Proof pearl: elementary inductive and integer-based proofs about balanced words

Judicaël Courant ${ }^{1}$, Jean-François Monin ${ }^{1}$, and Yassine Lakhnech ${ }^{1}$
VERIMAG - Centre Équation, 2 avenue de Vignate, F-38610 Gières, France
\{judicael.courant|jean-francois.monin|yassine.lakhnech\}@imag.fr http://www-verimag.imag.fr/~ \{courant|monin|lakhnech\}/

Abstract

Inductive characterizations of words containing the same number of 'a' and 'b' can easily be given. However, formally proving the completeness of some of them turns out to be trickier than one may expect. We discuss and compare two Coq developments relating such balanced words to their inductive characterizations. One is based on auxiliary inductive structures and elementary arguments. The other one is based on a discrete variant of the intermediate value theorem.

1 Introduction

It is a well-known fact that, in order to prove a property P about an inductively defined set S, one sometimes needs to prove a stronger property using the basic induction principle associated to S (such as basic Peano's induction principle) or to use a stronger induction principle (such as well-founded induction on a suitable relation), or even a combination of both.

It should be noticed that, in a constructive setting, any solution ultimately reduces to the basic induction principle, simply because the latter exhibits the canonical way of constructing objects in S. For instance, in the well-known example of euclidian division on natural numbers, one can use well-founded induction on $<$: finding q and $r<b$ such that $a=b q+r$ with $b>0$ reduces to finding q^{\prime} and r such that $a-b=b q^{\prime}+r$ when $b<a$, since in that case we have $a-b<a$. But well-foundedness of $<$ is not free: it is itself proven by induction on natural numbers and a close look at the reduction steps involved in the computation of q and r reveals that all numbers $a, a-1, \ldots 0$ are considered (not only $a, a-b$, $a-2 b$ and so on). We don't pretend that a direct induction on a would provide an interesting and really new solution to euclidian division. However in some situations, sticking to basic induction principles has an interest: for instance, [McB03] shows how one can give a structurally recursive unification algorithm; hence seeing the actual program suffices for being convinced it terminates.

That said, the most relevant criterium in formal proof engineering is the same as the one in software engineering: human effort measured as development time and size of the code written (hence ease of maintenance). Then, when faced to a new problem, to what extent should one spend effort to formalize an appropriate piece of mathematics, when it is still not available? Is it worth to
stick to elementary arguments, at the price of thinking more at the inductive structure of the problem at hand?

We do not intend to provide a general answer to these questions here. Our ambition is limited to presenting and comparing the two approaches in the context of a problem on words. Both solutions, although non-trivial, can be presented in full detail in little amount of space.

Consider the the set Σ^{*} of finite words over the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. We say that a word u in Σ^{*} is balanced if the number of occurrences of the letter a in u is equal to the number of occurrences of the letter b in u. An obvious characterization of the set of balanced words is B_{0} inductively defined as follows:

- the empty word is balanced: $\varepsilon \in B_{0}$;
- if a word is balanced, inserting an a and a b anywhere in it yields a balanced word; that is, if u, v and w are in Σ^{*} and if $u v w \in B_{0}$, then u avb $w \in B_{0}$ and $u \mathrm{~b} v \mathrm{a} w \in B_{0}$.

If w is non-empty in an inductive step of B_{0}, it ends either with a or \mathbf{b}, and then a corresponding b or a should respectively occur in the prefix of the word. This leads us to consider the (seemingly strictly) weaker inductive definition B_{1} :
$-\varepsilon \in B_{1} ;$

- if u and v are in Σ^{*}, and $u v \in B_{0}$, then $u \mathrm{a} v \mathrm{~b} \in B_{0}$ and $u \mathrm{~b} v \mathrm{a} \in B_{1}$.

It is clear that B_{0} contains B_{1} and that all words in B_{0} are balanced. What about the converse-completeness wrt the set of balanced words? Loosely, we can argue as follows about B_{0}. If a balanced word t is non-empty, it contains at least one a (because otherwise, t would only be made of b , which is impossible because it is balanced). Similarly, t contains at least one b. Depending on whether a occurs before b in t or conversely, we have $t=u \mathbf{a} v \mathbf{b} w$ or $t=u \mathbf{b} v \mathbf{a} w$, where $u v w$ is balanced. Then we see that an induction on the length of balanced words will do.

