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Abstract. Conformance control for ATM cells is based on a real-time

reactive algorithm which delivers a value depending on inputs from the

network. This value must always agree with a well de�ned theoretical

value. We present here the correctness proof of the algorithm standard-

ized for the ATM transfer capability called ABR. The proof turned out

a key argument during the standardization process of ABR.

1 Introduction

We want to present in this paper an unusual (at least to our knowledge) ap-

plication of formal methods in telecommunications, though it is closely related

to a protocol. There is now quite a long tradition in using formal languages in

this area, even standardized ones. They are based on communicating (extended)

�nite state machines (e.g. Estelle, SDL, Promela) or process algebra (e.g. Lotos).

Veri�cation based on model checking [16, 8] or simulation [14] has also been suc-

cessfully employed. Typically, you model the protocol at hand, using one of the

above formalisms, and then you try to verify that bad things like unexpected

messages, deadlocks and so on never happen. To this e�ect you may use tempo-

ral logic formulas or observers and automated veri�cation tools. This approach

turns out very useful because the global behavior of a system made of several

concurrent components is di�cult to grasp.

In the problem we deal with here, complexity does not lie in parallelism or

message interleaving, but in a single sequential, short, real-time and reactive

algorithm. This algorithms runs on a key device for an ATM Transfer Capa-

bility called ABR (see below). It handles a small scheduler and delivers a value

which depends on inputs from the network. We essentially have to prove that the

value delivered by the device always agrees with (more precisely: is not smaller

than) a theoretical value whose computation is not feasible under realistic as-

sumptions. The correctness proof presented here has been a key argument in the

standardization process of ABR.

The technique used is basically the calculus of weakest preconditions. How-

ever real time comes into the picture: not only the mathematical expression of

the problem involves functions of the time, but invariants themselves involve

such functions: a scheduler predicts values in the future. In order to make the



result as convincing as possible (a must in the context of standardization) we

do not hesitate to make proof steps explicit and before anything we start from

a very simple and declarative speci�cation Sd. At a later stage, we describe the

state space of the device under study, as well as associated invariants. Unfor-

tunately speci�cation Sd is technically not well suited to the correctness proof.

A bit of theory has to be developed, in order to get an equivalent but more

tractable computational speci�cation Sc. The invariant to be proved is then

stated in terms of Sc and the proof can be carried out thanks to preliminary

lemmas related to Sc. This paper aims at giving the details of this work. Note

that the speci�cation and the whole proof have been completely formalized with

Coq [5], an automated proof assistant based on type theory [15].

The rest of this paper is organized as follows. Section 2 describes the problem

as well as the stakes for telecommunications. Section 3 states the speci�cations

called Sd and Sc above and explains how to get the latter from the former. Section

4 describes the state space with its invariant and sketches the main steps of the

proof (the standardized algorithm and technical details of its correctness proof

are respectively given in appendix A and B). We end with concluding remarks

and related work in section 5.

2 Context and Motivation

2.1 Conformance Control in ATM

In an ATM (Asynchronous Transfer Mode) network, data packets (cells) sent

by a user must not exceed a rate which is de�ned by a contract negotiated

between the user and the network. Several modes for using an ATM network,

called \ATM Transfer Capabilities" (ATCs) have been de�ned. Each ATC may

be seen as a generic contract between the user and the network, saying that the

network must guarantee the negotiated quality of service (QoS), de�ned by a

number of characteristics like maximum cell loss or transfer delay, provided the

cells sent by the user conform to the negotiated tra�c parameters (for instance,

their rate must be bounded by some value). The conformance of cells sent by

the user is checked using an algorithm called GCRA (generic control of cell rate

algorithm). In this way, the network is protected against users misbehaviors and

keeps enough resources for delivering the required QoS to well behaved users.

In fact, a new ATC cannot be accepted (as an international standard) with-

out an e�cient conformance control algorithm, and some evidence that this

algorithm has the intended behavior.

For the ATC called ABR (Available Bit Rate), considered here, a simple but

ine�cient algorithm had been proposed in a �rst stage. Reasonably e�cient al-

gorithms proposed later turned out to be fairly complicated. This situation has

been settled when one of them, due to Christophe Rabadan, has been proved

correct in relation to the simple one: this algorithm is now part of the I.371.1

standard [13]. The �rst version of the proof was hand written. The main invari-

ants discovered during this process are included in I.371.1. Later on, the proof

has been completely formalized and mechanically veri�ed with Coq [5].



2.2 The Case of ABR

In some of the most recently de�ned ATCs, like ABR, the allowed cell rate

(ACR) may vary during the same session, depending on the current congestion

state of the network. Such ATCs are designed for irregular sources, that need

high cell rates from time to time, but that may reduce their cell rate when the

network is busy. A servo-mechanism is then proposed in order to let the user

know whether he can send data or not. This mechanism has to be well de�ned,

in order to have a clear tra�c contract between user and network. The key is an

adaptation of the public algorithm for checking conformance of cells.

update

DGCRA

resource management cell

user network
ACR

data cell

Fig. 1. conformance control

An abstract view of the protocol ABR is given in �g. 1 (actually, resource

management (RM) cells are sent by the user, but only their transmission from

the network to the user is relevant here; details are available in [17]). The confor-

mance control algorithm for ABR has two parts. The �rst one is called DGCRA

(dynamic GCRA). It just checks that the rate of data cells emitted by the user is

not higher than a value which is approximately Acr, the allowed cell rate. Excess

cells may be discarded by DGCRA. Note that, in the case of ABR, Acr depends

on time: its value has to be known each time a new data cell comes from the

user. This part is quite simple and is not addressed here. The complexity lies in

the computation of Acr(t) (\update" in �g. 1), which depends on the sequence

of values (ERn) carried by resource management cells coming from the network.

