
Proving a real time algorithm for ATM in Coq

Jean-Fran�cois Monin

France T�el�ecom - CNET, DTL/MSV

2, av. P. Marzin

22307 Lannion Cedex

monin@lannion.cnet.fr

Abstract. This paper presents the techniques used for proving, in the

framework of type theory, the correctness of an algorithm recently stan-

dardized at ITU-T that handles time explicitly. The structure of the

proof and its formalization in Coq are described, as well as the main

tools which have been developed: an abstract model of \real-time" that

makes no assumption on the nature of time and a way to actually �nd

proofs employing transitivity, using only logical de�nitions and an exist-

ing tactic.

1 Context and Motivation

1.1 Conformance Control in ATM

In an ATM (Asynchronous Transfer Mode) network, data cells sent by a user

must not exceed a rate depending on the state of the network. Several modes

for using an ATM network, called \ATM transfer capabilities" (ATC) have been

de�ned. Each ATC may be seen as a generic contract between the user and the

network, saying that the network must guarantee a number of characteristics of

the connection (transfer delay and so on) provided the user sends only compli-

ant data cells|their rate must be bounded by a value de�ned by the current

contract. Actually, in the most interesting, recent and complicated ATC, this

allowed cell rate (ACR) may vary during the same session, depending on the

current state of the network. Such ATC are designed for irregular sources, that

need high cell rates from time to time, but that may wait when the network is

busy. A servo-mechanism is then proposed in order to let the user know whether

he can send data or not. This mechanism has to be well de�ned, in order to have

a clear contract. The key is a public algorithm for checking conformance of cells.

Each ATC comes with its own conformance control algorithm.

In fact, a new ATC cannot be accepted (as an international standard) with-

out an e�cient conformance control algorithm, and some evidence that this

algorithm has the intended behavior.

1.2 The Case of ABR

In the case of the ATC called ABR (available bit rate), a simple but very in-

e�cient algorithm had been proposed in a �rst stage, and reasonably e�cient

algorithms proposed later turned out to be fairly complicated. This situation has

been settled when one of them has been proved correct in relation to the simple

one [9]: this algorithm is now part of the I.373.1 standard. The corresponding

proof was hand written, lengthy (15 pages) and somewhat tricky in places, hence

we decided to formalize it in type theory in order to get a proof automatically

checked by Coq.

update

DGCRA

resource management cell

user network
ACR

data cell

Fig. 1. conformance control

The conformance control algorithm for ABR has two parts (see �g. 1). The

�rst one is called DGCRA (dynamic generic control of cell rate algorithm). It

just checks that the rate of data cells emitted by the user is not higher than

a value which is approximately Acr, the allowed cell rate. Excess cells may be

discarded by DGCRA. Note that, in the case of ABR, Acr depends on time: its

value has to be known each time a new data cell comes from the user. This part

is quite simple and has no interest here. The hard side, called \update" in �g. 1,

is the computation of Acr(t), which depends on the sequence of values (ERn)

carried by resource management cells coming from the network. For the sake of

simplicity, the cell carrying ERn will be called itself ERn.

Of course, Acr(t) depends only on cells ERn whose arrival time tn is such

that tn < t (we order resource management cells so that tn < tn+1 for any n).

In fact, Acr(t) depends only on cells ERi such that either t � �2 < ti � t � �3,

or ti � t � �2 < ti+1, where �2 and �3 are �xed parameters such that �3 < �2:

Acr(t) is just the maximum of these values1.

1 In the protocol ABR, a resource management cell carries a value of Acr, that should

be reached as soon as possible. However, because of electric propagation time, the

user is aware of this expected value only after a while. Everything included, the

1.3 E�ective Computation of Acr

A direct computation of Acr(t) would be very ine�cient. However, it is not

di�cult to see that Acr(t) is constant on any interval that contains no value

among ftn + � j � = �2 _ � = �3g. In other words, Acr(t) is determined by a

sequence of values. It then becomes possible to use a scheduler handling future

changes of Acr(t). This scheduler is updated when a new cell ERn is received.

Roughly, if s is the current time, ERn will be taken into account at time s+ �3,

while ERn�1 will not be taken into account after s+ �2.

The control conformance algorithm considered here exploits this idea, with

the further constraint that only a small amount of memory is allocated to the

scheduler. This means that information is lost.We then just expect that the actual

value of Acr(t) is greater or equal to its theoretical value, as de�ned above.

