
Exceptions considered harmless

Jean-Fran�cois Monin

France T�el�ecom CNET, LAA/EIA/EVP

Technopôle Anticipa, 2 avenue Pierre Marzin

F-22307 Lannion Cedex, France

monin@lannion.cnet.fr

Program extraction is a well known technique for developing correct

functional programs from a constructive proof of their speci�cation.

This paper shows how to deal with exceptions in such a framework.

We propose a modular (and impredicative) formalization in the

calculus of constructions and we illustrate the technique on three

examples.

Key words: Exceptions. Type system. Impredicativity. Program

extraction. Continuations. Double negation translation.

1 Introduction

In both the imperative and the functional world, control-ow escape mech-
anisms { typically goto statements and exceptions { are problematic from a

veri�cation point of view. The problem is perhaps more important in func-
tional programming: during the design of ML, which was originally the tactics
language of LCF, exceptions were considered as an essential feature. Nowa-

days, ML is used as a general purpose language, and it is current practice to
use exceptions: not only in exceptional situations, and not only for e�ciency

reasons.

We want to show how an existing framework basically devoted to the con-
struction of purely functional programs, namely program extraction in the

calculus of inductive constructions, can handle exceptions in a modular way.

By modular we mean that:

(i) Only the parts of a program a�ected by exceptions need special treat-

ment.
(ii) A component that may raise exceptions can be used without change in

di�erent environments.

Preprint submitted to Elsevier Preprint 21 February 1996



Our solution is based on a continuation passing style (CPS) translation as

in [3], but uses impredicative types in order to decrease the complexity of the

translation while keeping modularity (a detailed discussion of this point is

beyond the scope of this paper). The low level details of this translation are

hidden in a small number of primitives. Readers acquainted with the monadic

style of programming [21] will not be surprised to recognize a monad in these

primitives.

The technique is illustrated on three examples. The �rst two are very simple

and allow us to present the basics. The third one is an adaptation of a bigger

algorithm independently developed in Coq by J. Rouyer [20], namely �rst order

uni�cation. Only small changes were needed in order to get a more e�cient

program from the original one.

The basic solution presented here is slightly more general than the previous

one in [15], in order to make the treatment of example 1 possible. On the other

hand, this paper concentrates on the case of a single exception carrying no

value. The extension to the general case presented in [15] can be transposed
without di�culty.

Note that, in the framework of conventional imperative programming, escape
mechanisms are often considered as an optimization trick, whereas researchers

have concentrated their e�orts on block based control structures, with one
input and one output. Typically, exceptions are extraneous to program calcu-

lation [7] and speci�cation re�nement [1,14].

1.1 Functional programming and formal speci�cations

Strongly typed functional programming has for a long time been advocated as
a good framework for developing programs easy to reason about. Pure func-

tional programs are mathematical expressions representing values which can
be manipulated as easily as ordinary mathematical expressions. In particular,

the result of a computation does not depend on the order of evaluation of

subexpressions. Hence the tenet:

speci�cation = program

Clearly, the straightforward recursive de�nition of factorial is as good as any

other mathematical de�nition of this function. However, most of us would not

be inclined to admit the tail recursive de�nition of factorial as its speci�cation,

though it is still a functional program. Things get quickly worse with slightly

more complex problems like sorting. A good speci�cation states that the result

should be an ordered permutation, and takes the form of a very convincing

2



and very ine�cient function. Note that, the nice mathematical properties of

functional languages make possible the transformation of an ine�cient pro-

gram into an e�cient one using algebraic manipulations (see for instance the

Bird-Meertens formalism).

There is another way of developing correct functional programs, program
extraction [11,17]: one tries to build a constructive proof of a speci�cation

8x: P (x)! 9y: Q(x; y), where x is the input, y the output, P the precon-

dition and Q the relation between input and output. Such a proof can be

considered a functional program through a correspondence studied by Curry,

Howard, Martin-L�of and others (see e.g. [9]):

formula = type,

proof = program.

For example, a proof of A!B gives a proof of B from any proof of A, and then

can be considered as a function from A to B: hence ! denotes implication
as well as the function space constructor. More generally, a formula A is con-

sidered as a type corresponding to the set of the proofs of A. Using a suitable
realizability interpretation, it is also possible to remove irrelevant (from an
algorithmic point of view) parts of the proof. A general result of the related

meta-theory ensures that the extracted program f satis�es its speci�cation,
i.e. 8x P (x)!Q(x; f(x)). Such a mechanism is implemented in Coq, a general
proof assistant devoted to the Calculus of Inductive Constructions [6].

In this framework, one simultaneously develops a program with its proof. Here
are the main steps:

(i) State the speci�cation, a logical formula, as a goal to be proved.
(ii) Prove it, typically by induction on one or several variables.

(iii) Ask the system to extract the algorithmic content of the proof.

Note that only step (ii) has an e�ect upon e�ciency of the extracted program
f . In order to make the speci�cation as clear as possible, one is free to use any

function, including ine�cient ones. For instance Q(x; y) may have the shape

y = g(x), making program g a speci�cation of f .

