
Defending the Bank with a Proof Assistant

Judicaël Courant1 and Jean-François Monin1

VERIMAG - Centre Équation, 2 avenue de Vignate, F-38610 Gières, France
{judicael.courant|jean-francois.monin}@imag.fr

http://www-verimag.imag.fr/�courant/

Abstract. We show how the proof-assistant Coq helped us formally
verify security properties of an API. As far as we know, this is the �rst
mathematical proof of security properties of an API. The API we veri-
�ed is a �xed version of Bond's modelization of IBM's Common Cryp-
tographic Architecture. We explain the methodology we followed, sketch
our proof and explain the points the formal veri�cation raised.

1 Introduction

1.1 Context

Application Program Interface (API) are everywhere in computer science: POSIX
system calls and the Gtk toolkit are a few of them. They let the provider of
a software component specify how this component should be accessed from the
outside. Among them, security API provide security features such as authentica-
tion, electronic signature schemes, encryption schemes. They are often based on
cryptographic primitives. The most well-known security API is the Secure Socket
Layer (SSL) and is notably used to implement the HTTPS protocol (HTTP over
SSL).

IBM's Common Cryptographic Architecture (CCA) is a security API found
in every cash-machine (Automated Teller Machine, ATM) over the world. An
ATM generally consists of a standard IBM-compatible PC, into which a speci�c
PCI extension card has been plugged. This extension card contains an IBM
4758 coprocessor, implementing the CCA API. The IBM 4758 features a small
internal memory, and is designed to be tamper-resistant to physical attacks.

Mike Bond [Bon01,Bon04] has shown that mistakes in the conception of a
security API open security holes. In some cases, combining valid calls in unfore-
seen ways is enough for a user to get informations he was supposed to ignore.
Regarding the IBM 4758, one may obtain secret values that were supposed to
be con�ned inside the cryptographic module, using valid calls only.

Analyzing security API can be roughly compared to analyzing cryptographic
protocols: Bond's model is close to the Dolev-Yao model in which cryptographic
primitives (encryption, hashing) are supposed perfect and the adversary can lis-
ten to data transiting on the communication network, as well as modify them,
erase them, and do some o�ine computations (encryption and decryption using
known keys). The main di�erence here is that the adversary is not bound to



follow the execution of a given protocol � he may, at will, call any API func-
tion with any messages he has built or captured � which raises the number of
potential attacks. Moreover, whereas the number of messages exchanged during
a single run of a protocol is quite low, the adversary may chain an arbitrary
number of API calls. Security API analysis therefore seems more challenging
than cryptographic protocol analysis.

Recently, Bond et al. proposed to use an automated theorem prover to �nd
API attacks. On a simpli�ed model of the CCA API, the automated prover
Otter [Ott] could �nd all known attacks against CCA [YAB+05]. Unfortunately,
whereas the existence of an attack is shown by exhibiting a �nite combination
of API calls and o�ine computations leading to leakage of a secret, the absence
of attack can only be shown through an in�nitary argument proving that no
combination of API calls and o�ine computation will ever lead to a leakage.

Therefore, the previous approach does not apply if we are interested in pos-
itive results, i.e., if we want to study the absence of attacks. This drove us to
abandon the idea of using a fully automatic �rst-order prover, and to use instead
a proof assistant with induction capabilities, namely Coq [HKP05,The05]. As a
target of our validation, we used the model described in [YAB+05], with slight
modi�cations in order to prevent already known attacks.

1.2 Our Contributions

Our contributions are the following:

� We mathematically prove security properties of an API. Giving such a proof
is generally considered signi�cantly more di�cult than exhibiting an attack.
Thus, in order to design secure API, the published works we are aware of
only propose methodological principles. As far as we know, our proof is the
�rst mathematical proof of security properties of an API.

� Our methodology should be reusable with other security API.
� We checked our proof in a proof assistant. Hence we refute Bond's conjecture
that the complexity of a formal proof of a security API is such that the treat-
ment of security API would require a di�erent approach from cryptographic
protocols.

