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Background
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Goal and approach

Goal: To reason about probabilistic behaviors in
randomized, distributed and fault-tolerant systems.

Approach: extend existing successful models and techniques.

Modeling: process algebra, labeled transition system, Markov chain,
...

Verification: temporal logic, model checking, ...,
interactive theorem proving
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Probabilistic modelling

To represent and quantify unreliable behaviour (e.g. fault-tolerant
systems)

To break symmetry in distributed co-ordination problems
(e.g. leader election problem, consensus problem)

Other forms of uncertainty
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Preliminaries
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Labelled transition systems

Def. A labelled transition system (LTS) is a triple 〈S ,Act,→〉, where

1 S is a set of states

2 Act is a set of actions

3 → ⊆ S × Act × S is the transition relation
Notation s

α−→ s ′
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Bisimulation

s
a−→ s ′

R R
t

a−→ t ′

s and t are bisimilar if there exists a bisimulation R with s R t.
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Notation

A discrete probability distribution over a set S is a function
∆ : S → [0, 1] s.t.

∑
s∈S ∆(s) = 1

D(S): the set of all distributions over S

s: the point distribution s(s) = 1

Given distributions ∆1, ...,∆n, we form their linear combination∑
i∈1..n pi ·∆i , where ∀i : pi > 0 and

∑
i∈1..n pi = 1.
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Probabilistic labelled transition systems

Def. A probabilistic labelled transition system (pLTS) is a triple
〈S ,Act,→〉, where

1 S is a set of states

2 Act is a set of actions

3 → ⊆ S × Act ×D(S).
Notation s

α−→ ∆
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Probabilistic Bisimulation

s
a−→ ∆

R R†

t
a−→ Θ

Write ∼ for probabilistic bisimilarity.
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Lifting relations

Def. Let S ,T be two countable sets and R ⊆ S × T be a binary relation.
The lifted relation R† ⊆ D(S)×D(T ) is the smallest relation satisfying

1 s R t implies sR†t

2 ∆iR†Θi for all i ∈ I implies (
∑

i∈I pi ·∆i )R†(
∑

i∈I pi ·Θi )

There are alternative formulations; related to the Kantorovich metric and the
network flow problem. See e.g. http://www.springer.com/978-3-662-45197-7
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First modal characterisation
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The logic L1

The language L1 of formulas:

ϕ ::= > | ϕ1 ∧ ϕ2 | 〈a〉pϕ.

where p is rational number in [0, 1].
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Semantics

s |= > always;

s |= ϕ1 ∧ ϕ2, if s |= ϕ1 and s |= ϕ2;

s |= 〈a〉pϕ iff s
a−→ ∆ and ∆([[ϕ]]) ≥ p, where [[ϕ]] = {s ∈ S | s |= ϕ}.

Logical equivalence: s =1 t if s |= ϕ⇔ t |= ϕ for all ϕ ∈ L1.
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Modal characterisation

Modal characterisation (s ∼ t iff s =1 t) for the continuous case given by
[Desharnais et al. Inf. Comput. 2003], using the machinery of analytic
spaces.
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Second modal characterisation
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The logic L2

The language L2 of formulas:

ϕ ::= > | ϕ1 ∧ ϕ2 | 〈a〉ϕ.

Modal characterisation for the continuous case given by [van Breugel et al.]
Again : heavy machinery (probabilistic powerdomains and Banach algebra)

Elementary proof for the discrete case [Deng and Feng].
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Semantics

Pr(s,>) = 1

Pr(s, 〈a〉ϕ) =

{ ∑
t∈d∆e ∆(t) · Pr(t, ϕ) if s

a−→ ∆

0 otherwise.

Pr(s, ϕ1 ∧ ϕ2) = Pr(s, ϕ1) · Pr(s, ϕ2)

Logical equivalence: s =2 t if Pr(s, ϕ) = Pr(t, ϕ) for all ϕ ∈ L2.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 20 / 36



Soundness

Thm. If s ∼ t then s =2 t.
Proof. Easy by structural induction.
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Completeness

Thm. For finite-state reactive pLTSs, if s =2 t then s ∼ t.
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Key lemma

Lem. For any I ⊆ {1, · · · , n} with I 6= ∅, there exist a nonempty I ′ ⊆ I
and an enhanced formula t such that

(i) for any i 6= j ∈ I ′, Pr(Ci , t) 6= Pr(Cj , t);

(ii) for any k ∈ I\I ′, Pr(Ck , t) = 0.