1.2 Introducing exceptions

In practice \impure" features like exceptions (also state and input/output,
but they are not considered in this paper) prove very useful. Let us consider

the computation of the product of the leaves of a binary tree. We know that

the result must be zero as soon as a zero leaf is met. The natural way of

3



function leavemult (t : tree) : nat =

letrec mulrec(t : tree) : nat =

match t with

leaf(n) ! if n=0 then raise nul else n

j node(t1,t2) ! (mulrec t1) � (mulrec t2)

in try mulrec t with nul ! 0

Fig. 0. Simple example 0

expressing this is to raise an exception caught by the calling function (see �g-

ure 0). Attempts to simulate this behaviour in a purely functional setting are

possible but lead the programmer to error-prone manipulation of additional

parameters.

In order to extend the formulae-as-types setting to exceptions, we need to

understand their type as well as their logical meaning. Unfortunately, just

typing an expression raising an exception is not a trivial matter, and a language

like ML assigns an indeterminate type to raise v, which can occur in an
expression of any type 1 . The only constraint is that E1 and E2 must have

the same type in try E1 with hpatterni ! E2. The problem has already
been studied for more general control operators such as Callcc in the early
90's [10,16]. There are deep connections with constructive interpretations of

classical logic [9,8,12] but we will follow a somewhat di�erent path here.

Let us just remark that there is no hope of introducing exceptions without
breaking the original simplicity of functional programming for a simple reason:
the result of such computations is sensitive to the order of evaluation. For

instance, the following expression returns h1; 1i if the pair is computed from
left to right and h2; 2i in the other case:

try hraise exc(1); raise exc(2)i with exc(n)! hn; ni.

The general trick is then to translate the types and their associated functions
into more complicated types and functions, in a way that takes into account

some evaluation order. Such a translation can be extended to exceptions.

1.3 The rôle of continuations

The notation fx:A j (P x)g is used for a type inhabited by ordered pairs
hx; pi, where p is a proof of (P x). During program extraction, p is removed

and this type becomes just A. The speci�cation 8x:S: P (x)! 9y:T: Q(x; y)
1 As a consequence, the type of mulrec in example 0 forgets the fact that exception

nul could be raised, though it should be considered as a possible \result" of mulrec.

4



given above can be restated as fx:S j (P x)g!fy:T j (Qxy)g, which becomes

S! T at extraction time.

Cast�eran remarked about example 0 that stating a goal of the right form

very naturally leads the user to an algorithm in continuation passing style [3].

More speci�cally, instead of proving the goal 8t:tree: RESU(t) by induction

on t, where RESU(t) = fn:nat j (Prod t n)g and where Prod is the obvious

predicate { this is called direct style { he considered a goal equivalent to:

8t0; t:tree: (RESU(t0)!RESU(t))! RESU(t):

Intuitively, the idea is to search an object r of type RESU(t0) and to apply a

function k of type RESU(t0)! RESU(t) to r in order to get the �nal result.

The function k is called a continuation. We will see how to hide continuations

thanks to a suitable generalization of the remark of Cast�eran.

The rest of this paper is organized as follows. Section 2 is a very quick
and informal introduction to the calculus of constructions with inductive def-

initions, as used in the Coq system. Section 3 introduces general de�nitions
enabling the development of programs with exceptions. Section 4 illustrates
their use on some examples, which have been completely and mechanically

veri�ed.

2 General Framework and Notations

2.1 The Calculus of Constructions

The Calculus of Constructions is a typed �-calculus. Objects of the �rst level

are constants like 0 or the successor function. They inhabit objects of the

second level, which are propositions seen as set of proofs, themselves of type
Prop. Typed abstraction is denoted by �xA: B or �x:A: B. Application is

denoted by juxtaposition fa or (f a). Products are denoted by 8x:A: B; when
B does not depend on A, the simpler notation A ! B is generally used.

Application associates to the left and arrow to the right. The reader is refered

to [4,2] for a detailed presentation.

Examples. Logical operations such as _ are of type Prop! Prop! Prop.

Predicates on natural numbers, are objects of type nat! Prop. The type of

5



iterators can be represented in system F style by

iter = 8X: Prop: X! (X!X)!X:

Inhabitants of iter are polymorphic higher order functions which, given a type

X, a object x of X and a function f from X to X, return fn(x) for some

integer n. For instance for n = 2 we have

it2 = �XProp: �xX : �fX!X : f(fx):

The type iter is itself of type Prop, hence iterators may be applied to iterators.

Church used a similar encoding for natural numbers.

For program extraction purposes, Coq in fact distinguishes two sorts of

props: Prop (properties) and Set (real objects). Only data and functions of

sort Set are kept by program extraction. Objects of sort Prop handle logical

information on data and functions, which is useful for reasoning during pro-
gram construction, but useless at run time. This feature is used below, in order
to capture the piece of information carried by an exception with no additional

cost at run time.

Data structures like nat (the natural numbers), binary trees and so on are of
type Set. Then given a predicate P of type nat! Prop and a function f of

type 8x:nat: (P x)! nat, the corresponding extracted function fe is of type
nat! nat; moreover if x is a nat such that Px, that is, if we have a proof p
of type Px, fex and fxp denote the same value.