� We did not �nd our security proof before we checked it within Coq. Indeed,
modeling the security API within the proof assistant and interacting with
the proof assistant helped us �nd the proof, while modeling the CCA API:
we gradually established conjectures; some of them could be proved without
further ado; but during the proof process of the others, Coq helped us to
point out problematic cases, suggesting intermediary lemmas or questioning
the validity of our conjecture. As soon as we were modifying our model, we
could see which ones among already written proofs would still hold without
any modi�cation, which ones would need some rewriting and we could focus
on the ones which would be de�nitely broken. In that sense, our work suggests
that using a proof assistant to �nd a proof could be a good idea.



1.3 Plan

The remainder of this paper is organized as follows: section 2 presents the CCA
API, a known attack against it and introduces a �x; section 3 describes our
formalization in Coq; �nally, we conclude in section 4.

2 IBM 4758 and the CCA API

2.1 Introduction

In the following, if x is a datum and k a key, {x}k denotes x encrypted by k
(the symmetric cryptographic algorithm used by the IBM 4758 is triple DES
but that is not relevant here). In order to specify a cryptographic operation
(whether provided by the API or computable o�ine), we use the standard no-
tation t1, . . . , tn → t to mean t can be obtained as soon as one knows t1, . . . tn.
Since the encryption algorithm is publicly known, the ciphering and deciphering
operations can easily be done o�ine (without access to any IBM 4758) and are
denoted by x, k → {x}k and {x}k, k → x. We note x ⊕ y the bitwise exclusive
or of x and y. Our terminology and the identi�er names we use stick to the ones
of [YAB+05].

2.2 IBM 4758

The IBM 4758 coprocessor was designed for the veri�cation of con�dential PIN
code of credit cards at ATM, while preserving con�dential data from potential
eavesdroppers. It is supposed to resist external attacks (including physical ones),
and even to attacks from insiders of the bank as well as to attacks from the
programmers of the ATM.

As the CCA API is quite complex [IBM], we only deal with the simpli�ed
model of this API proposed in [YAB+05]. This API is already complex enough
to be prone to actual attacks.

The CCA API features a check of PIN codes of credit cards. The PIN is
{ACC}P , where ACC is the account number of the owner of the card, and P is
a secret key, known only by banks and identical over the whole ATM network.
Hence it is of utmost importance that P is kept secret. The CCA API provides a
call for checking a number is a correct PIN of some card, but it does not provide
any call for directly computing this PIN. 1

The IBM 4758 has little memory: enough for keeping a master key KM (ran-
domly generated at the time it is set in operation) and to do some cryptographic
operations.

Thus, P is not stored in the coprocessor, but in the hosting PC instead. Since
this PC is insecure, P is stored in encrypted form {P}KM . More precisely, en-
crypted values stored in the PC are labelled with a typing information: actually,

1 Finding the code is still possible but needs a lot of guesses, hence computing time;
this attacks is then risky, while the expected bene�t is modest.



one does not store {P}KM but {P}PIN⊕KM , where PIN is a publicly known
integer constant denoting the type of keys used for computing the PIN from an
account number. In the following, we often refer to a value {P}PIN⊕KM as �the
datum P encrypted by KM under the type PIN �.

Secrets (such as P ) must be transmitted on a secure communication chan-
nel between the bank and the ATM. Such a channel is established by using
a communication key KEK (KEK stands for �Key Encrypting Key�), known
only by the ATM and the bank server. KEK is randomly chosen by the bank,
and separately sent to the ATM as three secret shares K1, K2 and K3, such
that KEK = K1 ⊕K2 ⊕K3. Therefore, an attack on KEK should involve the
interception of each of the three shares.

As for P , KEK is not stored on the coprocessor but on the hosting PC,
encrypted by KM under the type IMP of importation keys. Similarly, the inter-
mediate values K1 and K1 ⊕K2 are stored encrypted. The coprocessor indeed
features the following operations to manage key parts:

x, y, {z}x⊕KP⊕KM → {z ⊕ y}x⊕KP⊕KM (1)

x, y, {z}x⊕KP⊕KM → {z ⊕ y}x⊕KM (2)

Both these operations use encrypted data under the type x⊕KP , which is the
type of parts of keys of type x (in type theory parlance, the publicly known
integer KP denotes a parameterized type). The �rst of them lets one add a value
y to a key part z in order to get y ⊕ z under the type �key part of keys of type
x�. The second one, with the same inputs, yields instead y⊕ z under the type x.

