
Proving the Correctness of the Standardized Algorithm

for ABR Conformance

Jean-Fran�cois Monin (jeanfrancois.monin@francetelecom.fr)
France T�el�ecom R&D DTL/MSV, Technopole Anticipa
2 av. Pierre Marzin, 22307 Lannion, France

Abstract. Conformance control for ATM cells is based on a real-time reactive

algorithm which delivers a value depending on inputs from the network. This value

must always �t with a well de�ned theoretical value. We present here the correctness

proof of the algorithm standardized for the ATM transfer capability called ABR.

The proof turned out to produce a key argument during the standardization process

of ABR.

Keywords: speci�cation, veri�cation, reactive system, real-time, telecommunica-

tions.

Abbreviations: ABR { Available Bit Rate; ACR { Allowed Cell Rate; ATM {

Asynchronous Transfer Mode; ATC { ATM Transfer Capability; GCRA { Generic

control of Cell Rate Algorithm; DGCRA { Dynamic GCRA.

1. Introduction

We present in this paper an unusual (at least to our knowledge) appli-

cation of formal methods in telecommunications, though closely related

to a protocol. There is now quite a long tradition in this area of using

formal languages, even standardized ones. They are based on commu-

nicating (extended) �nite state machines (e.g. Estelle, SDL, Promela)

or process algebras (e.g. Lotos). Veri�cation based on model check-

ing [19, 10] or simulation [15] has also been successfully employed.

Typically, one models the protocol at hand, using one of the above

formalisms, and then one tries to verify that bad things like unex-

pected messages, deadlocks and so on never happen. To achieve this

e�ect one may use temporal logic formulas or observers and automated

veri�cation tools. This approach turns out to be very useful because

the global behavior of a system made of several concurrent components

is diÆcult to master.

In the problem we deal here with, complexity does not lie in par-

allelism or message interleaving, but in a single sequential, short, real-

time and reactive algorithm. This algorithm runs on a key device for

an ATM Transfer Capability called ABR (see below). It handles a

small scheduler and delivers a value which depends on inputs from

the network. We essentially have to prove that the value delivered by

c
 2000 Kluwer Academic Publishers. Printed in the Netherlands.

fmsd-abr.tex; 18/07/2000; 13:20; p.1

2 J.-F. Monin

the device always agrees with (more precisely: is not smaller than)

a theoretical value whose computation is not feasible under realistic

assumptions. Several algorithms were studied at ITU-T, all of them

involving tricky combinations of tests and updates. Our correctness

proof has been a key argument in favor of one of them and freed the

standardization process of ABR.

Let us emphasize that the input of the work reported here was just

a piece of pseudo-code with diagrammatic and intuitive explanations

on what happens in that or such case. Such hints turned out very

incomplete and did not seem of much help for our purpose. We then

decided to forget them and to carry out a proof on a purely tech-

nical ground, reducing the problem to small steps which are easy to

verify|we are still unable to explain how the algorithm actually works.

However we needed to understand how it could work, that is, what are

the theoretical properties of an ideal version of the algorithm.

The technique used is basically the calculus of weakest precondi-

tions of Dijkstra [11]. Indeed, the invariant provided in section 4.5 was

obtained by successive strenghtenings of the desired properties. Essen-

tially, the algorithm runs transitions wich are guarded assignments (also

called generalized substitutions in B [2]) of the form if C then x := E,

where C is a condition, x a variable (or a tuple of variables) and E

is an expression. A property P is left invariant by such a transition if

P implies the corresponding weakest precondition, which is denoted in

the style of B by [if C then x := E]P and reduces to C) [x := E]P ,

where [x := E]P is obtained by replacing every free occurence of x with

E in P . Roughly, the calculus consists in considering an invariant I and

computing [S]I for each generalized substitution S; if I) [S]I, nothing

has to be added at this stage, but in general I is not strong enough;

I^[S]I is then the next candidate for the invariant. Eventually we reach

a �xpoint where I) [S]I for each S, provided enough information is

embodied in the �rst version of I.

In our case, the invariant must express a property of the scheduler,

which predicts values in the future and thus can be seen, abstractly, as

a function of time: our invariant is a higher order property. Moreover,

transitions are �red in real time: the current time appears as a free

variable in the invariant and we have to explain how time evolves. This

lead us to a framework inspired by timed automata of Alur and Dill [4],

involving two kinds of transitions: discrete transitions, which change the

state and leave the current time invariant, and continuous transitions,

which leave the state invariant while the time increases. In this way

get a model of the behaviour of the device under study, whose state,

including a special variable called ACR, is a function of the time. The

desired property involves another function of time called Acr, which is

fmsd-abr.tex; 18/07/2000; 13:20; p.2

Proof of ABR Conformance 3

de�ned in a simple and purely mathematical way by a speci�cation Sd.

Our main result states that at any time t, Acr(t) is less than or equal

to ACR(t).

In order to make the result as convincing as possible|a must in the

context of standardization|it is important for the speci�cation Sd to

be very simple and declarative (our proof steps are small and explicit

for the same reason). We also explore consequences of Sd: they provide

insights on the behaviour of the algorithm under study. Sd turns out

technically not well suited to a direct correctness proof; however we can

derive an equivalent but more tractable computational speci�cation Sc.

The invariant to be proved is stated using Sc; the proof can then be

carried out thanks to preliminary lemmas related to Sc and formalized

in Coq (an automated proof assistant based on type theory [6]), as

reported in [16].

This case study illustrates that even on modest real-life examples, it

may well appear that currently available ready-to-use formal methods

are not able to cope with every aspect of the problem. However, we can

use elementary mathematics to combine concepts coming from well-

known formal methods and mechanically check the di�erent steps.

The original work is published in [17]. Its formalization in Coq

presented in [16] needed minor adaptations and corrections. We present

here a new version of the proof which includes recent improvements.

In particular, our treatment of time now conforms to the tradition

initiated by Alur and Dill, at the price of somewhat subtle changes

in the invariant. The new proof has again been completely checked in

Coq.

The rest of this paper is organized as follows. Section 2 describes

the problem as well as the stakes for telecommunications. Section 3

states the speci�cations called Sd and Sc above and explains how to

get the latter from the former. Section 4 describes the state space with

its invariant and sketches the main steps of the proof (the standardized

algorithm and technical details of its correctness proof are respectively

given in appendix A and B). We end with concluding remarks and

related work in section 5.

2. Context and Motivation

2.1. Conformance Control in ATM

In an ATM (Asynchronous Transfer Mode) network, cells, i.e. data

packets sent by a user, must not exceed a rate which is de�ned by a

contract negotiated between the user and the network. Several modes

fmsd-abr.tex; 18/07/2000; 13:20; p.3

4 J.-F. Monin

for using an ATM network, called \ATM Transfer Capabilities" (ATCs)

have been de�ned. Each ATC may be seen as a generic contract between

the user and the network, saying that the network must guarantee the

negotiated quality of service (QoS), de�ned by a number of character-

istics like maximum cell loss or transfer delay, provided the cells sent

by the user conform to the negotiated traÆc parameters (for instance,

their rate must be bounded by some value). The conformance of cells

sent by the user is checked using an algorithm called GCRA (generic

control of cell rate algorithm). In this way, the network is protected

against users misbehaviors and keeps enough resources for delivering

the required QoS to well behaved users.