2.2 The Calculus of Inductive Constructions

For theoretical and practical reasons, the Calculus of Constructions has been
extended to inductive types. The user can give his own inductive de�nitions
in a secure way. The simpler ones correspond to concrete data types of ML.
For example, the de�nition of nat is

Inductive nat : Set :=

O : nat j S : nat! nat.

The binary trees we use in this paper are de�ned by:

Inductive tree : Set :=
leaf : nat! tree j node : tree! tree! tree.

6



Predicates and n-ary relations can also be inductively de�ned �a la Prolog, for

instance:

Inductive even : nat! Prop :=

ev0 : (even O) j evSS : 8n:nat: (even n)! (even (S (S n)).

It is then possible to de�ne the type of even numbers as

Inductive even nat : Set :=

en intro : 8n:nat: (even n)! even nat.

The type fx:A j (P x)g introduced above is in fact a general purpose inductive
type. A type like even nat can also be de�ned by fn:nat j (even n)g.

Each inductively de�ned type is automatically equipped with a general elim-

ination principle enabling inductive reasoning and the de�nition of primitive

recursive functions. Further information on inductive de�nitions and their use

in Coq can be found in [5,18,19].

The calculus of inductive constructions is supported by a proof assistant
named Coq [6]. In Coq, proofs/functions can be developed in an incremen-

tal way using commands that transform the proof tree.

3 Continuations and Exceptions

This section presents basic tools for developing proofs/programs in continua-
tion passing style (CPS). Exceptions are introduced only in 3.3.

3.1 Typing CPS functions

Let us take a second look at the function discussed in 1.3. Cast�eran proposed

to prove

8t0; t:tree: ((RESU t0)! (RESU t))! (RESU t): (1)

by induction on t0. (RESU t0)! (RESU t) is the speci�cation (or the type) of

a continuation k, to be applied an object r of type (RESU t0) in order to get

the �nal result. When r is known, �k: kr is a solution to (1). If a zero leaf is

found during the search, we immediately have the solution �k: h0; pi where p
is a proof that the product is zero.

7



Now given a solution mult cps of (1) and a tree t, we get an object of type

(RESU t) by an application of mult cps to t, t and the identity function. We

call (mult cps t t �r: r) the main call to mult cps.

If no exception is raised, a careful inspection of the proofs shows that direct

style construction and CPS construction are very similar. The search for an

object of type (RESU t), by induction on t, corresponds in CPS to the search

for an object of type ((RESU t0)! (RESU t))! (RESU t), by induction on t0.

In the CPS proof (RESU t) plays actually no special rôle, except at one place,

corrresponding to the main call. Hence (RESU t) could as well be replaced by

an arbitrary type X.

Let us also rename the bound variable t0 as t. We replace (1) by

8t:tree: ((RESU t)!X)!X: (2)

A proof of 8t:tree: (RESU t) in direct style is then replaced by a proof of
(2) in CPS. More generally, in CPS we always suppose that the function f

we construct is directly or indirectly called by some \main function" M. If

X is the type of the result of M and 8x1:B1: : : :8xn:Bn: A is the type of f
in direct style, the latter type becomes 8x1:B1: : : : 8xn:Bn: (A!X)!X in

continuation passing style. A!X is the type of the normal continuation.

Now there is no good reason to consider that the meaning of f should be tied
to M, since the same f could be used in completely di�erent environments.

Therefore, we state that the result of f should be usable for any value of X.
The type A is then replaced by 8X: Set: (A!X)!X in CPS. For instance
in the case of example 0 we prove

8t:tree: 8X: Set: ((RESU t)!X)!X (3)

by induction on t. Given a proof f of (3), we getM of type 8t:tree: (RESU t)

by taking (RESU t) for X and the identity for the normal continuation:

M = �t:tree: (f t (RESU t) �r(RESU t): r):

3.2 Hiding continuations

Let us de�ne the family of types (M A).

De�nition M := �A:Set: 8X: Set: (A!X)!X.

8



Summing up the construction of a program: after introduction of arguments,

one has to prove, in direct style, some goal A whereas in continuation passing

style, one has to prove (M A). In order to hide the structure of (M A), we

make this family of types an abstract type.

First, a value of type (M A) can be constructed from a value of type A:

De�nition M unit : 8A: Set: A!MA :=

�A Set: �aA: �X Set: �kA!X: ka.

M try is a path in the opposite direction. What matters is not its rather trivial

de�nition, but the way its type is written. M try is used in a \main program"

for building an inhabitant of any type X given a CPS function whose result

is of type M A and a continuation of type A! X. To put it another way,

if, at some stage of a proof, the current goal is G, applying M try yields two

subgoals, MA and A!G.

De�nition M try :
8A: Set: MA!8X: Set: (A!X)!X :=
�A Set: �fMA: f

Suppose that, at direct style level, we want to apply some function of type
A!A0 to an expression of type A in order to prove a goal of type A0. In CPS,
these types become respectively A!MA0, MA and MA0. Of course we cannot

apply fA!MA
0

to mMA, but what we want is �rst to compute m, then to bind
the result to aA and �nally to compute fa. The corresponding ML expression
is: let a = m in f a. In CPS this means that m is applied to a continuation

�aA: fa : : :, where the dots represent the continuation for fa. This mechanism
is encapsulated in M bind.