Given a value x encrypted by k under the type t and the encryption of k by
KM in the type IMP (which proves k is an importation key), a CCA operation
returns x encrypted by KM under t:

t, {k}IMP⊕KM , {x}t⊕k → {x}t⊕KM (3)

Thus, P is transmitted to the ATM as {P}PIN⊕KEK , which lets the PC get
the value {P}PIN⊕KM through one API call.

Symmetrically, the coprocessor is given a secret key EXP1 , typed in the type
of exportation keys EXP . A CCA call converts an x encrypted by KM under
the type t into an x encrypted by exportation key under the same type:

t, {k}EXP⊕KM , {x}t⊕KM → {x}t⊕k (4)

This latter call is irrelevant to attacks described in [YAB+05]. They mostly
mentioned it in order to demonstrate that they are able to automatically �nd
an attack even if more rules than needed are added. We show in the following,
section 3.2, that this rule obliged us to give a subtler de�nition of sensitive terms
than we initially thought. Finally, [YAB+05] also add a key KEK2 typed both
under importation keys and exportation keys. Once the previous di�culty with
exportation key was solved, adding this rule to our proof development did not
modify it.



The IBM 4758 also lets the PC to secure its own applicative data: in order
to encrypt some data x, an application can generate an encryption key k; the
API call k → {k}DATA⊕KM returns this key encrypted by KM under the type
DATA of user applicative data. CCA provides the following calls:

x, {k}DATA⊕KM → {x}k (5)

and
{x}k, {k}DATA⊕KM → x (6)

2.3 Attacks against the CCA API

Several attacks were found against CCA [Bon04]. The simplest one makes the
cryptoprocessor imports KEK under the type DATA instead of IMP , thus pro-
viding a way to decrypt all secret information received by the coprocessor to a
malicious application. This attack is carried out in the following way: as soon
as the last part K3 of KEK is given, the attacker intercepts K3 and instead of
just applying operation (2) to K3, it also applies it to K3 ⊕ PIN ⊕DATA, thus
getting {KEK ⊕ PIN ⊕DATA}IMP⊕KM in addition to {KEK}IMP⊕KM . Then,
as soon as {P}PIN⊕KEK is received, rule (3) can be used in the standard way
to import x = P encrypted by k = KEK under the type t = PIN , but it can
also be used to import x = P encrypted by k = KEK ⊕PIN ⊕DATA under the
type t = DATA since PIN ⊕KEK = DATA⊕ (KEK ⊕ PIN ⊕DATA).

Thus, the attacker gets {P}DATA⊕KM , which allows him to compute {ACC}P

for any account ACC by rule (5).
Therefore, by just intercepting the third key part (K3), the attacker could

get some sensitive pieces of information, although the API was supposed to resist
the interception of any two of the three key parts K1, K2 and K3.

Bond suggests that a solution would be to use a one-way function instead of
the exclusive or for type labels (see [Bon01], section 5.1, page 230) but as far
as we know, no proof of security of the thus corrected API was given. We ad-
dress this challenge: The only di�erence between our API and the one presented
in [YAB+05] is the change Bond suggested. We replace occurences of encryption
keys T ⊕K by H(T,K), where H is a one-way function. In order to avoid adding
a pairing operation to our API and since H is only applied to pairs, we consider
H to be two-arguments function.

3 Formalization

The general idea of the formalization is the following. We inductively de�ne
the predicate known for known values, that is, values which are initially known
or which can be obtained from known values by application of computable op-
erations such as ⊕, H, ciphering or operations provided by the cryptographic
coprocessor 4758.

Our modeling deals with the case where K1 and K2 were not intercepted
but where K3 was. We thus suppose that we have known(K3). Moreover, instead



of introducing K1, K2 and K3, and handling the expression K1 ⊕K2 ⊕K3, we
adopted the trick of [YAB+05] consisting in noting KEK the sum K1⊕K2⊕K3.
One notices that K1 and K2 occur in the modeling only under the form K1⊕K2

or K1⊕K2⊕K3, that can respectively be written KEK ⊕K3 and KEK , which
makes it possible to remove all references to K1 and K2, and therefore to remove
them from the modeling.

