
Probabilistic Testing Semantics in Coq

Jean-François MONIN

Joint work with Yuxin DENG, ECNU, Shanghai

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 1 / 36

Introduction

Framework

Probabilistic concurrency theory (Larsen & Skou)

Probabilistic bisimilarity

Testing characterisation generalized to reactive probabilistic processes
RPP

General result by van Breugel et al. on continuous state spaces

Simplification by Deng and Feng on finite state RPP

This work

Formal proof in Coq of the result by Deng and Feng

Central part: a non-trivial (initially imperative) program

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 2 / 36

Introduction

Framework

Probabilistic concurrency theory (Larsen & Skou)

Probabilistic bisimilarity

Testing characterisation generalized to reactive probabilistic processes
RPP

General result by van Breugel et al. on continuous state spaces

Simplification by Deng and Feng on finite state RPP

This work

Formal proof in Coq of the result by Deng and Feng

Central part: a non-trivial (initially imperative) program

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 2 / 36

Background

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 3 / 36

Goal and approach

Goal: To reason about probabilistic behaviors in
randomized, distributed and fault-tolerant systems.

Approach: extend existing successful models and techniques.

Modeling: process algebra, labeled transition system, Markov chain,
...

Verification: temporal logic, model checking, ...,
interactive theorem proving

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 4 / 36

Probabilistic modelling

To represent and quantify unreliable behaviour (e.g. fault-tolerant
systems)

To break symmetry in distributed co-ordination problems
(e.g. leader election problem, consensus problem)

Other forms of uncertainty

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 5 / 36

Preliminaries

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 6 / 36

Labelled transition systems

Def. A labelled transition system (LTS) is a triple 〈S ,Act,→〉, where

1 S is a set of states

2 Act is a set of actions

3 → ⊆ S × Act × S is the transition relation
Notation s

α−→ s ′

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 7 / 36

Bisimulation

s
a−→ s ′

R R
t

a−→ t ′

s and t are bisimilar if there exists a bisimulation R with s R t.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 8 / 36

Notation

A discrete probability distribution over a set S is a function
∆ : S → [0, 1] s.t.

∑
s∈S ∆(s) = 1

D(S): the set of all distributions over S

s: the point distribution s(s) = 1

Given distributions ∆1, ...,∆n, we form their linear combination∑
i∈1..n pi ·∆i , where ∀i : pi > 0 and

∑
i∈1..n pi = 1.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 9 / 36

Probabilistic labelled transition systems

Def. A probabilistic labelled transition system (pLTS) is a triple
〈S ,Act,→〉, where

1 S is a set of states

2 Act is a set of actions

3 → ⊆ S × Act ×D(S).
Notation s

α−→ ∆

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 10 / 36

Example

s

s1

s2 s3

s4

t

t1 t2

t3 t4

t5

a

b

1
2

1
2

c d

a

1
2

1
2

b b

c d

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 11 / 36

Probabilistic Bisimulation

s
a−→ ∆

R R†

t
a−→ Θ

Write ∼ for probabilistic bisimilarity.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 12 / 36

Lifting relations

Def. Let S ,T be two countable sets and R ⊆ S × T be a binary relation.
The lifted relation R† ⊆ D(S)×D(T) is the smallest relation satisfying

1 s R t implies sR†t

2 ∆iR†Θi for all i ∈ I implies (
∑

i∈I pi ·∆i)R†(
∑

i∈I pi ·Θi)

There are alternative formulations; related to the Kantorovich metric and the
network flow problem. See e.g. http://www.springer.com/978-3-662-45197-7

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 13 / 36

http://www.springer.com/978-3-662-45197-7

First modal characterisation

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 14 / 36

The logic L1

The language L1 of formulas:

ϕ ::= > | ϕ1 ∧ ϕ2 | 〈a〉pϕ.

where p is rational number in [0, 1].

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 15 / 36

Semantics

s |= > always;

s |= ϕ1 ∧ ϕ2, if s |= ϕ1 and s |= ϕ2;

s |= 〈a〉pϕ iff s
a−→ ∆ and ∆([[ϕ]]) ≥ p, where [[ϕ]] = {s ∈ S | s |= ϕ}.

Logical equivalence: s =1 t if s |= ϕ⇔ t |= ϕ for all ϕ ∈ L1.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 16 / 36

Modal characterisation

Modal characterisation (s ∼ t iff s =1 t) for the continuous case given by
[Desharnais et al. Inf. Comput. 2003], using the machinery of analytic
spaces.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 17 / 36

Second modal characterisation

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 18 / 36

The logic L2

The language L2 of formulas:

ϕ ::= > | ϕ1 ∧ ϕ2 | 〈a〉ϕ.

