
Towards Verified Faithful Simulation

Vania Joloboff1, Jean-François Monin2, and Xiaomu Shi3

1 East China Normal University - INRIA - LIAMA
2 Université de Grenoble - Verimag

3 Tsinghua University

Abstract. This paper presents an approach to construct a verified vir-
tual prototyping framework of embedded software. The machine code
executed on a simulated target architecture can be proven to provide
the same results as the real hardware, and the proof is verified with a
theorem prover. The method consists in proving each instruction of the
instruction set independently, by proving that the execution of the C
code simulating an instruction yields an identical result to that obtained
by a formal executable model of the processor architecture. This formal
model itself is obtained through an automated translation process from
the architecture specifications. Each independent proof draws a number
of lemmas from a generic lemma library and also uses the automation
of inversion tactics in the theorem prover. The paper presents the proof
of the ARM architecture version 6 Instruction Set Simulator of the Sim-
SoC open source simulator, with all of the proofs being verified by the
Coq proof assistant, using automated tactics to reduce manual proof
development.

1 Introduction

In many embedded systems applications nowadays, virtual prototyping is used
to design, develop and test new applications. Most of these virtual prototypes
include an Instruction Set Simulator (ISS) to simulate the target processor. The
ISS runs the target executable binary code in emulating the hardware and gen-
erate the outputs that the executable should produce when run on the target
platform. An ISS can be used for example to optimize algorithms such as cryp-
tographic software, or to debug new compiler developments, or in the design
of many embedded systems applications. Instead of using real hardware proto-
types, simulated platforms are more convenient and less expensive. Then, it is
important to be sure that the simulator used is faithful to the hardware that it
emulates. A faithful ISS must produce exactly the same results as the executable
would if run on hardware implementation of the instruction set specification, and
this guarantee must be proven.

The purpose of our work is to formally verify that the execution of a pro-
gram on our Instruction Set Simulator for the target ARM architecture indeed
produces the expected results, to be certain that the data output from the sim-
ulator, the final processor and memory states are indeed identical to the result



obtained with the real hardware. This requires sequential steps, to prove first
that the translation from the C code of the simulator to the simulation machine
is correct, and second that the simulation of the target machine code is also cor-
rect, that is, it preserves the semantics of the computer architecture, together
with the fact that all of these proofs are verified using a theorem prover, or proof
checker, not subject to human error in the proof elaboration or verification.

The next sections of the paper are organized as follows. Section 2 reviews
related work. Section 3 describes the tools that we have used, in particular the
Compcert C compiler, a certified compiler for the C language, the Coq proof
assistant, and the SimSoC simulator in which our work is integrated. Section
4 presents our contribution to prove the correctness of an ARM Instruction
Set Simulator, integrated within SimSoC. In summary, the method consists in
proving each instruction of the instruction set independently, by proving that the
execution of the C code simulating an instruction yields identical result to that
obtained by a formal executable model of the architecture. Each independent
proof requires using a number of lemmas from a generic lemmas library and
usage of a new inversion tactics in the theorem prover. Finally, our conclusion
mentions lessons learned and directions for future work.

2 Related Work

Program certification has to be based on a formal model of the program under
study. Such a formal model is itself derived from a formal semantics of the pro-
gramming language. Axiomatic semantics and Hoare logic have been widely used
for proving the correctness of programs. For imperative programming languages
such as C, a possible approach is to consider tools based on axiomatic semantics,
like Frama-C [5], a framework for a set of interoperable program analyzers for C.
Most of the modules integrated inside rely on ACSL (ANSI/ISO C Specification
Language), a specification language based on an axiomatic semantics for C.

Frama-C software leverages off from Why technology [3, 7], a platform for de-
ductive program verification, which is an implementation of Dijkstra’s calculus
of weakest preconditions. Why compiles annotated C code into an intermediate
language. The result is given as input to the VC (Verification Conditions) gener-
ator, which produces formulas to be sent to both automatic provers or interactive
provers like Coq.