Similarly to the model of Dolev-Yao for cryptographic protocols, we suppose
moreover that these known values are the only terms that the user of the IP
can get, honest or not. We thus implicitly exclude from our study all attacks
which would be based on attacks of cryptographic primitives themselves, such
as attacks consisting in �nding the key used in the ciphering of a set of known
ciphered messages (when the corresponding clear messages can themselves be
disclosed), in reversing the hash function on certain values or in �nding colli-
sions on the hash function (i.e. two distinct pairs (x1, y1) and (x2, y2) satisfying
H(x1, y1) = H(x2, y2)). In other words, we suppose that these attacks are too
di�cult (need too much computing power) for a dishonest user.

The objective is then to show that, among known values, one �nds neither
KEK , neither KM , nor P , nor {ACC}P . A simple examination of the various
cases for known is not enough, because certain sub-cases in assumption contain
terms larger than those of the conclusion (for example K_decrypt hereafter). One
proceeds by introducing an over-approximation of known with good structural
properties, namely unc, for unclassi�ed terms, under the military meaning of the
term: terms we estimate the public knowledge of would not jeopardize security.
We will see that the precise de�nition of this predicate is more delicate than it
may appear at �rst sight. The actual use of the proof assistant highlighted the
insu�ciencies of our �rst attempts and helped us to design a correct version of
unc, letting us show that, in our model, any term computable by the user is
indeed unclassi�ed.

One of the main technical di�culties comes from the management of the
operator ⊕: we have to reason on equivalence classes of terms modulo associa-
tivity, commutativity and involutivity of this operator. Indeed these algebraic
properties play an essential role in this API, both negative and positive: in the
case study considered, they are exploited to transmit KEK in three parts, but
they also leave room to undesirable scenarios. Technically, we use canonical rep-
resentatives for each equivalence class. We proceed into two phases:

� the core of the proof is carried out in the context of an abstract normalization
function called norm;

� we separately build such a function by using a well-founded ordering on
terms.

In what follows, only a subset of the elements related to the 4758 processor
is mentioned�the elements already mentioned in the previous sections. The
complete development includes all the elements considered in [Bon04].



3.1 Main statements

Syntax In Coq, a constructor�more generally: a function�with two arguments
of type A and B and returning a C is declared with the type A → B → C.
The right-associative operator → can actually be used in two ways: either for
constructing functional types, or for the logical implication. As a logical con-
nective, it is more primitive than ∧. Hence a Horn clause, usually written
(P1 ∧ P2 ∧ . . . Pn) ⇒ Q, would be written here P1 → P2 → . . . Pn → Q.

De�nitions We �rst de�ne the enumerated types secret_const of secret con-
stants and public_const of public constants. The former contains KM , KEK ,
P , KEK2 and EXP1 . The latter contains in particular DATA, PIN , IMP , K3 ,
ACC and KP . The type of terms is then de�ned inductively using 5 constructors:

Inductive term : Set :=

| Zero : term

| PC : public_const → term

| SC : secret_const → term

| E : term → term → term (* ciphering *)

| Xor : term → term → term (* bitwise exclusive or *)

| Hash : term → term → term. (* one-way function *)

In the following, we use the in�x notations {x}y for (E x y), x⊕ y for (Xor x y)
and x +* y for (Hash x y). Computable terms are de�ned as follows.

Inductive init_known : term → Prop :=

| K_Zero : init_known Zero

| K_PC : ∀c : public_const, init_known c
| P_KEK_PIN : init_known {P}(PIN +* KEK )

| K3_KEK : init_known {norm (KEK ⊕ K3 )}(IMP +* KP +* KM )

| KEK2_IMP : init_known {KEK2}(IMP +* KP +* KM )

| KEK2_EXP : init_known {KEK2}(EXP +* KP +* KM )

| EXP1_EXP : init_known {EXP1}(EXP +* KM ).

