Proof pearl: from concrete to functional
unparsing

Jean-Francois Monin

VERIMAG - Centre Equation 2 avenue de Vignate, F-38610 Gieres, France
jean-francois.monin@imag.fr,
WWW home page: http://www-verimag.imag.fr/~monin/

Abstract. We provide a proof that the elegant trick of Olivier Danvy
for expressing printf-like functions without dependent types is correct,
where formats are encoded by functional expressions in continuation-
passing style. Our proof is formalized in the Calculus of Inductive Con-
structions. We stress a methodological point: when one proves equalities
between functions, a common temptation is to introduce a comprehen-
sion axiom and then to prove that the considered functions are exten-
sionally equal. Rather than weakening the result (and adding an axiom),
we prefer to strenghten the inductive argumentation in order to stick to
the intensional equality.

1 Introduction

In [1], Olivier Danvy proposes an elegant trick for expressing printf-like functions
and procedures in the ML type system. His idea is to replace the concrete version
of the first argument, on which the number and the type of remaining arguments
depend, with a higher-order function. In order to avoid questions related to
side-effects, let us consider the sprintf function, which builds a string from its
arguments. The first argument of sprintf is a format, which specifies the number
and the type of the remaining arguments. In practice, notably in the C language,
the format is often a string, where occurrences of %d (respectively, of %s, etc.)
specify that an integer (respectively, a string, etc.) should be inserted there. For
instance, in ML syntax,

sprintf "The %s is %d %s." "distance" 10 "meters" (1)

would return the string "The distance is 10 meters.".

It is more convenient, at least for reasoning purposes, to represent formats
using a concrete type such as lists of an appropriate type of directives. For
example, the first argument of (1) could be represented by

[Lit ("The "); String; Lit(" is"); Int; String; Lit(".")]. (2)

In a language where dependent types are allowed, it is then a simple exercise to
program the desired behavior. In the case of ML, Danvy proposes to represent
the format by a functional expression:

lit"The" o str o lit"is" o sint o str o lLit".", (3)

where o is the sequential composition of functions, and the functions such as
int and string take a continuation on strings, a string, an argument of the
appropriate type and return a continuation on strings. More specifically, str is
defined by Akas.k(a"s)), where "~ is string catenation and sint is defined by
Akan.k(a” string-of-intn)). The definition of lit is As ka. k(a"s)). Reducing
these definitions in (3) yields

Acasinss. k(a™ "The" ~s; ~ "is" ~ string_of_intn ~ sz = ".") 4)

and we see that applying the following continuation-based version of sprintf to
a functional format does the job.

sprintfk := Af. f (As.s)"" (5)

An interesting feature of functional formats is that they are more general
than concrete formats given by either a string as in (1), or a list as in (2):
concrete formats are bound to a fixed number of data types, whereas functional
formats are extensible—they can handle any data type X, provided we are given
a function from X to string.

If we look at types, we remark that str has the type (string — 8) — string —
string — [, sint has the type (string — «) — string — int — «, hence stro sint
has the type (string —) — string — string — int — «. In general, the type of
a functional format has the form (string — o) — string > X; = --- - X,, = a.
If two formats f; and fo are respectively of type

(string — B) — string— X1 —» - > X, —» 8 (6)

and
(string =& o) = string = Xpp1 — - = Xpyp = @, (7

their composition f; o f5 is of type
(string— a) > string—> X1 > - 2> X, 5 Xpp1 o -~ 2> Xpgp 2 (8)
while the type inference mechanism yields
B=Xpt1 == Xpjp > . 9)

We provide here a formal proof that Danvy’s functional formats are cor-
rect representations of usual concrete formats. More precisely, for any concrete
format ¢, we inductively define its functional representation kformat¢® and we
prove that sprintf applied to ¢ yields the same function as sprintfk applied to
kformat ¢—these functions are even convertible.

