Proving termination using dependent types:
the case of xor-terms

Jean-Francgois Monirand Judical Courant

VERIMAG - Centre quation, 2 avenue de Vignate, F-38618r€s, France

{jean-francois.monin judicael.courant t@imag.fr
http://www-verimag.imag.fr/"monin |courant/
Abstract

We study a normalization function in an algebra of terms quotiented by an associa-
tive, commutative and involutive operator (logical xor). This study is motivated by
the formal verification of cryptographic systems, where a normalization function for
xor-terms turns out to play a key role. Such a function is easy to define using general
recursion. However, as it is to be used in a type theoretic proof assistant, we also
need a proof termination of this function. Instead of using a clever mixture of vari-
ous rewriting orderings, we follow an approach involving the power of Type Theory
with dependent types. The results are to be applied in the proof of the security API
described in [CMO06].

1 INTRODUCTION

In the course of the formal verification of cryptographic systems using symbolic
approaches, one deals with algebras of terms whose constructors iaglddeot-
ing the binary bitwise exclusive or ar@l, denoting a bitstring consisting only of
zeros. Bitwise exclusive or is often used in cryptographic systems and many (po-
tential or effective) attacks are based on its algebraic properties [@ABBon04,
CKRTO05, CLCO03].

Dealing with the congruence generated by the usual arithmetic la@samialO
is therefore necessary in order to successfully verify these systems: in the following
we consider an algebra of terrfisbuilt up using a number of constructors, where
two of them, denoted by andO, enjoy the following algebraic properties.

Commutativity: XDY ~ YyBHX (1)
Associativity: (XDY)DZ~ XD (YD 2) 2
Neutral element: X®0 ~ X 3
Involutivity: X®X =0 4

Formally, ~ denotes the least congruence generated by equations (1) to (4). In
order to reason on terms @f up to~, a standard technique is to define a canoni-
calization function ovef . One also actually needs such a function to give minimal
terms with respect to simplification as one also needs a subterm refatidrich

takes into account equalities suchuas UE XE X:

X<y ifx~y
X<t ift=x®yy...®dypandx Ay foralli,0<i<n

Turning equations (1) to (4) into a convergent and strongly normalizing AC-
rewriting system is straightforward. Therefore, the existence of a normalization
function can be proven easily. Moreover, in any decent programming language,
defining a normalization function of is quite easy, using general recursion.

However, formally giving such a normalization function in Type Theory and
formally proving its correction is much more challenging. Using standard rewriting
arguments to define such a function is surprisingly difficult in a proof assistant such
as Coq [The05, BC04].

e Although some theoretical works address the addition of rewriting to the
Calculus of Constructions [Bla01], these works are yet to be implemented.

e Some works provide ways to define tactics for reasonning over associative-
commutative theories [ANOO], but they only provide ways to normalize given
terms, not to define a normalization function.

We therefore tried to define our own specific rewriting relation corresponding
to the defining equations af, but found this approach really costly:

¢ A well-founded ordering has to be given. As no rpo or Ipo ordering library is
available in Coq, we used the lexicographic combination of a partial ordering
<3 with a total ordering<,, where<; is a polynomial ordering, and is
a lexicographic ordering. Althoughi, is not well-founded, the set of terms
having a given weight for the polynomial definirg is finite, therefore we
could prove in Coq the lexicographic combination<of and <5 to be finite.

e Then we defined a rewriting relation. The difficult part here is to take into
account commutativity and associativity. In order to avoid AC-matching
issues, we decided to throw in associativity and to add commutativity as a
conditional rule x®y would rewrite toy @ x if and only if x is smaller than
y). Moreover, we had to complete our rewriting system in order to close
critical pairs such as® x@y, which could be rewritten tg or tox® (X®y).

¢ A normalization function has to be given. The definition of such a function
using well-founded induction in Coq is uneasy. (Some tools or methodology
such as those developed by Bertot and Balaa, or Bove and Capretta [BBOO,
BCO05] may help a bit here.) Therefore we stopped there and used an other
approach instead.

e Once this would be done, we would still have to prove that the transitive
closure of our rewriting relation is irreflexive, and that our normalization

function is sound with respect to it and computes normal forms. Essen-
tially, the main results to prove here would Wet ¥*t, vt t>* norm(t) and
ViVt ti>tp = norm(ty) = norm(ty).

Instead we experimented an ad-hoc approach involving typical features of Type
Theory. The intuition behind our approach is very simple. In a first stage, the term
to be normalized is first layered, in such a way that each level is built up from
terms belonging to the previous level. These levels alternate between layers built
up using only® constructors and layers built up using only other constructors, as
lasagnas alternate between pasta-only layers and sauce layers (mixed up to your
taste of tomato, meat, and cheese — in fact anything but pasta). In a second stage,
layers are normalized bottom-up. Normalizingpdayer roughly boils down to
sorting, while normalization of a no@-layer is just identity.

