
Extracting Programs with Exceptions

in an Impredicative Type System

Jean-Fran�cois Monin

France T�el�ecom CNET, LAA/EIA/EVP
Technopôle Anticipa, 2 avenue Pierre Marzin

F-22307 Lannion Cedex, France

monin@lannion.cnet.fr

Abstract. This paper is about exceptions handling using classical tech-

niques of program extraction. We propose an impredicative formalization
in the calculus of constructions and we illustrate the technique on two

examples. The �rst one, though simple, allows us to experiment various

techniques. The second one is an adaptation of a bigger algorithm pre-
viously developed in Coq by J. Rouyer, namely �rst order uni�cation.

Only small changes were needed in order to get a more e�cient program

from the original one.

1 Introduction

Several paradigms have been proposed for constructing correct programs from a
formal speci�cation. Let us sketch some among the most signi�cant ones:

{ Program calculation [6]: a program is obtained in a calculational manner as
the solution of a logical assertion of the form P) wp:S:Q where P is the
precondition, Q the postcondition and S the unknown (a command).

{ Speci�cation re�nement [1, 13]: for instance an abstract command involving a
quanti�er can sometimes be re�ned using a loop; another kind of re�nement,
data re�nement , consists roughly of replacing abstract data structures by
concrete ones1.

{ Program extraction [11, 15]: one tries to build a constructive proof of a spec-
i�cation 8x P (x)!9y Q(x; y). Such a proof can be considered a functional
program through \Curry-Howard isomorphism":

formula = type ;

proof = program:

Using a suitable realizability interpretation, it is also possible to remove
irrelevant (from an algorithmic point of view) parts of the proof. A gen-
eral result of the related meta-theory ensures that the extracted program
f satis�es its speci�cation, i.e. 8x P (x)!Q(x; f(x)). Such a mechanism is
implemented in Coq, a general proof assistant devoted to the Calculus of

Inductive Constructions [7].

1 Re�nement has also been extensively studied in the framework of algebraic

speci�cations.

Each approach has its strong and weak points. For instance the two �rst are
better appropriate to imperative programming (we mean \based on state trans-
formation"); but constructing algorithms on recursive data structures is not
always easy. Conversely the third approach is well suited to functional program-
ming and can already deal with reasonably complex programs such as a mini-ML
compiler.

In both the imperative and the functional world escapements { typically goto
statements and exceptions { are generally considered as di�cult to handle. The
problem is perhaps more important in functional programming: during the de-
sign of ML, which was originally the tactics language of LCF, exceptions were
considered as an essential feature. Nowadays ML is used as a general purpose
language, and it is a current practice to use exceptions: not only in exceptional
situations, and not only for e�ciency reasons.

Therefore we consider that dealing with exceptions in recursive programs is
an important step if we want to tackle real problems. The �rst work in this
direction to our knowledge, at least in the context of Coq, is due to Pierre
Cast�eran [3]. Recall the main steps for developing an algorithm by program
extraction in Coq:

1. State the speci�cation, a logical formula, as a goal to be proved.
2. Prove it, typically by induction on one or several variables.
3. Ask the system to extract the algorithmic content of the proof.

Cast�eran showed on a simple example { multiplying the leaves of a binary tree {
that stating a goal of the right form very naturally leads the user to an algorithm
in continuation passing style (CPS). More speci�cally, instead of proving the goal
8t:tree RESU(t) by induction on t, where RESU(t) = fn:nat j n = leavemult(t)g
and where leavemult is the obvious function { this would be direct style { he con-
sidered 8t; t0:tree (8n0:nat n0 = leavemult(t0)!RESU(t))!RESU(t) and proved
it by induction on t0; the desired RESU(t) was obtained by application of this
function to t, t and �n: �h: hn; hi whose algorithmic content is the identity func-
tion. Moreover this proof/function was optimized in an elegant way by raising
an exception as soon as a zero was detected on a leaf.

In other respects control operators such as Abort and Callcc have been
studied in the formulae-as-type framework in the early 90's [10, 14]. It camed out
that CPS transformation, which makes the interpretation of control operators
possible in a purely functional setting, corresponds on the logical side to a G�odel
translation. In other words, control operators are typed using classical theorems,
hence in order to get a constructive interpretation of them we �rst translate them
in intuitionistic logic by means of double negations2. As a simple example, if a
has atomic type A, its translation is �k: ka whose type is (A!?)!?. In fact
one often consider a variant where the empty type ? is replaced by the type of

2 It is well known that classical logic is not constructive: the structure of the set of

proofs of any theorem is made trivial by the behaviour of cut-elimination. This is

discussed in depth in [9, 8].

the result of the main program, say R. The function k of type A!R is called a
continuation, i.e. a function to be applied on a in order to get the �nal result.
On the above example we could take RESU(t) for R, RESU(t0) for A, and get
an equivalent formulation.