In our case of verifying an instruction set implementation, we have to deal
with a very large specification including complex features of the C language. A
framework is required that is rich enough to make the specification manageable,
using abstraction mechanisms for instance, and in which an accurate definition
of C features is available. As we need to verify specific properties referring to
a formal version of the ARM architecture, operational semantics offer a more
concrete approach to program semantics as it is based on states. The behavior
of a piece of program corresponds to a transition between abstract states. This
transition relation makes it possible to define the execution of programs by a
mathematical computation relation. This approach is quite convenient for prov-

2



ing the correctness of compilers, using operational semantics for the source and
target languages (and, possibly intermediate languages). Operational semantics
are used in CompCert (described below) to define the execution of C programs, or
more precisely programs in the subset of C considered by the CompCert project.
The work presented in this paper is based on this approach. Interesting examples
are given by Brian Campbell in the CerCo project [4], in order to show that the
evaluation order constraints in C are lax and not uniform.

A very significant verification work has been done to prove the SEL4 op-
erating system[11]. It is comparable to our work in that they have considered
a C implementation. The main difference is that they have not considered op-
erational semantics of C, but deduced the proof obligations from the C code,
considering the compiler and the architecture as correct. In our work, we be-
lieve that the subset of C accepted by CompCert is even larger than the subset
accepted in SEL4.

Regarding formalization and proofs related to an instruction set, a Java byte
code verifier has been proved by Cornelia Pusch[15], the Power architecture
semantics has been formally specified in [1], and closer to our work, the computer
science laboratory in Cambridge University has used HOL4 to formalize the
instruction set architecture of ARM [8]. The objective of their work was to
verify an implementation of the ARM architecture with logical gates, whereas
we consider a ARM architecture simulator coded in C. Reusing the work done
at Cambridge in [8] was considered. But, because we need a certified C compiler
and our approach is based on CompCert C, which is itself coded in Coq, it would
have required us to translate all of the C operational semantics as well, which
would have been error prone, not to mention the very large effort. It was more
convenient to develop our formal model and our proofs in Coq.

Our work is based on the SimSoC simulation framework [10], available as
open source software at http://gforge.inria.fr/projects/simsoc, described
in the next section.

3 Background

3.1 Coq

Coq [2] is an interactive theorem prover, implemented in OCaml. It allows the
expression of mathematical assertions, mechanically checks proofs of these as-
sertions, helps to discover formal proofs, and may extract a certified program
from the constructive proof of its formal specification. Coq can also be presented
as a dependently typed λ-calculus (or functional language). For a detailed pre-
sentation, the reader can consult [6] or [2]. Coq proofs are typed functions and
checking the correctness of a proof boils down to type-checking.

The logic supported by Coq includes arithmetic, therefore it is too rich to
be decidable. As full automation is not possible for generating proofs, human
interaction is essential. The latter is realized by proof scripts, which are sequences
of commands for building a proof step by step. Coq also provides built-in tactics

3



implementing various decision procedures for suitable fragments of the calculus
of inductive constructions and a language which can be used for automating the
search of proofs and shortening scripts.

When a proof has been interactively developed, Coq automatically verifies
the proof, or possibly signals where errors are located. Our work has consisted
in developing proofs demonstrating that the C functions simulating the behavior
of the ARM processor indeed implement the ARM architecture semantics.

3.2 Compert-C

CompCert is a formally verified compiler for the C programming language pro-
vided by INRIA [13, 12], which currently targets Power, ARM and 32-bit x86
architectures. The compiler is specified, programmed, and proved in Coq. It aims
to be used for programming embedded systems requiring high reliability. The
generated assembly code is proved to behave exactly the same as the input C
program, according to a formally defined operational semantics of the language.

A key point is that we are considering here C programs compliant with
the definition of ISO-C 99 standard of correct C programs. Indeed the ISO-C
standard identifies many constructions that are syntactically correct, but have
undefined semantics such as a[i++] = i;. The document identifies about one
hundred such constructions, and says that a C compiler in that case basically
may choose its own interpretation of the abstract syntax, resulting in unspecified
behavior. This is very important in our work. All of the C code implementing
the ISS is correct with respect to the ISO C standard, meaning that it does not
contain any construction with unspecified behavior. Compcert-C does not accept
such ill-defined expressions and only well formed programs can be translated
according to the formal, unambiguous, semantics. All of the C code considered
here has unique and well defined semantics. We need to prove that it implements
the ARM semantics, but we do not need to worry about multiple interpretations.