1.4 On the Use of Coq in this Application

Coq follows the LCF approach. The user states de�nitions and theorems, then

he (she) proves the latters by the means of scripts made of tactics and tacti-

cals. Tactics are either primitive (e.g. Intro or Apply), or higher level, like Auto.
Tacticals allow you to build complex tactics from simpler ones, for instance

Try: : :Then: : : . However scripts are not proofs. Scripts produce actual proofs,

which are data (terms) to be checked by the kernel of the proof assistant. The

kernel (i.e. the type checker in the case of Coq) is only a small part of the whole

code and is programmed with special care. Hence, even if scripts are di�cult to

read or if subtle tactics involving big programs are used (e.g. EAuto, see below),
the user can be very con�dent in theorems proved in such a tool. This is par-

ticularly important in the application discussed here, because the manual proof

seemed somewhat suspect.

Thanks to the LCF application, the user can safely program himself ad-hoc

tactics. However, in this case study, existing general tactics of Coq turned out

to �t our needs. In particular, we will show how EAuto (see 2.2) can be used in

an e�cient way. Let us explain here the di�erence between the tactics Auto and

EAuto.
Roughly, Auto is able to prove subgoals using a sequence of introductions

and of applications of already proved lemmas. For instance, Auto easily �nds a

proof of mortal(Socrate) from

(8x : being) human(x))mortal(x);
human(Socrate):

However the same goal cannot be discharged by Auto from

(8x : being) (8y : beverage) human(x)) drinks(x; y))mortal(x);
human(Socrate);
drinks(Socrate; hemlock);

reaction delay of the user is bounded by �3 and �2. The last resource management

cell before t � �2 is also needed: consider for instance the case where the set fi j
t� �2 < ti � t� �3g is empty.

because Auto is not able to guess a witness like hemlock. Finding witnesses in-

volves more expensive proof search. On the other hand, the recently implemented

tactic EAuto makes this possible thanks to a Prolog-like strategy.

1.5 Structure of this Paper

It should be clear from the informal de�nition of the control conformance algo-

rithm given in 1.2 and 1.3, that the ability to reason about real time is essen-

tial here. The point is that the algorithm itself handles time by the means of

a scheduler, which is a data structure containing dates. Comparisons between

dates, additions of dates and delays play a central rôle in the algorithm as well

as in proofs.

This paper presents the overall structure of correctness proof of the standard-

ized algorithm for ABR conformance, its formalization in Coq and the main tools

which have been developed to this aim: an abstract model of \real-time" that

makes no assumption on the nature of time; and a way to actually �nd proofs

employing transitivity, using only logical de�nitions and EAuto. It is organized
as follows. We discuss in section 2 the axioms about time used in the develop-

ment and proof search using them. Section 3 provides an axiomatic speci�cation

of the desired algorithm. A useful purely functional program is also given there.

Section 4 describes a representation in Coq of the standardized algorithm and

sketches some correctness proofs. Finally, the behaviors of a complete system

made of the algorithm immersed in its environment are considered in section 5.

The algorithm of I.371 for ABR conformance is given in appendix A.

2 Reasonning about Real Time

In our context, time is a linearly ordered structure equipped with an addition

and a subtraction. One may ask whether time should be given a discrete or a

continuous|or, at least, dense2|representation. On the one hand, \real" time

is continuous. On the other, we deal with digital systems, which are discrete in

essence. But we will introduce a notion of observer, which may well be able to

observe (at least a stable part of) the state at an arbitrary instant.

We decided not to choose: we introduce a type parameter DD (for dates

and durations) and operations on DD with a small number of axioms. These

axioms do not say anything about the discrete or dense nature of time. A special

attention has been paid for designing them, in order that:

{ they are consistent (we formally proved that they are satis�ed on nat);

{ they have other models than N, for instance rational numbers;

{ they are strong enough for our needs.

2 We need a decidable equality, which is available on rational numbers.

2.1 A Small Theory of Dates and Durations

We consider that dates and duration share a common type, DD. Distinguishing
two types (respectively Da and Du) would have been more accurate. For instance,

we could introduce an addition of type Du ! Du ! Du and another of type

Da ! Du ! Da, but no of type Da ! Da ! Da, because adding two dates

makes no sense. Moreover, addition of type Du ! Du ! Du can be considered

as commutative, while commutativity has no meaning on an addition of type

Da ! Du ! Da. However this distinction would lead us to duplicate most

operations, axioms and lemmas, whereas the mathematical structures we have

in mind (various kind of numbers) are almost the same. In practice, they are

exactly the same, because special properties like commutativity of + on Du are

not needed in this case study. Hence we considered that Da = Du = DD would

be more convenient here. Note that, in the axioms and lemmas below, it is

quite easy to recognize whether a variable represents a date or a duration. This

disciplin was strictly followed in the whole development.