The work of Cast�eran is extended in several directions in this paper. First the
type of the �nal result is universally quanti�ed. We need a further assumption
on this type: in the simplest case it must have at least one value. We show that
the gain in abstraction obtained in this way helps to nicely handle situations
arising in practice, for instance when an auxilliary function is locally de�ned, or
when an \accumulator" is used. Furthermore we gain in modularity: a function
f possibly raising an exception e:E can then be used in several contexts.

The type of the result of such a f is similar to E _ A as (impredicatively)
de�ned in system F, i.e. 8X (E!X)!(A!X)!X. This means that even if we
develop a program using only propositional types, this typing is already more
informative than the conventional one of, say, ML3.

We introduce a general datatype called Nx for this kind of disjunction. Nx
is equiped with a few constructors and destructors, namely Nx unit, Nx raise,
Nx handle and Nx elim Nx. Thanks to these abstract de�nitions it is possible
to hide the CPS translation and to develop a program as in a functional lan-
guage extended with exceptions. As a non trivial example it becomes possible to
adapt the development of a �rst order uni�cation algorithm [18] almost without
modi�cation.

Finally we consider handling several exceptions and a di�erent Catch/Throw
mechanism. An interesting remark is that the impredicativity of our typing can
be very useful. Using impredicativity seems to be new in this context.

The rest if this paper is organized as follows. Section 2 is a very quick and
informal introduction to the calculus of constructions with inductive de�nitions,
as used in the Coq system. Section 3 introduces general de�nitions enabling the
development of programs with exceptions. Section 4 illustrates their use on two
examples. The �rst one is about computing the weight of a binary tree unless a
threshold is reached. The second example is an adaptation of a bigger algorithm
previously developed by other people, namely �rst order uni�cation. Only small
changes were needed in order to get a more e�cient program from the original
one. In the last section we discuss how far the Coq system suits our needs.

2 General Framework and Notations

2.1 The Calculus of Constructions

The Calculus of Constructions is a typed �-calculus. Objects of the �rst level
are constants like 0 or the successor function. They inhabit objects of the second

3 The type of the result of f would be A, and the type of any subexpression raise e

would be an undeterminate �. Here we loose the fact that in the body of f an

exception carrying a value of type E can be raised.

level, which are propositions seen as set of proofs, themselves of type Prop.
Typed abstraction is denoted by �xAB or [x:A]B. Application is denoted (A B).
Products are denoted by 8x:A B or (x:A)B; when B does not depend on A, the
simpler notation A!B is generally used. Application associates to the left and
arrow to the right. The reader is refered to [4, 2] for a detailed presentation.

Examples. The type of natural numbers can be represented in system F style by

nat = 8X:Prop X!(X!X)!X. The constant 0 of type nat is 0 = �XProp�xX

�fX!X x; nat is itself of type Prop. Predicates on natural numbers, are objects
of type nat!Prop. Logical operations such as _ are of type Prop!Prop!Prop.

For program extraction purposes Coq distinguishes in fact two sorts of props:
Prop and Set. Only data and functions of sort Set are kept by program extraction.
Objects of sort Prop are used to handle logical information on data and functions
during program construction. For example, in the de�nition of nat above we
would use Set instead of Prop.

Finally, for theoretical and practical reasons, the system allows the user to
de�ne inductive de�nitions in a secure way. The simpler ones correspond to
concrete data types of ML. For example the de�nition of nat actually used is

Inductive nat : Set :=

O : nat | S : nat!nat.

Predicates and n-ary relations can also be inductively de�ned �a la Prolog, for
instance :

Inductive even : nat!Prop :=

ev0 : (even O) | evSS : (n:nat)(even n)!(even (S (S n)).

It is then possible to de�ne the type of even numbers as

Inductive even nat : Set :=

en intro : (n:nat)(even n)!even nat.

Such a type can also be de�ned using fx:A j (P x)g which is a general purpose
inductive type for the set of ordered pairs hx; pi where p is a proof of (P x).
During program extraction p is removed and this type becomes just A.

Each inductively de�ned type is automatically equiped with a general elim-
ination principle enabling inductive reasoning and the de�nition of primitive
recursive functions. Further information on inductive de�nitions and their use
in Coq can be found in [5, 16, 17].

2.2 Impredicativity

A de�nition of some object p is said to be impredicative when it involves a
quanti�cation over objects including p. A type system is impredicative when
impredicative de�nition of types are allowed.

For instance the �rst de�nition of nat given above is impredicative because
it is of the form nat = 8X:Prop � � � and nat is of type Prop.