Three parts of CompCert C are used in this work. The first is that we use
the correct machine code generated by the C compiler. The second is the C
language operational semantics in Coq from which we get a formal model of the
program. Third, we use the CompCert Coq library for words, half-words, bytes
etc., and bitwise operations to describe the instruction set model. These low level
functions have been proven already in CompCert, so we can safely re-use them.

It must be noted that the C code of an ISS does not use functions from the C
library that invoke the operating system, such as gettimeofday(), It uses a very
limited number of functions from the C library such as memset() or memcpy().
CompCert provides the formalized properties of such built-in external functions,
so we can reason formally on their potential side effects in our proofs.

3.3 SimSoC

There is abundant literature covering Instruction Set Simulation. Using inter-
pretive simulation, such as used in Insulin [16], each instruction of the target

4



program is fetched from memory, decoded, and executed. With static transla-
tion, the target application program is decoded at compile time and translated
into a new program for the simulation host. The simulation speed is vastly im-
proved [18] , but it is not suitable for application programs that generate, or
dynamically load code at run-time. Most ISS’es today use some kind of dynamic
binary translation, initiated with systems such as Embra [17].

As mentioned above, the target ISS for the verification is integrated within
SimSoC [10], a full system simulator of System-on-Chips, available as open source
software. SimSoC takes as input real binary code and executes simulation models
of the complete embedded system: processor, memory units, interconnect, and
peripherals. The chip simulator also includes a network controller simulator, so
that the simulator can communicate with the real world. Our proof assumes the
existence of a correct decoder to dynamically generate the translation of the
input binary into C structures, e.g. the program that takes the binary input
sequence and translates it into a sequence of qualified instructions. It is out of
scope of the proof.

SimSoC uses the SystemC kernel to simulate hardware parallellism and trans-
action level modeling (TLM) to model communications between the modules.
It includes ISS’es to execute embedded applications on various processors. We
are considering here the ARM Version 6 ISS. SimSoC supports two modes of dy-
namic translation. In the first mode, our verification target, the binary decoder
translates each instruction into a C structure that has a semantics function [9].
It is these C semantic functions that we are verifying here.

4 Verified Simulation

  

ISS in C CompCert C

Executable code

ISS operational 
semantics (in Coq)

ARM architecture 
formal specification

Integrated in 
SimSoC

Coq Proof of 
Equivalence

Fig. 1. Overall goal

The general objective is to obtain a verified simulator is illustrated in Fig-
ure 1. Considering the ARM architecture, we need to have the following:

– a formal model of the ARM instruction set.
– an instruction set simulator of the ARM arcchitecture coded in the (CompCert)

C programming language.

5



– a formal operational semantics of the ISS. As shown in Figure 1, from the
ISS source code in C, we can obtain through CompCert C on one hand the
Coq formal semantics of the compiled C program constructed by CompCert,
since the intermediate representation of the C compiler is a Coq represen-
tation and, on the other hand, the verified machine code, which conforms
to this operational semantics as guaranteed by CompCert. We use both, the
compiled machine code to run simulations, and the formal semantics for the
proof.

– prove, using the Coq proof assistant, that the resulting ISS semantics indeed
implement the formal model of the ARM processor, which boils down to ver-
ifying that the semantics of the simulator accurately modifies the processor
(and memory) state representation at each step and ends up in results that
comply with the formal model of the ARM architecture.

These steps are described in the following paragraphs.

4.1 Constructing the formal model

Ideally the formal specification of the ARM architecture should be provided by
the vendor. But it is not the case, an issue already raised in the work with HOL4
mentioned above [8]. We decided to derive the formal model of ARM architecture
in Coq from the architecture reference manual as output of a semi-automated
process. The main relevant chapters of the manual are:

– Programmer’s Model introduces the main features in ARMv6 architecture,
the data types, registers, exceptions, etc;

– The ARM Instruction Set explains the instruction encoding in general and
puts the instructions in categories;

– ARM Instructions lists all the ARM instructions in ARMv6 architecture in
alphabetical order and the ARM Addressing modes section explains the five
kinds of addressing modes.