30
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input : A nonempty I ⊆ {1, · · · , n} with dist. formulae ϕij for all i 6= j .
output: A nonempty I ′ ⊆ I and an enhanced formula ϕ satisfying (i) and (ii)

1 begin
2 Ipass ← ∅; Irem ← {(i , j) ∈ I × I : i < j};
3 I ′ ← I ; ϕ← >;
4 while Irem 6= ∅ do
5 Choose arbitrarily (i , j) ∈ Irem;
6 I ′ ← {k ∈ I ′ : Pr(Ck , ϕij) > 0};
7 Idis ← {(k, l) ∈ Irem ∩ I ′ × I ′ : Pr(Ck , ϕij) 6= Pr(Cl , ϕij)};
8 Irem ← (Irem ∩ I ′ × I ′)\Idis ;
9 Ipass ← (Ipass ∩ I ′ × I ′) ∪ Idis ;

10 ϕ← ϕ ∧ ϕij ; Item ← ∅; I ← Ipass ;
11 while I 6= ∅ do

12 I ← {(k, l) ∈ Ipass\Item : Pr(Ck , ϕ) = Pr(Cl , ϕ)};
13 if I 6= ∅ then
14 ϕ← ϕ ∧ ϕij ;

15 Item ← Item ∪ I;

16 end

17 end

18 end
19 return I ′, ϕ;

20 end
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Summary

Two logical characterisation of probabilistic bisimilarity for countable and
finite-state reactive processes, respectively, with much more elementary
proofs than those of Desharnais et al. and van Breugel et al.

Questionable part : correctness of the key algorithm.
Original proof = a few pages of purely technical considerations, without
general interest. There are no chances that such a proof could be reused
in any way.
Is it reasonable to inflict such proof checking to human reviewers, who
have many other important tasks to perform, such as applications for
funding?

Fact : many published proofs on computer science are actually wrong.
Proof : by folklore.
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Certified formal proof of the key algorithm
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Coq in a nutshell

A highly reliable proof assistant

LCF kernel-based architecture
proofs as objects
based on type theory

Very expressive logic, including higher-order features, induction, etc.

Embeds a (functional) programming language,
which makes it a tool of choice for reasoning about algorithms

Uniform framework based on Curry-Howard isomorphism

Human-aided proofs + automation for easy steps :
tactics and tacticals

Helpers : notations, abstraction mechanisms such as Haskell-like
classes, etc.
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Coq for the scientific layperson

Read the specification

Check that the script is accepted

Look for unproved claims, axioms...

Up to the Coq writer: write a clear specification
Common practice : no need to spend time on qualities of the proof: this
part is relevant to machines, not humans
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Coq for proof engineers

Common mistake among early Coq writers:
No need to spend time on qualities of the proof: this part is relevant to
machines, not humans

Like programming, proving is not a one-shot activity
Proof : by Curry-Howard
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Coq in this case study

Imperative algorithm:

Deep embedding?

Semantics?

Hoare logic?

Translate proof steps of the original paper?

IRRELEVANT!
See statement of the lemma (slide 23)

use the functional language of Coq

mimick/adapt/improve the original proof
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Practical issues

Representation of states

Loops, termination

Set notations
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Formalisation (main)

Variable I0 : set N.

Definition distinguish i j :=

{t : basic_test | i <> j -> ¬ Prb i t == Prb j t}.

Variable oracle : ∀ i j, (i, j) ∈ I0×I0 -> distinguish i j.

Theorem correctness :

let (fI, ft) := algo_compt_enhanced_test in

fI <> ∅ ∧
(∀ k, k ∈ fI -> 0 < Pr k ft) ∧
(∀ k, k ∈ (I0 \ fI) -> Pr k ft == 0) ∧
(∀ i j, i ∈ fI -> j ∈ fI -> i <> j -> ¬ Pr i ft == Pr j ft).

Corollary main_lemma :

∃ fI, ∃ ft, fI <> ∅ ∧ etc.
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Formalisation (main algo)

Function out_loop r (di : out_data_invariant0 r)

measure size_of_out_data r : out_iter_data :=

match pick di with

| P_empty _ e => r

| P_nonempty _ i j s e dis => let (bt, _) := dis in

out_loop (outer_loop_iter2 r di bt)

(outer_loop_iter_invar0 r di bt)

end.

Definition algo_compt_enhanced_test : final_data :=

let r := init_data I0 in

let final_r := out_loop r init_data_invariant0 in

{| I’f := I’ final_r;

etf := et final_r |}.
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Formalisation (pick)

Inductive resu_pick r : Set :=

| P_empty : Y_rem r = ∅ -> resu_pick r

| P_nonempty : forall i j s,

Y_rem r = (i, j) :: s -> distinguish i j -> resu_pick r.

Definition pick r (di : out_data_invariant0 r) : resu_pick r.

(* ... using oracle *)

Defined.
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Thank you!
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Former formalisation

I0 created as an initial segment of N {0... m}

Theorem correctness : ∀ m,

let (fI, ft) := algo_compt_enhanced_test m in

((0 < m) -> fI <> ∅) ∧
(∀ k, k ∈ fI -> 0 < Pr k ft) ∧
(∀ k, k ∈ (createI m \ fI) -> Pr k ft == 0) ∧
(∀ i j, i ∈ fI -> j ∈ fI -> i <> j -> Pr i ft <> Pr j ft).
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