As for the completeness of B_{1}, consider the rightmost letter x in a nonempty balanced word $t x$. Then t contains at least one \bar{x}, where $\overline{\mathrm{a}} \xlongequal{\text { def }} \mathrm{b}$ and $\overline{\mathrm{b}} \xlongequal{\text { def }} \mathrm{a}$ (because otherwise $t x$ would not be balanced), which means that we have $t x=u \bar{x} v x$, with $u v$ a balanced word.

Now consider the still weaker inductive definition B_{2} :

$$
\begin{aligned}
& \text { - } \varepsilon \in B_{2} ; \\
& \text { - if } u \in B_{2} \text { and } v \in B_{2} \text { then } u \mathrm{a} v \mathrm{~b} \in B_{2} \text { and } u \mathrm{~b} v \mathrm{a} \in B_{2} .
\end{aligned}
$$

The previous line of reasoning does not work any longer. However we will see that B_{2} is still a complete inductive characterization of balanced words.

Even for B_{0} and B_{1}, a complete formalisation requires more work than may be expected at first sight.

We present two opposite approaches to this problem. The first one (section 3), sticks to the inductive definition of words (we don't even consider induction on the length of words) and gets elementary proofs. The second one (section 4) is based on the theorem of intermediate values. Thanks to a massive use of
automated tactics and tacticals, the proof script remains quite short even for the latter solution. Both versions share a common set of definitions given in section 2. Finally, measures, conclusions and perspectives are given in section 5 .

All proofs were checked within the Coq proof assistant [The05,BC04].

2 Problem statement and notation

2.1 CIC and Coq in a nutshell

Our formalization is carried out in the framework of the calculus of inductive constructions (CIC), with the help of the Coq proof assistant. The reader is referred to [The05,BC04] for detailed explanations, but in a few words, a formal development consists of a sequence of definitions and theorems. The main difference with usual mathematics is that basic objects are not (untyped) sets, but inductive types and functions (typed λ-terms). The type system includes polymorphic types and dependent types. Following Curry-Howard isomorphism, propositions can be seen as types inhabited by the proofs of those propositions; similarly, predicates are dependent types-propositions depending on values. Hence $A \rightarrow B$ is interpreted as a functional type when A and B are datatypes and as an implication when A and B are logical formulæ. Similarly, $\forall x: A, P x$ may be interpreted as a universally quantified formula or as the product of a type family $\left(\Pi_{x \in A} P x\right)$.

A definition binds an identifier to a λ-term. General course-of-values recursion is not allowed, because (strong) normalization of the calculus is required in order to preserve the consistency of the underlying logic. However, structural recursion is allowed on all inductive types, which is enough for encoding any provably terminating recursive function.

Types are themselves values in higher types. For instance, propositions have the type Prop and datatypes have the type Set. Hence we can construct families of propositions and datatypes by structural induction on an inductive type.

In Coq, proofs are not directly expressed as typed λ-terms by the end user. Instead, she or he interactively specifies how to construct a proof term by means of commands called tactics or combination of tactics called tacticals. Coq includes a language for developing user-defined tactics. We return to this feature in section 4.1, where we describe useful tactics, typically splitsolve) which we systematically use for discharging routine subgoals.

The proofs presented below stick to the formal Coq proofs. They are automatically derived from the actual Coq proof scripts using the coqdoc tool of Jean-Chritophe Filliâtre [The05] and a small number of cosmetic transformations.

2.2 Words

Let us come back to words. Words are inductively defined with the "Snoc" convention: letters are added to the right.

Inductive $\Sigma^{*}:$ Set $:=\varepsilon: \Sigma^{*} \mid$ Snoc $: \Sigma^{*} \rightarrow \Sigma \rightarrow \Sigma^{*}$.
Such a statement defines:

- a new inductive type: Σ^{*};
- its contructors: ε and Snoc.

Moreover, Coq automatically constructs the expected induction principle on Σ^{*}. In the formal development, we use the infix notation $u:: x$ for Snoc $u x$. In this paper, we simply write $u x$.

The following notions are easily defined by structural recursion on words:

- the catenation of two words u and v, denoted by $u v$
- the length of a word u, denoted by $|u|$;
- for x in Σ, the x-length of u, denoted by $|u|_{x}$, which is the number of occurrences of x in u.

In this paper, we use the convention that x, y and z range over letters and u, v and w range over words. This convention or/and the typing context always make clear whether juxtaposition denotes functional application or word construction.

