03, thumb mode)
= tested using 3 computers: Linux 32, Linux 64, MacOSX (64)

= benchmarks compatible with ARMv5

» Compared to our previous ARMv5 hand-written ISS
(without using LLVM)

= on Linux 64: 107 Mi/s vs. 103 Mi/s (+4.3 %)
= on Linux 32: 78 Mi/s vs. 84 Mi/s (-6.8 %)
= on MacOSX: 92 Mi/s vs. 88 Mi/s (+4.5 %)

— —
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘ 2011-01-22, at Rapido’11 (Heraklion) 19

Saturday, January 22, 2011

Reusability: SH4 (!ongoing work!)

> Question: Is the framework reusable for another
architecture?

> We (Fredéric Blanqui and Fréderic Tuong) have started the
same work for the SH4 architecure
> In the SH4 reference manual
* no problem for syntax and binary encoding

= the instruction semantics are described by C-like code (>90% is
real C code)

> Method:

* new extraction code, new parser (based on G.C.Necula parser)

- same OCaml internal representations (same ASTs, same coding
tables, etc)

- 7 -
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘(2011-01-22, at Rapido’11 (Heraklion) 20

Saturday, January 22, 2011

Conclusion

» Development cost

= developing the generation framework is likely longer than
developing one simple ISS

= Refactoring the ISS is a lot faster if it has been generated from
the presented framework

= Adding one new output is a lot easier with this framework

» Documentation uses “pseudo-code”. Why not “code”?
Using code:

= Easier to generate ISS, tests, etc
= Allow to validate the documentation

» The generated code is distributed (in SimSoC 0.7.1)
= the generator will be.

L — 7' E—
Claude Helmstetter (from INRIA-LIAMA-FORMES) ‘I 2011-01-22, at Rapido’11 (Heraklion) 21

Saturday, January 22, 2011