De�nition M bind :

8A;A0: Set: MA! (A!MA0)!MA0 :=

�A;A0Set: �mMA: �fA!MA
0

: �X Set: �kA
0
!X : (mX(�aA: faXk)).

3.3 Handling exceptions

If an exception can be raised, we need an assumption onX, namely thatX has

a distinguished inhabitant e which will be the result of the main computation

in the case where an exception is raised 2 . For instance, in example 0, the

value considered for X is roughly nat, and we take 0 for e. This leads us to

2 In the case where an exception carries a value ranging over some domain D, we

need to assign an inhabitant of X for each possible value of D. This is detailed

in [15].

9



Function core ow (m:nat; t:tree):nat =

letrec comprec(t:tree; a:nat):nat =

match t with

leaf(n) ! (g a + n)

j node(t1,t2) !
let a2=(comprec t2 a) in let a12=(comprec t1 a2) in a12

in (comprec t 0)

where g (n:nat):nat =

if n � m then n else raise threshold.

Function F overweight (m:nat; t:tree):bool =

try let r = (core ow m t) in false

with threshold! true.

Fig. 1. Example 1

consider X! (A!X)!X instead of (A!X)!X.

From the point of view of program correctness, we are interested in the implicit
meaning of this exception: an exception is always raised for some reason, and

if an exception has not been raised, this may also be meaningful. This is
better seen on example 1 of �gure 1. In this example, we want to compute a
boolean which is true if the sum of the leaves of a binary tree is greater than

or equal to a given threshold m, and false otherwise. The given algorithm
traverses the tree t from right to left, while accumulating in a the sum of the

encountered leaves 3 ; as soon as a exceeds m, we know that the answer is true;
if no exception has been raised, the answer is false.

Notice that the result r is not compared with m|it is not even used at all.
Here the fact that during a run an exception has not been raised is meaningful.
In general, we want to say that the distinguished element of X is a correct

result provided some condition is satis�ed. Let P be the weakest condition for
raising the exception. We give e the type P !X. In example 0 (respectively

example 1), e is intuitively a function mapping any proof of the fact that the
product of the leaves is zero, to 0 (respectively, that the weight of the tree is
too large, to true).

The structure of the result of M is now given by X, P and e. Of course, we

generally cannot give a direct proof of P , but only some su�cient condition

C and it remains to prove that C! P . For instance, in example 0, C means
for a given leaf that the leaf is zero. In addition to the true continuation of

type A!X, we then need a \logical continuation" of type C!P . We replace

MA above by MxCA, whose inhabitants are either values (more precisely

3 It is a variant of an algorithm given in [13].

10



computations) of type A or proofs of C:

De�nition Mx :=

�C Prop: �A Set:

8X: Set: 8P : Prop: 8e:P !X: (C! P )! (A!X)!X.

To put it another way an inhabitant of MxCA is either an object of type A

or an exception saying that C is satis�ed. It is not very di�cult to adapt the

primitives given in 3.2 (see appendix A) and we obtain a new one, Mx raise of

type 8C: Prop: 8A: Set: C!MxCA. The meaning of these primitives is given

by their type:

{ Mx try builds an object of typeX from an inhabitantm of MxCA, a normal

continuation and an exceptional continuation e, i.e. a value of type X to be

used when C is proved. Raising an exception during the computation of m

means that e is used, i.e. that this exception is caught by Mx try.

{ There are two basic ways of producing an object of type MxCA: using

Mx unit, if we get a normal object of type A and using Mx raise, if we get
a proof that an exception can be raised.

{ Mx bind plays the same rôle as M bind, its de�nition propagates the justi-

�cations that an exception can be raised.

At extraction time, the propagation of justi�cations that an exception can be

raised is removed, only e remains.

We sometimes use the in�x notation C
p

A for MxCA. Indeed,
p

can be
considered as an asymmetrical disjunction between a Prop and a Set.

4 Three Case Studies

4.1 Copying a tree without unnecessary copies

Given a tree t, we want a similar tree t0, where the nodes satisfying some
given property P have been modi�ed. For some values of t, nothing has to

be changed and we expect that the function returns the same result as the

identity function. In such cases, the code produced by any reasonable compiler
would just copy a pointer instead of the whole structure. In the general case,

only some parts of the original tree have to be reconstructed: if p is a path
from the root to a leaf and n is a node of p satisfying P , the subpath between

the root and n must be reconstructed but the part of p between n and the

leaf can be kept if n is the last node to be changed. This problem is typically

11



letrec core cop = function

leaf(n) ! raise nochange

j Nd1(blue, t1) ! try let v1 = core cop t1 in Nd1(red, v1)

with nochange ! Nd1(red, t1)

j Nd1(red, t1) ! Nd1(red, core cop t1)

j Nd1(yellow, t1) ! Nd1(yellow, core cop t1).

let e� cop t = try core cop t with nochange ! t.