Definition 1. A word u is balanced if $|u|_{\mathrm{a}}=|u|_{\mathrm{b}}$.
A useful induction principle on words is well-founded induction on their length. The following commented proof script claims and proves it (using the automated tactic splitsolve0 described section 4.1):

Lemma length_ind:
$\forall\left(P: \Sigma^{*} \rightarrow\right.$ Prop $) u$,
$\left(\forall u_{0},\left(\forall v,|v|<\left|u_{0}\right| \rightarrow P v\right) \rightarrow P u_{0}\right) \rightarrow P u$.
We first introduce variables and the inductive step:
intros P u H_Step.
We claim the following properties over natural numbers:
assert (Gen: $\left(\forall n u_{1}\right.$, length $\left.u_{1}<n \rightarrow P u_{1}\right)$).
To prove it, we can use the induction principle for natural numbers:
induction n.
The case 0 is trivial thanks to H_{-}Step:
splitsolve 01.
The case ($S n$) holds thanks to H_{-}Step and the induction hypothesis:
splitsolve0 2.
The main claim now clearly holds (just apply Gen to ($S|u|$) and u):
splitsolve0 1.
Qed.

2.3 Languages

The languages B_{0}, B_{1} and B_{2} are defined as inductive properties on Σ^{*}.
Inductive $B_{0}: \Sigma^{*} \rightarrow$ Prop $:=$

$$
\left\lvert\, \begin{aligned}
& B_{0-} e: B_{0} \varepsilon \\
& B_{0-} a b: \forall u v w, B_{0}(u v w) \rightarrow B_{0}(u \mathrm{a} v \mathrm{~b} w) \\
& B_{0-} b a: \forall u v w, B_{0}(u v w) \rightarrow B_{0}(u \mathrm{~b} v \mathrm{a} w)
\end{aligned}\right.
$$

Inductive $B_{1}: \Sigma^{*} \rightarrow$ Prop $:=$
$\mid B_{1_{-}} e: B_{1} \varepsilon$
$\mid B_{1-} a b: \forall u v, B_{1}(u v) \rightarrow B_{1}(u a v b)$
$B_{1-} b a: \forall u v, B_{1}(u v) \rightarrow B_{1}(u \mathrm{~b} v \mathrm{a})$
Inductive $B_{2}: \Sigma^{*} \rightarrow$ Prop $:=$
$B_{2-} e: B_{2} \varepsilon$
$\mid B_{2-} a b: \forall u v, B_{2} u \rightarrow B_{2} v \rightarrow B_{2}(u \mathrm{a} v \mathrm{~b})$
| $B_{2-} b a: \forall u v, B_{2} u \rightarrow B_{2} v \rightarrow B_{2}(u \mathrm{~b} v \mathrm{a})$
For $i \in\{0,1,2\}$, we can use $B_{i_{-}}$other instead of clauses $B_{i-} a b$ and $B_{i_{-}} b a$.
Lemma B_{0-} other : $\forall u v w x, B_{0}(u v w) \rightarrow B_{0}(u x v \bar{x} w)$.

We want to prove, for $i \in\{0,1,2\}: \forall u,|u|_{\mathrm{a}}=|u|_{\mathrm{b}} \leftrightarrow B_{i} u$. Correctness, that is $\forall u, B_{i} u \rightarrow|u|_{\mathrm{a}}=|u|_{\mathrm{b}}$, is easy: just apply the induction principle for B_{i}. As for completeness $\left(\forall u,|u|_{\mathrm{a}}=|u|_{\mathrm{b}} \rightarrow B_{i} u\right)$, in the following we consider only B_{1} and B_{2}, since B_{1} trivially entails B_{0}.

3 Elementary inductive proofs

It is clear that a direct attempt to prove $\forall u,|u|_{\mathrm{a}}=|u|_{\mathrm{b}} \rightarrow B_{i} u$ by induction on the structure of u will fail. The idea is then to find a suitable generalization P_{i} of B_{i} such that $\forall u,|u|_{\mathrm{a}}=|u|_{\mathrm{b}} \rightarrow P_{i} u$ is provable by induction on u.