In order to check that the axioms given below are consistent, we can interpret

DD by a concrete inductive type, abstract operations by operations de�ned on

this type, and we prove the formulae obtained by interpreting the axioms. The

simplest model for DD is certainly the type of natural numbers. However it does

not satisfy properties like (8t; x) x � t + t = x. The following is true on N:

(8t; x) t � x ! x� t+ t = x, but it is inadequate because we have to consider

cases where x is a date and t is a duration: then comparing t with x does not

make sense. For instance, we do not want to exclude models with negative values,

where x may be negative and t may be positive; but the premise t � x would

then not be provable. A suitable axiom is given below (A.7). We can then prove

(8t; x; z) z + t � x ! x � t + t = x and other lemmas with similar premises.

Those premises do not harm, because we only have to consider dates taking

place after an origin, which is roughly the starting date of the algorithm.

Formally, we work in the following context.

DD : Set:

leD : DD! DD! Prop: (* notation: x � y *)

ltD(x; y), noted x < y, is de�ned by x � y ^ :(x = y). The axioms saying that

� is a total linear order and that equality is decidable are obvious. A zero in

DD is not necessary. When we need to say that a duration � is positive, we just

write (8x) x � x + � . We give the axioms relating + and � with � and =. No

further axioms are needed.

(8t; x; y : DD) x � y ! x+ t � y + t: (A.1)

(8x; t; s : DD) t � s! x+ t � x+ s: (A.2)

(8t; x : DD) (x+ t)� t = x: (A.3)

(8t; x : DD) x � (x� t) + t: (A.4)

(8t; x; y : DD) x � y ! x� t � y � t: (A.5)

(8t; s; x : DD) s � t! x� t � x� s: (A.6)

(8x; y; z; t : DD) z + t � y ! x � y � t! x+ t � y: (A.7)

Then we get a number of lemmas. Some of them are:

(8t; x; z : DD) z + t � x ! (x� t) + t = x: (L.1)

(8t; x; y : DD) (x+ t) = (y + t)! x = y: (L.2)

(8t; x; y : DD) x+ t � y + t! x � y: (L.3)

(8x; y; z; t : DD) z + t � x ! x < y + t! x� t < y: (L.4)

We think that it would be di�cult to �nd a smaller system of (still under-

stable) axioms. Here are some comments. (A.2) could be avoided in the presence

of (A.1), if + was commutative. See at the beginning of this subsection why we

reject commutativity. (A.5) and (A.6) would be consequences of (A.2) and (A.1)

if we provided a notion of opposite. But we cannot hope to get such a notion if

we want N to be a model of our axioms. This requirement is explicit in (A.4).

Formulae (A.7) and (L.1) are equivalent in presence of other axioms, hence

choosing one or the other as an axiom is a matter of taste. More precisely, (L.1)

is proved from (A.7) using antisymmetry of � and (A.4), while (A.7) is proved

from (L.1) using (A.1).

2.2 Proof Search

Typical proof obligations have the form � ` a < d where � contains hypotheses

a � b, c < d, b + � < u and u � c + � , among others. Several tens of similar

formulae have to be proved in the case of ABR algorithm. They can be proved

directly with the lemmas mentioned above, but this is quite tedious.

We also see that automatic proof search has to �nd witnesses, because of the

heavy use of transitivity. The tactic EAuto makes this possible in Coq. However,

it must be used very carefully: four versions of transitivity are available (each of

the premises may or not be a strict inequality), and it turns out that the four

versions are needed. Reexivity is also needed. Even a single transitivity rule

may be used in two di�erent ways for proving a < d from a < b, b < c and c < d.

Altogether, naive automatic proof search faces a combinatorial explosion.

Following a suggestion of C. Paulin, it is better to work with a better for-

mulation of the lemmas (NB: in this subsection axioms are also considered as

lemmas). Intuitively, the set of lemmas used by EAuto can be seen as a Prolog

program, and we want this program to be as e�cient as possible. Roughly, in

our case, hypotheses like a � b should be considered as basic facts arc(a,b),

and instead of lemmas corresponding to clauses like:

le(X,Y) :- arc(X,Y).

le(X,Z) :- le(X,Y) le(Y,Z).

with a dangerous left recursion on the second clause, we prefer lemmas corre-

sponding to clauses like:

le(X,Y) :- arc(X,Y).

le(X,Z) :- arc(X,Y) le(Y,Z).

Things are a bit more complicated because the conclusion of lemmas like

x+ t < y + t ! x < y must also be considered as a \fact", while x+ t < y + t

should itself be proved by transitivity. This happens in the example given at the

beginning of this subsection: the proof cannot be a � b < u� � � c < d, using

b+ � < u ! b < u� � and similarly for u and c, but only a � b < c < d, where

b � c comes from b + � � u � c + � . This is so because we banish the use of

subtraction as soon as possible, in order to avoid the cycles easily obtained from

a combination of lemmas like x� t � y ! x � y+ t and x � y+ t ! x� t � y.