There are 147 ARM instructions in the ARM V6 architecture. For each in-
struction, the manual provides its encoding table, its syntax, a piece of pseudo-
code explaining its own operation, its exceptions, usage, and notes. Three kinds
of information are extracted for each ARM operation: its binary encoding for-
mat, the corresponding assembly syntax, and the instruction semantics, which
is an algorithm operating on the processor state. This algorithm may call basic
functions defined elsewhere in the manual, for which we provide a Coq library
defining their semantics. Other than these extracted data files, there is still use-
ful information left in the document which cannot be automatically extracted,
such as validity constraints information required by the decoder generator. How-
ever, the most tedious (then, arguably, error prone) part is described using fairly
simple, precise and regular pseudo-code, allowing us to extract the Coq formal
model in three automated steps: (i) extracting information from the .pdf file;
(ii) parsing the data into abstract syntax trees (iii) automated translation from
the abstract syntax into Coq formal model.

6



During this process, a dozen documentation problems were found but none
that were relevant to instruction semantics. These documentation mistakes have
been acknowledged by ARM Ltd. Moreover, a single mistake in our automated
extractor would impact the formal model of many or even all instructions and
then become rather easy to detect. The model has then tested on real programs
to verify that we obtain the same results, which gives reasonable confidence in
the model.

4.2 Proof Structure

The proof starts from an ISS coded in C, where each instruction is coded as a C
function that modifies the processor state and possibly the memory state (but
everything is represented in memory on the simulation host machine). Each C
function may also call basic functions from a library. As mentioned above, this
C code does not include any construction with “unspecified behavior” of the C
language specification. To prove that the simulator is correct, we need to prove
that, given the initial state of the system, the execution of an instruction as
implemented by a C function results in the same state as the formal specification.
To establish the proof, a formal model of that C implementation is provided by
CompCert, which defines operational semantics of C formalized in Coq.

  

Compcert-C 
Concrete State

Compcert-C 
Concrete State'

Projection

Projection

Abstract State

Abstract State'

Operational  semantics 
of the instruction

Instruction semantics 
in the Coq formal model

Fig. 2. Theorem statement for a given ARM instruction

The proof shall demonstrate that the operational semantics of the C code
corresponds to the ARM formal specification. The complete proof is too lengthy
for this article, and we only provide here an outline of the method. The state of
the ARM V6 processor defined in the formal model is called the abstract state.
Alternatively, the same state is represented by the data structures correspond-
ing to C semantics that we shall call the concrete state. In order to establish
correctness theorems we need to relate these two models. Executing the same
instruction on the two sides produces a pair of new processor states which should
be related as equivalent. Informally, executing the same instruction on a pair of
equivalent states should produce a new pair of equivalent states, as schematized
by Figure 2. Equivalent states are defined according to a suitable projection
from the C concrete state to the abstract model, as represented in Figure 3.

7



This projection constructs a formal structure from the concrete one. The for-
mal structure obtained should be identical to that obtained through the formal
model, otherwise the C code is incorrect.

MMU_ptr

SPSR

CPSR

CP15

user_reg

fiq_reg

irq_reg

svc_reg

abt_reg

und_reg

PC

jump

Slv6_Processor
N_flag

C_flag

Z_flag

V_flag

...

Slv6_StatusRegister

Slv6_StatusRegister

N_flag

...

reg 15

reg 2

reg 1

...

Armv6_state

CPSR

SCCProc_state

reg

memSPSR

reg

mode

exns

Fig. 3. Projection

4.3 Projection

In order to achieve a high speed simulation, the C ISS includes optimizations. In
particular, processor state representation in the C implementation is complex,
not only due to the inherent complexity of the C language memory model, but
also because of optimization and design decisions targeting efficiency. Despite
the complexity of the C memory model, the CompCert C semantics makes it
possible to define and prove the projection. Fortunately, all of the instructions
operate on the processor state and there is a single representation of that state
in the simulator. It is necessary and sufficient to prove the projection for each
variant case of the representation structure. For example, the projection of a
register performs a case analysis on possible values, whereas the projection of
saved data upon exceptions depends on the type of exception modes. Although
there are a number of specific cases to handle, the proof of the projection is
relatively straightforward. In more detail:

– The C implementation uses large embedded structs to express the ARM pro-
cessor state. Consequently the model of the state is a complex Coq record

8



type, including not only data fields but also proofs to verify access permis-
sion, next block pointer, etc.