As the result relates dependent types with polymorphic types, we need a
logic where these two features are present. Our formalization is carried out in
the Calculus of Inductive Constructions [2]. Two proof techniques are illustrated:
making the statement of an inductive property on functions more intensional,
rather than reasoning on extensional equality; and using type transformers to
recover what is performed by type inference in (9). A complete Coq script (V8.0)
is available on the web page of the author.

2 Type theory and notation

The fragment of the Calculus of Inductive Constructions to be used here includes
a hierarchy of values and types. On the first level we have basic inductive and
functional values such as 0 and Az : nat. . They inhabit types such as nat or
nat — nat, which are themselves values at the second level and have the type Set.
In the sequel a, 3, v, § range over such types. Polymorphic types are obtained
using explicit universal quantification, e.g. Ya a@ — a. We can also construct type
transformers such as Aa. nat — a, of type Set — Set. The type of Set and of
Set — Set is called Type. Types can depend on values of any level.

Functions are defined using the following syntax:
Definition function_name arg, ... arg,, : type_of_the_result := body.
where type_of_the_result depends on arg;,i € 1...n. In the case of a recursive
definition, Definition is replaced with Fixpoint.

We suppose that we are given a type string (in Set), endowed with a binary
operation _"_ (catenation) and the empty string denoted by "". We don’t need
an algebraic law for catenation.

3 Concrete formats

Our definitions will be illustrated on a format specified by "foo %s bar %i" in
C language notation. Assuming two strings foo and bar, the structured concrete
representation that we will use is:

Definition example := Lit foo (Str (Lit bar (Int Stop))) (10)

where Str and Int are respectively of type string — format — format and
int — format — format; format is a dedicated inductive type defined below.
For the sake of generality (functional formats can handle arbitrary printable
data) we first introduce a structure for printable data, composed of a carrier X
and of a function r_X which appends a printed representation of a value of type
X to the right of a given string. This is equivalent to providing a function for
converting an inhabitant of X to a string, but turns out to be much more handy.

Record Printable : Type := mkpr {X : Set; r_X: string - X — string}.

In Coq, a record is just a tuple and fields are represented by projections. For our
example, we suppose that we are given a type int for integers and a corresponding
function r_int. Then we can define pint as mkpr int r—_int, and we have X pint =
int and r_X pint = rint. We use the notation "a p = ” for r_ X P a z, where P is
a Printable, o is a string and z is an X P.

The type of concrete formats is given by:

Type format := Stop | Data of Printable x format | Lit of string x format.

In our example, Int is defined as Data pint. Note that from printable integers,
it is easy to add printable lists of integers and so on.

In the sequel, ¢ ranges over format and P ranges over Printable.

4 A first translation

In this section, we work with a monomorphic version of Danvy’s functional
formats. This it is not satisfactory, but the proof technique that we want to
use is simple to explain. Polymorphic functional formats will be considered in
section 5.
The type associated to a format is:

Fixpoint type_of_fmt ¢ : Set :=

match ¢ with

| Stop = string

| Data P ¢ = X P — type_of_fmt ¢

| Lit s ¢ = type_of-fmt ¢

end.
For example, type_of-fmt example reduces to string — int — string.

4.1 Basic version of sprintf with dependent types

We start with a loop which prints on the right of an additional argument.
Fixpoint r_sprintf ¢ : string — type_of-fmt ¢ :=

match ¢ with

| Stop = Xa. a

| Data P ¢ = Xaz. r_sprintf ¢ (a p x)

| Lit s ¢ = Aa. r_sprintf ¢ (a”s)

end.

The desired function provides the empty string "" as the initial accumulator to
the previous function.
Definition sprintf ¢ := r_sprintf ¢ "".

4.2 Monomorphic functional formats

The following type of Danvy’s sprintfk is allowed in the Damas-Milner type
system, it can then be used in languages of the ML and Haskell family. Though
there is no restriction over «, the only form « can take is (type_of-fmt ¢) for
some format ¢. However, the point is that ¢ itself is no longer an argument of
sprintfk.

Definition sprintfk: Vo ((string — string) — string — o) = a := Af. f(As. s) "".