In fact, a new ATC cannot be accepted (as an international stan-

dard) without an eÆcient conformance control algorithm, and some

evidence that this algorithm has the intended behavior.

For the ATC called ABR (Available Bit Rate), considered here, a

simple but ineÆcient algorithm had been proposed in a �rst stage.

Reasonably eÆcient algorithms proposed later turned out to be fairly

complicated. This situation has been settled when one of them, due to

Christophe Rabadan, has been proved correct in relation to the simple

one: this algorithm is now part of the I.371.1 standard [1]. The �rst

version of the proof was hand written. The main invariants discovered

during this process are included in I.371.1.

2.2. The Case of ABR

In some of the most recently de�ned ATCs, like ABR, the allowed

cell rate may vary during the same session, depending on the current

congestion state of the network. Such ATCs are designed for irregular

sources, that need high cell rates from time to time, but that may

reduce their cell rate when the network is busy. A servo-mechanism is

then proposed in order to let the user know whether he can send data

or not. This mechanism has to be well de�ned, in order to have a clear

traÆc contract between user and network. The key is an adaptation of

the public algorithm for checking conformance of cells.

An abstract view of the protocol ABR is given in �g. 1 (actually,

resource management (RM) cells are sent by the user, but only their

transmission from the network to the user is relevant here; details are

available in [20]). The conformance control algorithm for ABR has two

parts. The �rst one is called DGCRA (dynamic GCRA). It just checks

that the rate of data cells emitted by the user is not higher than a

value called ACR, the allowed cell rate. Excess cells may be discarded

by DGCRA. ACR is itself an approximation of an ideal allowed cell

rate, which is denoted by Acr, but let us �rst consider that ACR and

fmsd-abr.tex; 18/07/2000; 13:20; p.4

Proof of ABR Conformance 5

update

DGCRA

resource management cell

user network
ACR

data cell

Figure 1. Conformance control

Acr are equal. In the case of ABR, Acr depends on time: its value

has to be known each time a new data cell comes from the user. This

part is quite simple and is not addressed here. The complexity lies in

the computation of Acr(t) (\update" in �g. 1), which depends on the

sequence of values (ERn) carried by resource management cells coming

from the network. By a slight abuse of notation, the cell carrying ERn
will be called itself ERn.

Of course, Acr(t) depends only on cells ERn whose arrival time tn is

such that tn < t (we order resource management cells so that tn < tn+1
for any n). In ABR, a resource management cell carries an intended

allowed cell rate, that should be reached as soon as possible. At �rst

sight, Acr(t) should then be simply the last ERi received at time t,

i.e. ERi with i = last(t), where last(x) is the only integer such that

ti � x < ti+1. Unfortunately, because of electric propagation time and

various transmission mechanisms, the user is aware of this expected

value only after a delay. Taking the user's reaction time � observed

by the control device into consideration, that is, the overall round trip

time between the control device and the user, Acr(t) should then be

ERi with i = last(t� �). But � may vary in turn. ITU-T considers that

a lower bound �3 and an upper bound �2 for � are established during

the negotiation phase of each ABR connection. Hence, a cell arriving

from the user at time t on DGCRA may legitimately have been emitted

using any rate ERi such that i is between last(t � �2) and last(t � �3)

(see �gure 2). Any rate less than or equal to any of these values, or,

equivalently less than or equal to the maximum of them, should then

be allowed. Therefore, Acr(t) is taken as the maximum of these ERi.

fmsd-abr.tex; 18/07/2000; 13:20; p.5

6 J.-F. Monin

t

τ2

τ3

Figure 2. Cells to be taken into account at time t

Actually the standards committee did not give these explanations,

but directly speci�ed the set of ERi under the equivalent form (2) below.

2.3. Effective Computation of Acr(t)

ITU-T committee considered that a direct computation of Acr(t) is not

feasible at reasonable cost with current technologies: it would amount

to compute the maximum of several hundred integers each time a cell

is received from the user. However, it is not diÆcult to see that Acr(t)

is constant on any interval that contains no value of the form tn+�2 or

tn + �3. In other words, Acr(t) is determined by a sequence of values.

It then becomes possible to use a scheduler handling future changes

of Acr(t). This scheduler is updated when a new cell ERn is received.

Roughly, if s is the current time, ERn will be taken into account at

time s+ �3, while ERn�1 will not be taken into account after s+ �2.

The control conformance algorithm considered by ITU-T exploits

this idea, with the further constraint that only a small amount of mem-

ory is allocated to the scheduler. This means that some information is

lost. Filtering is performed in such a way that the actual value of the

allowed cell rate, as implemented by a variable called ACR, is greater or

equal to its theoretical value Acr(t) de�ned above.

3. Ideal Allowed Cell Rate

3.1. Declarative Specification

The declarative speci�cation (Sd in the introduction) of the ideal value

or Acr is given by (1) and (2) under assumption (3). We are given a

sequence of RM cells (ERi) whose arrival time are respectively (ti); the

desired allowed cell rate at time t is de�ned by:

Acr(t) = maxfERi j i 2 I(t)g; (1)

where I is the interval de�ned by:

i 2 I(t) i� (t� �2 < ti � t� �3) _ (ti � t� �2 < ti+1) : (2)

fmsd-abr.tex; 18/07/2000; 13:20; p.6

Proof of ABR Conformance 7

The second disjunct of (2) means i = last(t � �2). The ti are taken in

increasing order:

t1 < t2 < : : : tn < : : : (3)

This speci�cation was oÆcially provided to us by ITU-T, but the reader

can check that (2) is equivalent to:

i 2 I(t) i� last(t� �2) � i � last(t� �3) :

The following equivalent characterization of I(t) is easier to handle:

i 2 I(t) i� ti + �3 � t < ti+1 + �2 (4)

The initial (ineÆcient) ABR conformance control algorithm was a di-

rect computation of Acr according to (1).

3.2. Specification Using only Finite Knowledge

In practice, only �nite pre�xes of the sequence (ti) are available. Then

we have to take into account that, after the reception of the n �rst RM

cells (ERi), whose arrival time are respectively (ti), ti+1 makes sense

only for i < n. However, if we consider that tn+1 = 1, (4) boils down

to n 2 I(t) i� tn � t � �3. With this intuition in mind we introduce

the nth approximation of Acr, de�ned by

Approx(n; t) = maxfERi j i 2 Ia(n; t)g; (5)

where Ia(n; t) is similar to I(t):

i 2 Ia(n; t) i�

8<
:

i 2 I(t) ^ i < n

_

ti � t� �3 ^ i = n :

(6)

The number n we consider depends on time : if s represents the current

time, we have i � n(s) if and only if ti � s. The following lemma, whose

meaning is that it is enough to compute Approx(n(s); t), is easy to prove

:

Lemma 1.