Fig. 2. Example 2

encountered in theorem provers and some of them use the following trick in

order to save space.

For illustration purposes, it is enough to consider trees with only one branch.

Inductive color : Set := blue : color j red : color j yellow : color.

Inductive tree1 : Set :=
Leaf : nat ! tree1 j Nd1 : color ! tree1 ! tree1.

We just want to replace blue nodes by red ones. The following function speci�es

the desired value:

Recursive de�nition def cop : tree1! tree1 :=
(leaf n) ) (leaf n)

j (Nd1 blue t) ) (Nd1 red def cop t)
j (Nd1 red t) ) (Nd1 red def cop t)
j (Nd1 yellow t) ) (Nd1 yellow def cop t).

The trick to be used in this situation is quite strange: on changing nodes

exceptions are not raised but caught (see �gure 2)! On the other hand, an
exception is always raised at a leaf. Note the recursive use of the try construct.
Intuitively, if an exception reaches some node n, we know that no blue node
could be below n in the original tree; we can then keep the original subtree.
We would like to replace such an operational argument by a more convincing

proof.

4.1.1 Development in Coq

A correct by construction development of e� cop turns out to be very simple in
the framework described above. We have to prove that core cop either returns
an exception, if t = (def cop t), or returns a tree t0 equal to (def cop t) 4 . We

4 We mean: a tree t0 denoting the same value as (def cop t).

12



then look for a constructive proof of:

8t:tree1: (Mx t = (def cop t) ft0:tree1 j t0 = (def cop t)g): (4)

We proceed by induction on t. If t is (Leaf n) we get the subgoal

(Mx (Leaf n) = (def cop(Leaf n))

ft0 : tree1 j t0 = (def cop(Leaf n))g) (5)

and we apply Mx raise; it remains to prove (Leafn) = (def cop(Leafn)) which

is trivial.

In the inductive case, we are given a color c, a subtree t1 and an assumption

R1 representing (core cop t1), of type (4) where t is replaced by t1. We proceed

by cases on c. If c is blue, we get the goal

(Mx (Nd1 blue t1) = (Nd1red (def cop t1))

ft0 : tree1 j t0 = (Nd1 red (def cop t1))g): (6)

Following �gure 2, we then try to compute R1, while catching the exception

possibly raised during this computation. That is, we use Mx try with t1 =
(def cop t1) for C, ft0:tree1 j t0 = (def cop t1)g for A and the type given in (6)

for X. This generates the two subgoals A!X and C!X. The former means
that given v1, the value returned by R1 in the \normal" case, we must �nd
an inhabitant of (6). It is enough to apply Mx unit to (Nd1 red t0), where t0 is

the witness of v1. The latter subgoal means that we must �nd an inhabitant
of (6) when t1 = (def cop t1). We just have to apply Mx unit to (Nd1 red t1).

If c is red, we compute the result for t1 without catching the exception; that is,
we use Mx bind instead of Mx try. The subgoal C!X is replaced by C!C 0,

that is, we have to justify the propagation of an exception. Here we have to
prove:

t1 = (def cop t1) ! (Nd1 red t1) = (Nd1 red (def cop t1)) (7)

The case where c is yellow is similar. In this example proof obligations are

always as simple as (7).

The main function e� cop is constructed by proving

8t:tree1: ft0:tree1 j t0 = (def cop t)g: (8)

We just have to apply Mx try with (core cop t). In this case A = X, hence we

provide the initial continuation �x: x.

13



Here is the program extracted by Coq:

let rec core cop = function

Leaf n !Mx raise

j Nd1(c; t1) !
(match c with

blue !Mx try (core cop t1) (fun v1 !Mx unit Nd1(red,v1))

(Mx unit Nd1(red,t1))

j red !Mx bind (core cop t1) (fun v1 !Mx unit Nd1(red,v1))

j yellow !Mx bind (core cop t1)

(fun v1 !Mx unit Nd1(yellow,v1))).

let e� cop t = Mx try (core cop t) (fun x ! x) t.

4.1.2 What has been achieved

Of course, the algorihm extracted by Coq is not identical to the one given in
�gure 2. It is a translation of the latter into a purely functional sublanguage of

ML or more precisely a function which behaves the same and which is proved
equivalent to def cop. Functions Mx try, Mx raise... were not unfolded, in
order to get a function almost as readable as �gure 2.

Did we develop a really less space-consuming version than def cop? We have

no direct way of expressing this in the speci�cation. Anyway, if we look at the
previous speci�cation of core cop, nothing prevents us from forgetting about
exceptions. In fact, we could use the same strategy for blue as for the other

colors and would then get just a sequential version of def cop. At this point,
it is then di�cult to guarantee anything about the behaviour of e� cop.

However we can state a stronger speci�cation for core cop:

8t:tree1: (Mx t = (def cop t) ft0:tree1 j t0 = (def cop t) ^ t0 6= tg): (9)

Such a core cop cannot return a new version of t, for it simply cannot return

a tree if t = (def cop t). In this case, core cop may only return an exception.