Inductive known : term → Prop :=

| K_init : ∀x:term, init_known x → known x
| K_Xor : ∀xy:term, known x → known y → known (x ⊕ y)
| K_Hash : ∀xy:term, known x → known y → known (x +* y)
| K_E : ∀xk:term, known x → known k → known {x}k

| K_decrypt : ∀xk:term, known {x}k → known k → known x
| K_key_import : ∀xyz, known x → known {z}(IMP +* KM ) →

known {y}(x +* z) → known {y}(x +* KM )

| K_key_part_import_completing :

∀xyz, known x → known y →
known {z}(x +* KP +* KM ) → known {z ⊕ y}(x +* KM )

| K_key_part_import_notcompleting :

∀xyz, known x → known y → known {z}(x +* KP +* KM )



→ known {z ⊕ y}(x +* KP +* KM )

| K_encrypt_using_data_key :

∀xy, known x → known {y}(DATA +* KM ) → known {x}y

| K_key_export :

∀xyz, known x → known {y}(x +* KM ) →
known {z}(EXP +* KM ) → known {y}(x +* z)

| K_decrypt_using_data_key :

∀xy, known {x}y → known {y}(DATA +* KM ) → known x
| K_Eq : ∀xy:term, known x → Eq x y → known y.

The rule K_init expresses the initial knowledge of an attacker. Rules K_Xor,
K_Hash, K_E and K_decrypt describe the possible o�ine computations (the ci-
phering algorithm is supposed to be known). Other rules but the last describe
API calls. The last one allows us to reason modulo equality of terms (the con-
gruence generated by the laws governing the operator ⊕). The following table
clari�es the correspondence between the constructors and the operations pre-
sented above. As announced, the value v encrypted with key k under the type t
is {v}(t+*k) in our model, instead of {v}t⊕k in the original CCA API.

Constructor Corresponding operation
K_key_import (3)
K_key_export (4)

K_key_part_import_completing (2)
K_key_part_import_notcompleting (1)

K_encrypt_using_data_key (5)
K_decrypt_using_data_key (6)

Finally, we de�ne forbidden terms.

Inductive forbidden : term → Prop :=

| F_KEK : forbidden KEK
| F_KM : forbidden KM
| F_P : forbidden P
| F_E_ACC_P : forbidden {ACC}P.

Security Theorem We prove that no forbidden term is computable. Formally:

Theorem security_results : ∀x, forbidden x → ¬ known x.

3.2 Proof

Context: axiomatic normalization We assume here the existence of a nor-
malization function norm on terms. Two terms are equivalent if their normal
forms are equal, which means they are equal modulo the algebraic properties
of ⊕ (commutativity, associativity, involutivity). The predicate is_nf tells us
whether a term is in normal form.



Unclassi�ed terms An unclassi�ed term is de�ned as a term whose norm
satis�es the predicate unc_nf de�ned by the following inductive de�nition. Two
auxiliary predicates are needed:

� The relation sub_xor(t1, t2), which indicates that a term t2 has the shape
u1 ⊕ . . . un ⊕ t1 ⊕ v1 ⊕ . . .⊕ vm where the head of t1 is not itself a ⊕;

� As noted in paragraph 2.2, the ciphered data of type DATA does not involve
the same con�dentiality problems as the other data ciphered by the coproces-
sor. Thus it will be necessary to distinguish in some places the type DATA
from the other types. More precisely, it came into light, while looking for
the proof, that this distinction between the types which contain DATA (i.e.
DATA and types of the form � piece of . . . piece of DATA�) and the others
should be generalized. This problem is detailed in paragraph Unclassifying a

simply encrypted term below. Hence we de�ne the predicate contains_data:

Inductive contains_data : term → Prop :=

| CD_Data : contains_data DATA
| CD_Hash : ∀x, contains_data x → contains_data (x +* KP).

Inductive unc_nf : term → Prop :=

| U_Zero : unc_nf Zero

| U_PC : ∀c, unc_nf (PC c)
| U_E : ∀xy, unc_nf x → unc_nf y → unc_nf {x}y

| U_Data : ∀xy z, unc_nf x → is_nf y → contains_data y →
is_nf z → unc_nf {x}(y +* z)

| U_Xor : ∀xy, unc_nf x → unc_nf y → is_nf (x ⊕ y) →
unc_nf (x ⊕ y)

| U_Hash : ∀xy, unc_nf x → unc_nf y → unc_nf (x +* y)
| U_crpt : ∀xyc1c2t, is_nf x → is_nf y → is_nf t →

sub_xor (SC c1) x → sub_xor (SC c2) y →
¬contains_data t → unc_nf {x}(t +* y).