Modal characterisation for the continuous case given by [van Breugel et al.]
Again : heavy machinery (probabilistic powerdomains and Banach algebra)

Elementary proof for the discrete case [Deng and Feng].

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 19 / 36

The logic L2

The language L2 of formulas:

ϕ ::= > | ϕ1 ∧ ϕ2 | 〈a〉ϕ.

Modal characterisation for the continuous case given by [van Breugel et al.]
Again : heavy machinery (probabilistic powerdomains and Banach algebra)

Elementary proof for the discrete case [Deng and Feng].

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 19 / 36

Semantics

Pr(s,>) = 1

Pr(s, 〈a〉ϕ) =

{ ∑
t∈d∆e ∆(t) · Pr(t, ϕ) if s

a−→ ∆

0 otherwise.

Pr(s, ϕ1 ∧ ϕ2) = Pr(s, ϕ1) · Pr(s, ϕ2)

Logical equivalence: s =2 t if Pr(s, ϕ) = Pr(t, ϕ) for all ϕ ∈ L2.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 20 / 36

Soundness

Thm. If s ∼ t then s =2 t.
Proof. Easy by structural induction.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 21 / 36

Completeness

Thm. For finite-state reactive pLTSs, if s =2 t then s ∼ t.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 22 / 36

Key lemma

Lem. For any I ⊆ {1, · · · , n} with I 6= ∅, there exist a nonempty I ′ ⊆ I
and an enhanced formula t such that

(i) for any i 6= j ∈ I ′, Pr(Ci , t) 6= Pr(Cj , t);

(ii) for any k ∈ I\I ′, Pr(Ck , t) = 0.

30

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 23 / 36

input : A nonempty I ⊆ {1, · · · , n} with dist. formulae ϕij for all i 6= j .
output: A nonempty I ′ ⊆ I and an enhanced formula ϕ satisfying (i) and (ii)

1 begin
2 Ipass ← ∅; Irem ← {(i , j) ∈ I × I : i < j};
3 I ′ ← I ; ϕ← >;
4 while Irem 6= ∅ do
5 Choose arbitrarily (i , j) ∈ Irem;
6 I ′ ← {k ∈ I ′ : Pr(Ck , ϕij) > 0};
7 Idis ← {(k, l) ∈ Irem ∩ I ′ × I ′ : Pr(Ck , ϕij) 6= Pr(Cl , ϕij)};
8 Irem ← (Irem ∩ I ′ × I ′)\Idis ;
9 Ipass ← (Ipass ∩ I ′ × I ′) ∪ Idis ;

10 ϕ← ϕ ∧ ϕij ; Item ← ∅; I ← Ipass ;
11 while I 6= ∅ do

12 I ← {(k, l) ∈ Ipass\Item : Pr(Ck , ϕ) = Pr(Cl , ϕ)};
13 if I 6= ∅ then
14 ϕ← ϕ ∧ ϕij ;

15 Item ← Item ∪ I;

16 end

17 end

18 end
19 return I ′, ϕ;

20 end

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 24 / 36

Summary

Two logical characterisation of probabilistic bisimilarity for countable and
finite-state reactive processes, respectively, with much more elementary
proofs than those of Desharnais et al. and van Breugel et al.

Questionable part : correctness of the key algorithm.
Original proof = a few pages of purely technical considerations, without
general interest. There are no chances that such a proof could be reused
in any way.
Is it reasonable to inflict such proof checking to human reviewers, who
have many other important tasks to perform, such as applications for
funding?

Fact : many published proofs on computer science are actually wrong.
Proof : by folklore.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 25 / 36

Summary

Two logical characterisation of probabilistic bisimilarity for countable and
finite-state reactive processes, respectively, with much more elementary
proofs than those of Desharnais et al. and van Breugel et al.

Questionable part : correctness of the key algorithm.
Original proof = a few pages of purely technical considerations, without
general interest. There are no chances that such a proof could be reused
in any way.
Is it reasonable to inflict such proof checking to human reviewers, who
have many other important tasks to perform, such as applications for
funding?

Fact : many published proofs on computer science are actually wrong.
Proof : by folklore.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 25 / 36

Certified formal proof of the key algorithm

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 26 / 36

Coq in a nutshell

A highly reliable proof assistant

LCF kernel-based architecture
proofs as objects
based on type theory

Very expressive logic, including higher-order features, induction, etc.