The natural choice for a calling function M like e� cop is then to return the
original t, in which case e� cop behaves like the identity function as desired.
Note that, a stupid choice for M is still possible, for instance e� cop could

explicitly return def cop(t):

let e� cop t = try core cop t with nochange ! def cop(t).

But this means that an important piece of information is discarded. Linear

types could prevent this but are beyond the scope of this paper.

14



The proof of (9) follows the same lines as the proof of (4) and provides ex-

actly the same extracted algorithm. Additional proof obligations boil down to

Nd1(c; t) 6= Nd1(c0; t0) if c 6= c0 or t 6= t0. A Coq script is in appendix B.

4.2 Weighing a tree

Example 1 is perhaps more representative of usual practice and illustrates

ordinary programming techniques, such as the use of an accumulator and of

a locally de�ned auxiliary function.

First we state the speci�cation of the main program where suml returns the

sum of the leaves of a binary tree.

De�nition P overweight := �m:nat: �t:tree: (m � (suml t)).

De�nition RESU :=

�m:nat: �t:tree: f(P overweight m t)g+f:(P overweight m t)g.

fPg+fQg denotes an enumerated type with two values; the �rst (resp. second)

value can be built if P (resp. Q) is provable. When Q = :P , fPg+fQg denotes
the truth value of P .

For the development of the algorithm, we need a more general form of P over-
weight which takes an accumulator into account.

De�nition P overweight accu := �m; a:nat: �t:tree: (m � a + (suml t)).

The result of core ow is an exception if (suml t) exceeds m and (suml t)

itself otherwise. We also want that if the function actually computes (suml
t), then this value does not exceed m. The internal function comprec has a

similar speci�cation taking the accumulator into account, hence we introduce
the type of a natural equal to a+ (suml t) if this value is not greater or equal
to m:

Inductive condsum accu [m; a:nat; t:tree] : Set :=

condsum accu intro :

8n:nat: (n = a+ (suml t))!:(m � n)! (condsum accu m a t).

The speci�cation of comprec is based on condsum accu cps:

De�nition condsum accu cps :=
�m; a:nat: �t:tree: (P overweight accu m a t)

p
(condsum accu m a t).

The speci�cation of the result of core ow is then (condsum accu cps m 0 t).

The auxiliary function g(m;n) returns n, but only if n is not greater or equal

15



to m. Otherwise, g raises an exception. The speci�cation of (g m n) is then

(le m n)
p

(T aux m n) where T aux is de�ned by:

Local T aux := �m; n:nat: fn0:natj n = n0 ^ :(m � n0)g.

One proves the theorem:

Theorem core ow : 8m:nat: 8t:tree: (condsum accu cps m 0 t).

Once m and t are pushed into the context, the �rst steps are to assume g of

type

8n:nat: (le m n)
p

(T aux m n)

and comprec of type

8a:nat: (condsum accu cps m a t).

We get the result by a simple instantiation of comprec, and g is proved using

Mx unit and Mx raise, depending on whether m � n or not. The development

of comprec, by induction on t, is guided by �gure 1 and uses only Mx bind
and Mx unit.

Finally, the function F overweight is speci�ed by 8m:nat: 8t:tree: (RESU m

t) and is easily obtained using Mx try and core ow. In this process, X is
instantiated to (RESU m t) and we prove (condsum accu m 0 t)! (RESU

m t) and (P overweight accu m 0 t)! (RESU m t) using, respectively, the
witnesses false and true.

4.3 First Order Uni�cation

Attempting to unify two terms T and U roughly consists of a double induction
over T and U taking care of propagation of substitutions. The result is either
a most general uni�er, in case of success, or an answer \T and U are not

uni�able", i.e. a failure. The obvious choice for the type of the result is a sum
like hmgui+ hfailurei. In his original development [20], J. Rouyer chose:

Inductive Uni�cation [t1; t2:quasiterm] : Set :=

Unif succeed: 8f :quasisubst: (unif t1 t2)!
further conditions for f to be an mgu
! (Uni�cation t1 t2)

j Unif fail: 8f :quasisubst: :(Subst f t1)=(Subst f t2)
! (Uni�cation t1 t2).

In the original development, this type is also the type of the result of the
function corresponding to the double induction, hence a failure is transmitted

backwards step by step until the root.

16



With the de�nitions given above, we can construct an algorithm that just tries

to compute the mgu. As soon as an incompatibility is detected, e.g. between

two constants, an exception is raised: this is the expected behaviour of a real

implementation.

We proceed from the original development as follows, in order to minimize

modi�cations. First we split the initial de�nition of Uni�cation into two parts,

Uni�cation s of kind Set and Uni�cation f of kind Prop:

Inductive Uni�cation s [t1; t2:quasiterm] : Set :=

Unif succeed def: 8f :quasisubst: (unif t1 t2)!
further conditions for f to be an mgu
! (Uni�cation s t1 t2).

Inductive Uni�cation f [t1; t2:quasiterm] : Prop :=

Unif fail def: 8f :quasisubst: :(Subst f t1)=(Subst f t2))

! (Uni�cation f t1 t2).