By a slight abuse of notation, the cell carrying ERn will be called itself ERn.

Of course, Acr(t) depends only on cells ERn whose arrival time tn is such

that tn < t (we order resource management cells so that tn < tn+1 for any n). In

ABR, a resource management cell carries a value of Acr, that should be reached



as soon as possible. At �rst sight, Acr(t) should then be simply the last ERi

received at time t, i.e. ERi with i = last(t), where last(x) is the only integer

such that ti � x < ti+1. Unfortunately, because of electric propagation time and

various transmission mechanisms, the user is aware of this expected value only

after a delay. Taking the user's reaction time � observed by the control device

into consideration, that is, the overall round trip time between the control device

and the user, Acr(t) should then be ERi with i = last(t� �). But � may vary in

turn. ITU-T considers that a lower bound �3 and an upper bound �2 for � are

established during the negotiation phase of each ABR connection. Hence, a cell

arriving from the user at time t on DGCRA may legitimately have been emitted

using any rate ERi such that i is between last(t� �2) and last(t� �3). Any rate

less than or equal to any of these values, or, equivalently less than or equal to

the maximum of them, should then be allowed. Therefore, Acr(t) is taken as the

maximum of these ERi.

Actually the standards committee did not give these explanations, but di-

rectly speci�ed the set of ERi under the equivalent form (2) below.

2.3 E�ective Computation of Acr(t)

ITU-T committee considered that a direct computation of Acr(t) is not feasible

at reasonable cost with current technologies: it would amount to compute the

maximum of several hundreds integers each time a cell is received from the user.

However, it is not di�cult to see that Acr(t) is constant on any interval that

contains no value among ftn + � j � = �2 _ � = �3g. In other words, Acr(t) is

determined by a sequence of values. It then becomes possible to use a scheduler

handling future changes of Acr(t). This scheduler is updated when a new cell

ERn is received. Roughly, if s is the current time, ERn will be taken into account

at time s+ �3, while ERn�1 will not be taken into account after s+ �2.

The control conformance algorithm considered here exploits this idea, with

the further constraint that only a small amount of memory is allocated to the

scheduler. This means that some information is lost. Filtering is performed in

such a way that the actual value of Acr(t) is greater or equal to its theoretical

value, as de�ned above.

3 Ideal ACR

3.1 Declarative Speci�cation

The declarative speci�cation (Sd in the introduction) of the ideal value or Acr

is given by (1) and (2) under assumption (3). We are given a sequence of RM

cells (ERi) whose arrival date are respectively (ti); the desired allowed cell rate

at time t is de�ned by :

Acr(t) = maxfERi j i 2 I(t)g; (1)



where I is the interval de�ned by :

i 2 I(t) i� (t� �2 < ti � t� �3) _ (ti � t� �2 < ti+1) : (2)

The ti are taken in increasing order :

t1 < t2 < : : : tn < : : : (3)

The following equivalent characterization of I(t) is easier to handle:

i 2 I(t) i� ti + �3 � t < ti+1 + �2 (4)

The initial (ine�cient) ABR conformance control algorithm was a direct com-

putation of Acr according to (1).

3.2 Speci�cation Using only Finite Knowledge

In practice, only �nite pre�xes of the sequence (ti) are available. Then we have

to take into account that, given a list l of length ]l of RM cells (ERi) whose

arrival date are respectively (ti), ti+1 makes sense only for i < ]l. However, if we

consider that t]l+1 = 1, (4) boils down to ]l 2 I(t) i� t]l � t � �3. With this

intuition in mind we introduce

Approx(l; t) = maxfERi j i 2 Ia(l; t)g; (5)

where Ia(l; t) is similar to I(t):

i 2 Ia(l; t) i�

8<
:

i 2 I(t) ^ i < ]l

_
ti � t� �3 ^ i = ]l :

(6)

The list l we consider depends on time : l(s) contains all indices i such that ti � s,

where s represents the current time. The following lemma, whose meaning is that

it is enough to compute Approx(l(s); t), is easy to prove :

Lemma 1.

(i) The value of Approx at t becomes stable after t� �3:

8s � t� �3; Approx(l(s); t) = Approx(l(t� �3); t) :

(ii) Approx(l(s); t) is an exact approximation of Acr(t) for s � t� �3:

8t; Acr(t) = Approx(l(t� �3); t) :

Unless otherwise stated s will remain implicit in the following : we will note

just l instead of l(s). In the same way, variables like Efi (see below) actually

handled by the algorithm denote a value that also depends on s, but will be

noted just Efi. We also assume without loss of generality that ER0 is equal to



the initial value of Acr; if the algorithm starts at s0, this amounts to stating

t0 = s0 � �3 and for i > 0, ti > s0:

t0 = s0 � �3 < s0 < t1 < t2 < : : : t]l : (7)

Note that hereafter, ]l is the number of the last element of l.