– Transitions are defined with a relational style (as opposed to a functional
style where reasoning steps can be replaced by computations). Relational
style is more flexible, especially when dealing with constraints; and fits well
with operational semantics.

– The global state is based on a memory model with load and store functions
that are used for read/write operations.

The proofs for instructions start from the abstract state described by the
formal specification. To verify the projection of the original state, we need the
following data: the initial memory state, the local environment, and the formal
initial processor state. The projection is meaningful only after the C memory
state is prepared for evaluating the current function body representing a ARM
instruction. In the abstract Coq model, we directly use the processor state st.
But on the C side, the memory state is described by the contents of several
parameters, including the memory representation of the processor state. We
also need to observe the modifications of certain memory blocks corresponding
to local variables.

The semantics of CompCert C considers two environments. The global en-
vironment genv maps global function identifiers, global variables identifiers to
their blocks in memory, and function pointers to a function definition body. The
local environment env maps local variables of a function to their memory blocks
reference. It maps each variable identifier to its location and its type, and its
value is stored in the associated memory block. The value associated to a C vari-
able or a parameter of a C function is obtained by applying load to the suitable
reference block in memory. These two operations are performed when a function
is called, building a local environment and an initialized memory state. When
the program starts its execution, genv is built. The local environment env is
built when the associated function starts to allocate its variables. Therefore, on
the concrete side, a memory state and a local environment is prepared initially
using two steps. First, from an empty local environment, all function parameters
and local variables are allocated, resulting into some memory state and the local
environment. Second, function parameters are set up using a dedicated function
bind parameters and the initial state is thus created.

4.4 Lemmas Library

Next, we need to consider the execution of the instruction. In the C ISS, there is a
standalone C function for each ARM V6 instruction. Each function (instruction)
has its own correctness proof. Each function is composed of its return type,
arguments variables, local variables, and the function body. The function body is
a sequence of statements including assignments and expressions. Let us consider
as an example the ARM instruction BL (Branch and Link). The C code is:

void B(struct SLv6_Processor *proc,

const bool L,

9



const SLv6_Condition cond,

const uint32_t signed_immed_24){

if (ConditionPassed(&proc->cpsr, cond)){

if ((L == 1))

set_reg(proc,14,address_of_next_instruction(proc));

set_pc_raw(proc,reg(proc,15)+(SignExtend_30(signed_immed_24)<<2));

}

}

CompCert has designed semantics for CompCert C in big-step inductive types
for evaluating expressions, which we reuse for the proof. The semantics is de-
fined as a relation between an initial expression and an output expression after
evaluation. Then, the body of the function is executed. On the concrete side,
the execution yields a new state mfin. On the abstract side, the new state is ob-
tained by running the formal model. We have to verify that the projection from
the concrete state mfin is related to this abstract state. The proof is performed
in a top-down manner. It follows the definition of the instruction, analyzing the
expression step by step. The function body is split into statements and then
into expressions. When evaluating an expression, one has to search for two kinds
of information. The first one is how the memory state changes on the concrete
side; the other is whether the results on the abstract and the concrete model are
related by the projection. To this end, a library of lemmas had to be developed,
identifying five categories summarized below.

1. Evaluating a CompCert expression with no modification on the memory state.
Such lemmas are concerned with the expression evaluation on CompCert C side
and in particular the C memory state change issue. Asserting that a memory
state is not modified has two aspects: one is that the memory contents are not
modified; the other is that the memory access permission is not changed. For
example, evaluating the boolean expression Sbit == 1 returns an unchanged
memory state.

if G,E ` eval binopc (Sbit == 1), M
ε

==⇒ v, M ′

then M = M ′.