Before entering into more details, let us remark that a brute change of the

relations to be used may have an impact on the formulation of the speci�cation.

But it is important to keep the latter as simple and natural as possible, if we

want to be convinced that we prove the right properties on the right applica-

tion. Similarly, we want to keep our lemmas as their are stated in the o�cial

presentation of the theory, because they give evidence that our axioms are right.

Conversely, arti�cial de�nitions and lemmas should remain hidden.

Renaming and merging � and <. In order to stop the use of transitivity

in proof search, we introduce a new relation arc such that

arc(true) = ltD and arc(false) = leD: (1)

The basic idea is that that goals x � y and x < y are proved only by transitivity,

while goals arc(b; x; y) are proved using assumptions, basic lemmas, or anything

but transitivity rules. In the sequel, arc(true; x; y) and arc(false; x; y) are more

conveniently noted x �0 y and x < y0.

Let T be (the type of) a theorem to be proved. Let T' be the formula obtained

by replacing � by �0 and < by <0 in the premises of T. Admittedly, T' is just a

harmless (from the point of view of simplicity) rephrasing of T. On the semantical

side, any proof of T is a proof of T', because T and T' are �-convertible.

However, during the proof process, premises have now the form arc(true; x; y)
or arc(false; x; y). The crucial point is that the proof assistant bases its proof

search on the actual shape of the premises and of the goal, not on their normal

form. Basic lemmas of section 2.1 are also rephrased, for instance:

(8t; x; y : DD) x+ t � y + t! x �0 y: (L.3')

Changing transitivity and reexivity rules. As x �0 y and x < y are

considered as \elementary facts", we �rst just build the transitive closure of

their union. Here arc is used with an arbitrary b as �rst parameter: we want

to conclude a � d from a <0 b �0 c without taking care of the strictness of

elementary inequalities; nrtle stands for \non reexive transitive closure of arc
for less or equal".

Inductive nrtle : DD! DD! Prop :=
arc nrtle : (8b : bool)(x; y : DD) arc(b; x; y)! nrtle(x; y) j
tra nrtle : (8b : bool)(x; y; z : DD) arc(b; z; y)! nrtle(x; z)! nrtle(x; y).

Reexivity needs to be considered only once on a path.

Inductive tle : DD! DD! Prop :=
eq tle : (8x : DD) tle(x; x) j
tle plus : (8x; y : DD) nrtle(x; y)! tle(x; y).

Now, we have the following theorem:

(8x; y : DD) tle(x; y)! x � y: (T.1)

The proof uses the fact that � is transitive and weaker than <. Thanks to this

theorem, proving any subgoal x � y by transitivity amounts to prove tle(x; y),
by the means of eq tle, tle plus and then, recursively, arc nrtle and tra nrtle. This
corresponds to the following algorithm:

{ check if x = y; if true, we are done;

{ if not, try to prove nrtle(x; y); to his e�ect,

� �rst try to �nd an arc arc(b; x; y) (that is, an assumption saying x < y

or x � y, or a lemma like (L.3') whose conclusion matches the desired

values for x and y); if such an arc exists, we are done;

� if not, try to �nd an arc arc(b; z; y) for some z (y is �xed but not z);
� if a suitable z is found, restart the nrtle search procedure using z

instead of y;

� if a suitable z cannot be found, the search fails.

We cope with strict inequalities by following the same lines. Instead of nrtle
above, we use tl (transitive transitive closure of arc for less). Here we have to

check that a strict inequality occurs at least once on a chain of inequalities.

Mutual Inductive tl : DD! DD! Prop :=
lt tl : (8x; y : DD) x <0 y ! tl(x; y) j
tra tl : (8b : bool)(x; y; z : DD) arc(b; z; y)! tl aux(b; x; z)! tl(x; y)

with

tl aux : bool! DD! DD!Prop :=
tl aux true : (8x; y : DD) nrtle(x; y)! tl aux(true; x; y) j
tl aux false : (8x; y : DD) tl(x; y)! tl aux(false; x; y).

The clause tra tl reads: if there is b and z such that arc(b; z; y), try to prove

tl aux(b; x; z). Then we have two cases. If z <0 y (b = true), it is enough to prove

x � y, that is nrtle(x; y), hence the clause tl aux true. If z �0 y (b = false), we
have to prove to prove x < y, that is nt(x; y), hence the clause tl aux false.