3.1 Completeness of $\boldsymbol{B}_{\mathbf{1}}$

In the course of an induction step, we analyze a word $u x$. If we want $u x$ to be balanced, we have to consider the case where u is not balanced. For instance if $x=\mathrm{a}$, we expect that $|u|_{b}=1+|u|_{a}$. In general, we may have an arbitrary excess number n of y (where y is a or b) in a word u. An idea is then to encode this number in a word by considering $u y^{n}$. Here is the key lemma.
Lemma $B_{1-c o m p l e t e n e s s _a u x ~}: \forall u n y,|u|_{\bar{y}}=n+|u|_{y} \rightarrow B_{1}\left(u y^{n}\right)$.
The proof is by induction on u. induction u as $[\mid u$ IndHyp $x]$; intros $n y$.

The case where $u=\varepsilon$ reduces to $0=n \rightarrow B_{1}\left(\varepsilon y^{n}\right)$ because $|\varepsilon|_{y}=0$

The following tactic amounts to applying clause $B_{1 _} e$. splitsolve0 1...
In the inductive step, we consider the word $u x$, which yields the goal: $|u x|_{\bar{y}}=n+|u x|_{y} \rightarrow B_{1}\left(u x y^{n}\right)$. Let us compare y with \bar{x}. case (eq_or_other $y x$); intro e; rewrite e; clear e y; splitsolve0 0.
When $y=x$, we get: $|u|_{\bar{x}}=n+S\left(|u|_{x}\right) \vdash B_{1}\left(u x^{n+1}\right)$, hence we can use the induction hypothesis on $n+1$ and x :
apply (IndHyp (S n) x) ; splitsolve0 0...
When $y=\bar{x}$, we get: $|u|_{x}+1=n+|u|_{\bar{x}} \vdash B_{1}\left(u x \bar{x}^{n}\right)$. Then we decide to compare n with 0 .
destruct n; simpl in ${ }^{*} \vdash^{*}$.
When $n=0$, the goal reduces to $B_{1}(u x)$. Then we apply the induction hypothesis on 1 and the opposite letter.
apply (IndHyp $1 x$); splitsolve0 0...
When the previous n is a successor (the successor of the new n provided by the tactic destruct), the new goal is $B_{1}\left(u x \bar{x}^{n} \bar{x}\right)$. We can apply $B_{1-o t h e r ~}^{\text {ot }}$ with the induction hypothesis on n and \bar{x}.
apply $B_{1 _}$other. apply ($\operatorname{IndHyp} n \bar{x}$); splitsolve0 0...
Qed.
The desired theorem is a simple corollary of the previous lemma, taking $n=0$ and any letter for y.

3.2 Completeness of $\boldsymbol{B}_{\mathbf{2}}$

The inductive defintion of B_{1} allowed us to count the deficit of a given letter wrt. the other in a word. In the last case we consider, we use the fact that a y we get from the stock we have on the right of $u y^{n}$ may fit any \bar{y} in u.

We don't have this freedom any longer for B_{2}. In order to delete the rightmost letter of a balanced word $w y$, we have to decompose w into $u \bar{y} v$, such that v is itself balanced.

So we have to record the structure of a word with a finer grain than before. To this effect, we introduce a family C of predicates as follows. First, we say that a word w is split by a predicate P and a letter x if there exist two words u and v such that $P u, B_{2} v$ and $w=u x v$. The family C is then defined by the following equations:

$$
\begin{align*}
C_{x, 0} & \xlongequal{\text { def }} B_{2} \tag{1}\\
C_{x, n+1} & \xlongequal{\text { def }} \operatorname{split} C_{x, n} x \tag{2}
\end{align*}
$$

Intuitively, we have $C_{x, n} u$ if u can be decomposed as $u_{0} x u_{1} x \ldots x u_{n}$, with $\forall i \in[0, n], B_{2} u_{i}$. The formula $C_{y, n} u$ will play here the role played by $B_{1} u$ in section 3.1. We first need three easy lemmas.
Lemma $B_{2^{-}}$app $: \forall u, B_{2} u \rightarrow \forall v, B_{2} v \rightarrow B_{2}(u v)$.