The will use the following explicit characterization of Ia(l; t):

i 2 Ia(l; t) i�

8<
:

ti + �3 � t < ti+1 + �2 ^ i < ]l

_
ti + �3 � t ^ i = ]l :

(8)

In particular, for t0 � t � t]l + �3, we have i 2 Ia(l; t
0) implies i 2 Ia(l; t), hence

the following lemma :

Lemma 2. Approx(l; t) is decreasing after t]l + �3:

8t; t0; t]l + �3 � t � t0) Approx(l; t0) � Approx(l; t) :

It is also easy to see that for any t greater than t]l + �2, the only i of Ia(l; t)

is ]l, hence the following lemma :

Lemma 3.

8t; t]l + �2 � t ) i 2 Ia(l; t) i� i = ]l; (9)

8t; t]l + �2 � t ) Approx(l; t) = ER]l: (10)

3.3 Computing Approx in an Incremental Way

Initially (at time s0 = t0 + �3), we have l = ht0i. The characterization (8) of Ia
yields then

i 2 Ia(ht0i; t) i� s0 � t ^ i = 0 :

Then we get (as desired):

8t; s0 � t ) Approx(ht0i; t) = ER0 : (11)

We now consider the adjunction of a new tn at the end of l. The new list

is denoted by l_tn, and we have n = ]l + 1 = ](l_tn). Three cases have to

be considered : i < n�1, i = n�1 and i = n. We can further assume that

t < tn + �2, because lemma 3 gives us directly the result if tn + �2 � t. The

assumption t < tn + �2 is especially useful for i = n�1. Using (8) we see that

{ for i < n�1, i 2 Ia(l; t) i� ti + �3 � t < ti+1 + �2 i� i 2 Ia(l
_tn; t),

{ for t < tn + �2, n�1 2 Ia(l; t) i� tn�1 + �3 � t i� n�1 2 Ia(l
_tn; t),

{ n 2 Ia(l
_tn; t) i� tn + �3 � t.



Hence we can verify that :

{ for t < tn + �3, i 2 Ia(l
_tn; t) i� i 2 Ia(l; t),

{ for tn + �3 � t < tn + �2, i 2 Ia(l
_tn; t) i� i 2 Ia(l; t) _ i = n,

{ for tn + �2 � t, i 2 Ia(l
_tn; t) i� i = n (by (9)).

Thus we get the following way of computing the value of Approx(l_tn; t)

from the value of Approx(l; t) (this what we called Sc in the introduction):

Lemma 4. The value of Approx(l_tn; t) is given by :

t < tn + �3 tn + �3 � t < tn + �2 tn + �2 � t

Approx(l_tn; t) Approx(l; t) max(Approx(l; t);ERn) ERn .

A simple but useful consequence of lemma 4 is :

Lemma 5.

8 l; t; tn;ERn;M;

Approx(l; t) �M ^ ERn �M ) Approx(l_tn; t) �M: (12)

4 Proof of Algorithm B'

The enhanced algorithm B proposed by CNET (hereafter called B') computes

an upper bound of Approx. More precisely, at the current instant s, the state

e(s) handled by B' de�nes a function Ub(e(s); t) greater than Approx(l(s); t) for

any t � s and not de�ned for t < s.

Running the algorithm consists of changing the state e into a e0. Such a step

is called a transition. Here we have essentially two kinds of transitions: the �rst

is �red when receiving a new RM cell, the second is �red when the current time

reaches the date for a scheduled event.

We basically use standard calculus of weakest preconditions [9] with notations

taken from B [1]. Our treatment of time is inspired by timed automata of [3]

and the synchrony hypothesis of synchronous languages [11]. We assume that

our system reacts more quickly than its environment : state transitions induced

by the arrival of a RM cell or due to the scheduler are �nished before the arrival

of a new RM cell. This assumption depends on the technology used in the real

device and can be checked on it. It is then safe to consider that a transition takes

no time. Timed automata consider two kinds of transitions: \continuous" ones

concerning time evolution (modeled by clocks) and \discrete" ones concerning

the state.

Here we just need to assume the existence of an external clock, with an

internal value s that can be read but not written by programming means. We

model the progress of time by an implicit assignment

s := current date;



for instance s := tk when the kth RM cell is received. The new value of s cannot

be smaller than its old value, and we also constrain the new value in a way such

that no event arose in the meantime (we assume that the scheduler is reliable).

Formally, we consider transitions of the form

hs; ei �! hs0; e0i

with s � s0 and such that nothing happened between s and s0, and where e0 is

the new state obtained from s after running a transition of algorithm B'. This

is made explicit in assumptions (Ge) and (Gi) below. It may happen that an

internal event is scheduled at a time tk. In that case, the internal event has to

be handled �rst.

Transitions are modeled by program assignments or \generalized substitu-

tions" in the terminology of B.

4.1 Components of the State

The state e is made of 5 variables :

{ ACR, the current ACR;

{ Efi, the next ACR if nothing new happens;

{ tfi, the date at which Efi will be active if nothing new happens;

{ Ela, containing the value of the last known order (ER]l);

{ tla, the date at which Ela will be active if nothing new happens.