In order to start the corresponding proof search procedure we use the follow-

ing theorem:

(8x; y : DD) tl(x; y)! x < y: (T.2)

E�ciency. Using automatic search proof for inequalities makes scripts much

shorter than without this facility. In the case of ABR conformance control, the

script for the core of the correctness proof is now half the size of the manual

proof given in [9]|which was fairly detailed for reasons given below (6.1).

However, performances must be good enough. They have dramatically in-

creased with the method explained above. Just to give an example, proving

a < d from a � b, c < d, b+ t < u and u � c+ t takes 4s with the new procedure

on a PC 486 (33 MHz) under linux, against 83s with the old one. Proving b < d

from the same hypotheses takes 1s instead of 12s. This is enough for our needs

in this case study (less than 4 minutes for the script of the core).

3 Speci�cations of the Intended Function

First we state an axiomatic characterization of the intended function Acr, which
is formalized in 3.1. Then we aim at giving, in 3.3, a much more convenient

(for proofs of I.371 algorithm) computational de�nition of this function: it is the

limit of a sequence of functions (Approxn), where Approxn depends on Approxn�1
and on ER(n). To this end we give in 3.2 an axiomatic characterization of

(Approxn). The interesting consequence of theorem (T.3) is that Acr(t) is equal
to Approxn(t), where n is the number of the last RM cell seen at date t. Loosely

speaking, Approxn is up to date.

Given the sequence of RM cells (ERi) whose arrival date are respectively (ti),

the desired allowed cell rate at time t is de�ned by :

Acr(t) = maxfERi j i 2 I(t)g; (2)

where I is the interval de�ned by :

i 2 I(t) i� (t� �2 < ti � t� �3) _ (ti � t� �2 < ti+1) : (3)

The ti are taken in increasing order : t1 < t2 < : : : tn < : : :

The following equivalent characterization of I(t) is easier to handle:

i 2 I(t) i� ti + �3 � t < ti+1 + �2 (4)

The initial (ine�cient) ABR conformance control algorithm was a direct com-

putation of Acr according to (2).

3.1 Formalization in Type Theory

Intervals are represented by predicates on nat. We need to characterize the max-

imum of ff(n) j P (n)g. Such a maximum might not exist, but we still have the

uniqueness property. We use an inductive predicate.

Inductive is max [f : nat! nat;P : nat! Prop] : nat!Prop :=
is max intro :

(8i : nat) P (i)!
((8j : nat) P (j)! f(j) � f(i))!
is max(f; P; f(i)).

The formal speci�cation of the expected value is de�ned by:

In(t; i) = (ti + �3 � t) ^ (t < ti+1 + �2):

is ACR(a) = is max(ER; In; a):

The de�nition of In corresponds to (4) above, but of course we also proved that

the formal de�nition corresponding to (3) is equivalent.

3.2 Approximations of the Ideal Value of Acr

The incremental computation of Acr (t) is intuitively based on the knowledge we
have at instant s about ti and ER(i). Therefore we consider the nth approximation

of In(t), de�ned by:

Inductive I a [n : nat; t : DD; i : nat] : Prop :=
like In : i < n! In(t; i)! I a(n; t; i) j
last Ia : i = n! ti + �3 � t! I a(n; t; i):

and we check that this approximation agrees with In for the current time s (in

fact for any t less than s + �3). We represent the fact that n is the number of

the last RM cell received until s by current last(s; n).

current last(s : DD; n : nat) = (tn � s) ^ (s < tn+1):

In an environment containing the hypothesis current last(s;ns), we have the

theorem:

t � s+ �3 ! In(t; i)$ I a(ns ; t; i):

We can then work with is Approxn instead of is ACR:

is Approxn(n : nat; t : DD) = is max(ER; I a(n; t)):

Theorem:

(8a : nat) is ACR(t; a)$ is Approxn(ns; t; a): (T.3)

We now give a computational de�nition of is Approxn(n).

3.3 Purely Functional Realization

Computing the n+1th approximation of ACR from the nth turns out quite simple

in the functional setting. First we need the maximum of two natural numbers.

It is de�ned in a symmetrical way.

De�nition tot le : (8n;m : nat)fn � mg+ fm � ng := : : :

De�nition maxb(n;m) := Case tot le(n;m) of []m []n end.