Proof: by induction on the construction of $B_{2} v$.
Lemma C_{-}app : $\forall x u n, C_{x, n} u \rightarrow \forall v, B_{2} v \rightarrow C_{x, n}(u v)$.
Proof: by case analysis on n, using lemma B2_app.
Lemma C_{-}other : $\forall x u v n, C_{\bar{x}, n} u \rightarrow B_{2} v \rightarrow C_{\bar{x}, n}(u \bar{x} v x)$.
Proof: easy corollary of lemma C_{-}app.
Now we have the main lemma.
Lemma $B_{2 _}$completeness_aux : $\forall u n y,|u|_{y}=n+|u|_{\bar{y}} \rightarrow C_{y, n} u$.
induction u as $[\mid u$ IndHyp $x]$; intros $n y$.
The case where $u=\varepsilon$ reduces to $0=n \rightarrow C_{y, n} \varepsilon$ because $|\varepsilon|_{y}=0$ splitsolve0 1...
In the inductive step, we consider the word $u x$, which yields the goal:
$|u x|_{y}=n+|u x|_{\bar{y}} \rightarrow C_{y, n}(u x)$. Let us compare y with \bar{x}.
case (eq_or_other $y x$); intro e; rewrite e; clear e y; splitsolve0 0.
When $y=x$, we get: $S\left(|u|_{x}\right)=n+|u|_{\bar{x}} \vdash C_{x, n}(u x)$. Then we decide to compare n with 0 .
destruct n; simpl in ${ }^{*} \vdash^{*}$.
When $n=0$, the goal reduces to $B_{2}(u x)$. Then we apply the induction hypothesis with 1 and the opposite letter.
elim (IndHyp $1 \bar{x}$); splitsolveB2o 1...
When the previous n is a successor (the successor of the new n provided by the tactic destruct), the new goal is split $\left(C_{x, n}\right) x(u x)$. The witnesses are u and ε, using the induction hypothesis on n and x.
generalize (IndHyp $n x$) $B_{2_{-}} e$; intros. refine (split_ex _ $u \varepsilon_{__{-}}$); auto... When $y=\bar{x}$, we get: $|u|_{\bar{x}}=n+\left(|u|_{x}+1\right) \vdash C_{\bar{x}, n}(u x)$. By induction hypothesis on $n+1$ and \bar{x}, we get w and v such that $u=w x v), C_{\bar{x}, n} w$ and $B_{2} v$, so that we apply lemma C_{-}other.
elim (IndHyp (Sn) \bar{x}); [intros $w v$ cnw bv \mid splitsolve0 0]. apply C_other; assumption...
Qed.
As for B_{1}, the completeness of B_{2} reduces to a special case of the previous lemma, with $n=0$ and $y=\mathrm{b}$ ($y=\mathrm{a}$ works as well).

4 Solution based on the intermediate value theorem

4.1 Automatizing proofs

Compared to the elementary proof, the solution based on the intermediate value theorem needs much more automation. In order to achieve the proof, we used a few tactics which we designed in the course of another development [CM06]. The simplest one, progress0, carries out a single trivial invertible reasoning step (that is, a step preserving the provability of the goal) such as introduction of
variables, elimination of conjunction in hypothesis, systematic application in hypothesis and conclusion of the goal of certain rewriting database, ... The most elaborated one, splitsolve0 features a (naive) iterative deepening proof-search, combining some non-invertible tactics together with application of progress0). More precisely splitsolve0 actually is an instance of a generic tactic splitsolve, parameterized by a tactic doing invertible steps and a tactic doing non-invertible steps. Thus, splitsolve0 could easily be extended to some tactics splitsolve1 and splitsolve2 dealing with domain-specific reasonning:
Ltac progress1 $g:=$ match goal with

```
\(\mid[\vdash\) step_up \(? f\) ?z \((? u ? x)] \Rightarrow\) apply step_up_charact
\(\left[H: \mathcal{C}^{0} ? f \vdash{ }_{-}\right] \Rightarrow\) unfold \(\mathcal{C}^{0}\) in \(H\)
end
|l progress0 g .
```

Ltac splitsolve1 $n:=$ splitsolve progress1 split0 noni0 $n 0$.
A preliminary version of these tactics has been posted on the Coq Wiki (http: //cocorico.cs.ru.nl/coqwiki/GenericTactics).