In Coq syntax, the relation in premise is expressed with eval binop. In this
lemma and the following, E is the local environment,G is the global environment,
M is the memory state, ε is the empty event (we may have here a series of
events, e.g. system call, volatile load/store) and v is the result. The evaluation
is performed under environments G and E. Before evaluation, we are in memory
state M . With no event occurring, we get the next memory state M ′. According
to the definition of eval binop, an internal memory state will be introduced.

G,E ` a1,M ⇒M ′ G,E ` a2,M ′ ⇒M ′′

G,E ` (a1 binop a2),M ⇒ M ′′

In the example, expression a1 is the value of Sbit and a2 is the constant
value 1. By inverting the hypothesis of type eval binop, we obtain several
new hypotheses, including on the evaluation of the two subexpressions and

10



the introduction of an intermediate memory state M ′′. Evaluating them has
no change on the C memory state, hence we have M = M ′′ = M ′. In more
detail, from the CompCert C semantics definition, we know that the evaluation
of an expression will change the memory state if the evaluation contains uses
of store value of type. In CompCert, the basic store function on memory is
represented by an inductive type assign loc instead of store value of type.
As a note, since CompCert version supports volatile memory access, we also have
to determine whether the object type is volatile before storage.

2. Result of the evaluation of an expression with no modification on the memory.
Continuing the example above, we now discuss the result of evaluating the binary
operation Sbit == 1 both in the abstract and the concrete model. At the end
of evaluation, a boolean value true or false is returned in both the concrete and
the abstract models.

if Sbit related M Sbit,
and G,E ` eval rvalue binopc (Sbit == 1),M ⇒ v,M ′

then v = (Sbit == 1)coq

Intuitively, the projection corresponding to the parameter sbit in the concrete
model must yield the same value as in the abstract model. Here, the expres-
sion is a so-called “simple expression” that always terminates in a determinis-
tic way, and preserves the memory state. To evaluate the value of simple ex-
pressions, CompCert provides two big-step relations eval simple rvalue and
eval simple lvalue for evaluating respectively their left and right values. The
rules have the following shape:

G,E ` a1,M ⇒ v1 G,E ` a2,M ⇒ v2
sem binary operation(op, v1, v2,M) = v

G,E ` (a1 op a2),M ⇒ v

In order to evaluate the binary expression a1 op a2, the sub-expressions a1 and
a2 are first evaluated, and their respective results v1 and v2 are used to compute
the final result v.

3. Memory state changed by storage operation or side effects.
As mentioned before, evaluating some expressions such as eval assign may
modify the memory state. Lemmas are required to state that corresponding
variables in the abstract and in the concrete model must evolve consistently.
For example, considering an assignment on register Rn, the projection relation
register related is used. Expressions with side effects of modifying memory
are very similar.

if rn related M rn
and G,E ` eval assignc (rn := rx),M ⇒ M ′, v
then rn related M ′ rn

4. Internal function call.
The simulation code is sometimes using functions from libraries. We distinguish

11



internal functions and external functions. An internal function is a function
that belongs to a library, the code of which is part of the simulator, that we have
coded ourselves, or the C code is provided by compcert C. An external function is
a function for which we do not have access to the operational semantics. After an
internal function is called, a new stack of blocks is typically allocated in memory.
After the evaluation of the function, these blocks will be freed. Unfortunately,
this may not bring the memory back to the previous state: the memory contents
may stay the same, but pointers and memory organization may have changed.

if proc state related M st
and G,E ` eval funcallc(copy StatusRegister)c,M ⇒ v, M ′

and st′ = (copy StatusRegister)coq st
then proc state related M ′ st′.

Lemmas must be developed regarding the evaluation of internal functions,
so that one can observe the returned results, compare it with the corresponding
evaluation in the formal specification, and verify some conditions. For example,
the lemma above is about the processor state after evaluating an internal func-
tion call copy StatusRegister, which reads the value of the CPSR (Current
Processor Status Register) and copies it into the SPSR (Saved Processor Status
Register) when an exception occurs. The evaluation of copy StatusRegister

must be protected by a check on the current processor mode. If it is in authorized
mode, the function copy StatusRegister can be called. Otherwise, the result
is “unpredictable”, which is defined by ARM architecture

It is necessary to reason on the newly returned states, which should still be
related by the projection. This step is usually easy to prove, by calculation on
the two representations of the processor state to verify that they match.