As may be expected, the second stage is almost trivial. However the first stage
requires more work. In particular, we need the full power of programming with
dependent types.

The approach we describe in this paper was designed and implemented using
the Coq proof assistant. Its results are to be applied in the proof of security proper-
ties of an API described in [CMO6].

2 FORMALIZATION

2.1 Splitting the type of terms

Let {®,0} W C be the set of constructors @f. For instance, in our case, we have
C = {PC,SC,E,Hash} with

PC:public_const — 7T E:T =T —>T
SC:secret_const — T Hash: 7T —- 7T — T

wherepublic_const andsecret_const are suitable enumerated types.

We introduce two polymorphic inductive typég(a) andZ,(a) respectively
called the pasta layer type and the sauce layer type. The constructB(sipfre
(copies ofyp andO while the constructors dfy(a) are (copies of) those belonging
to C. Moreover,Zy(a) (respectivelyZ,(a)) has an additional constructly: o —

Ti(a) (respectively, : a — Zy(a)).

Itis then clear that any tertrin 7" can be recasted into either the tyB¢7Z,(Zx(. .. (0))))
or the typeZ,(Zx(Zn(. .. (0)))), according to the top constructor tof

Normalizingt can then be defined as bottom-up sorting in the following way.

We say that a typ& is sortableif it is equipped with a decidable equality and
a decidable total irreflexive and transitive relation—equivalently, we could take a
decidable total ordering but the above choice turns out to be more conveni¥nt. If
is a sortable, then

e 7y(X) is sortable;

e the multiset ofX-leaves of any inhabitanf Z;(X) can be sorted (with dele-
tion of duplicates) into a lidhlx (t), such that; ~ t, iff Nx(t1) is syntactically
equal toNx (t2);

e list(X) is sortable i(e. can be equipped with the suitable .equality and
comparison relation).

Then we can normalize any term of type 7x(7,(Zx(0)))) by induction on the
number of layers. Note that thanks to polymorphism, we deal with each layer in a
pleasant modular way.

We now have to handle types such.ask(7Zn(Zx(0)))) in a formal way.

2.2 Formalized stratified types
2.2.1 Defining pasta and sauce layers

A layer is said trivial when it consists only in a terfig(a) (respn(a)). In order to
unfold sequences ab, we want to avoid artificial separation ef layers likex ®
L(In(y®2z)). Therefore, we want to be able to forbid constructions liKd,(a)).
Hence we distinguish between potentially trivial layers and non-trivial layers, by
adding to the pasta layer typg a boolean parameter telling us whether trivial
layers are included:

Section sec.x.
Variable A : Set
Inductive Zy: bool — Set:=
| X_Zero: Vb, Zx b
| X_.ns: Vb, Is_trueb— A— %&b
| X_Xor: Vb, T true — Zx true — Iy b

Definition I :=X_ns true |
End secx.

Likewise the inductive sauce layer tyfig (non-xor terms) is parameterized by
a boolean telling whether trivial layers are included.

Section sec.hx
Variable A : Set
Inductive 7,: bool — Set:=
| NX_PC: V b, public_const— 7, b
| NX_SC: V b, secretconst— 7, b
| NX_sum: V' b, Is_true b— A— 7, b
| NX_E : Vb, 75 true — 7, true — 7 b
| NX_Hash: V b, 7, true — 7 true — Tn b

Definition I, := NX_sum true |
End sec.nx.

2.2.2 Maps over lasagnas

Given a functionf from A: Setto B : Set one can easily definemaap, (resp.map,)
function lifting f to functions fromZy(A) to Zx(B) (resp. fromZy(A) to Zn(B)).

Moreover, given an evaluation functidn A — 7, one can extend it to the do-
main Zx(A) (resp.Z,(A)) by interpreting copies of andO (resp. of constructors
belonging toC) as the corresponding constructors®fand I (resp. I,) as the
identity over7.

2.2.3 Stacking layers

Building a stack ofk layers now essentially amounts to building the typgo
T)¥2(0) or Tn(Tx o Tn)¥/?(0), depending on the parity &. In a more type-
theoretic fashion, we defined two mutually inductive typéts,en, and altygq re-
spectively denoting even and odd natural numbers: the constructalg.gf,are

0. andS,_.e, the successor function from odd to even numbers, whalgag has
only one constructos .o, the successor function from even to odd numbers. We
also defingarity as eithelP; or P,. One can then build the function

alt_of_parity: parity — Set
Pe +— alteven
Po = altodd

2.3 Stratifying a term
2.3.1 Lifting a lasagna

The intuitive idea we have about lasagnas is somewhat misleading, because the
number of pasta and sauce layers is uniform in a whole lasagna dish, while the
number of layers of subterms which are rooted at the same depth of a given term
are different in the general case. However, any lasagna of heigdnt be lifted to

a lasagna of height+ e, wheree is even, because the empty type at the bottom

of types such agx(Zn(Zx(...(0)))) can be replaced with any type. Formally, the
lifting is defined by structural mutual induction as follows, thanks to map combi-
nators.