Functional formats are constructed using primitive formats such as lit, str, sint,
etc. The two latter are themselves special cases of our kdata, which is not ad-
mitted in ML, in contrast with str, sint, etc. However we keep kdata here for
the sake of generality in the reasoning. In ML examples, we use only instances

of kdata.
Definition kid : (string —string) — string — string := Ak a. ka.
Definition kdata P : Va (string — a) — string —» XP — «a :=
Aa. Ak. daz. k(ap z).
Definition lit (z:string) : Va (string — a) — string — a := Aa. Aka. k(o).

4.3 Translation

Here is the general construction of functional formats from concrete formats.
Fixpoint kformat ¢ : (string — string) — string — type_of_fmt ¢ :=

match ¢ with

| Stop = kid

| Data P ¢ = (kdata P (type-of-fmt ¢)) o (kformat ¢)

| Lit © ¢ = (lit = (type_of-fmt @)) o (kformat ¢)

end.
For example, kformat example is convertible with

(lit foo (string — int — string)) o

(str (int — string)) o (lit bar (int — string)) o (sint string).

4.4 Correctness of sprintfk w.r.t. sprintf

A brutal attempt to prove that (sprintf ¢) = (sprintfk (kformat ¢)) holds for all
¢ fails, because the accumulator changes at each recursive call (an induction on
¢ would lead us to to prove something on "" ~ s while the induction hypothesis
is on ""). The usual trick is then to replace "" with a variable (let us call it a)
which is in the scope of the induction. We first unfold sprintf and sprintfk in
order to work with r_sprintf and kformat. Then, if we try to prove

Ya r_sprintf ¢ a = kformat ¢ (As.s) a (11)
by induction on ¢, we face another problem: how to prove
Az r_sprintf ¢ (a p) = Az. kformat ¢ string (Xs. s) (a p x)

from the induction hypothesis (11)? This is a typical case where extensionality
makes life easier. Adding the following axiom would allow us to finish the proof
in a trivial way.

Axiom extensionality:
Vap, Vfg:a = B, Vzia, fz=g1) = (Az. fz) = (A2 g 2).

But this workaround is not satisfactory. In order to prove the desired (inten-
sional) equality, without any additional axiom, we work with a still more inten-
sional statement:

Aa. r_sprintf ¢ a = Aa. kformat ¢ (Xs. s) a (12)
or even a 7-reduced version of the latter:
r_sprintf ¢ = kformat ¢ (Xs. s). (13)

The proof is very short. The key is to observe that Aaz. k (a p z) = kdata P a k,
and similarly for lit. We can then rewrite r_sprintf as follows:

Fixpoint r_sprintfl ¢ : string — type_of_fmt ¢ :=

match ¢ with

| Stop = Xa. a

| Data P ¢ = kdata P (type-of_fmt ¢) (r_sprintfl ¢)
| Lit s ¢ = lit s (type-of-fmt ¢) (r_sprintfl @)

end.

The following lemma is easily proved by induction on ¢:
Vo r_sprintfl ¢ = kformat ¢ (Xs. s). (14)

Unfolding definitions and converting r_sprintf to r_sprintf! provides the desired
corollary.

Theorem sprintf_sprintfk: V¢ sprintf ¢ = sprintfk (kformat ¢).

5 Typing formats with type transformers

The previous typing of kformat is unfair. If ¢ is a given closed format, the
expression kformat ¢ has a closed type as well. A limitation of this typing is
that it prevents formats to be sequentially composed. For example,

(kformat (Lit foo (Str Stop))) o (kformat (Lit bar (Int Stop))) (15)

is ill-typed. In order to recover plain Danvy’s functional formats, which do not
suffer from such limitations, we use type transformers. In some sense, the latter
implement the type inference mechanism of the ML type system. In our example,
the type transformer to be considered maps a type «a to string — int — a.

Definition idt := Aa. a.

Definition datat P := Aa. (XP — a).

Fixpoint type_transf-of-fmt ¢ : Set — Set :=
match ¢ with
| Stop = idt
| Data P ¢ = (datat P) o (type_transf-of-fmt ¢)
| Lit s ¢ = type_transf-of-fmt ¢
end.