Impredicative type systems are very powerful. It is possible in system F to
de�ne many data structures like polymorphic lists, binary trees, and other math-
ematical objects like in�nitely branching trees, streams and ordinal numbers. It
is also possible, using only (higher order) primitive recursion, to de�ne much
more functions than in simple type systems.

Impredicative de�nitions are potentially dangerous, because they involve a
kind of circularity. It is then an important and non trivial matter to ensure that
an impredicative type system remains consistent, i.e. that it does not leave room
for a logical paradox such as Russel's paradox. This is shown in [9] for system F
and in [4] for the calculus of constructions

2.3 Sections in Coq

The calculus of inductive constructions is supported by a proof assistant named
Coq [7]. In Coq proofs/functions can be developed in an incremental way using
commands that transform the proof tree.

It is also possible in Coq to declare a common environment for several de�-
nitions using sections. For instance if we want to de�ne several functions having
some natural n as parameter, it is possible to declare n only once at the beginning
of a section :

Section nat functions.

Variable n : nat.

De�nition dbl : nat := (plus n n).

De�nition square : nat := (mult n n).

De�nition pol1 : nat!nat!nat := [a,b:nat](plus (mult a n) b).

De�nition quad : nat := (plus dbl dbl).

End nat functions.

After the end of this section the de�nition of dbl is actually [n:nat](plus n

n). The de�nition of quad becomes [n:nat](plus (dbl n) (dbl n)).
However this mechanism is not completely satisfactory if we want dbl to

be just an intermediate de�nition for quad: we would prefer to get something
like [n:nat](let dbl=(plus n n) in (plus dbl dbl)). In the following we
suppose that this e�ect is obtained by using a local de�nition in the section :

Section nat functions.

Variable n : nat.

Local dbl : nat= (plus n n).

...

End nat functions.

This is not so far from the actual behavior of Coq, where these local de�nitions
get expanded, at the price of potential replication of code.

In the general case common types, hypotheses, functions (like X, P and e below),
are shared by several functions. Moreover P and e could depend on parameters.
We would then use something similar to the functors of SML-NJ, i.e. modules
parameterized by types and functions o�ering an interface consisting of several
functions, while common auxilliary functions are hidden.

3 Continuations and Exceptions

When we develop a function f in continuation passing style, one always supposes
that f is directly or indirectly called by some \main function"M. Let X be the
type of the result of M.

If the \normal" type of the result of f is A, that is, if the type of the result
of f is A when we express f in direct style, this type becomes (A!X)!X in
continuation passing style. A!X is the type of the normal continuation.

In a �rst attempt for introducing an exception we can assume another con-
tinuation e:B!X, where B is the type of the value carried by the exception.
The type of the result becomes (B!X)!(A!X)!X, which is just an instance
of the encoding of B + A in system F: X is arbitrarily �xed instead of beeing
universally quanti�ed. Now there is no good reason to consider that the meaning
of f should be tied to M, since the same f could be used in completely di�er-
ent environments. Hence at some stage X will be an argument of f , i.e. will be
universally quanti�ed in the type of f . However if f has an argument using X
we still cannot get exactly B + A.

In other respects we sometimes want several functions, say f and h, to share
a commonX and e. If f calls h, we prefer X and e not to be passed as parameters
from f to h. A way to get this behaviour is to use the section mechanism of Coq
and to declare X and e at the beginning of a section (however see the discussion
above on this mechanism).

3.1 Simple Exceptions

Let us �rst consider the special case where e carries no value, i.e. e:X. (By the
way it is enough for the �rst order uni�cation algorithm studied below.) Even in
this case an exception is raised for some reason, it implicitly carries some logical
information. Let P be the weakest condition for raising the exception. We give
e the type P!X. Assuming e amounts to suppose that X is not empty if P is
provable.

It is then possible to take (C!P)!(A!X)!X, where C is of kind Prop, as
type of the result of f . In short the normal result of such a f has type A, but f
may raise an exception if condition C is established. In this way anything about
exceptions { excepted e itself { will be removed by program extraction. We call
the whole type (Nx C A), and use the in�x notation C V+ A:

Section algo.

Variable X:Set. Variable P:Prop. Variable e:P!X.

Local Nx := [C:Prop][A:Set](C!P)!(A!X)!X.

Values of type C V+ A are constructed from either a value of type A or a proof
of C:

Local Nx unit : (C:Prop)(A:Set)A!(C V+ A) :=

[C:Prop][A:Set][a:A] [i:C!P][k:A!X](k a).

Local Nx raise : (C:Prop)(A:Set)C!(C V+ A) :=

[C:Prop][A:Set][c:C] [i:C!P][k:A!X](e (i c)).