(i) The value of Approx at t becomes stable after t� �3:

8s; t� �3 � s) Approx(n(s); t) = Approx(n(t� �3); t) :

(ii) Approx(n(s); t) is an exact approximation of Acr(t) for t� �3 � s:

8t; Acr(t) = Approx(n(t� �3); t) :

fmsd-abr.tex; 18/07/2000; 13:20; p.7

8 J.-F. Monin

Unless otherwise stated s will remain implicit in the following : we

will write just n instead of n(s). In the same way, variables like Efi

(see below) actually handled by the algorithm denote a value that also

depends on s, but will be noted just Efi. We also assume without loss of

generality that ER0 is equal to the initial value of Acr; if the algorithm

starts at s0, this amounts to stating t0 = s0 � �3 and for i and ti such

that 0 < i and s0 < ti:

t0 = s0 � �3 < s0 < t1 < t2 < : : : tn : (7)

The will use the following explicit characterization of Ia(n; t):

i 2 Ia(n; t) i�

8<
:

ti + �3 � t < ti+1 + �2 ^ i < n

_

ti + �3 � t ^ i = n :

(8)

In particular, for tn + �3 � t � t0, we have i 2 Ia(n; t
0) implies i 2

Ia(n; t), hence the following lemma :

Lemma 2. Approx(n; t) is decreasing after tn + �3:

8t; t0; tn + �3 � t � t0)Approx(n; t0) � Approx(n; t) :

It is also easy to see that for any t greater than tn + �2, the only i

of Ia(n; t) is n, hence the following lemma :

Lemma 3.

8t; tn + �2 � t) i 2 Ia(n; t) i� i = n; (9)

8t; tn + �2 � t) Approx(n; t) = ERn: (10)

3.3. Computing Approx in an Incremental Way

Initially (at time s0 = t0+�3), we have n = 0. The characterization (8)

of Ia yields then

i 2 Ia(0; t) i� s0 � t ^ i = 0 :

Then we get (as desired):

8t; s0 � t) Approx(0; t) = ER0 : (11)

We now consider the arrival of ERn. Let us �x a given t.

� If tn � t � �2, lemma 3 yields Ia(n; t) = fng and Approx(n; t) =

ERn.

fmsd-abr.tex; 18/07/2000; 13:20; p.8

Proof of ABR Conformance 9

� If t � �2 < tn � t � �3, Ia(n; t) includes n as well as the numbers

already in Ia(n � 1; t): this can be shown from (8) and is intu-

itively clear from �gure 2. We get Ia(n; t) = Ia(n� 1; t)[fng and

Approx(n; t) = max(Approx(n� 1; t);ERn)

� In the same way, if t��3 < tn+1, then ERn+1 is outside the relevant

interval for t, which yields Ia(n+1; t) = Ia(n; t) and Approx(n; t) =

Approx(n� 1; t)

Thus we get the following way of computing the value of Approx(n; t)

from the value of Approx(n � 1; t) (this is what we called Sc in the

introduction).

Lemma 4. The value of Approx(n; t) is given by the following table.

t < tn + �3 tn + �3 � t < tn + �2 tn + �2 � t

Approx(n� 1; t) max(Approx(n� 1; t);ERn) ERn

A simple but useful consequence of lemma 4 is :

Lemma 5.

8 l; t; tn;ERn;M;

Approx(l; t) �M ^ ERn �M) Approx(l_tn; t) �M: (12)

4. Proof of Algorithm B'

The enhanced algorithm B (hereafter called B') proposed by France

T�el�ecom at ITU-T computes an upper bound of Approx. More precisely,

at the current instant s, the state e(s) handled by B' de�nes a function

Ub of e(s) and t such that Ub(e(s); t) is greater than Approx(n(s); t)

for any t � s and is not de�ned for t < s.

Running the algorithm consists of changing the current state e to a

new state e0. Such a step is called a discrete transition. Algorithm B'

de�nes two discrete transitions: the �rst, called the external transition,

is �red when receiving a new RM cell (this is called an external event

in the sequel); the second, called the internal transition, is �red when

the current time reaches the time for a scheduled event (this is called

an internal event in the sequel).

fmsd-abr.tex; 18/07/2000; 13:20; p.9

10 J.-F. Monin

4.1. Modelling and proof principles

Our treatment of time is inspired by timed automata of [4] and the

synchrony hypothesis of synchronous languages [13]. Timed automata

distinguish \continuous" transitions concerning time evolution (mod-

eled by clocks under the control of the environment) and \discrete"

transitions changing the state using no time.

Considering that discrete transitions are instantaneous deserves a

special discussion. Basically, we assume, as in synchronous languages,

that our system reacts more quickly than its environment. This as-

sumption depends on the technology used in the real device and can

be checked on it. It is then equivalent and simpler to consider that

a discrete transition takes no time: if the property of interest is true

on a model where discrete transitions are instantaneous, it remains

true if the exact duration of discrete transitions are taken into account.

Here, the internal transition is simply a multiple assignment; moreover,

its crucial part reduces to a single assignment about ACR. The most

complicated transition is the external one; but our discussion on Approx

showed that the arrival of a new RM cell at time tk has an e�ect only

after tk+�3 (see lemma 4). Thus it is enough that running the external

transition takes less than �3. It may happen that an internal event is

scheduled at a time tk. In that case, the internal event has to be handled

�rst.

Concerning continuous transitions, we just need to assume the ex-

istence of a clock s. We model the progress of time by an assignment

s := s0.

A run is a sequence of pairs hsi; eii where si the ith value of the

clock, and ei is the i
th value of the state, with the condition that for all

i, we have si � si+1 and ei = ei+1 (continuous transition) or si = si+1
and ei+1 is obtained from ei by applying an internal or an external

transition. In the case of a continuous transition, we also constrain

si+1 in a way such that no event arose between si and si+1 (we assume

that the scheduler is reliable).

4.2. Notations

States and discrete transitions are modelled using standard calculus

of weakest preconditions [11] with notations taken from B [2]: dis-

crete transitions are modeled by program assignments or \generalized

substitutions" in the terminology of B, as discussed in the introduc-

tion. We use multiple assignments like x1; x2 := E1; E2. Applying

[x1; x2 := E1; E2] on a predicate P yields P where x1 and x2 are

simultaneously replaced with E1 and E2. Another notation for the same

multiple assignment is x1 := E1 jj x2 := E2.

fmsd-abr.tex; 18/07/2000; 13:20; p.10

Proof of ABR Conformance 11

4.3. Components of the State

The state e is made of 5 variables :

� ACR, the current Allowed Cell Rate;

� Efi, the next Allowed Cell Rate if nothing new happens;

� tfi, the time at which the Allowed Cell Rate will become equal

to Efi if nothing new happens;

� Ela, containing the value of the last known cell (ERn);

� tla, the time at which the Allowed Cell Rate will become equal

to Ela if nothing new happens.