5. External function call.
The CompCert C AST of an external function call contains the types of input
arguments and of the returned value, and an empty body. For each external
function (e.g. memcpy()), we have its asserted properties. mostly provided by
CompCert C. The general expected properties of an external call are that (i)
the call returns a result, which has to be related to the abstract state, (ii) the
arguments must comply with the signature. (iii) after the call, no memory blocks
are invalidated, (iv) the call does not increase the access permission of any valid
block, and finally that the memory state can be modified only when the access
permission of the call is granted. For each external call, such required properties
are verified.

4.5 Inversion

Equipped with these lemmas we can build the proof scripts for ARM instructions.
For that, we are decomposing the ARM instruction execution step by step to
perform the execution of the C programs. CompCert C operational semantics
define large and complex inductive relations. Each constructor describes the
memory state transformation of an expression, statement, or function. As soon

12



as we want to discover the relation between memory states before and after
evaluating the C code, we have to invert the hypotheses of operational semantics
to follow the clue given by its definition, to verify the hypotheses relating concrete
memory states according to the operational semantics.

An inversion is a kind of forward reasoning step that allows for users to ex-
tract all useful information contained in a hypothesis. It is an analysis over the
given hypothesis according to its specific arguments, that removes absurd cases,
introduces relevant premises in the environment and performs suitable substitu-
tions in the whole goal. Most proof assistants provide an inversion mechanism.
In the case of Coq, it is a general tactic called inversion [6].

Every instruction contains complex expressions, but each use of inversion

will go one step only. If we want to find the relation between the memory states
affected by these expressions, we have to invert many times. For illustration, let
us consider the simple example from the ARM reference manual CPSR = SPSR,
that assigns to register CPSR the value of SPSR (defined above). As the status
register is not implemented by a single value, but a set of individual fields, the
corresponding C code is a call to the function copy StatusRegister, which
sets the CPSR field by field with the values from SPSR. Lemma same cp SR

below states that the C memory state of the simulator and the corresponding
formal representation of ARM processor state evolve consistently during this
assignment.

Lemma same_copy_SR :

∀ e m l b s t m’ v em,

proc_state_related m e (Ok tt (mk_semstate l b s)) →
eval_expression (Genv.globalenv prog_adc) e m expr_cp_SR t m’ v →
∀ l b, proc_state_related m’ e

(Ok tt (mk_semstate l b (Arm6_State.set_cpsr s

(Arm6_State.spsr s em))))

In its proof, 18 consecutive inversions are needed in order to exhaust all construc-
tors occuring in the assumptions. Unfortunately, inversion generates uncon-
trolable names which pollute proof scripts. Here, an intensive use of inversion
makes proofs scripts unmanageable, and not robust to version changes of Coq
or CompCert. In order to reduce the script size and get better maintainability,
we studied a general solution to the inversion problem, and developed a new
mechanism described in [14]. On top of it, we could program a Coq tactic able
to automatically find the hypothesis to invert by matching the targeted memory
states, properly manage other hypotheses, perform our inversion, clean up the
goal, and repeat the above steps until all transitions between the two targeted
memory states are discovered.

As a result, proofs script have become much shorter and more manage-
able. Considering the former example of same copy SR, the 18 calls to standard
inversion reduce into one single step: inv eval expr m m’.

13



4.6 Instruction Proofs

Proofs of instructions rely heavily on the library of lemmas and the controlable
inversion mechanism described above. Scripts size vary with the instructions
complexity from less than 200 lines (e.g 170 for LDRB) to over 1000 (1204 for
ADC). As a result, for each ARM instruction, we have established a theorem
proving that the C code simulating an ARM instruction is equivalent to the
formal specification of the ARM processor.

5 Conclusion

Using the approach presented in this paper, we have constructed a tool chain that
makes it possible to certify that the simulation of a binary executable program
on some simulation platform is compliant with the formal model of the target
hardware architecture. Using Compcert-C, that has defined formal C semantics,
we have formally proved, using the Coq theorem prover, the ARM v6 Instruction
Set Simulator of SimSoc.