In the following we use the abbreviations4 Nxunit v and Nxraise respectively
for Apply Nx unit; Apply v and Apply Nx raise.

It is also possible to get an inhabitant of C' V+ A' from (i) an inhabitant of
C V+ A, (ii) a function that yields an C' V+ A' from an A and (iii) a proof of
C!C':

Local Nx elim Nx :

(A,A':Set)(C,C':Prop)(A!(C' V+ A'))!(C!C')!(C V+ A)!(C' V+ A') :=

[A,A':Set][C,C':Prop]

[f:A! C' V+ A'][j:C!C']

[nx: C V+ A]

[i:C'!P][k:A'!X](nx ([c:C](i (j c))) ([a:A](f a i k))).

Nx elim Nx is used when, at the direct style level, we call some function f yield-
ing a useful value a of type A and we don't want to catch an exception possibly
raised by f . Technically, when v:C V+ A is available, we use the tactic Apply
Nx elim Nx with 3:=v (under the abbreviated form Nxelim v). This yields two
subgoals corresponding respectively to f and j above. The second subgoal is
purely logical and we generally manage to automatically discharge it using aux-
illiary lemmas. The �rst subgoal is handled by an introduction of a of type A,
yielding the original goal (Nx C' A'). This is expressed at the direct style level
by let a=v in ...

Finally we need a connection between functions f developed in this sec-
tion and external world (the \main" function M { actually any function call-
ing f and catching the exception). Nx handle builds a value of type X from a
proposition P , an exceptional continuation e, a function whose result has type
(Nx X P e C A), a proof of C!P and a normal continuation of type A!X.

De�nition Nx handle : (C:Prop)(A:Set)(Nx C A)!(C!P)!(A!X)!X :=

[C:Prop][A:Set][nx:(Nx C A)]nx.

3.2 Dealing with several Exceptions Carrying a Value

In practice one needs to simultaneously handle several exceptions. Moreover they
can carry a value, for instance a string to be printed. This is dealt with using a
base type Txlev and a type Txval depending on Txlev. Intuitively, Txlev is the
type of names of exceptions, and the type of values carried by an exception l,
where l inhabits Txlev, is (Txval l). Possible de�nitions of Txlev and Txval

are discussed in appendix A. We provide an exceptional continuation for each
member of Txlev.

Section algo.

Variable X:Set.

Local Propx:=(l:Txlev)(Txval l)!Prop.

Variable P:Propx.

Variable e:(l:Txlev)(x:(Txval l))(P l x)!X.

The remaining de�nitions are straightforward generalisations of the ones given
above, for instance:

4 In Coq V5.10 user-de�ned notations and abbreviations are available.

Local Nx :=

[C:Propx][A:Set]((l:Txlev)(x:(Txval l))(C l x)!(P l x))!(A!X)!X.

Local Nx elim Nx :

(A,A':Set)(C,C':Propx)

(A!(C' V+ A'))!((l:Txlev)(x:(Txval l))(C l x)!(C' l x))!
(C V+ A)!(C' V+ A') :=

[A,A':Set][C,C':Propx]

[f:A!(C' V+ A')]

[j:(l:Txlev)(x:(Txval l))(C l x)!(C' l x)]

[nx:(C V+ A)]

[i:(l:Txlev)(x:(Txval l))(C' l x)!(P l x)][k:A'!X]

(nx ([l:Txlev][x:(Txval l)][c:(C l x)](i l x (j l x c)))

([a:A](f a i k))).

The second subgoal mentioned in the discussion about Nx elim Nx in 3.1 is here
dealt with by case analysis on l. That is, instead of just Auto we use a pattern
like: Intro l; Elim l; Simpl; Intros x Hx; ... Auto.

3.3 Using Impredicativity

Suppose we are in the following common situation.

{ The function M calls a function f which itself calls h.
{ Both f and h use exceptions build upon a common pair hTxlev; Txvali.
{ But the exception systems e given to f and h are di�erent. This typically

arises when f �lters some exceptions raised by h.

This leads to develop f and h in separate sections. Outside of its de�ning
section h has type 8X 8P (8l 8x (P l x)!X)(Nx X P D B) for some D and
B. Inside the de�ning section of f the instance of Nx currently used is locally
renamed as Nxf . The type of f is then (Nxf C A) and a call to h in the body
of f is represented by a call to Nx handle with h as nx, and (Nxf C

0 A0) as X,
where (Nxf C

0 A0) is the current subgoal.
Now if we examine the types involved in f after the end of the de�ning section

of f , we see that Nx = 8X : : : is sometimes used with X = Nx.
If we accept to loose the abstraction level provided by the primitives like

Nx raise, i.e. if we program directly at the level of continuations impredicativity
is no longer needed. The example of 4.1 was earlier developed in this way. There
are already similar phenomena with the representation of data structures in sys-

tem F. For instance boolean negation can be encoded by �bbool (b bool f t), us-

ing impredicativity and the \primitive" constants f and t, or by �bbool�X �xX

�yX (b X y x) in a simple typing-like fashion.