As an optimization trick, there is a sixth variable Emx whose value is

just the maximum of Efi and Ela.

When running a continuous transition from hs; ei to hs0; ei, we can-

not have s < u < s0 where u is tfi or one of the tn. But continuous

transitions can follow discrete transitions and vice-versa, hence we must

allow s = u and u = s0. It turns out that the desired property is not sat-

is�ed when s0 = tfi, that is just before running the internal transition:

an internal event is precisely scheduled in order to update the allowed

cell rate at this time. In order to take this into account, our model

involves an additional boolean variable utd (for \up to date"): utd is

true most of the time; it becomes false only after a continuous transition

such that s0 = tfi. Note that, utd is not part of the algorithm, it is

just an artefact of the model which is needed in the invariant.

4.4. Transitions

The algorithm reacts either when receiving a new ERn, i.e. when the

current time is equal to tn, or when the current time reaches tfi. Each

transition changes the current state; an internal event is scheduled if

and only if tfi is greater than the current time.

4.5. Invariant

We want to ensure that algorithm B' provides an ACR which cannot

be less than the ideal value Acr(s). To this e�ect we prove that the

following property is invariant, where s denotes the current time and

n denotes the number of the last RM cell received at time s :

utd = true)Approx(n; s) � ACR : (Imain)

fmsd-abr.tex; 18/07/2000; 13:20; p.11

12 J.-F. Monin

Imain is itself a consequence of the following conjunction.

utd = false) s = tfi (Iutd)

Emx = max(Efi; Ela) (Imax)

Ela = ERn (IEla)

tfi � tla � tn+�2 (I�l)

(tfi = s) utd = true))

tfi � s) 8t; s � t) Approx(n; t) � ACR
(Itfs)

ACR < Efi) tfi � tn+�3 (IEt1)

Efi < Ela) tla � tn+�3 (IEt2)

tfi = tla) Efi = Ela (IttE)

8t s � t < tfi) Approx(n; t) � ACR (IUb1)

8t tfi � t < tla) Approx(n; t) � Efi (IUb2)

8t tla � t) Approx(n; t) � Ela : (IUb3)

We de�ne

Inv = Iutd ^ Imax ^ IEla ^ I�l ^ Itfs ^ IEt1 ^ IEt2 ^ IttE ^ IUb1 ^ IUb2 ^ IUb3:

Invariants IUb1, IUb2 and IUb3 mean that Approx(n; t) � Ub(e; t) for

t � s, where the function Ub(e; t) is de�ned by: Ub(e; t) = ACR for

s � t < tfi, Ub(e; t) = Efi for tfi � t < tla, Ub(e; t) = Ela for

tla � t. In the sequel we use the following consequence of Imax, IUb2
and IUb3:

8t tfi � t) Approx(n; t) � Emx : (IApx)

Lemma 6. Inv implies Imain.

Proof. We have either tfi � s or s < tfi. Apply respectively Itfs
and IUb1 with t = s.

4.6. Initial State

Initially we have n = 0 and we want to show that Inv is true in the

initial state de�ned by:

tfi = tla = s0; ACR = Emx = Efi = Ela = ER0 (initial value of Acr);

fmsd-abr.tex; 18/07/2000; 13:20; p.12

Proof of ABR Conformance 13

and utd = true Formally, we consider the substitution S0:

S0
df
=

�
:=

n; ACR; Emx; Efi; Ela; tfi; tla; utd

0; ER0; ER0; ER0; ER0; s0; s0; true

and we show [S0]Inv, that is, the formula Inv where n, ACR, Emx, Efi,

Ela, tfi, tla are respectively replaced with 0, ER0, ER0, ER0, ER0, s0,

s0. The proof is very easy.

4.7. Continuous Transitions

Let s be the current time. We consider a transition from hs; ei to hs0; ei

only if s � s0 and there is no event between s and s0. If s0 is equal to

tfi, utd is set to false (when real time reaches tfi, Si must run). In

the same way, if s = tn+1, time cannot progress (an external transition

must run, n := n+ 1).

Formally, we consider the following guard:

s � s0 ^ (tfi � s _ s0 � tfi) ^ (8i; ti � s _ s0 � ti) ^

(utd = false) s0 = tfi) ^ s = tn+1) s0 = tn+1:
(Gc)

The transition is modeled by the substitution:

Sc
df
= s; utd := s0; newutd

with newutd = true if s0 6= tfi and newutd = false if s0 = tfi. We

prove: Inv ^ (Gc)) [Sc]Inv.

Remark 1. We consider proof obligations of the form [S]Inv, where

[S] is a substitution. It is decomposed into [S]Iutd, [S]Imax, [S]IEla, [S]I�l,

[S]Itfs, [S]IEt1, [S]IEt2, [S]IttE, [S]IUb1, [S]IUb2 and [S]IUb3. Some of them

are immediate, for instance Efi < ERk) tk+�3 � tk+�3 or Ela <

Ela) tla � tn+�3. They are skipped in order to save space.

Proof.

� [Sc]Itfs, that is (tfi = s0) newutd = true)) tfi � s0)

8t; s0 � t) Approx(n; t) � ACR: �rst remark that if tfi = s0,

we get newutd = true which is s0 6= tfi, hence a contradiction;

this implies utd = true (because otherwise, utd = false and then

tfi = s0 by (Gc)) and also that tfi � s0 reduces to tfi < s0;

using (Gc) we then get tfi � s; for t such that s0 � t, we have

s � t by (Gc); then we get Approx(n; t) � ACR thanks to Itfs.

� [Sc]IUb1, that is 8t s
0 � t < tfi) Approx(n; t) � ACR:

for t such that s0 � t < tfi we have s � s0 � t < tfi by (Gc),

then Approx(n; t) � ACR by IUb1.

fmsd-abr.tex; 18/07/2000; 13:20; p.13

14 J.-F. Monin

4.8. Internal Transition

Let s be the current time with s = tfi. Let Si be the substitution

Si
df
= ACR; tfi; Efi; Emx; utd := Efi; tla; Ela; Ela; true:

We show: Inv ^ s = tfi) [Si]Inv.

Remark 2. [Si]Itfs has the form (X) true= true)) Y : this reduces

to Y . The same remark applies on the external transition, because the

considered substitution includes utd := true.

Proof.

� [Si]IEla, that is Ela = ERn: from IEla.

� [Si]I�l, that is tla � tla � tn+�2: we have tla � tn+�2 by I�l.

� [Si]Itfs, that is tla � tfi) 8t; tfi � t) Approx(n; t) � Efi:

tla � tfi and I�l yields tfi = tla, then Efi = Ela by IttE;

we then have to show that for t such that tla � t, we have

Approx(n; t) � Ela: we just apply IUb3.

� [Si]IEt1, that is Efi < Ela) tla � tn+�3: it is just IEt2.

� [Si]IUb1, that is 8t tfi � t < tla) Approx(n; t) � Efi: it is just

IUb2.