As an optimization trick, there is a sixth variable Emx whose value is just the

maximum of Efi and Ela.

4.2 Transitions

The algorithm reacts either when receiving a new ERn, i.e. when the current

time reaches tn (this is called an external event in the sequel), or when the

current time reaches tfi (this is called an internal event in the sequel). Each

transition changes the current state; an internal event is scheduled if and only if

tfi is greater than the current time.

4.3 Invariant

Here we want to ensure that B' provides an ACR which cannot be less than the

ideal value Acr(s). To this e�ect we prove that the following property is invariant.

The current time is noted s.

Approx(l; s) � ACR (Imain)



Imain is itself a consequence of the following conjunction.

Emx = max(Efi; Ela) (Imax)

Ela = ER]l (IEla)

tfi � tla � t]l+�2 (I�l)

tfi � s ) 8t; s � t ) Approx(l; t) � ACR (Itfs)

ACR < Efi ) tfi � t]l+�3 (IEt1)

Efi < Ela ) tla � t]l+�3 (IEt2)

tfi = tla ) Efi = Ela (IttE)

8t s � t < tfi ) Approx(l; t) � ACR (IUb1)

8t tfi � t < tla ) Approx(l; t) � Efi (IUb2)

8t tla � t ) Approx(l; t) � Ela : (IUb3)

We de�ne

Inv = Imax ^ IEla ^ I�l ^ Itfs ^ IEt1 ^ IEt2 ^ IttE ^ IUb1 ^ IUb2 ^ IUb3:

Invariants IUb1, IUb2 and IUb3 mean that Approx(l; t) � Ub(e; t) for t � s,

where the function Ub(e; t) is de�ned by: Ub(e; t) = ACR for s � t < tfi,

Ub(e; t) = Efi for tfi � t < tla, Ub(e; t) = Ela for tla � t. In the sequel

we use the following consequence of Imax, IUb2 and IUb3:

8t tfi � t ) Approx(l; t) � Emx : (IApx)

Lemma 6. Inv implies Imain.

Proof. We have either tfi � s or s < tfi. Apply respectively Itfs and IUb1 with

t = s.

4.4 Initial State

Initially we have l = ht0i, ]l = 0 and we want to show that Inv is true in the

initial state de�ned by:

tfi = tla = s0; ACR = Emx = Efi = Ela = ER0 (initial value of Acr):

Formally, we consider the substitution S0:

S0
df
= l; ACR; Emx; Efi; Ela; tfi; tla := ht0i;ER0;ER0;ER0;ER0; s0; s0

and we show [S0]Inv. The proof is very easy.

4.5 External Event

Let s be the current time. Let k be an abbreviation for ]l + 1. We consider a

transition from s to s0 = tk (and consistently of e(s) to e(tk)) only if s � tk



and there is no internal event between s and tk. Formally, the following guard is

taken for granted:

s � tk ^ (tfi � s _ tk < tfi): (Ge)

At time tk, the list l becomes then l_tk. Formally, the following substitution is

always taken into account:

Te
df
= s; l := tk; l

_tk:

The complete pseudo-code and the proof are given is appendixes A and B.

4.6 Internal Event

Let s be the current time. We consider a transition from s to s0 = tfi (and

consistently of e(s) to e(tfi)) only if s < tfi and there is no external event

between s and tfi. Formally, the following guard is taken for granted:

t]l � s � tfi � t]l+1: (Gi)

The substitution Ti
df
= s := tfi. is also taken into account. Let Si be the

substitution

Si
df
= Ti jj ACR; tfi; Efi; Emx := Efi; tla; Ela; Ela:

In appendix B we show: Inv ^ (Gi)) [Si]Inv.

4.7 Observing Intermediate States

Let s be the current time. We consider a transition from hs; ei to hs0; ei only if

s � s0 and there is no event between s and s0. Actually s0 may be equal to tk but

must remain less than tfi (when real time reaches tfi, Si must run). Formally,

the following guard is taken for granted:

s � s0 ^ (tfi � s _ s0 < tfi) ^
(8i; ti � s _ s0 � ti) ^ s = t]l+1 ) s0 = t]l+1:

(Go)

The transition is modeled by the substitution: To df
= s := s0. In appendix B we

show Inv ^ (Go)) [To]Inv.

4.8 Main theorem

Our main result is an easy consequence of previous lemmas.

Theorem 1. At any time s we have Acr(s) � ACR.

Proof. Using lemma 1 we know that Acr(s) = Approx(l; s). As Inv is actually

an invariant, lemma 6 yields Approx(l; s) � ACR, hence the result.



5 Discussion and Related Work

For engineers working in the context of standardization, theorem 1 is much more

convincing than the similar theorem involving Approx instead of Acr. However

it is clear for us that the computational characterization of Approx (lemma 4)

is much more suited for reasoning about B'. In a �rst attempt, we tried to prove

directly the invariant Inv using (1) and (2). This resulted in shallow areas and

even holes in the manual proof.