We certainly acknowledge the limits of our approach: the quality of our “ver-
ified simulation” relies on the faithfulness of our formal model of the ARM
processor to the real hardware. Because the vendor companies do not provide a
formal description of their hardware, one has to build them4. This issue is partly
solved in this work by automatically deriving the most tedious parts of the Coq
formal model from pseudo-code extracted from the vendor reference manual. If
the vendors would make public formal specifications of their architectures, then
our toolchain would become fully verified.

We believe this work has further impact on proofs of programs. First, we have
proved here a significantly large C program. Second, because the proved program
is a hardware simulator, it can be used as a tool to prove execution of target
programs. For example considering a cryptographic algorithm implemented for
the ARM archiecture and compiled with Compcert-C, it could then be proved
that the execution of that program provides the exact encryption required, and
nothing else. Therefore, the tool presented is an enabler for the proofs of other
programs, which offers a direction for future research.

Another consequence of this work is that, supposing one could compile the C
instructions to silicon using a silicon compiler, and that compiler would also be
certified, ala CompCert, it would then make it possible to prove real hardware...

References

1. J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Z.
Nardelli. The semantics of power and ARM multiprocessor machine code. In
DAMP’09, pages 13–24, New York, NY, USA, 2008. ACM.

2. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

4 Note that this problem is the same as for the work done by Cambridge University.

14



3. F. Bobot, J. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your herd
of provers. Boogie, 2011:53–64, 2011.

4. B. Campbell. An executable semantics for Compcert C. In Certified Programs and
Proofs, pages 60–75. Springer, 2012.

5. G. Canet, P. Cuoq, and B. Monate. A value analysis for C programs. In SCAM’09,
pages 123–124. IEEE, 2009.

6. Coq Development Team. The Coq Reference Manual, Version 8.2. INRIA Roc-
quencourt, France, 2008. http://coq.inria.fr/.

7. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In CAV’07, LNCS 4590, 2007.

8. A. C. J. Fox and M. O. Myreen. A Trustworthy Monadic Formalization of the
ARMv7 Instruction Set Architecture. In ITP, pages 243–258, 2010.

9. H. Hao, J. Song, C. Helmstetter, and V. Joloboff. Generation of executable repre-
sentation for processor simulation with dynamic translation. In Proceedings of the
International Conference on Computer Science and Software Engineering, Wuhan,
China, 2008. IEEE.

10. C. Helmstetter, V. Joloboff, and H. Xiao. SimSoC: A full system simulation soft-
ware for embedded systems. In IEEE, editor, Open-source Software for Scientific
Computation (OSSC), 2009 IEEE International Workshop on, pages 49–55, Sept
2009.

11. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
sel4: Formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 207–220, New York,
NY, USA, 2009. ACM.

12. X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

13. X. Leroy. The CompCert C verified compiler. Documentation and user’s manual.
INRIA Paris-Rocquencourt, March 2012.

14. J.-F. Monin and X. Shi. Handcrafted Inversions Made Operational on Operational
Semantics. In S. Blazy, C. Paulin, and D. Pichardie, editors, ITP 2013, volume
7998 of LNCS, pages 338–353, Rennes, France, July 2013. Springer.

15. C. Pusch. Proving the Soundness of a Java Bytecode Verifier Specification in
Isabelle/HOL. In TACAS’99, pages 89–103. Springer, 1999.

16. S. Sutarwala, P. G. Paulin, and Y. Kumar. Insulin: An instruction set simulation
environment. In CHDL ’93: 11th IFIP WG10.2 International Conference, pages
369–376, Amsterdam, 1993. North-Holland.

17. E. Witchel and M. Rosenblum. Embra: fast and flexible machine simulation. In
SIGMETRICS’96, pages 68–79, New York, 1996. ACM.

18. J. Zhu and D. D. Gajski. An ultra-fast instruction set simulator. IEEE Trans.
Very Large Scale Integr. Syst., 10(3):363–373, 2002.

15