From Uni�cation s and Uni�cation f we inductively de�ne Uni�cation or fail
which is equivalent to the original de�nition of Uni�cation (using two obvious
clauses).

Uni�cation is rede�ned using Mx, Unif succeed and Unif fail are rede�ned

using respectively Mx unit and Mx raise.

De�nition Uni�cation :=

�t1; t2:quasiterm: (Uni�cation f t1 t2)
p

(Uni�cation s t1 t2).

The only problem is with Uni�cation rec, a function implicitly provided with
the inductive de�nition of Uni�cation for inductive reasoning. Here, we de�ne
Unif elim with Mx bind and the abbreviation UnifelimH forApply Unif elim

with 3:=H. Elim H can then be replaced by Unifelim H when H has type
(Uni�cation t u) and when the current subgoal has type (Uni�cation t0 u0)|

this happens to be always the case.

Finally we adapt the script of the original development. It turns out that very

few modi�cations are required, and that they are systematic. They split into
two classes.

(i) Replacing Elim H when the type of H is (Uni�cation t u), as described
above.

(ii) Sometimes the current subgoal becomes (Uni�cation f t u) instead of

(Uni�cation t u). It is then necessary to replace Unif fail by Unif fail def.
Similarly the type of the result of two lemmas must be changed to (Uni-

�cation f t u).

17



There are 7 modi�cations of the �rst kind and 3+2 of the second kind. About

100 lines have been added for the new de�nitions of Uni�cation, Unif succeed,

Unif fail and Unif elim. The original development takes about 2.800 lines. This

can be compared to the modi�cations needed for the same transformation if

the algorithm had been expressed in a usual programming language: each

statement returning the value failure would be systematically replaced by a

statement raising an exception.

To sum up, no complexity is added if we compare with the direct style devel-

opment.

5 On the use of impredicativity

Let us conclude with some remarks on the types of our constructs and relate

them with our previous work [15]. Recall that C
p
A is a Set de�ned by

C
p
A = 8X: Set: 8P : Prop: 8e:P !X: (C! P )! (A!X)!X: (10)

We see that X is quanti�ed over objects including C
p

A itself. Such a
de�nition is said to be impredicative. Another example given in Section 2.1 is
the type of iterators.

Impredicative type systems are very powerful. It is possible in system F [9]
to de�ne many data structures such as polymorphic lists, binary trees, and

other mathematical objects like in�nitely branching trees, streams and ordinal
numbers. It is also possible, using only (higher order) primitive recursion, to

de�ne many more functions than in simple type systems.

But impredicative de�nitions are potentially dangerous because they involve

a kind of circularity. It is then an important and non trivial matter to ensure

that an impredicative type system remains consistent, i.e. that it does not
leave room for a logical paradox such as Russell's paradox. This is shown in

[9] for system F and in [4] for the calculus of constructions.

The use of impredicativity seems to be new in the study of control operators.
The primary reason for introducing it is that it provides a very general form
of polymorphism. Our original motivation was to allow a piece of code to be

reused in any context. But do we really need the whole power of impredica-

tivity? That is, do we sometimes take for X a type like C
p

A? Yes. It was
the case in the recursive use of try in example 2. It just means that core cop

itself plays the rôle of M.

18



In [15] impredicativity is already mentioned but an example like core cop could

not be developed in this framework. Instead of Mx, that paper uses Nx de�ned

by:

De�nition Nx :=

�X Set: �P Prop: �eP!X : �C Prop: �A Set: (C! P )! (A!X)!X.

There we manage to share X, P and e during the development of a function

by �xing them and state:

C
p
A = (Nx X P e): (11)

Nx has then an advantage over Mx in cases such as example 1: e is not passed

as argument of the recursive function comprec.

Acknowledgement

I wish to thank the members of the Coq Project for their help on Coq, Pierre

Cr�egut and Chet Murthy for introducing me to continuations and Thierry Co-
quand for his illuminating discussions during MPC'95. Pierre Lescanne sug-
gested the example of �rst order uni�cation. I am also grateful to Francis Klay

and Kathleen Milsted for their help in the presentation of this paper.

A Abstract type for exceptions

De�nition Mx :=
�C Prop: �A Set:

8X: Set: 8P : Prop: 8e:P !X: (C! P )! (A!X)!X.

De�nition Mx unit :
8C: Prop: 8A: Set: A!MxCA :=

�C Prop: �A Set: �aA: �X Set: �P Prop: �eP!X : �iC!P : �kA!X : ka.

De�nition Mx raise :

8C: Prop: 8A: Set: C!MxCA :=
�C Prop: �A Set: �cC : �X Set: �P Prop: �eP!X: �iC!P : �kA!X : e(ic).

De�nition Mx try :

8C: Prop: 8A: Set: MxCA!8X: Set: (A!X)! (C!X)!X :=

�C Prop: �A Set: �mMxCA: �X Set: �kA!X : �eC!X : (mXCe (�pC : p) k).