4.2 The discrete intermediate value theorem

As a general result, we first prove a discrete version of Weierstrass intermediate value theorem over words. We define continuous functions over words as follows:
Definition $\mathcal{C}^{0} f:=\forall u x$,
$f(u x)-f u=1 \vee f(u x)=f u \vee f(u x)-f u=-1$.
Given such a function and a word u, we would like to show that for any intermediate value z between $f(\varepsilon)$ and $f(u)$, there exists some prefix v of u such that $f(v)$ takes this value. Moreover, if $z<f(v)$, we can choose v such that the next prefix $v x$ is such that $f(u x)=z+1$ (take for instance the longest prefix v of u such that $f(v)=z$). We say that f steps up from z to $z+1$ at v and x. More precisely, we define stepping up as follows:
Inductive step_up $\left(f: \Sigma^{*} \rightarrow Z\right)(z: Z): \Sigma^{*} \rightarrow$ Prop $:=$
|Cstep_up : $\forall u x v$,
$f u=z \rightarrow f(u x)=z+1 \rightarrow$ step_up $f z(u x v)$.
Stepping up can be characterized as follows:
The following commented proof script then proves the intermediate value theorem:
Theorem int_val: $\forall f z u, \mathcal{C}^{0} f \rightarrow f \varepsilon \leq z<f u \rightarrow s t e p_{-} u p f z u$.
induction u as $[\mid v I H u x]$;intros.
The case $u=\varepsilon$ is trivial since the hypothesis $f(\varepsilon) \leq z<f(u)$ is absurd then: splitsolve1 0% nat...
We now consider the case $u=v x$:
assert $(f v=z \vee z<f v)$.

The above claim automatically resolves by continuity of f and since
$z<f(v x)$:
splitsolve1 2% nat...
The main case is now trivial: either $f(v)=z$ and $f(v x)=z+1$ and we are done, or $z<f(v)$ and we conclude thanks to the induction hypothesis:
splitsolve1 3% nat...
Qed.

4.3 Main proof

In order to apply the intermediate value theorem, we first define a balance function telling us how much a word is unbalanced,
Definition balance $u:=Z_{-} o f_{-} n a t\left(|u|_{\mathrm{a}}\right)-Z_{-}$of_nat $\left(|u|_{\mathrm{b}}\right)$.
Definition balanced $u:=$ balance $u=0$.
Then we show balance is continuous:
Lemma continuous_balance : \mathcal{C}^{0} balance.
Once this is done, we can prove that one can split all slightly unbalanced u into balanced v and w such that $u=v x w$ for some letter x. Formally:
Lemma unbalanced_insert_a :
$\forall u$, balance $u=1 \rightarrow$ $\exists v, \exists w$, balanced $v \wedge$ balanced $w \wedge u=v$ a w.
Lemma unbalanced_insert_b :
$\forall u$, - balance $u=1 \rightarrow$
$\exists v, \exists w$, balanced $v \wedge$ balanced $w \wedge u=v \mathrm{~b} w$.
Equivalence of B_{1}, B_{2} and B_{0} then proceed by induction over the length of the considered words. For instance, here is the script for B_{1} :
Theorem $B_{1-c o m p l}: \forall u,|u|_{\mathrm{a}}=|u|_{\mathrm{b}} \rightarrow B_{1} u$.
The proof proceeds by induction over the length of u :
intro u; pattern u; apply length_ind; clear u.
intros u HypInd Hbal_u.
We do a case analysis over u :
destruct u as $[\mid v x]$.
The case $u=\varepsilon$ is trivial:
splitsolve2 1% nat...
Otherwise, $u=v x$. Then we have:
assert (- balance $v=1 \vee$ balance $v=1$).
which can be proved by a simple case analysis over x :
destruct x; splitsolve2 0% nat...
Using the previous results on unbalanced words, we can conclude with a simple case analysis over x :
generalize (unbalanced_insert_b v) (unbalanced_insert_a v).
destruct x; splitsolve2 2% nat...
Qed.

5 Conclusion

5.1 Figures

We now draw a comparative table of both developments. The points we compare are the following:

1. Length of the development, measured as the number of lines of specifications and of proof scripts.
2. Number of lemmas and theorems.
3. Average length of proof per lemma/theorem.
4. Complexity of the proof.
5. Automatization level of the proof measured as the number of lines of proof script per use of the splitsolve tactic.
6. Control of the proof.
7. Compilation speed of the proof script alone (measured on the first author's laptop, in seconds).
8. Compilation speed of the dependencies of the proof script.
9. Size of the generated compiled proof development (.vo file, in bytes).

These points are measured in the table below for:

- The inductive proof (IP).
- The proof using the intermediate value theorem (PUIVT), alone without the proof of the intermediate value theorem itself.
- The development of the intermediate value theorem (IVT) itself.

Although the automated tactics were really needed for the development of the proof using the intermediate value theorem, the inductive proof also takes advantage of them.