The new typing of r_sprintf is as follows.

Fixpoint r_sprintf ¢ : string — type_transf-of-fmt ¢ string:=
match ¢ with
| Stop = Xa.a
| Data P ¢ = Aaz. r_sprintf ¢ (ap z)
| Lit s ¢ = Aa. r_sprintf ¢ (a”s)
end.

Definition sprintf ¢ := r_sprintf ¢ "".

5.1 Polymorphic functional formats

In this version, the type given to a functional format takes the form kt tf, where
tf is a type transformer.

Definition kt (tf: Set — Set) := Va (string —» o) — string — tf a.

Accordingly, the new typings of kid, kdata and lit are:

Definition kid : ktidt := Aa. Aka. ka.

Definition kdata P : kt (Aa. X P — a) := Aa. Ak : string = a. Aaz. k(a p 1).
Definition lit z : kt idt := Aa. Aka. k(a”).

Observe that, in this version, no additional argument is needed in lit and kdata
(or its instances such as sint).

The counterpart of type unification shown in equations (6) to (9) of the
introduction is performed in the following version of function composition.

Definition u_seq (tg, tf : Set — Set) : kt tg — kt tf — kt (tgo tf) :=
Agf da. Ak g (tfa) (fak).

We use the infix notation ® for u_seq.

5.2 Translation
Definition sprintfk (tf : Set — Set) : kt tf — tf string := Af. f string (As. s) "".

Fixpoint kformat ¢ : kt (type_transf-of_fmt ¢) :=

match ¢ with

| Stop = kid

| Data P ¢ = (kdata P) © (kformat ¢)

| Lit x ¢ = (lit) © (kformat ¢)

end.
As desired, formats can be composed. For example, kformat example is convert-
ible with (kformat (Lit foo (Str Stop))) ® (kformat (Lit bar (Int Stop))). A
format can even be composed with itself, as in

let kex = kformat example in kex ® kez.

5.3 Correctness of sprintfk w.r.t. sprintf

The proof is along the same lines as before. In the induction steps, we have to
recognize a higher-order pattern involving another kind of function composition,
which is defined by fos g := Azy. f(gzy)-

The two key remarks are:
VP kdata P = Aa. Ak:string —a. kog (r-X P) (16)
and

Vif: Set— Set Vf: kt tf VP (kdata P) ® f = Ao Ak. (fa k) oy (r_X P) (17)

where = stands for convertibility. We can inline these identities in order to get
versions of r_sprintf and kformat which are convertible with the original ones.

Fixpoint r_sprintfl ¢ : string — type_transf-of-fmt ¢ string :=
match ¢ with
| Stop = Xa.a
| Data P ¢ = (r_sprintfl ¢) os (r_X P)
| Lits¢ = (r_sprintfl ¢) o (Aa. a”s)
end.

Fixpoint kformat! ¢: kt (type_transf-of_fmt ¢) :=
match ¢ with
| Stop = kid
| Data P ¢ = Aa. k. (kformatl ¢ a k) os (r-X P)
| Litzg = Aa. Ak. (kformatl ¢ a k) o (Aa. a”x)
end.

Using them, we can prove that:
VYo r_sprintf ¢ = kformat ¢ string (As. s) (18)
by a straightforward induction over ¢, and we get the desired theorem in the

same way as in section 4.

Theorem sprintf_sprintfk: V¢ sprintf ¢ = sprintfk (kformat ¢).

Acknowledment

The work reported here was started during a stay at SRI, thanks to an invitation
of N. Shankar and J. Rushby. The first draft of this paper was written in a
undisclosable amount of time using the coqdoc tool of J.-C. Fillidtre. I also wish
to thank anonymous referees for their constructive comments.

References

1. Olivier Danvy. Functional Unparsing. Journal of Functional Programming,
8(6):621-625, 1998.

2. The Coq Development Team, LogiCal Project, V8.0. The Coq Proof Assistant
Reference Manual. Technical report, INRIA, 2004.