4 Two Case Studies

4.1 Computing the Weight of a Tree

Version with one Exception. In this example we want to compute a boolean
which is true if the sum of the leaves of a binary tree is greater than or equal to

a given threshold m, and false otherwise. These trees are built using leaf and
node:

Inductive tree : Set :=

leaf : nat!tree | node : tree!tree!tree.

We aim at the following algorithm, which travels the tree t from right to left
while accumulating in a the sum of the encountered leaves; as soon as a exceeds
m we know that the answer is true; if no exception has been raised the answer
is false5. Notice that the result r is not compared to m { it is even not used
at all. Therefore we must ensure that in the case where the answer is true an
exception does have to be raised6.

Function core (m:nat;t:tree):nat =

letrec comprec(t:tree;a:nat):nat =

match t with

leaf(n) ! (g a+n)

| node(t1,t2) !
let an2=(comprec t2 a) in let an=(comprec t1 an2) in an

in (comprec t 0)

where g (n:nat):nat =

if n�m then n else raise threshold.

Function F overweight (m:nat;t:tree):bool =

try let r = (core m t) in false

with threshold!true.

The �rst thing to do is to state the speci�cation of the �nal result.

De�nition P overweight := [m:nat][t:tree](le m (leaveplus t)).

De�nition RESU :=

[m:nat][t:tree]f(P overweight m t)g+f:(P overweight m t)g.

fPg+ fQg denotes a enumerated type with two values; the �rst (resp. second)
value can be built if P (resp. Q) is provable. When Q = :P , fPg+fQg denotes
the truth value of P .

For the development of the algorithmwe need a more general form of P over-

weight which takes an accumulator into account.

De�nition P overweight accu :=

[m,a:nat][t:tree](le m (plus a (leaveplus t))).

The result of core is exception if (leaveplus t) exceeds m and (leaveplus t)

otherwise. We also want that if the function actually computes (leaveplus t)

then this value does not exceed m. The internal function comprec has a similar
speci�cation taking the accumulator into account, hence we introduce:

5 A �rst version of this development, without accumulator, came from [12]. Two calls

to g were then needed, one for leaf and one for node. In the present version there is
no real reason to keep g, except for showing how such a local function can be dealt

with.
6 This constraint is stronger than the one considered in the example of Cast�eran.

Inductive condsum accu [m,a:nat;t:tree] : Set :=

condsum accu intro : (n:nat)(n=(plus a (leaveplus t)))!
:(le m n)!(condsum accu m a t).

De�nition condsum accu cps :=

[m,a:nat][t:tree] (P overweight accu m a t) V+ (condsum accu m a t).

The speci�cation of (g m n) is quite naturally (le m n) V+ (T aux m n)where
T aux is de�ned by:

Local T aux := [m,n:nat]fn':nat|n=n'&:(le m n')g.

The proof/function of core has exactly the same structure as the de�nition given
above, see appendix B. One proves the theorem:

Theorem core : (m:nat)(t:tree)(condsum accu cps m O t).

Finally the function F overweight is speci�ed by (m:nat)(t:tree)(RESU m

t) and is easily obtained using Nx handle and core. In this process X is in-
stanciated to (RESU m t) and we prove (condsum accu m O t)!(RESU m t)

and (P overweight accu m O t)!(RESU m t) using respectively the witnesses
false and true.

Version with Two Exceptions. The problem can be slightly complicated as
follows: given a list l of trees and an integer m, compute a list of booleans such

that each boolean indicates whether the weight of the corresponding tree exceeds

m, but abort the whole execution if a zero is detected on one of the leaves of the

trees of l.
This leads to introduce two exception levels, xl1 and xl2. The �rst carries

no value, the second carries a boolean (other choices are possible). Here is a way
for specifying this:

Inductive Txlev : Set := xl1 : Txlev | xl2 : Txlev.

Inductive Txval : Txlev ! Set :=

xv1 : (Txval xl1) | xv2 : bool!(Txval xl2).

We need to specify assertions about exceptions. The following de�nition of
(prop exc Pz Pw) indicates that if xl1 has been raised then Pz is provable,
and if xl2 has been raised then the carried boolean cannot be false and Pw is
provable.

De�nition prop exc: (Pz,Pw:Prop)Propx.

Unfold Propx; Intros Pz Pw l.

Case l.