We also submitted the problem of the correctness of B' to other research

teams, in order to assess other approaches. It is too early (and beyond the

scope of this paper) to compare the results of these works, we just give some

hints. Model checking using classical and temporal automata is experimented in

the framework of FORMA (http://www-verimag.imag.fr/FORMA), a project

founded by the French government which aims at experimenting various for-

mal methods on industrial case studies. In the two �rst attempts, the property

to be checked corresponded to theorem 1, but modeling Acr contributed to

an explosion of the number of states. Moreover the tools used|UPPAAL [6]

and MEC [4]|allowed only �xed numeric values for �2, �3 and ERi. Checking

the algorithm could be carried through for small values. Later on, good results

within two di�erent frameworks have been obtained by L. Fribourg [10] and B.

B�erard [7], with speci�cations based on Approx instead of Acr. In one frame-

work, they used the parameterized temporized automata of Hytech [12], and in

the other an automated proof search procedure due to Revesz [18] was extended

to timed automata. In both cases �2, �3, etc. were symbolic parameters and the

desired property could be checked without the help of Inv. In our case, Inv has

been incrementally constructed while attempting to prove Itfs and IUb1, follow-

ing the steps given in appendix B. Note that such calculations are boring and

error prone: this is why we felt that the proof should be checked with a proof

assistant. Indeed, our experiment with Coq [15] showed that one of the proofs

of appendix B was wrong (but could be repaired, fortunately !). A detailed com-

parison between the approaches mentioned above will be done in a forthcoming

paper.

Finally, let us say a word on two attempts using B. At CNET we (with G.

Blorec) tried to use this method on this case study two years ago. At �rst sight

B should be well suited, because of our systematic use of substitution calculus.

But we failed to handle time and the very notion of scheduler in a nice way;

our speci�cation was heavy and many proof obligations could not be discharged.

Recently, Abrial worked on this problem using an event oriented variant of B and

he succeeded to reconstruct an algorithm di�erent from the one standardized in

I.371, but where the design decisions are much clearer [2].

Our current feeling is that specialized procedures or methods can discharge

boring and painful parts in the veri�cation process, but are really successful

only on \predigested" speci�cations like Sc, in contrast with Sd. On the other

side, general purpose frameworks and tools like type theory and Coq are helpful

on the whole process but still require much more interaction from the user on



the parts automatically handled by specialized methods. Work is in progress for

integrating both kind of techniques in the same tool.
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A Pseudo-code for Algorithm B'

When real time reaches tk :

if tk < tfi then

if Emx � ERk then

if tfi < tk+�3 then

if tk+�3 < tla _ tfi = tla then

Emx := ERk jj Ela := ERk jj tla := tk+�3
else

Emx := ERk jj Ela := ERk

else

if ACR � ERk then

Emx := ERk jj Efi := ERk jj Ela := ERk jj tfi := tk+�3 jj tla := tk+�3
else

Emx := ERk jj Efi := ERk jj Ela := ERk jj tla := tfi

else

if ERk < Ela then

Efi := Emx jj Ela := ERk jj tla := tk+�2
else

Efi := Emx jj Ela := ERk

else

if ACR � ERk then

Efi := ERk jj Ela := ERk jj Emx := ERk jj tfi := tk+�3 jj tla := tk+�3
else

Efi := ERk jj Ela := ERk jj Emx := ERk jj tfi := tk+�2 jj tla := tk+�2

When real time reaches tfi:

ACR := Efi jj tfi := tla jj Efi := Ela jj Emx := Ela

If tfi = tk, we run the algorithm for tfi, then the algorithm for tk.



B Proof of Algorithm B'

Remark 1. Proof obligations concerning the preservation of Itfs and of IUb1 have

the form [Sn] : : : s � t) : : : , where Sn includes Te: we then have to prove : : : tk �
t) : : : Under the assumption (Ge), tk � t yields in fact s � t, we may apply

hypotheses of the form : : : s � t) : : : if Inv holds at time s.

Remark 2. We consider proof obligations of the form [S]Inv, where [S] is a sub-

stitution. It is decomposed into [S]Imax, [S]IEla, [S]I�l, [S]Itfs, [S]IEt1, [S]IEt2,

[S]IttE, [S]IUb1, [S]IUb2 and [S]IUb3. Some of them are immediate, for instance

Efi < ERk ) tk+�3 � tk+�3 or Ela < Ela) tla � t]l+�3. They are skipped

in order to save space.

Case 1

if tk < tfi then if Emx � ERk then if tfi < tk+�3
then if tk+�3 < tla _ tfi = tla

then Emx := ERk jj Ela := ERk jj tla := tk+�3

Let S1 be the substitution S1 df
= Te jj Emx; Ela; tla := ERk;ERk; tk+�3: This

transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tfi < tk+�3 ^ (G13)

(tk+�3 < tla _ tfi = tla) ) (G14)

[S1]Inv:

Proof. We assume Inv, (Ge), (G11), (G12), (G13), (G14), and we prove [S1]Inv.

{ [S1]Imax, that is ERk = max(Efi;ERk): by Imax and (G12).

{ [S1]I�l, that is tfi � tk+�3 � tk+�2: trivial from (G13).

{ [S1]Itfs, that is tfi � tk ) 8t; tk � t ) Approx(l_tk; t) � ACR: absurd

hypothesis, given (G11).