� [Si]IUb3, that is 8t tla � t) Approx(n; t) � Ela: for t such that

tla � t, we have s � tla � t by (Gi); we can then apply IUb3,

which yields Approx(n; t) � Ela.

4.9. External Transition

Let s = tk be the current time, and let n = k�1 be the number of the

last RM cell received before s. We consider a transition taking the kth

RM cell only if utd is true. Formally, we have the following guard:

utd = true (Ge)

The complete external substitution is divided into eight cases, depend-

ing on comparisons between ERk, ACR, Efi, Ela on the one hand, and

between tk+�2 or tk+�3 and tfi and tla on the other hand. In each

case, the considered substitution includes:

Te
df
= n; utd := k; true:

For instance, consider the eightth case:

fmsd-abr.tex; 18/07/2000; 13:20; p.14

Proof of ABR Conformance 15

if tk < tfi then else if ACR � ERk then else

Efi := ERk jj Ela := ERk jj Emx := ERk

jj tfi := tk+�2 jj tla := tk+�2

This transitions corresponds to the case where the scheduler is empty

(tfi is not greater than the current time and utd is true) ansd where

a cell smaller than the current ACR is received: ERk is then scheduled

at tk+�2. Let S8 be the substitution

S8
df
= Te jj Efi; Ela; Emx; tfi; tla := ERk;ERk;ERk; tk+�2; tk+�2:

This transition is correct if :

Inv ^ (Ge) ^ tfi � tk ^ ERk < ACR) [S8]Inv:

The complete pseudo-code and the proofs are given is appendixes A

and B.

4.10. Main theorem

Our main result is an easy consequence of previous lemmas.

THEOREM 1. At any time s we have Acr(s) � ACR.

Proof. Using lemma 1 we know that Acr(s) = Approx(n; s). As

Inv is actually an invariant, lemma 6 yields Approx(n; s) � ACR when

utd = true. However if utd = false, we have s = tfi by Iutd end the

internal transition is immediately �red, hence the result.

4.11. Further Properties

It is easy to see that at any time, the guard of at least one transition

is satis�ed. Moreover, time progress is never blocked: continuous tran-

sitions with a stricly positive duration are allowed, excepted when the

current time is equal to tk, or to tfi with utd equal to false. In the

latter case, an internal transition can be �red, making utd true. When

utd is true, the current time is either equal to tk or not. In the �rst case,

an external transition can be �red, making the current time stricly less

than tk because n is incremented; utd remains true, hence continuous

transitions with a stricly positive duration are allowed again.

The model given above also allows stuttering transitions, i.e. a con-

tinuous transitions with a null duration (s0 = s). A fairness condition

is then needed in order to ensure actual progress. An alternative is to

replace s � s0 with s < s0 in (Gc).

fmsd-abr.tex; 18/07/2000; 13:20; p.15

16 J.-F. Monin

An interesting consequence of progress and of Inv is that the stan-

dardized algorithm is actually much better than the trivial algorithm

which just returns the maximum of the ERk. Indeed, if no RM cell is

received before tla, the value of ACR at tla will be Ela: by I�l we know

that tla cannot be later than s + �2 and by IEla, Ela is equal to the

last received ERn. Moreover, in this situation, ERn is precisely equal to

Acr(t) for t greater than s+ �2.

5. Discussion and Related Work

For engineers working in the context of standardization, theorem 1

is much more convincing than the similar theorem involving Approx

instead of Acr. However it is clear for us that the computational char-

acterization of Approx (lemma 4) is much more suited for reasoning

about algorithm B'. In a �rst attempt, we tried to prove directly the

invariant Inv using (1) and (2). This resulted in shallow areas and even

holes in the manual proof.

We also submitted the problem of the correctness of B' to other

research teams, in order to assess other approaches. It is too early (and

beyond the scope of this paper) to compare the results of these works,

we just give some hints. Model checking using classical and temporal

automata is experimented in the framework of FORMA1, a project

founded by the French government which aims at experimenting various

formal methods on industrial case studies. In the two �rst attempts, the

property to be checked corresponded to theorem 1, but modeling Acr

contributed to an explosion of the number of states. Moreover the tools

used|UPPAAL [7] and MEC [5]|allowed only �xed numeric values

for �2, �3 and ERi. Checking the algorithm could be carried through

for small values. Later on, good results within two di�erent frameworks

have been obtained by L. Fribourg [12] and B. B�erard [8], with speci�ca-

tions based on Approx instead of Acr. In one framework, they used the

parameterized temporized automata of Hytech [14], and in the other

an automated proof search procedure due to Revesz [21] was extended

to timed automata. In both cases �2, �3, etc. were symbolic parameters

and the desired property could be checked without the help of Inv. In

our case, Inv has been incrementally constructed while attempting to

prove Itfs and IUb1, following the steps given in appendix B. Note that

such calculations are boring and error prone: this is why we felt that the

proof should be checked with a proof assistant. Indeed, our experiment

with Coq [16] showed that one of the proofs of appendix B was wrong

1 http://www-verimag.imag.fr/FORMA

fmsd-abr.tex; 18/07/2000; 13:20; p.16

Proof of ABR Conformance 17

(but could be repaired, fortunately !). A detailed comparison between

the approaches mentioned above is done in [9].

A similar algorithm for ABR conformance is studied in [22]. This

algorithm handles a non bounded scheduling list. Its proof, which in-

volves intricate case analysis and inductive reasoning on lists, has been

supported by the PVS [18] theorem prover. The main design decision

was to write a �rst order speci�cation in order to exploit the automated

features of PVS. However the proof still requires around 80 lemmas.

The authors hope that many steps could be simpli�ed with the use of

more automated tools. Another direction, more akin to the spirit of

the work presented in this paper, would be to carry out a proof using

higher-order speci�cation and reasoning techniques, in order to derive

a proof that is more synthetic and therefore easier to grasp.

Finally, let us say a word on two attempts using B. Three years

ago, we (with G. Blorec) tried to use this method on this case study.

At �rst sight B should be well suited, because of our systematic use

of substitution calculus. But we failed to handle time and the very

notion of scheduler in a nice way; our speci�cation was heavy and many

proof obligations could not be discharged. Recently, Abrial worked on

this problem using an event oriented variant of B and he succeeded to

reconstruct an algorithm di�erent from the one standardized in I.371,

but where the design decisions are much clearer [3].

Our current feeling is that specialized procedures or methods can

discharge boring and painful parts in the veri�cation process, but are

really successful only on \predigested" speci�cations like Sc, in contrast

with Sd. On the other side, general purpose frameworks and tools like

type theory and Coq are helpful on the whole process but still re-

quire much more interaction from the user on the parts automatically

handled by specialized methods. Work is in progress for integrating

timed automa generalized with arbitrary types (including e.g. function)

and automated techniques within the same tool, in the framework of a

research project partially founded by the french government (Calife).