Intro zer; Exact Pz. (*�rst kind of exception*)
Intro b; (*second kind of exception*)

Exact (b=(xv2 true)!Pw) ^ (b=(xv2 false)!False).

De�ned.

In the speci�cation of core we just replace Pw = (P overweight accu m a t)

by (prop exc (Pposs zer t) Pw).

De�nition condsum2 accu cps :=

[m,a:nat][t:tree]

(prop exc (Pposs zer t) (P overweight accu m a t)) V+

(condsum accu m a t).

The speci�cation of g says that the �rst kind of exception cannot be raised.

(n:nat) (prop exc False (le m n)) V+ (T aux m n).

The function working on a list of trees is developed using similar techniques. This
function calls core via Nx handle using the impredicativity of Nx as described
in 3.3.

4.2 First Order Uni�cation

Attempting to unify two terms T and U roughly consists in a double induction
over T and U taking care of propagation of substitutions. The result is either
a most general uni�er, in case of success, or an answer \T an U are not uni�-
able", i.e. a failure. The obvious choice for the type of the result is a sum like
<mgu>+<failure>. In his original development [18] J. Rouyer chose:

Inductive Unification[t1,t2:quasiterm]:Set :=

Unif succeed:(f:quasisubst)(unif t1 t2)!
further conditions for f to be an mgu
!(Unification t1 t2)

| Unif fail:(8f:quasisubst :(Subst f t1)=(Subst f t2))

!(Unification t1 t2).

In the original development this type is also the type of the result of the
function corresponding to the double induction, hence a failure is transmitted
backwards step by step until the root.

With the de�nitions given above we can construct an algorithm that just tries
to compute the mgu. As soon as an incompatibility is detected, e.g. between
two constants, an exception is raised: this is the expected behavior of a real
implementation.

We proceed from the original development as follows.

{ Split the initial de�nition of Unification in two parts, Unification s of
kind Set and Unification f of kind Prop:

Inductive Unification s[t1,t2:quasiterm]:Set :=

Unif succeed def:(f:quasisubst)(unif t1 t2)!
further conditions for f to be an mgu

!(Unification s t1 t2).

Inductive Unification f[t1,t2:quasiterm]:Prop :=

Unif fail def:(8f:quasisubst :(Subst f t1)=(Subst f t2))

!(Unification f t1 t2).

{ From Unification s and Unification f inductively de�ne
Unification or fail which is equivalent to the original de�nition of
Unification (two obvious clauses).

{ Rede�ne Unification with Nx:

De�nition Unification :=

[t1,t2:quasiterm] (Unification f t1 t2) V+ (Unification s t1 t2).

Rede�ne Unif succeed and Unif fail using respectively Nx unit and
Nx raise. De�ne Unif elim with Nx elim Nx. The latter plays the rôle of
Unification rec although it is less general, see below.

{ Adapt the script of the original development.

It turns out that the last step requires very few modi�cations, and that they
are systematic. They split into two classes.

1. Replacing Elim H by Unifelim H (an abbreviation for Apply Unif elim

with 3:=H) when H has type (Unification t u). In this development the
current subgoal is always of type (Unification t0 u0), and this �ts well the
restriction on the use of Unif elim mentioned above. Otherwise we should
have used the more primitive Nx elim Nx.

2. Sometimes the current subgoal becomes (Unification f t u) instead of
(Unification t u).
It is then necessary to replace Unif fail by Unif fail def. Similarly the
type of the result of two lemmas must be changed to (Unification f t u).

There are 7 modi�cations of the �rst kind, and 3+2 of the second kind. About
100 lines have been added for the new de�nitions of Unification,Unif succeed,
Unif fail and Unif elim. The original development takes about 2.800 lines.
This can be compared to the modi�cations needed for the same transformation
if the algorithmwas expressed in a usual programming language: each statement
returning the value failure would be systematically replaced by a statement
raising an exception.

5 Concluding Remarks

We have shown that it is possible to add { or to simulate the addition of { control
operators to the programming language of extracted programs in the framework
of calculus of constructions. All the examples mentioned in this paper have been
completely and mechanically veri�ed.

Writing a lambda-term using the introduced primitives is not to be recom-
mended, because explicit typing makes the terms quite heavy. However the tac-
tics language of Coq can be seen as a programming language, via Curry-Howard
isomorphism. For instance Intro a; Exact E is just a peculiar syntax of �a:E.

In this language types are most of the time inferred. This is an advantage
when using constructs with long types, like Nx xxx. In other respects scripts can
be fully understood only when interactively input in the system.

Note that thanks to the tactic Realizer recently introduced in Coq one can
give the algorithmic structure of a proof using a more conventional syntax called
Real . Further work is needed to see how this tactic can be combined with our
primitives. Another approach would be to internalize these primitives in Real .