Definition unc x := unc_nf (norm x).

Most clauses for unc_nf are quite natural. However, the clause about simple
encryption (U_E) requires further explanation. We elaborate on this in paragraph
Unclassifying a simply encrypted term below.

Main lemma We prove that computable terms are always unclassi�ed. For-
mally, we have:

Theorem main : ∀x, known x → unc x.

The security theorem is obtained as a corollary: none of the clauses for unc_nf
may yield one of the four prohibited terms (this is immediate for KEK , KM , P ;
as for {ACC}P , only U_E could apply but this would require P to be unclassi�ed
which is not).



The proof of this main lemma is carried out by induction on the de�nition
of known. That amounts to showing that each clause of known preserves the
predicate unc. For example, in the case of clause K_E, one has to show the
following lemma, which simply reduces to U_E after expansion of de�nitions and
normalization:

Lemma unc_e : ∀xy, unc x → unc y → unc {x}y.

Unclassifying a simply encrypted term As we were quite new to the �eld of
cryptographic protocols, we �rst imagined that it is enough that x is unclassi�ed
for {x}y to become unclassi�ed, and described U_E in that way. However, while
trying our security properties with Coq, it soon turned out that such a possibility
could make it possible to extract prohibited information. Indeed, the export rule
(rule (4)) enables us to choose for exportation key any term x encrypted with
EXP +* KM . If x is an exportation key, any given secret z of type t can be
exported in the form {z}t+*x. Then, if x is known, z can be known as well.
A known key should thus never be allowed to be used as an exportation key,
because that would make it possible to know all the secret keys contained in the
coprocessor. (Actually, some attacks of this kind have been discovered a decade
ago [LR92].) If x is known, one must then take special care not to unclassify
{x}EXP+*KM .

This leads us to the following remarks and rules:

� If x is unclassi�ed, it should be checked that the knowledge of {x}y leaves
no room to a bad use before unclassifying the latter.

� {x}y can be unclassi�ed as soon as x and y are themselves unclassi�ed,
because the user can already compute {x}y from x and y by her or his own
means (rule U_E).

� {x}DATA+*KM can be unclassi�ed if x is unclassi�ed because no signi�cant
use from the point of view of the safety of the secrecies of the coprocessor can
be made from ciphered data in the type DATA: the type DATA corresponds
only to data or keys at the application level (rule U_Data).

� Conversely, unclassifying a piece of data {x}DATA+*KM would undoubtedly
be foolish if x is supposed to remain secret.

� Nevertheless, we want to unclassify pieces of data which have to leave the
coprocessor. We thus accept to unclassify terms {x}t+*y typed in t insofar as
x is secret (which can be denoted by the presence of a secret constant in the
term), as y is secret (idem) and as t is not DATA (rule U_crpt).

� More precisely, the rule (2) for importing pieces of keys makes it possible
to cast a data of type t +* KP to type t. Then if the user has access to the
term {x}t+*KP+*y, she or he will be able to obtain {x}t+*KP . (Again, this
problem was pointed out to us by the interaction with Coq.) Thus in the
previous item, it is necessary to prohibit t to be equal not only to DATA,
but also to DATA +*KP , as well as DATA +*KP +*KP because one could
then get DATA +*KP then DATA. The role of predicate contains_data is
precisely to take care of this. We also used this predicate to generalize the



declassi�cation rule U_Data, although it is probably not necessary, in the
absence of a rule allowing us to recover pieces of keys from a whole key.

3.3 Normalizing terms

Each term can be considered as an alternation of two kinds of layers: layers
consisting of sequences of ⊕ and layers built with constructors di�erent from ⊕.
Normalizing a term consists in �attening it, (using the associativity of ⊕), then
sorting the list thus obtained (using commutativity). The sorting is directed by
a well-founded order involving

� an ad hoc concept of weight
� a lexicographic ordering for terms having the same weight. One shows that
any set of terms whose weight is bounded by a given value is �nite, and that
any irre�exive and transitive relation on a �nite set is well-founded.