Fixpoint lift _lasagnax e; e, {structe;} : Lx e — Ly (e1 + &) :=
match e; return L, e — Ly (€1 + &) with
| Oe = A emp=- match empwith end
| S—e 01 = map, (lift_lasagnan o; &) false
end
with lift _lasagnan o; e, {structo;} : £, 01 — L, (01 + &) :=
match op return £, 01 — L, (01 + &) with
| S0 €1 = map, (lift _lasagnax e; &) false
end.

2.3.2 Counting layers of & -term

Given a7 -termt, the type of the corresponding lasagna depends on the number
[(t) of its layers, which has to be computed first.

At first sight, we may try to escape the problem by computing a numéer
which is known to be greater, or equal k) (a suitableu is the height). However
we would then have to handle proofs that the proposed nunibedoes provide
an upper bound oht). Such proofs have to be constructive, because they provide
a bound on the number of recursive calls in the computation of the layering of a
T-term. Then they embark the difference betweén andl(t), in a more or less
hidden way. So it is unclear thatt) would really help us to simplify definitions,
and we chose to stick to an accurate computatidiitofas follows.

The lifting functions explained in section 2.3.1 are basically used in the follow-
ing way. We define the maximum of two natural numbeeEndmasn— m-+m.
It is easy to check that this operation is commutative, hence the lasagnas of two
immediate subterms of @-term can be lifted to lasagnas of the same height.

A further difficulty is that the arguments of a constructor occurrendeare
heterogeneous, i.e. some of them carttand the others can be in We then may
use appropriate injectiong or I,. However, recall that their use is controlled (see
section 2.2.1): they can be used only at the separation line between two different
layers.

The trick is that, in general, we do not compute the lasagna of haighta
given term, that is, &(X,false) or a‘Z;(X,false), whereX is a lasagna of the
opposite kind and of heigimt— 1 but only alasagna candidate of height— 1, that
is, a function which yields &(X,b) or aZ,(X,b) for any Boolearb.

Similarly, the definition of the height for a lasagna candidate (calleallpar_of_term)
depends on a given parity

Definition inj_odd_parity p: alto — alt_of_parity p:=
match p return alto — alt_of_parity p with
| Pe= Se
|Phb=A0=0
end.

Similarly for inj_even_parity

Fixpoint alt_allpar_of_term(t:7) : V p, alt_of_parity p:=
match t return V p, alt_of_parity pwith
| Zero=- A p = inj_odd_parity p (Se—o Oc)
| Xor xy=
let 0; := alt_allpar_of_term xP, in
let 0, := alt_allpar_of_term yP, in
A p = inj_odd_parity p(max.000; 0y)
| PC x= A p=-inj_evenparity p &
|[Exy=
let e; := alt_allpar_of_term xPs in

let & ;= alt_allpar_of_term yP. in
A p = inj_evenparity p(max.eee; &)
[Similarly for other constructors]
end.

The lifting functions of section 2.3.1 are easily generalized to lasagna candi-
dates.

2.3.3 Computing the lasagna

The main recursive function computes a true lasagna candidate. In other words,
the type of its result depends on the desired parity.

Definition kind_lasagna cand.of_term(t:7) (p: parity) : Set:=
match p with
| Pe = lasagnacand.n (alt_allpar_of_term tP:) true
| P, = lasagnacand.x (alt_allpar_of_term tP,) true
end.

Its body introduces injections as required. Here is its definition.

Fixpoint lasagna cand.of_term (t:7) :

¥ p, kind_lasagna.cand.of_term t p:=

match t return V p, kind_lasagna cand.of_term t pwith

| Zero=
A p = match p return kind_lasagna cand.of_term Zero pwith
| Pe = I, (X_Zero fals@
| Po = X_Zero true
end

| Xorty tp =
let |1 :=lasagnacand.of_termt; P, in
let I, := lasagna cand.of_termt, P, in
A p = match p return kind_lasagna cand. of_term(Xor t; t;) p with
| Pe = I (bin_xor X_Xor 4 I2)
| Po = bin_xor X_Xor Iy I2
end

| PC x=
[similarly for constructors inC].

The above definition requires a function cal@d_xor which maps a construc-
tor of I to an operation on lasagna candidates of arbitrary height. This is the place
where lifting is used. Note the essential use of the conversion rule in its typing.