Acknowledgement

The problem has been submitted by Annie Gravey and Christophe

Rabadan, who is the main author of the algorithm studied in this doc-

ument. This work has bene�ted of interesting discussions with Francis

Klay. Many improvements are also due to the comments of anonymous

referees.

fmsd-abr.tex; 18/07/2000; 13:20; p.17

18 J.-F. Monin

Appendix

A. Pseudo-code for Algorithm B'

When real time reaches tk :

if tk < tfi then

if Emx � ERk then

if tfi < tk+�3 then

if tk+�3 < tla _ tfi = tla then

Emx := ERk jj Ela := ERk jj tla := tk+�3
else

Emx := ERk jj Ela := ERk

else

if ACR � ERk then

Emx := ERk jj Efi := ERk jj Ela := ERk

jj tfi := tk+�3 jj tla := tk+�3
else

Emx := ERk jj Efi := ERk jj Ela := ERk jj tla := tfi

else

if ERk < Ela then

Efi := Emx jj Ela := ERk jj tla := tk+�2
else

Efi := Emx jj Ela := ERk

else

if ACR � ERk then

Efi := ERk jj Ela := ERk jj Emx := ERk

jj tfi := tk+�3 jj tla := tk+�3
else

Efi := ERk jj Ela := ERk jj Emx := ERk

jj tfi := tk+�2 jj tla := tk+�2

When real time reaches tfi:

ACR := Efi jj tfi := tla jj Efi := Ela jj Emx := Ela

If tfi = tk, we run the algorithm for tfi, then the algorithm for tk.

fmsd-abr.tex; 18/07/2000; 13:20; p.18

Proof of ABR Conformance 19

B. Proof of Algorithm B'

Recall that (Ge) is utd = true

Case 1

if tk < tfi then if Emx � ERk then if tfi < tk+�3
then if tk+�3 < tla _ tfi = tla

then Emx := ERk jj Ela := ERk jj tla := tk+�3

Let S1 be the substitution S1
df
= Te jj Emx; Ela; tla := ERk;ERk; tk+�3:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tfi < tk+�3 ^ (G13)

(tk+�3 < tla _ tfi = tla)) (G14)

[S1]Inv:

Proof.We assume Inv, (Ge), (G11), (G12), (G13), (G14), and we prove

[S1]Inv.

� [S1]Imax, that is ERk = max(Efi;ERk): by Imax and (G12).

� [S1]I�l, that is tfi � tk+�3 � tk+�2: trivial from (G13).

� [S1]Itfs, that is tfi � tk) 8t; tk � t) Approx(k; t) � ACR:

absurd hypothesis, given (G11).

� [S1]IEt1, that is ACR < Efi) tfi � tk+�3: the conclusion comes

from (G13).

� [S1]IttE, that is tfi = tk+�3) Efi = ERk: absurd hypothesis,

given (G13).

� [S1]IUb1, that is 8t; tk � t < tfi) Approx(k; t) � ACR:

for t such that tk � t < tfi, we get t < tk+�3 by (G13), then

lemma 4 yields Approx(k; t) = Approx(k�1; t); we can then apply

IUb1, and �nally we get Approx(k; t) = Approx(k�1; t) � ACR.

� [S1]IUb2, that is 8t; tfi � t < tk+�3) Approx(k; t) � Efi:

�rst remark that Approx(k; t) = Approx(k�1; t) by lemma 4; (G14)

gives either tk+�3 < tla, or tfi = tla;

fmsd-abr.tex; 18/07/2000; 13:20; p.19

20 J.-F. Monin

� in the former case, Approx(k�1; t) � Efi by IUb2, hence the

result;

� in the latter case, IttE yields Efi = Ela, and tla = tfi � t

yields Approx(k�1; t) � Ela by IUb3, hence the result.

� [S1]IUb3, that is 8t; tk+�3 � t)Approx(k; t) � ERk:

we show 8t; tk+�3 � t)Approx(k; t) = ERk:

for t such that tk + �3 � t, we have tfi � t by (G13), then

Approx(k�1; t) � Emx � ERk by IApx and (G12); lemma 4 yields

either Approx(k; t) = max(Approx(k�1; t);ERk) or Approx(k; t) =

ERk; in both cases, we see that Approx(k; t) = ERk.

Case 2

if tk < tfi then if Emx � ERk then if tfi < tk+�3 then

if tk+�3 < tla _ tfi = tla then

else Emx := ERk jj Ela := ERk

nLet S2 be the substitution S2
df
= Te jj Emx; Ela := ERk;ERk.

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tfi < tk+�3 ^ (G13)

tla � tk+�3 ^ (G24)

tfi 6= tla) (G25)

[S2]Inv:

Proof. [S2]Imax, [S2]Itfs and [S2]IEt1, are proved as in case 1.

� [S2]I�l, that is tfi � tla � tk+�2: trivial from I�l (G24).

� [S2]IEt2, that is Efi < ERk)tla � tk+�3: the conclusion is (G24).

� [S2]IttE, that is tfi = tla) Efi = ERk: absurd hypothesis, given

(G25).

� [S2]IUb1, that is 8t; tk � t < tfi) Approx(k; t) � ACR: using

(G13), lemma 4 and IUb1, we have Approx(k; t) = Approx(k�1; t) �

ACR.

fmsd-abr.tex; 18/07/2000; 13:20; p.20

Proof of ABR Conformance 21

� [S2]IUb2, that is 8t; tfi � t < tla)Approx(k; t) � Efi:

Approx(k; t) = Approx(k�1; t) by lemma 4 and (G24);

Approx(k�1; t) � Efi by IUb2, hence the result.

� [S2]IUb3, that is 8t; tla � t)Approx(k; t) � ERk: we have tfi � t

by I�l, then Approx(k�1; t) � Emx � ERk by IApx and (G12); taking

M = ERk in lemma 5 gives Approx(k; t) � ERk.

Case 3

if tk < tfi then if Emx � ERk then if tfi < tk+�3 then

else if ACR � ERk then

Emx := ERk jj Efi := ERk jj Ela := ERk

jj tfi := tk+�3 jj tla := tk+�3

Let S3 be the substitution

S3
df
= Te jj Efi; Ela; Emx; tfi; tla := ERk;ERk;ERk; tk+�3; tk+�3:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tk+�3 � tfi ^ (G33)

ACR � ERk) (G34)

[S3]Inv:

Proof.

� [S3]IUb1, that is 8t; tk � t < tk+�3) Approx(k; t) � ACR: using

lemma 4 and IUb1, we have Approx(k; t) = Approx(k�1; t) � ACR.

� [S3]IUb3, that is 8t; tk+�3 � t)Approx(k; t) � ERk: we show

8t; tk+�3 � t) Approx(k; t) = ERk; we have either t < tfi or

tfi � t;

� in the �rst case, Approx(k�1; t) � ACR � ERk by IUb1; here

tk � t comes from tk � tk+�3 � t) and (G34);

� in the second case, Approx(k�1; t) � Emx � ERk by IApx and

(G12);

fmsd-abr.tex; 18/07/2000; 13:20; p.21

22 J.-F. Monin

hence Approx(k�1; t) � ERk is always true; using lemma 4 we get

Approx(k; t) = ERk for t such that tk+�3 � t.