Acknowledgement

I wish to thank the members of the Coq Project, for their help on Coq, and
Pierre Cr�egut and Chet Murthy for their explanations on continuations. Pierre
Lescanne suggested the example of �rst order uni�cation.

References

1. J-R. Abrial. The B-Book. Prentice Hall, 1994 (in preparation).

2. H.P. Barendregt. Lambda Calculi with Types. In S. Abramsky & al., editors, Hand-
book of Logic in Computer Science, vol 2, S. Abramsky & al. Eds. Clarendon Press,

Oxford, 1992.

3. P. Cast�eran. Pro[gramm,v]ing with continuations: A development in Coq. Coq

contribution, 1993 (available by FTP on ftp.inria.fr).

4. Th. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, 76:95{120, 1988.

5. Th. Coquand and C. Paulin-Mohring. Inductively de�ned types. In P. Martin-L�of

and G. Mints, editors, Proceedings of Colog'88. Springer Verlag, 1990. LNCS 417.

6. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

7. G. Dowek & al. The Coq Proof Assistant User's Guide. version 5.8, INRIA-

Rocquencourt et CNRS-ENS Lyon, f�ev. 1993.

8. J-Y. Girard. A new constructive logic: classical logic. Mathematical Structures in

Computer Science, vol 1, pp. 225{296, 1991.

9. J-Y. Girard, Y. Lafont, P. Taylor. Proofs and Types. Cambridge Univ. Press, vol

7, 1990.

10. T. Gri�n. A formulae-as-types notion of control. POPL, Orlando, 1990.

11. S. Hayashi, H. Nakano. PX, a Computational Logic. Foudations of Computing,

MIT Press, 1988.

12. J.L. Lawall and O. Danvy. Separating Stages in Continuation-Passing Style Trans-

formation. POPL, 1993.

13. C. Morgan. Programming form Speci�cation. Prentice Hall International Series in

Computer Science. Prentice Hall, 1990.

14. C. Murthy. An evaluation semantics for classical proofs. LICS, Amsterdam, 1991.

15. C. Paulin-Mohring. Extraction de programmes dans le calcul des constructions.
th�ese de doctorat de l'universit�e Paris VII, 1989.

16. C. Paulin-Mohring. Inductive De�nitions in the system Coq; Rules and Properties.
In M. Bezem and J.F. Groote, editors, Proceedings of TLCA'93. Springer Verlag,

1993. LNCS 664.

17. C. Paulin-Mohring and B. Werner. Synthesis of ML Programs in the system Coq.

Journal of Symbolic Computation, 15:607{640, 1993.

18. J. Rouyer. D�eveloppement de l'algorithme d'uni�cation dans le calcul des construc-

tions avec types inductifs. Research Report 1795, INRIA-Lorraine, nov. 1992.

A Dependent Types for Exceptions

The base type Txlev for exceptions is generally a simple enumeration. It is unfor-

tunately impossible in the calculus of constructions to de�ne Txval: Txlev!Set by

elimination on the argument. However we can obtain an isomorphic structure using
an inductive de�nition. For instance in the example above we consider two exceptions

xl1, which carries nothing, and xl2 which carries a boolean. Let us suppose here that

xl1 and xl2 carry respectively a value of type A and B.

Inductive Txlev : Set := xl1 : Txlev | xl2 : Txlev.

Inductive Txval : Txlev!Set :=

xv1 : A!(Txval xl1) | xv2 : B!(Txval xl2).

It is useful and easy (in goal mode) to de�ne left inverses xl1 A and xl2 B of xv1 B

and xv2 B (we consider only the latter in the sequel), at least when B is not empty. But

this assumption gives a special rôle to a speci�c inhabitant of B. This can be avoided

using an auxilliary function de�ned on (Txval l) with l=xl2

De�nition xl2 B eq : (l:Txlev)(Txval l) ! l=xl2 !B.

Destruct 1; Intros v e; Discr e Orelse Exact v.

De�ned.

De�nition xl2 B : (Txval xl2)!B.

Intro v2; Apply (xl2 B eq xl2 v2); Auto.

De�ned.

It is also useful to prove that xl2 B is really a left inverse.

Theorem left inv xv2 : 8v:(Txval xl2) v=(xv2 (xl2 B v)).

A method is to de�ne a conversion function

De�nition l xl2 : 8l:Txlev (l=xl2)!(Txval l)!(Txval xl2).

by induction on l, and to prove

8l:Txlev 8v:(Txval l) 8e:l=xl2 (l xl2 l e v)=(xv2 (xl2 B (l xl2 l e v))).