Then we de�ne, in an environment where the date t is of type DD:

Fixpoint Approx [n:nat] : nat :=
if n = 0 then ER(0)
else if t < tn + �3 then Approx(n� 1)

else

if t < tn + �2 then maxb(Approx (n� 1);ER(n))
else ER(n)

Using Ocaml, for instance, we could propose the following implementation for

ABR conformance control:

(* initially *)

let ACR = ref fun t ->(ER 0)

(* when a new RM cell (ER n) is received, at (t n) *)

ACR:= let oldA= !ACR in fun t ->

if t < t n + tau3 then oldA t

else if t < t n + tau2 then max (oldA t) (ER n)

else ER n

This de�nition of ACR is not a realistic implementation for obvious reasons, but

Approx is a basic tool in the sequel. We check that Approx has the expected

behavior (s0 represents the starting time of the algorithm):

Theorem:

s0 � t! (8n : nat) is Approxn(n; t;Approx(n)): (T.4)

And then, using theorem (T.3):

Main theorem:

s0 � t! (8n : nat) current last(t; n)! is ACR(t;Approx(n)): (T.5)

The proof of (T.4) uses a lemma stating that the nth approximation is a de-

creasing function for dates greater than tn + �3.

Theorem Approxn decrease :

(8n : nat)(t; t0 : DD) tns + �3 � t ! t � t0 !

(8a : nat) is Approxn(ns ; t; a) ! (8a0 : nat) is Approxn(ns ; t0; a0) ! a0 � a:

Incremental computations of maxima using the binary version are based on the

following theorem.

(8P : nat! Prop)(8n : nat)(8m : nat)

is max(P (m))! is max(�:j : nat (P (j) _ (j = n))maxb(m; f(n))):

4 States and Transitions

The device to be represented (called update in Fig. 1) is an automaton whose

states are made of a few variables. One of them, ACR, is instantaneously delivered
to DGCRA upon request. It is not di�cult to see that if an arbitrarily large

number of RM cells may be received during an interval of length �2 � �3, the

theoretical value of ACR cannot be computed with a bounded amount of memory.

Hence it is only asked that the actual value of ACR is an upper bound of the

theoretical value given above. In order to formalize a system made of the device

and of an external clock delivering the current time s (the current number of

the last RM cell, n, is also needed), and which is able to deliver a suitable value

for ACR, we consider a dependent type including having the shape akin to:

Record state : Set := mkstate f
s : DD;
n : nat ;
I n s : current last(s; n) ;
ACR : nat ; ... (* other fields for a scheduler *)

I wanted : Approx(s; n) � ACR ;
g.

In fact it is a bit more convenient to consider the state at time s, where s is a

parameter, and to split I n s (see below the next de�nition of state). The device

reacts to two kinds of events.

{ External events: a new RM cell is received; then the scheduler is updated.

{ Scheduled events (also called internal events); then the �eld ACR is updated

(and the scheduler too).

In each case the device evolves according to the algorithm given in the standard

I.371. Such transitions are formalized here by a function from state(s) to state(s0),
where the new current time is either the arrival date of a RM cell, or a date

programmed in the scheduler. This ensures that the invariant of the system is

preserved during its evolution.

4.1 Type of States

The algorithm under study uses a two places scheduler. The �rst scheduled event

is \at t� (� stands for �rst), the value of ACR will be E�", the last scheduled

event (tla, Ela) is similar. Ela happens to contain the value of the last ER cell

received. As an optimization trick, Emx contains the maximum of E� and Ela.
The wanted invariant is replaced by I tfs and I Ub1 (I wanted is a consequence of
I tfs and I Ub1, because we have either t� � s or s < t�; in the �rst case, apply

I tfs; in the second case, apply I Ub1 with t := s).

Record state [s:DD] : Set := mkstate f
n : nat ;
I ns : tn � s;
I sn : s � tn+1;

ACR, E�, Ela, Emx : nat ;
t�, tla : DD;

I max : Emx = maxb(E�;Ela);
I Ela : Ela = ER(n);

I a : t� � tla;
I lan : tla � tbn + �2;
I tfs : t� � s! (8t : DD)s � t! Approx(t; n) � ACR;
I Et1 : ACR < E�! t� � tn + �3;
I Et2 : E� < Ela! tla � tn + �3;
I ttE : tfi = tla! E� = Ela;
I Ub1 : (8t : DD)s � t! t < t�! Approx(t; n) � ACR;
I Ub2 : (8t : DD)t� � t! t < tla! Approx(t; n) � E�;
I Ub3 : (8t : DD)tla � t! Approx(t; n) � Ela

g.

4.2 Updating the State

Let e be the state of the system at date s , n the number of the last RM cell, and

let s0 be a new date. The algorithm under study computes from e a new value of

type state(s0), when s0 is either tn+1 or t�(s; e). Formally, we just state and prove

a goal of the form state(s0). Then we give the witnesses for ACR(s0), E�(s0), etc.,
according to I.371 (see appendix A), and we prove the subgoals corresponding

to the preservation of invariants.

For instance, let us sketch the treatment of internal events. The number k is

de�ned as the successor of n. We assume two preconditions, stating that t�(s; e)
is greater or equal to the current time (i.e. the scheduler is not empty) and

that the next external event will occur after t�(s; e). Identi�ers XXX are an

abbreviation for XXX(s; e).