19



De�nition Mx bind :

8A;A0: Set: 8C;C 0: Prop:

MxCA! (A!MxC 0A0)! (C!C 0)!MxC 0A0 :=

�A Set: �A0 Set: �C Prop: �C 0Prop: �mMxCA: �fA!MxC0
A

0

: �jC!C
0

:

�X Set: �P Prop: �eP!X : �iC
0
!P : �kA

0
!X :

(mXPe (�cC: i(jc)) (�aA: faXPeik)).

B Constructive Proof of core cop

Theorem strong core :

8t:tree1: (Mx t=(def cop t) ft0:tree1 j t0=(def cop t)&:(t = t0)g).

Induction t.

Intros n; Apply Mx raise; Trivial.

Intros c t1 R1; Case c; Simpl.
Apply Mx try with 1:= R1. (* c = blue *)
(* Success of the try *)
Intro v1; Apply Mx unit.
Elim v1; Intros t

0 eg di; Exists (Nd1 red t0);
[Elim eg; Trivial j Simplify eq].

(* Failure of the try *)
Intro eg; Apply Mx unit; Exists (Nd1 red t1);

[Elim eg; Trivial j Simplify eq].

Apply Mx bind with 1:= R1. (* c = red *)
(* Succes of the computation *)
Intro v1; Simpl; Apply Mx unit;
Elim v1; Intros t

0 eg di; Exists (Nd1 red t0);
[Elim eg; Trivial j Simplify eq; Assumption].

(* Justi�cation for the propagation of the exception *)
Intro eg; Simpl; Elim eg; Trivial.

Apply Mx bind with 1:= R1. (* c = yellow *)
Intro v1; Simpl; Apply Mx unit;

Elim v1; Intros t
0 eg di; Exists (Nd1 yellow t0);

[Elim eg; Trivial j Simplify eq; Assumption].

Intro eg; Simpl; Elim eg; Trivial.

Qed.

20



References

[1] J-R. Abrial, The B-Book, in preparation (Prentice Hall, 1994).

[2] H.P. Barendregt, Lambda Calculi with Types. In S. Abramsky,& al., eds.,

Handbook of Logic in Computer Science, vol 2, (Clarendon Press, Oxford, 1992).

[3] P. Cast�eran, Pro[gramm,v]ing with continuations: A development in Coq, (Coq

contribution, 1993, available by FTP on ftp.inria.fr).

[4] Th. Coquand and G. Huet, the calculus of constructions, Information and

Computation 76 (1988) 95{120.

[5] Th. Coquand and C. Paulin-Mohring, Inductively de�ned types, in: P. Martin-L�of

and G. Mints, eds., Proceedings Colog'88 (Springer Verlag, LNCS 417, 1990).

[6] C. Cornes, J. Courant, J-C. Filliâtre, G. Huet, P. Manoury, C. Mu~noz, C.

Murthy, C. Parent, C. Paulin-Mohring, A. Sa�ibi and B. Werner, The Coq Proof

Assistant User's Guide, version 5.10 (INRIA-Rocquencourt et CNRS-ENS Lyon,

july. 1995).

[7] E.W. Dijkstra, A Discipline of Programming, (Prentice-Hall, 1976).

[8] J-Y. Girard, A new constructive logic: classical logic, (Mathematical Structures

in Computer Science, vol 1, 1991) 225{296.

[9] J-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, (Cambridge Univ. Press,

vol 7, 1990).

[10] T. Gri�n, A formulae-as-types notion of control. (proceedings POPL, Orlando,

1990).

[11] S. Hayashi, H. Nakano, PX, a Computational Logic (Foudations of Computing,

MIT Press, 1988).

[12] Philippe de Groote, A Simple Calculus of Exception Handling, in: M. Dezani-

Ciancaglini and G. Plotkin, eds., Proceedings of TLCA'95 (Springer Verlag,

LNCS 902, 1995).

[13] J.L. Lawall and O. Danvy, Separating Stages in Continuation-Passing Style

Transformation (proceedings POPL, 1993).

[14] C. Morgan, Programming from Speci�cation (Prentice Hall International Series

in Computer Science, 1990).

[15] J-F. Monin, Extracting Programs with Exceptions in an Impredicative Type

System, in: B. M�oller, ed., Proceedings of MPC'95 (Springer Verlag, LNCS 947,

1995).

[16] C. Murthy, An evaluation semantics for classical proofs (proceedings LICS,

Amsterdam, 1991).

21



[17] C. Paulin-Mohring, Extraction de programmes dans le calcul des constructions,

th�ese de doctorat de l'universit�e Paris VII (1989).

[18] C. Paulin-Mohring, Inductive De�nitions in the system Coq; Rules and

Properties, in: M. Bezem and J.F. Groote, eds., Proceedings of TLCA'93

(Springer Verlag, LNCS 664, 1993).

[19] C. Paulin-Mohring and B. Werner, Synthesis of ML Programs in the system

Coq, Journal of Symbolic Computation, 15 (1993) 607{640.

[20] J. Rouyer, D�eveloppement de l'algorithme d'uni�cation dans le calcul des

constructions avec types inductifs, (Research Report 1795, INRIA-Lorraine, nov.

1992).

[21] P. Wadler, The essence of functional programming, in: Proceedings of POPL'92

(Albuquerque, New Mexico, 1992) 1{14.

22