We get the desired theorem by using (l xl2 xl2 e v)=v. As an interesting conse-

quence, we get the induction principle :

Theorem xv2 rec :

8P:(Txval xl2)!Set (8b:B (P (xv2 b)))! 8v:(Txval xl2) (P v).

Reciprocally left inv xv2 is a special case of xv2 rec. Christine Paulin pointed out

that theorems like xv2 rec have an independent proof to me. The trick is to de�ne an

alter ego of (eq rec Txlev).

De�nition eqTxlev_rec :

8P:Txlev!Set 8k,l:Txlev (eqTxlev k l)!(P k)!(P l).

Destruct k; Destruct l; Simpl; Intros; Trivial Orelse Contradiction.

De�ned.

where (eqTxlev) is a typical auxilliary function used in \inversion lemmas":

De�nition eqTxlev : Txlev!Txlev!Prop :=

xl1 xl1 => True | xl1 xl2 => False |

xl2 xl1 => False | xl2 xl2 => True.

De�ned.

Of course dependent types like Txval are needed in other situations, such as the mod-

elling of records.

B Constructive Proof of core

B.1 Coq Script

In the following script, Split condsum n H1 H2 is an abbreviation for Intro s;Elim

s;Clear s; Intros n H1 H2. Hence NxElim R; [Split condsum an1 Han1t1 Hman1

| Auto] means that we compute R of type P V+ (consum accu ...), and in case of

success we decompose the result into an integer n and two hypotheses H1, H2 on n.

Section algo.

Variable X:Set. Variable P:Prop. Variable e:P!X.

Local Nx := [C:Prop][A:Set](C!P)!(A!X)!X.

Local Nx_unit : (C:Prop)(A:Set)A!(C V+ A).

...

Theorem core : (m:nat)(t:tree)(condsum accu cps m O t).

Intros m t.

Cut (n:nat) (le m n) V+ (T aux m n).

Intro g.

Cut (a:nat)(condsum accu cps m a t);

[Intro comprec; Apply comprec | Idtac].

(* de�nition of comprec *)

Unfold condsum accu cps; Elim t.

Intros n a.

Nxelim (g (plus a n)); [Intro sn'; Nxunit Realizer sn' | Auto].

Intros t1 R1 t2 R2 a.

NxElim (R1 a); [Split condsum an1 Han1t1 Hman1 | Auto].

NxElim (R2 an1); [Split condsum an Hant2 Hmn | Rewrite Han1t1;Auto].

NxUnit Realizer an.

Rewrite Hant2; Rewrite Han1t1; Rewrite plus_assoc_r; Simpl; Auto.

(* de�nition of g *)

Intro n; Case (le dec m n).

Intro Hlemn; Nxraise; Assumption.

Intro Nlemn; Nxunit Realizer n.

Save.

End algo.

The proof is almost the same in the case with two exceptions. Nxraise must be

used with an argument, for instance in the de�nition of g:

Intro Hlemn; Nxraise (xv2 true); Simpl; Auto.

A few tactics must be added in order to automatically discharge the propositional

subgoal of Nx elim Nx, by case on l, for instance concerning (R2 a):

Nxelim (R1 a);

[Split condsum an1 Han1t1 Hman1 |

Intro l; Elim l; Simpl; Intros v Hv; Elim Hv; Auto].

B.2 Extracted program

The program obtained with extract and conversion to Caml code, in Coq V5.8, is as

follows (plus is expanded in the actual code):

let plus = fun n -> fun m ->

let rec REC1 = function O_C -> m | S_C VAR3 -> S_C ((REC1 VAR3)) in

REC1 n;;

(* core : 'a -> nat -> tree -> (nat -> 'a) -> 'a *)

let core = fun e -> fun m -> fun t ->

let rec REC1' = function

leaf_C VAR3 ->

(fun a -> fun k ->

match le_dec m (plus VAR3 a) with

true_C -> e

| false_C -> k (plus VAR3 a))

| node_C(VAR4,VAR5) ->

(fun a -> fun k ->

REC1' VAR4 a (fun a' -> REC1' VAR5 a' (fun a' -> k a')))

in REC1' t (O_C);;

Replacing nat by int, plus by + and renaming bound variables gives :

type itree = ileaf_C of int | inode_C of itree * itree;;

let core e m t =

let rec COMPREC = function

ileaf_C n ->

(fun a -> fun k -> if m < n+a then e else k (n+a))

| inode_C(t1,t2) ->

(fun a -> fun k ->

COMPREC t1 a (fun a' -> COMPREC t2 a' (fun a' -> k a')))

in COMPREC t 0;;

We recognise the CPS translation of the intended function where g has been unfolded.

This article was processed using the LaTEX macro package with LLNCS style