{ [S1]IEt1, that is ACR < Efi)tfi � tk+�3: the conclusion comes from (G13).

{ [S1]IttE, that is tfi = tk+�3) Efi = ERk: absurd hypothesis, given (G13).

{ [S1]IUb1, that is 8t; tk � t < tfi)Approx(l_tk; t) � ACR:

for t such that tk � t < tfi, we get t < tk+�3 by (G13), then lemma 4 yields

Approx(l_tk; t) = Approx(l; t); we also have s < tk < tfi by (Ge), then we

can apply IUb1 (see remark 1), and �nally we get

Approx(l_tk; t) = Approx(l; t) � ACR.

{ [S1]IUb2, that is 8t; tfi � t < tk+�3) Approx(l_tk; t) � Efi:

�rst remark that Approx(l_tk; t) = Approx(l; t) by lemma 4; (G14) gives

either tk+�3 < tla, or tfi = tla;



� in the former case, Approx(l; t) � Efi by IUb2, hence the result;

� in the latter case, IttE yields Efi = Ela, and tla = tfi � t yields

Approx(l; t) � Ela by IUb3, hence the result.

{ [S1]IUb3, that is 8t; tk+�3 � t)Approx(l_tk; t) � ERk:

we show 8t; tk+�3 � t) Approx(l_tk; t) = ERk:

for t such that tk+�3 � t, we have tfi � t by (G13), then Approx(l; t) �
Emx � ERk by IApx and (G12); lemma 4 yields either

Approx(l_tk; t) = max(Approx(l; t);ERk) or Approx(l_tk; t) = ERk; in

both cases, we see that Approx(l_tk; t) = ERk.

Case 2

if tk < tfi then if Emx � ERk then if tfi < tk+�3 then

if tk+�3 < tla _ tfi = tla then

else Emx := ERk jj Ela := ERk

Let S2 be the substitution S2
df
= Te jj Emx; Ela := ERk;ERk. This transition

is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tfi < tk+�3 ^ (G13)

tla � tk+�3 ^ (G24)

tfi 6= tla ) (G25)

[S2]Inv:

Proof. [S2]Imax, [S2]Itfs and [S2]IEt1, are proved as in case 1.

{ [S2]I�l, that is tfi � tla � tk+�2: trivial from I�l (G24).

{ [S2]IEt2, that is Efi < ERk ) tla � tk+�3: the conclusion is (G24).

{ [S2]IttE, that is tfi = tla) Efi = ERk: absurd hypothesis, given (G25).

{ [S2]IUb1, that is 8t; tk � t < tfi)Approx(l_tk; t) � ACR:

using (G13), lemma 4 and IUb1 (see remark 1), we have

Approx(l_tk; t) = Approx(l; t) � ACR.

{ [S2]IUb2, that is 8t; tfi � t < tla)Approx(l_tk; t) � Efi:

Approx(l_tk; t) = Approx(l; t) by lemma 4 and (G24); Approx(l; t) � Efi

by IUb2, hence the result.

{ [S2]IUb3, that is 8t; tla � t) Approx(l_tk; t) � ERk:

we have tfi � t by I�l, then Approx(l; t) � Emx � ERk by IApx and (G12);

taking M = ERk in lemma 5 gives Approx(l_tk; t) � ERk.



Case 3

if tk < tfi then if Emx � ERk then if tfi < tk+�3 then

else if ACR � ERk then

Emx := ERk jj Efi := ERk jj Ela := ERk jj tfi := tk+�3 jj tla := tk+�3

Let S3 be the substitution

S3
df
= Te jj Efi; Ela; Emx; tfi; tla := ERk;ERk;ERk; tk+�3; tk+�3:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tk+�3 � tfi ^ (G33)

ACR � ERk ) (G34)

[S3]Inv:

Proof.

{ [S3]IUb1, that is 8t; tk � t < tk+�3 ) Approx(l_tk; t) � ACR: using lemma

4 and IUb1 (see remark 1), we have Approx(l_tk; t) = Approx(l; t) � ACR.
{ [S3]IUb3, that is 8t; tk+�3 � t)Approx(l_tk; t) � ERk: we show

8t; tk+�3 � t)Approx(l_tk; t) = ERk; we have either t < tfi or tfi � t;
� in the �rst case, Approx(l; t) � ACR � ERk by IUb1 (see remark 1; here

tk � t comes from tk � tk+�3 � t) and (G34);
� in the second case, Approx(l; t) � Emx � ERk by IApx and (G12);

hence Approx(l; t) � ERk is always true; using lemma 4 we get

Approx(l_tk; t) = ERk for t such that tk+�3 � t.

Case 4

if tk < tfi then if Emx � ERk

then if tfi < tk+�3 then

else Emx := ERk jj Efi := ERk jj Ela := ERk jj tla := tfi

Let S4 be the substitution

S4
df
= Te jj Efi; Ela; Emx; tla := ERk;ERk;ERk; tfi:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

Emx � ERk ^ (G12)

tk+�3 � tfi ^ (G33)

ERk < ACR ) (G44)

[S4]Inv:



Proof.