Hypothesis Gi1 : s �0 t� .
Hypothesis Gi2 : t� �0 tk.

De�nition subsi : (state t�).
(* n ACR Efi Ela Emx tfi tla *)

Exists n E� Ela Ela Ela tla tla ;
(* Discharging various proof obligations *)

De�ned.

The treatment of external events is more complicated, because a number of

comparisons are done, for instance between ER(k) and ACR, E� and Ela; but the
principle remains the same.

5 Putting Things Together

A trajectory of the system is an inhabitant of (8s : DD)s0 � s ! state(s). We

cannot construct such a function in a direct way: we have no inductive de�nition

for DD. But we only need to formalize the ability to observe the state of the

system at an arbitrary date t.

To this end we iterate updating steps, and we consider a last transition that

do not change the state (only time progresses) from the date s of the last external

or scheduled event occuring before t, to t.

Transitions dates have one of the forms tn, tn + �3 and tn + �2, where tn is

the arrival date of a RM cell. Hence it is clear that if n RM cells arrive before s

(the observation dates we consider are bounded by dates of RM cells; we could

as well suppose that (tn) is divergent, that is, for any date u, there is a k such

that u < tk; then we take u := s), the number of transitions before s is bounded

by 3n+ 1.

In order to build the desired trajectory we put together

{ the transition function T described in sec 4.2, which computes, for s0 a new

date, the state at s0 from the old state at s,

{ a function E representing the environment of the system, more precisely the

progress of time: given the sequence (tn), the current date s, the date of the

next scheduled event if any, taken from the state of the system at s, and

may be an observation date, E returns a new date s0 compatible with these

constraints. This ensures that the preconditions of T are satis�ed at s0.

The evolution of the whole is then given by a sequence of alternating E and

T applied to the initial state.

Finally, we de�ne the state of the system at a date s using at most 3n + 1

iterations of T �E (n de�ned as above), and we get the value a of ACR delivered

by the system at t. Thanks to conservation of the invariant and to theorem (T.5),

we check that a is greater or equal to the theoretical value of ACR, as desired.

6 Concluding Remarks

6.1 Relation between the Manual and the Formal Proof

Recall that the formalized proof follows the lines of the manual proof. We re-

marked by the end of section 2.2 that the script for the core of the correctness

proof is half the size of the original proof given in [9]. Of course, the same proof

in standard mathematical style would be even shorter. But [9] is de�nitely not

a standard piece of mathematics: the proof given there was intended to be read-

able with as little e�ort as possible by experts in ATM, hence almost nothing

was left implicit excepted arithmetic laws.

Let us compare both approaches|manual or using a automated proof assis-

tant. In the former, the reader has to check a semi-formal speci�cation (based

on the three formulae at the beginning of section 3 and on the components ACR,
E�, Ela, t� and tla of the state similar to the ones given in 4.1) the reasonning

based on the purely functional realization presented in 3.3 and a bunch of 80

more or less boring semi-formal proofs.

In the latter he (she) has only to check the speci�cation (3.1), the de�nition

of the state given in 4.1, including the invariants, the de�nition of transitions

and the statement of the theorem saying that I tfs and I Ub1 implies I wanted).
On the other hand, a completely formal notation makes formulae slightly harder

to read. The way of representing a transition corresponding to an assignment

may be considerd unnatural. This objection is attenuated if the external reader

believes that the Coq user worked on a fair translation of its problem. Moreover,

he can check that two Coq users agree on the meaning of the main sentences.

Another advantage of the automatized approach is that studying a new vari-

ant of the algorithm can reuse the already developed framework, and even the

speci�cation. Finally, recall that the we can be much more con�dent in the

proof checked by a proof tool (especially when the latter is based on the LCF

approach) than in a manual proof. As a matter of fact, one of the last 80 proofs

of [9] was false! It did not harm so much, because the statement was still prov-

able, but my opinion is now that manual proofs of complicated algorithms should

be systematically considered as suspect.

Alltogether, this experience seems to show that using a proof assistant is the

most convincing approach.

6.2 Related Work and Future Directions

The general problem we deal with can be stated as follows. Let (en) be a sequence

of values arriving respectively at the dates (tn), and let a(t) be a function whose

value depends only on e0 : : : ei, with t0 < : : : < ti � t. In real-time applications,

we want a(t) to be provided very quickly. An e�cient strategy is to compute

a new approximation of the future values of a each time a new ei arrives, and

to schedule these values. The problem is then to verify that such an algorithm

conforms to the theoretical value of a(t).