As for compilation times and size of the generated .vo files, there is clearly a big advantage to inductive proofs here: although the support for equationnal reasonning improves, Coq is still much more efficient on inductive proofs.

The proof based on the intermediate value theorem development and the inductive proof are on a par (63 lines versus 64), which is somewhat surprising: the higher-level results you use, the shorter your proofs shoud be. On the other hand, the proof of the IVT itself turns out to be quite short (44 lines), and this result can be reused in other contexts. At least, it is certainly much more reusable than the family $C_{x, n}$ of predicates introduced in section 3.2.

5.2 Symmetry of the inductive proof

In the approach based on the IVT, we introduce the notion of a balance of a word u, namely $|u|_{a}-|u|_{b}$ where the considered numbers are integers. This is very
natural and we may wonder why this notion is not needed in the inductive proofs, where only natural numbers are used: since these proofs proceed by induction on a word, it is intuitively clear that while traversing this word, one considers all its prefixes, whose balances are sometimes positive, sometimes null and sometimes negative.

The places where the signs of balances change can actually be identified: they are precisely the places where the induction hypothesis is used with 1 and the opposite letter (this letter is named \bar{x} in both lemmas B_{i-} completeness_aux: for B_{1}, this case occurs when $y=\bar{x}$ while for B_{2}, this case occurs when $y=$ $x)$. In this way, the management of the case where the balance is positive and increases (respectively decreases) and of the case where the balance is negative and decreases (respectively increases) are shared in the inductive proof. The proofs succeed because the predicate to be inductively proved is quantified over y.

A closer look at the inductive proofs shows more: thanks to this quantification, letters a and b pleasantly play perfectly identical roles. Using the balance function actually introduces a bias: we may as well consider the opposite function, yielding a symmetrical but different proof. It is still unclear for us whether considering x versus \bar{x} instead of a and b in the IVT-based development would lead to shorter and more elegant proofs as well.

5.3 Future work

All the proofs described in this paper are constructive. A natural extension of this work is then to study their computational contents, which are simply parsing algorithms for the languages B_{1} and B_{2}. These algorithms can be made explicit using a feature of Coq called program extraction, which is based on a separation between informative types (in the sort Set) and logical types (in the sort Prop): program extraction essentially boils down to pruning non-informative parts of a λ-term. In our case, we first have to promote the sort of B_{1}, B_{2} (and of a number of other types) from Prop to Set in order to use this facility.

Once this will be done, we will get functional pieces of codes (in ML or Haskell) and we will be able to compare code size and efficiency of the parsing algorithms provided by the two approaches. Such a study is motivated by problems encountered in a much larger experiment, the C-CoRN project at University of Nijmegen [GWZ00,CFGW], where the computational contents of a constructive proof of the fundamental theorem of algebra turned out to be untractable in practice. This was analyzed and progress were reported in [CFL05] and [Let04]. The difficulty is essentially that the whole development was primarily developed with a focus on mathematics rather than on algorithmics. On the other hand, [Let04] reports a less ambitious but resource-aware constructive approach for representing constructive real numbers and continuous functions, resulting in a successful computation of approximations of $\sqrt{2}$.

Although the scale of our experiment on words is much smaller, we hope to be able to compare the computational costs of our two approaches: is it worth looking for an elementary, more controlled, proof in order to get a more efficient computational contents?

References

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions, volume XXV of Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004. 469 p., Hardcover. ISBN: 3-540-20854-2.
[CFGW] Luìs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the Constructive Coq Repository at Nijmegen.
[CFL05] L. Cruz-Filipe and P. Letouzey. A Large-Scale Experiment in Executing Extracted Programs. In 12th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning, Calculemus'2005, 2005. To appear.
[CM06] Judicaël Courant and Jean-François Monin. Defending the bank with a proof assistant. Vienna, March 2006. To appear in WITS.
[GWZ00] Herman Geuvers, Freek Wiedijk, and Jan Zwanenburg. A constructive proof of the fundamental theorem of algebra without using the rationals. In TYPES, pages 96-111, 2000.
[Let04] P. Letouzey. Programmation fonctionnelle certifiée - L'extraction de programmes dans l'assistant Coq. PhD thesis, Université Paris-Sud, July 2004.
[McB03] Conor McBride. First-order unification by structural recursion. Journal of Functional Programming, 13(6):1061-1075, November 2003.
[The05] The Coq Development Team. The Coq Proof Assistant Reference Manual Version 8.0. Logical Project, January 2005.