{ [S4]I�l, that is tfi � tfi � tk+�2:

we have tfi � t]l+�2 = tk�1+�2 � tk+�2 by I�l, de�nition of ]l and (7).
{ [S4]Itfs, that is tfi � tk ) 8t; tk � t ) Approx(l_tk; t) � ACR: hypothesis

absurd, given (G11).
{ [S4]IEt1, that is ACR < ERk) tfi � tk+�3: absurd hypothesis, given (G44).
{ [S4]IUb1, that is 8t; tk � t < tfi)Approx(l_tk; t) � ACR:

by IUb1 (see remark 1) and t < tfi, we have Approx(l; t) � ACR; taking

M = ACR in lemma 5 and using (G44) yields Approx(l
_tk; t) � ACR.

{ [S4]IUb3, that is 8t; tfi � t) Approx(l_tk; t) � ERk: we show

8t; tfi � t) Approx(l_tk; t) = ERk; for t such that tfi � t, we have

Approx(l; t) � Emx � ERk by IApx and (G12); we have tk+�3 � tfi � t by

(G33), then lemma 4 yields either Approx(l_tk; t) = max(Approx(l; t);ERk)

or Approx(l_tk; t) = ERk; in both cases, we see that Approx(l
_tk; t) = ERk.

Case 5

if tk < tfi then if Emx � ERk then else if ERk < Ela

then Efi := Emx jj Ela := ERk jj tla := tk+�2

Let S5 be the substitution

S5
df
= Te jj Efi; Ela; tla := Emx;ERk; tk+�2:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

ERk < Emx ^ (G52)

ERk < Ela ) (G53)

[S5]Inv:

Proof. [S5]I�l and [S5]Itfs are similar to [S4]I�l and [S4]Itfs

{ [S5]Imax, that is Emx = max(Emx;ERk): by (G52).
{ [S5]IEt1, that is ACR < Emx)tfi � tk+�3: we have Efi < Ela or Ela � Efi;

{ in the �rst case, tfi � tla � t]l+�3 by I�l and IEt2;

{ in the second case, Emx = Efi, then tfi � t]l+�3 by IEt1 and Imax;

in both cases, tfi � tk�1+�3 � tk+�3 by de�nition of ]l and (7).
{ [S5]IEt2, that is Emx < ERk ) tk+�2 � tk+�3:

the hypothesis Emx < ERk is absurd given (G52).
{ [S5]IttE, that is tfi = tk+�2) Emx = ERk:

we have tfi � t]l+�2 = tk�1+�2 < tk+�2 by I�l, de�nition of ]l and (7);

then the hypothesis tfi = tk+�2 is absurd.
{ [S5]IUb1, that is 8t; tk � t < tfi)Approx(l_tk; t) � ACR:

by IUb1 (see remark 1) and t < tfi, we have Approx(l; t) � ACR; we also

have tfi � tk+�3 or tk+�3 < tfi;



� in the �rst case, Approx(l_tk; t) = Approx(l; t) � ACR by lemma 4;
� in the second case, ERk < Emx � ACR by (G52) and contraposition of

[S5]IEt1 shown above; taking M = ACR in lemma 5 yields

Approx(l_tk; t) � ACR.
{ [S5]IUb2, that is 8t; tfi � t < tk+�2) Approx(l_tk; t) � Emx:

for t such that tfi � t, we have Approx(l; t) � Emx, by IApx; takingM = Emx

in lemma 5 and using (G52) yields Approx(l
_tk; t) � Emx.

{ [S5]IUb3, that is 8t; tk+�2 � t)Approx(l_tk; t) � ERk:

by lemma 4, we have 8t; tk+�2 � t) Approx(l_tk; t) = ERk.

Case 6

if tk < tfi then if Emx � ERk then else if ERk < Ela then

else Efi := Emx jj Ela := ERk

Let S6 be the substitution

S6
df
= Te jj Efi; Ela := Emx;ERk:

This transition is correct if :

Inv ^ (Ge) ^

tk < tfi ^ (G11)

ERk < Emx ^ (G52)

Ela � ERk ) (G63)

[S6]Inv:

Proof. [S6]IEt1 and [S6]IEt2 are similar to [S5]IEt1 and [S5]IEt2.

{ [S6]Imax, that is Emx = max(Emx;ERk): by (G52).
{ [S6]I�l, that is tfi � tla � tk+�2: we have

tfi � tla � t]l+�2 = tk�1+�2 � tk+�2 by I�l, de�nition of ]l and (7).
{ [S6]Itfs, that is tfi � tk ) 8t; tk � t ) Approx(l_tk; t) � ACR:

the hypothesis is absurd given (G11).
{ [S6]IttE, that is tfi = tla) Emx = ERk:

we use a weakened form of (G52):

ERk � Emx; (G520 )

assuming tfi = tla, we have Efi = Ela = Emx by Imax, then Emx = Ela �
ERk by (G63); Emx � ERk and (G520) yields Emx = ERk.

{ [S6]IUb1, that is 8t; tk � t < tfi)Approx(l_tk; t) � ACR:

by IUb1 (see remark 1) and t < tfi, we have Approx(l; t) � ACR; we also

have tfi � tk+�3 or tk+�3 < tfi;
� in the �rst case, Approx(l_tk; t) = Approx(l; t) � ACR by lemma 4;
� in the second case, ERk < Emx � ACR by (G52) and contraposition of

[S6]IEt1 shown above; taking M = ACR in lemma 5 yields

Approx(l_tk; t) � ACR.