Case 4

if tk < tfi then if Emx � ERk

then if tfi < tk+�3 then

else Emx := ERk jj Efi := ERk jj Ela := ERk jj tla := tfi

Let S4 be the substitution

S4
df
= Te jj Efi; Ela; Emx; tla := ERk;ERk;ERk; tfi:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tk+�3 � tfi ^ (G33)

ERk < ACR) (G44)

[S4]Inv:

Proof.

� [S4]I�l, that is tfi � tfi � tk+�2:

we have tfi � tn+�2 = tk�1+�2 � tk+�2 by I�l, de�nition of n

and (7).

� [S4]Itfs, that is tfi � tk) 8t; tk � t) Approx(k; t) � ACR:

hypothesis absurd, given (G11).

� [S4]IEt1, that is ACR < ERk) tfi � tk+�3: absurd hypothesis,

given (G44).

� [S4]IUb1, that is 8t; tk � t < tfi) Approx(k; t) � ACR:

by IUb1 and t < tfi, we have Approx(k� 1; t) � ACR; taking

M = ACR in lemma 5 and using (G44) yields Approx(k; t) � ACR.

� [S4]IUb3, that is 8t; tfi � t)Approx(k; t) � ERk: we show

8t; tfi � t) Approx(k; t) = ERk; for t such that tfi � t, we

have

Approx(k�1; t) � Emx � ERk by IApx and (G12); we have tk+

fmsd-abr.tex; 18/07/2000; 13:20; p.22

Proof of ABR Conformance 23

�3 � tfi � t by (G33), then lemma 4 yields either Approx(k; t) =

max(Approx(k�1; t);ERk)

or Approx(k; t) = ERk; in both cases, we see that Approx(k; t) =

ERk.

Case 5

if tk < tfi then if Emx � ERk then else if ERk < Ela

then Efi := Emx jj Ela := ERk jj tla := tk+�2

Let S5 be the substitution

S5
df
= Te jj Efi; Ela; tla := Emx;ERk; tk+�2:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

ERk < Emx ^ (G52)

ERk < Ela) (G53)

[S5]Inv:

Proof. [S5]I�l and [S5]Itfs are similar to [S4]I�l and [S4]Itfs

� [S5]Imax, that is Emx = max(Emx;ERk): by (G52).

� [S5]IEt1, that is ACR < Emx) tfi � tk+�3: we have Efi < Ela or

Ela � Efi;

{ in the �rst case, tfi � tla � tn+�3 by I�l and IEt2;

{ in the second case, Emx = Efi, then tfi � tn+�3 by IEt1 and

Imax;

in both cases, tfi � tk�1+�3 � tk+�3 by de�nition of n and (7).

� [S5]IEt2, that is Emx < ERk) tk+�2 � tk+�3:

the hypothesis Emx < ERk is absurd given (G52).

� [S5]IttE, that is tfi = tk+�2) Emx = ERk:

we have tfi � tn+�2 = tk�1+�2 < tk+�2 by I�l, de�nition of n

and (7); then the hypothesis tfi = tk+�2 is absurd.

� [S5]IUb1, that is 8t; tk � t < tfi) Approx(k; t) � ACR:

by IUb1 and t < tfi, we have Approx(k�1; t) � ACR; we also have

tfi � tk+�3 or tk+�3 < tfi;

fmsd-abr.tex; 18/07/2000; 13:20; p.23

24 J.-F. Monin

� in the �rst case, Approx(k; t) = Approx(k�1; t) � ACR by

lemma 4;

� in the second case, ERk < Emx � ACR by (G52) and contrapo-

sition of [S5]IEt1 shown above; taking M = ACR in lemma 5

yields

Approx(k; t) � ACR.

� [S5]IUb2, that is 8t; tfi � t < tk+�2) Approx(k; t) � Emx:

for t such that tfi � t, we have Approx(k�1; t) � Emx, by IApx;

taking M = Emx in lemma 5 and using (G52) yields Approx(k; t) �

Emx.

� [S5]IUb3, that is 8t; tk+�2 � t)Approx(k; t) � ERk:

by lemma 4, we have 8t; tk+�2 � t)Approx(k; t) = ERk.

Case 6

if tk < tfi then if Emx � ERk then else if ERk < Ela then

else Efi := Emx jj Ela := ERk

Let S6 be the substitution

S6
df
= Te jj Efi; Ela := Emx;ERk:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

ERk < Emx ^ (G52)

Ela � ERk) (G63)

[S6]Inv:

Proof. [S6]IEt1 and [S6]IEt2 are similar to [S5]IEt1 and [S5]IEt2.

� [S6]Imax, that is Emx = max(Emx;ERk): by (G52).

� [S6]I�l, that is tfi � tla � tk+�2: we have

tfi � tla � tn+�2 = tk�1+�2 � tk+�2 by I�l, de�nition of n and

(7).

� [S6]Itfs, that is tfi � tk) 8t; tk � t) Approx(k; t) � ACR:

the hypothesis is absurd given (G11).

fmsd-abr.tex; 18/07/2000; 13:20; p.24

Proof of ABR Conformance 25

� [S6]IttE, that is tfi = tla) Emx = ERk:

we use a weakened form of (G52):

ERk � Emx; (G520)

assuming tfi = tla, we have Efi = Ela = Emx by Imax, then

Emx = Ela � ERk by (G63); Emx � ERk and (G520) yields Emx =

ERk.

� [S6]IUb1, that is 8t; tk � t < tfi) Approx(k; t) � ACR:

by IUb1 and t < tfi, we have Approx(k�1; t) � ACR; we also have

tfi � tk+�3 or tk+�3 < tfi;

� in the �rst case, Approx(k; t) = Approx(k�1; t) � ACR by

lemma 4;

� in the second case, ERk < Emx � ACR by (G52) and contrapo-

sition of [S6]IEt1 shown above; taking M = ACR in lemma 5

yields

Approx(k; t) � ACR.

� [S6]IUb2, that is 8t; tfi � t < tla)Approx(k; t) � Emx:

for t such that tfi � t, we have Approx(k�1; t) � Emx, by IApx;

taking M = Emx in lemma 5 and using (G52) yields Approx(k; t) �

Emx.

� [S6]IUb3, that is 8t; tla � t)Approx(k; t) � ERk:

for t such that tla � t, we have Approx(k�1; t) � Ela � ERk by

IUb3 and (G63); taking M = ERk in lemma 5 yields Approx(k; t) �

ERk.

Note that if we can ensure tk+�3 � tla � t, we can show

8t; tla � t)Approx(k; t) = ERk.

Case 7

if tk < tfi then else if ACR � ERk then

Efi := ERk jj Ela := ERk jj Emx := ERk

jj tfi := tk+�3 jj tla := tk+�3

Let S7 be the substitution

S7
df
= Te jj Efi; Ela; Emx; tfi; tla := ERk;ERk;ERk; tk+�3; tk+�3:

This transition is correct if :

Inv ^ (Ge) ^

fmsd-abr.tex; 18/07/2000; 13:20; p.25

26 J.-F. Monin

tfi � tk ^ (G71)

ACR � ERk) (G72)

[S7]Inv:

Proof.