Embeds a (functional) programming language,
which makes it a tool of choice for reasoning about algorithms

Uniform framework based on Curry-Howard isomorphism

Human-aided proofs + automation for easy steps :
tactics and tacticals

Helpers : notations, abstraction mechanisms such as Haskell-like
classes, etc.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 27 / 36

Coq for the scientific layperson

Read the specification

Check that the script is accepted

Look for unproved claims, axioms...

Up to the Coq writer: write a clear specification
Common practice : no need to spend time on qualities of the proof: this
part is relevant to machines, not humans

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 28 / 36

Coq for the scientific layperson

Read the specification

Check that the script is accepted

Look for unproved claims, axioms...

Up to the Coq writer: write a clear specification
Common practice : no need to spend time on qualities of the proof: this
part is relevant to machines, not humans

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 28 / 36

Coq for proof engineers

Common mistake among early Coq writers:
No need to spend time on qualities of the proof: this part is relevant to
machines, not humans

Like programming, proving is not a one-shot activity
Proof : by Curry-Howard

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 29 / 36

Coq for proof engineers

Common mistake among early Coq writers:
No need to spend time on qualities of the proof: this part is relevant to
machines, not humans

Like programming, proving is not a one-shot activity
Proof : by Curry-Howard

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 29 / 36

Coq in this case study

Imperative algorithm:

Deep embedding?

Semantics?

Hoare logic?

Translate proof steps of the original paper?

IRRELEVANT!
See statement of the lemma (slide 23)

use the functional language of Coq

mimick/adapt/improve the original proof

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 30 / 36

Coq in this case study

Imperative algorithm:

Deep embedding?

Semantics?

Hoare logic?

Translate proof steps of the original paper?

IRRELEVANT!
See statement of the lemma (slide 23)

use the functional language of Coq

mimick/adapt/improve the original proof

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 30 / 36

Coq in this case study

Imperative algorithm:

Deep embedding?

Semantics?

Hoare logic?

Translate proof steps of the original paper?

IRRELEVANT!
See statement of the lemma (slide 23)

use the functional language of Coq

mimick/adapt/improve the original proof

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 30 / 36

Practical issues

Representation of states

Loops, termination

Set notations

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 31 / 36

Formalisation (main)

Variable I0 : set N.

Definition distinguish i j :=

{t : basic_test | i <> j -> ¬ Prb i t == Prb j t}.

Variable oracle : ∀ i j, (i, j) ∈ I0×I0 -> distinguish i j.

Theorem correctness :

let (fI, ft) := algo_compt_enhanced_test in

fI <> ∅ ∧
(∀ k, k ∈ fI -> 0 < Pr k ft) ∧
(∀ k, k ∈ (I0 \ fI) -> Pr k ft == 0) ∧
(∀ i j, i ∈ fI -> j ∈ fI -> i <> j -> ¬ Pr i ft == Pr j ft).

Corollary main_lemma :

∃ fI, ∃ ft, fI <> ∅ ∧ etc.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 32 / 36

Formalisation (main algo)

Function out_loop r (di : out_data_invariant0 r)

measure size_of_out_data r : out_iter_data :=

match pick di with

| P_empty _ e => r

| P_nonempty _ i j s e dis => let (bt, _) := dis in

out_loop (outer_loop_iter2 r di bt)

(outer_loop_iter_invar0 r di bt)

end.

Definition algo_compt_enhanced_test : final_data :=

let r := init_data I0 in

let final_r := out_loop r init_data_invariant0 in

{| I’f := I’ final_r;

etf := et final_r |}.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 33 / 36

Formalisation (pick)

Inductive resu_pick r : Set :=

| P_empty : Y_rem r = ∅ -> resu_pick r

| P_nonempty : forall i j s,

Y_rem r = (i, j) :: s -> distinguish i j -> resu_pick r.

Definition pick r (di : out_data_invariant0 r) : resu_pick r.

(* ... using oracle *)

Defined.

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 34 / 36

Thank you!

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 35 / 36

Former formalisation

I0 created as an initial segment of N {0... m}

Theorem correctness : ∀ m,

let (fI, ft) := algo_compt_enhanced_test m in

((0 < m) -> fI <> ∅) ∧
(∀ k, k ∈ fI -> 0 < Pr k ft) ∧
(∀ k, k ∈ (createI m \ fI) -> Pr k ft == 0) ∧
(∀ i j, i ∈ fI -> j ∈ fI -> i <> j -> Pr i ft <> Pr j ft).

Y. Deng, J-F. Monin PTS in Coq November 4, 2019 36 / 36