{ [S6]IUb2, that is 8t; tfi � t < tla)Approx(l_tk; t) � Emx:

for t such that tfi � t, we have Approx(l; t) � Emx, by IApx; takingM = Emx

in lemma 5 and using (G52) yields Approx(l
_tk; t) � Emx.

{ [S6]IUb3, that is 8t; tla � t) Approx(l_tk; t) � ERk:

for t such that tla � t, we have Approx(l; t) � Ela � ERk by IUb3 and

(G63); taking M = ERk in lemma 5 yields Approx(l_tk; t) � ERk.

Note that if we can ensure tk+�3 � tla � t, we can show

8t; tla � t) Approx(l_tk; t) = ERk.

Case 7

if tk < tfi then else if ACR � ERk then

Efi := ERk jj Ela := ERk jj Emx := ERk jj tfi := tk+�3 jj tla := tk+�3

Let S7 be the substitution

S7
df
= Te jj Efi; Ela; Emx; tfi; tla := ERk;ERk;ERk; tk+�3; tk+�3:

This transition is correct if :

Inv ^ (Ge) ^

tfi � tk ^ (G71)

ACR � ERk ) (G72)

[S7]Inv:

Proof.

{ [S3]IUb1, that is 8t; tk � t < tk+�3) Approx(l_tk; t) � ACR:

we remark that tfi � s by (Ge) and (G71), then Approx(l; t) � ACR by

Itfs (see remark 1); using lemma 4 we have Approx(l_tk; t) = Approx(l; t),

hence Approx(l_tk; t) � ACR.

{ [S3]IUb3, that is 8t; tk+�3 � t)Approx(l_tk; t) � ERk:

we show 8t; tk+�3 � t) Approx(l_tk; t) = ERk; we remark that tfi � s

by (Ge) and (G71), then Approx(l; t) � ACR � ERk by Itfs (see remark 1;

here tk < t comes from tk < tk+�3 � t) and (G72); using the assumption

tk+�3 � t and lemma 4, we know that Approx(l_tk; t) is either equal to

max(Approx(l; t);ERk) or to ERk, that is, in both cases, to ERk.

Case 8

if tk < tfi then else if ACR � ERk then else

Efi := ERk jj Ela := ERk jj Emx := ERk jj tfi := tk+�2 jj tla := tk+�2

Let S8 be the substitution

S8
df
= Te jj Efi; Ela; Emx; tfi; tla := ERk;ERk;ERk; tk+�2; tk+�2:



This transition is correct if :

Inv ^ (Ge) ^

tfi � tk ^ (G71)

ERk < ACR ) (G82)

[S8]Inv:

Proof.

{ [S8]Itfs and [S8]IUb2 are similar to [S7]Itfs and [S7]IUb2, replacing �3 with �2.

{ [S8]IEt1, that is ACR < ERk ) tk+�2 � tk+�3: the hypothesis ACR < ERk is

absurd given (G82).

{ [S8]IUb1, that is 8t; tk � t < tk+�2) Approx(l_tk; t) � ACR:

for t such that tk � t, we have tfi � s by (Ge) and (G71), then

Approx(l; t) � ACR by Itfs (see remark 1); taking M = ACR in lemma 5 and

using (G82) yields Approx(l
_tk; t) � ACR.

{ [S8]IUb3, that is 8t; tk+�2 � t)Approx(l_tk; t) � ERk:

by lemma 4, we have 8t; tk+�2 � t) Approx(l_tk; t) = ERk.

Internal Event. We prove: Inv ^ (Gi)) [Si]Inv.

Proof.

{ [Si]IEla, that is Ela = ER]l: from IEla.

{ [Si]I�l, that is tla � tla � t]l+�2: we have tla � t]l+�2 by I�l.

{ [Si]Itfs, that is tla � tfi ) 8t; tfi � t ) Approx(l; t) � Efi:

tla � tfi and I�l yields tfi = tla, then Efi = Ela by IttE; we then have

to show that for t such that tla � t, we have Approx(l; t) � Ela: we just

apply IUb3.

{ [Si]IEt1, that is Efi < Ela) tla � t]l+�3: it is just IEt2.

{ [Si]IUb1, that is 8t tfi � t < tla ) Approx(l; t) � Efi: it is just IUb2.

{ [Si]IUb3, that is 8t tla � t ) Approx(l; t) � Ela: for t such that tla �
t, we have s � tla � t by (Gi); we can then apply IUb3, which yields

Approx(l; t) � Ela.

Observation Event. We prove: Inv ^ (Go)) [To]Inv.

Proof.

{ [To]Itfs, that is tfi � s0 ) 8t; s0 � t ) Approx(l; t) � ACR:

from tfi � s0 and (Go) we get tfi � s; for t such that s0 � t, we have s � t

by (Go) then Approx(l; t) � ACR by Itfs.

{ [To]IUb1, that is 8t s
0 � t < tfi ) Approx(l; t) � ACR:

for t such that s0 � t < tfi we have s < s0 � t < tfi by (Go), then

Approx(l; t) � ACR by IUb1.