The author is not aware of other experiments using formal methods in such

situations, though much work has already be done for proving temporal proper-

ties of algorithms. Some of the most popular techniques are model checking [3],

TLA [8] and Unity [2]. Unfortunately the notion of time used there is logical,

not quantitative. In contrast, the algorithm considered here handles time in an

explicit way by the means of a scheduler. Further work has been done for specify-

ing distributed algorithms having real-time properties like \such event actually

occurs before such date", since the early 1990's [1,6]. Certain classes of such

systems can be dealt with model checking techniques (see [7] for instance). The

notion of temporized automaton on a dense time considered in [7] inenced our

speci�cation.

We saw in 2.2 that automatizing proofs employing transitivity requires some

work. An interesting possibility would have been to consider DD = nat in order

to take pro�t of a general tactic like Omega3, which is able to discharge formulae

in Presburger arithmetic. Omega is certainly much more e�cient and easy to use

than EAuto in our context. But then we would loose the bene�ts of abstraction

mentionned in 2. Let us also remark that it is sometimes useful to understand a

proof found by the tool. The written form of the proof terms produced by our

technique is exploitable, but is hardly helpful for proofs found by Omega.

The algorithm I.371 has been proposed to other researchers in order to test

other formal methods (e.g. temporized automata). This work is going on4. On

3
Omega has been implemented by P. Cr�egut [4].

4 This work is supported by action FORMA (MENRT, CNRS, DGA). The work pre-

sented in this paper has also been partly done in this framework.

the other hand, we are currently investigating the application of the framework

presented here to an algorithm due to Francis Klay, that computes a better

approximation of Acr than I.371.

Acknowledgement

The problem has been submitted by Christophe Rabadan, who is the main au-

thor of the algorithm. This work has bene�ted of fruitful discussions with him,

Annie Gravey and Francis Klay. Many improvements are due to the comments

of anonymous referees.

References

1. R. Alur C. Courcoubetis and D. Dill. Model-Checking for Real-Time Systems. In

5th Symp. on Logic in Compouter Science. IEEE, 1990.

2. K. M. Chandy and J. Misra. Parallel Program Design. Austin, Texas, Addison-

Wesley, 1989.

3. D. Clark, E. M. Emerson eand A. P. Sistla. Automatic veri�cation of �nite state

concurrent systems using temporal logic speci�cations: a practical approach. Proc.

10th ACM Symp. on Principles of Programming Languages. 1983.

4. B. Barras, S. Boutin, C. Cornes, J. Courant, J-C. Filliâtre, E. Gim�enez, H. Herbelin,

G. Huet, P. Manoury, C. Mu~noz, C. Murthy, C. Parent, C. Paulin-Mohring, A.

Sa�ibi and B. Werner, The Coq Proof Assistant User's Guide, version 6.1 (INRIA-

Rocquencourt et CNRS-ENS Lyon, November 1996)

5. ITU-T Recommendation I.371.1 Tra�c control and congestion control in B-ISDN,

February 1997

6. E. Harel O. Lichtenstein and A. Pnueli. Explicit clock temporal logic. In 5th Symp.

on Logic in Compouter Science. IEEE, 1990.

7. Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic

Model Checking for Real-Time Systems, Information and Computation, 111 (1994)

193{244

8. L. Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages and Systems, 16-3 (1994), 872{923.

9. Jean-Fran�cois Monin and Francis Klay Formal speci�cation and correction of I.371.1

algorithm for ABR conformance, internal report NT DTL/MSV/003, CNET, 1997

A Algorithm I.371 for ABR conformance

When real time reaches tk :

if tk < t� then

if Emx � ERk then (* Emx = max(E�,Ela) *)

if t� < tk+�3 then

if tk+�3 < tla _ t� = tla then
Emx := ERk jj Ela := ERk jj tla := tk+�3 (* simultaneous *)

else (* assignment *)

Emx := ERk jj Ela := ERk

else

if ACR � ERk then

Emx := ERk jj E� := ERk jj Ela := ERk jj t� := tk+�3 jj tla := tk+�3
else

Emx := ERk jj E� := ERk jj Ela := ERk jj tla := t�
else

if ERk < Ela then
E� := Emx jj Ela := ERk jj tla := tk+�2

else

E� := Emx jj Ela := ERk

else

if ACR � ERk then

E� := ERk jj Ela := ERk jj Emx := ERk jj t� := tk+�3 jj tla := tk+�3
else

E� := ERk jj Ela := ERk jj Emx := ERk jj t� := tk+�2 jj tla := tk+�2

When real time reaches t�:

ACR := E� jj t� := tla jj E� := Ela jj Emx := Ela

If t� = tk, we run the algorithm for t�, then the algorithm for tk.