� [S3]IUb1, that is 8t; tk � t < tk+�3)Approx(k; t) � ACR:

we remark that utd = true by (Ge) and tfi � s by (G71), then

Approx(k�1; t) � ACR by Itfs; using lemma 4 we get Approx(k; t) =

Approx(k�1; t), hence Approx(k; t) � ACR.

� [S3]IUb3, that is 8t; tk+�3 � t)Approx(k; t) � ERk:

we show 8t; tk+�3 � t) Approx(k; t) = ERk; we remark that

utd = true by (Ge) and tfi � s by (G71), then Approx(k�1; t) �

ACR � ERk by Itfs; here tk < t comes from tk < tk+�3 � t) and

(G72); using the assumption tk+�3 � t and lemma 4, we know

that Approx(k; t) is either equal to max(Approx(k�1; t);ERk) or

to ERk, that is, in both cases, to ERk.

Case 8

if tk < tfi then else if ACR � ERk then else

Efi := ERk jj Ela := ERk jj Emx := ERk

jj tfi := tk+�2 jj tla := tk+�2

Let S8 be the substitution

S8
df
= Te jj Efi; Ela; Emx; tfi; tla := ERk;ERk;ERk; tk+�2; tk+�2:

This transition is correct if :

Inv ^ (Ge) ^

tfi � tk ^ (G71)

ERk < ACR) (G82)

[S8]Inv:

Proof.

� [S8]Itfs and [S8]IUb2 are similar to [S7]Itfs and [S7]IUb2, replacing

�3 with �2.

fmsd-abr.tex; 18/07/2000; 13:20; p.26

Proof of ABR Conformance 27

� [S8]IEt1, that is ACR < ERk) tk+ �2 � tk+ �3: the hypothesis

ACR < ERk is absurd given (G82).

� [S8]IUb1, that is 8t; tk � t < tk+�2)Approx(k; t) � ACR:

for t such that tk � t, we have utd = true by (Ge) and tfi � s by

(G71), then

Approx(k�1; t) � ACR by Itfs; taking M = ACR in lemma 5 and

using (G82) yields Approx(k; t) � ACR.

� [S8]IUb3, that is 8t; tk+�2 � t)Approx(k; t) � ERk:

by lemma 4, we have 8t; tk+�2 � t)Approx(k; t) = ERk.

References

1. `TraÆc control and congestion control in B-ISDN'. ITU-T. Recommendation

I.371.1.

2. Abrial, J.-R.: 1996, The B-Book: Assigning Programs to Meanings. Cambridge
University Press.

3. Abrial, J.-R.: 1999, `D�eveloppement de l'algorithme ABR'. Personal commu-

nication.

4. Alur, R. and D. L. Dill: 1994, `A theory of timed automata'. Theoretical
Computer Science 126(2), 183{235.

5. Arnold, A.: 1990, `MEC: A System for Constructing and Analysing Transition
Systems'. In: J. Sifakis (ed.): Proceedings of the International Workshop on
Automatic Veri�cation Methods for Finite State Systems, Vol. 407 of LNCS.
Berlin, pp. 117{132.

6. Barras, B. and all: 1997, `The Coq Proof Assistant Reference Manual : Version

6.1'. Technical Report RT-0203, INRIA.

7. Bengtsson, J., K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi: 1996,

`UPPAAL: a tool suite for the automatic veri�cation of real-time systems'.

In: R. Alur, T. A. Henzinger, and E. D. Sontag (eds.): Hybrid Systems III, Vol.
1066 of Lecture Notes in Computer Science. pp. 232{243.

8. B�erard, B. and L. Fribourg: 1999, `Automated veri�cation of a parametric

real-time program: the ABR conformance protocol'. In: CAV'99. To appear.
9. B�erard, B., L. Fribourg, F. Klay, and J.-F. Monin: 1999, `A compared study of

two correctness proofs for the standardized algorithm of ABR conformance'.

Report LSV-99-7, ENS de Cachan.

10. Clark, D., E. M. Emerson, and A. P. Sistla: 1983, `Automatic veri�cation

of �nite state concurrent systems using temporal logic speci�cations: a prac-

tical approach'. In: Proc. 10th ACM Symp. on Principles of Programming
Languages.

11. Dijkstra, E. W.: 1976, A Discipline of Programming. Prentice-Hall, Englewood
Cli�s, NJ.

12. Fribourg, L.: 1998, `A Closed-Form Evaluation for Extended Timed Au-

tomata'. Research Report LSV-98-2, Lab. Speci�cation and Veri�cation, ENS
de Cachan, Cachan, France. 17 pages.

fmsd-abr.tex; 18/07/2000; 13:20; p.27

28 J.-F. Monin

13. Halbwachs, N.: 1993, Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers.

14. Henzinger, T. A., P.-H. Ho, and H. Wong-Toi: 1997, `HYTECH: A model

checker for hybrid systems'. Lecture Notes in Computer Science 1254, 460{463.
15. Jard, C., J.-F. Monin, and R. Groz: 1988, `Development of Veda, a Prototyping

Tool for Distributed Algorithms'. IEEE Transactions on Software Engineering
14(3), 339{352.

16. Monin, J.-F.: 1998, `Proving a real time algorithm for ATM in Coq'. In: E.

Gimenez and C. Paulin-Mohring (eds.): Types for Proofs and Programs, Vol.
1512 of LNCS. Springer Verlag, pp. 277{293.

17. Monin, J.-F. and F. Klay: 2000, `Correctness Proof the Standardized Algorithm

for ABR Conformanc'. In: J. Wing, J. Woodcock, and J. Davies (eds.): FM'99,
Vol. 1708 of LNCS. Springer Verlag, pp. 662{681.

18. Owre, S., J. M. Rushby, and N. Shankar: 1992, `PVS: A prototype veri�cation

system'. In: D. Kapur (ed.): 11th International Conference on Automated
Deduction (CADE), Vol. 607 of LNCS. Springer Verlag, pp. 748{752.

19. Queille, J. P. and J. Sifakis: 1982, `Speci�cation and Veri�cation of Concurrent

Systems in CESAR'. In: Proc. 5th Int'l Symp. on Programming, Lecture Notes
in Computer Science, Vol. 137. Berlin/New York: SV, pp. 337{371.

20. Rabadan, C.: 1997, `L'ABR et sa conformit�e'. NT DAC/ARP/034, CNET.

21. Revesz, P. Z.: 1993, `A closed-form evaluation for Datalog queries with integer

(gap)-order constraints'. Theoretical Computer Science 116(1), 117{149.
22. Rusinowitch, M., S. Stratulat, and F. Klay: 1999, `Mechanical Veri�cation of

a Generic Incremental ABR Conformance Algorithm'. Technical Report RT-

3794, INRIA.

fmsd-abr.tex; 18/07/2000; 13:20; p.28