Definition bin_xor
(bin: VADb T4 Atrue— I, Atrue— Iy Ab)o1 02 b
(I1 : lasagna.cand.x o; true) (I, : lasagnacand.x o, true) :
lasagnacand.x (max.000; 0z) b :=

bin (L, (max.000; 02)) b
(lift _lasagna.cand.x trueo; (02 - 01) 11)
(coerce max.comm(lift _lasagha cand.x true o, (01 - 02) I2)).

Finally, the functionasagna of_termis defined on top dlisagna cand.of_term
In contrast with the latter, we force the parity to depend on the constructor at the
root:

Definition alt_of_term t:= alt_allpar_of_term t(parity_of_term 9.

Definition lasagna of_parity p: alt_of_parity p — Set:=
match p return alt_of_parity p — Setwith
| Pe = Lx
| Po= Ly
end.

Definition lasagna of_term(t:7) :
lasagna of_parity (parity_of_term §) (alt_of_term f) :=
match t return lasagna of_parity (parity_of_term) (alt_of_term 9 with
| Zero= X_Zero false
| Xorty tp =
let I :=lasagnacand.of_termt; P, in
let I, :=lasagna cand.of_termt, Py in
bin_xor X_Xor 4 I,

| PC x= NX_PC false x
[similarly for constructors irC].

2.4 Normalizing

We define a new pair of typek and.$, along the same lines as fog and £, where
Tx(a) is replaced witHist(a). Then we define a pair of normalization functions
Ny :Ve Lye— SgeandN,: Vo, L,0— Sy0. The latter does essentially nothing,
while the core of the former is

Ax. fold_insert(map.xor (N, 0) falsex) [].

3 CONCLUSION

The Epigram project [AMMO5] already advocates the definition of functions using
dependent types. They mostly aim at ensuring partial correctness properties (such
as a balancing invariant in the casenoérgesor}.

The present paper shows how dependent types can help for ensuring termina-
tion too. We showed that an alternate path to termination orderings can be followed
in some situations. While our approach is certainly less general, it relies on more
elementary arguments. As a consequence, we can get a better insight on the rea-
sons that make the normalization process terminate: they boil down to a (mutual)

induction on the implicit structure of terms. As for approaches advocated by Epi-
gram, the whole game consists in finding dependent types that render this implicit
structure explicit.

Our development is available at http://www-verimag.imag.fr/"monin/.

REFERENCES

[AMMO5] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent
types matter. Manuscript, available online, April 2005.

[ANOO] C. Alvarado and Q. Nguyen. ELAN for equational reasoning in Coq. In J. De-
speyroux, editorProc. of 2nd Workshop on Logical Frameworks and Meta-
languages. Institut National de Recherche en Informatique et en Automatique,
ISBN 2-7261-1166-1une 2000.

[BBOO] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recur-
sion in type theory. In M. Aagaard and J. Harrison, editétsc. of 13th
Int. Conf. on Theorem Proving in Higher Order Logics, TPHOLS'00, Port-
land, OR, USA, 14-18 Aug. 200@lume 1689, pages 1-16. Springer-Verlag,
Berlin, 2000.

[BCO4] Yves Bertot and Pierre Ca&san. Interactive Theorem Proving and Program
Development. Coq'Art: The Calculus of Inductive Constructiomsume
XXV of Texts in Theoretical Computer Science. An EATCS Se8psinger,
2004. 469 p., Hardcover. ISBN: 3-540-20854-2.

[BCO5] AnaBove and Venanzio Capretta. Modelling general recursion in type theory.
Mathematical Structures in Computer Scient®(4):671-708, August 2005.

[Bla01] Frécéric Blanqui. Definitions by rewriting in the calculus of constructions. In
Logic in Computer Scien¢gpages 9-18, 2001.

[Bon04] Mike Bond. Understanding Security APISPhD thesis, University of Cam-
bridge Computer Laboratory, June 2004.

[CKRTO5] Yannick Chevalier, Ralf Ksters, Mich&l Rusinowitch, and Mathieu Turuani.
An np decision procedure for protocol insecurity with xorheor. Comput.
Sci, 338(1-3):247-274, 2005.

[CLCO3] H. Comon-Lundh and V. Cortier. New decidability results for fragments of
first-order logic and application to cryptographic protocols. Pioc. 14th
Int. Conf. Rewriting Techniques and Applications (RTA'20@8Jume 2706
of Lecture Notes in Computer Scienpages 148-164. Springer, 2003.

[CM06] Judic@l Courant and Jean-Francois Monin. Defending the bank with a proof
assistant. To appear in WITS, 2006.

[TheO5] The Cog Development Teaifihe Coq Proof Assistant Reference Manual Ver-
sion 8.0 Logical Project, January 2005.

[YAB *05] Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amer-
son Lin, Ronald L. Rivest, and Ross Anderson. Robbing the bank with a the-
orem prover. Technical Report UCAM-CL-TR-644, University of Cambridge,
Computer Laboratory, August 2005.