In the course of the process, two identical terms will become adjacent and will
be removed by involutivity of ⊕.

At the submission time of this paper, the gap between this part of the de-
velopment and the axiomatic presentation of the standardization function is not
�lled yet. The checking of our development is then not complete, an error in the
axioms of the normalization function may potentially challenge the validity of
our results. However, we feel quite con�dent for the following reason:

� On the one hand, we reduced the complexity of the initial problem to that of
the normalization of a term rewriting process. The probability that an error
slipped into the axioms of this normalization is quite low, since they basically
describe terms endowed with an associative-commutative operator (⊕), a
neutral element with respect to this operator and symbols for uninterpreted
functions (hashing and coding). What makes this formalization di�cult is
more the lack of tools to manage such a rewriting in Coq than the originality
of this rewriting relation.

� On the other hand, the advantage of an interactive tool such as Coq is that
the user can see how and where the declared axioms are used. None of these
uses seemed suspect to us. In other words, even if the axiomatization of the
normalization function was �awed, we estimate that it would be relatively
easy to correct it while preserving the essence of our proof. Conversely, in
a completely automatic proof tool, an inconsistency in the axioms of a de-
velopment may drive the tool to derive the absurd proposition, and then to
use this absurd proposition to prove all the propositions stated by the user,
whereas she or he does not realize the reason for which the tool validates her
or his propositions.

4 Conclusion and Future Work

We could formalize and prove security properties of the CCA API in the proof-
assistant Coq. Our development is available at http://www-verimag.imag.fr/
~courant/06/wits/.



This development opens the way to several future works:

� Extending the results to a more realistic modeling of the CCA API;
� Modeling other security API ([Bon04] presents several of them, including
the Visa Security Module);

� Developing a toolbox for such security proofs. Indeed, not only our method-
ology can be reused but we might also be able to share some Coq libraries
between several developments: term comparison through polynomial inter-
pretation and lexicographic ordering as we did in our development, normal-
ization through rewriting, . . .

Moreover, our development suggests that techniques already used in the con-
text of security protocols [Mea92,Pau98] could be relevant also in the context of
security API. Therefore, we would like to study links between API and protocol
veri�cation further.

Current techniques for securing API rely on heuristic design principles and
management of failures such as attack detection, alert mechanisms, �nancial risk
management, (possibly dishonest) fraud denial in order to prevent the whole
banking structure from breaking down. We believe our approach provides an
interesting, complementary way to secure API at design time.

References

[Bon01] Mike Bond. Attacks on cryptoprocessor transaction sets. In Çetin Kaya Koç,
David Naccache, and Christof Paar, editors, CHES, volume 2162 of Lecture
Notes in Computer Science, pages 220�234. Springer, 2001.

[Bon04] Mike Bond. Understanding Security APIs. PhD thesis, University of Cam-
bridge Computer Laboratory, June 2004.

[HKP05] Gérard Huet, Gilles Kahn, and Christine Paulin. The Coq Proof Assistant

Tutorial Version 8.0. Logical Project, January 2005.
[IBM] IBM. CCA Basic Services Reference and Guide, release 2.54 edition.
[LR92] D. Longley and S. Rigby. An automatic search for security �aws in key

management schemes. Comput. Secur., 11(1):75�89, 1992.
[Mea92] Catherine Meadows. Applying formal methods to the analysis of a key

management protocol. Journal of Computer Security, 1(1):5�36, 1992.
[Ott] Otter: An automated deduction system. Web site : http://www-

unix.mcs.anl.gov/AR/otter/.
[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic

protocols. Journal of Computer Security, 6(1-2):85�128, 1998.
[The05] The Coq Development Team. The Coq Proof Assistant Reference Manual

Version 8.0. Logical Project, January 2005.
[YAB+05] Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amer-

son Lin, Ronald L. Rivest, and Ross Anderson. Robbing the bank with a
theorem prover. Technical Report UCAM-CL-TR-644, University of Cam-
bridge, Computer Laboratory, August 2005.


