Mathematical modeling of
Planar Cell Polarity in the
Drosophila WingKeith Amonlirdviman
Dali Ma

Jeffrey D. Axelrod Claire J. Tomlin

Robin Raffard

Electrical Engineering and Computer Sciences UC Berkeley

Aeronautics and Astronautics / Pathology Stanford University

Planar Cell Polarity in Drosophila wings

spina bifida

oncogenic Wnt pathway

Axelrod Lab

Signaling Molecules

- System amplifies some global directional cue and propagates polarity from cell to cell
- Includes Frizzled (Fz), Dishevelled (Dsh), Prickle (Pk), Flamingo (Fmi) and Van Gogh (Vang)
- Dsh and Fz localize on the distal portion of each cell
- Pk and Vang localize on the proximal portion of each cell
- Hair grows from the distal portion of each cell

[Axelrod, *Genes Dev* **15**, [Strutt, *Molecular Cell* **1**182-7, 2001] **7**, 367-75, 2001]

[Tree, et al., *Cell* **109**, 371-81, 2002]

[Bastock, et. al., *Development* **130**, 3007-3014, 2003]

Mutant Wings: Domineering non-autonomy

- Loss of Fz disrupts polarity in distal non-mutant cells
- Loss of Vang disrupts polarity in proximal non-mutant cells
 Disruption of signaling molecules is propagated to neighboring cells Suggests diffusible Factor X?

[Vinson and Adler, *Nature* **329**, 549-51, 1987]

[Taylor, et al., *Genetics* **150**, 199-210, 1998]

Biological Model

- Fz promotes recruitment of Dsh to a membrane
- Dsh stabilizes Fz localization
- Fz promotes the localization of Vang and Pk on the membrane of a neighboring cell
- Pk and Vang inhibit the recruitment of Dsh to a membrane
- Network amplifies unknown directional cue

Directional cue: evidence from fat clones?

In the absence of fat (ft), the feedback loop amplifies and propagates polarity across the clone

[Courtesy Dali Ma]

Polarity does not always propagate correctly, resulting in swirled hair patterns

How do we account for the variability of polarity defects in ft clones?

Biological Model

- Fz promotes recruitment of Dsh to a membrane
- Dsh stabilizes Fz localization
- Fz promotes the localization of Vang and Pk on the membrane of a neighboring cell
- Pk and Vang inhibit the recruitment of Dsh to a membrane
- Network amplifies unknown directional cue – Ft?

Biological Model

Does this explain nonautonomy?

Some sources of controversy:

- Null *fz* clones are nonautonomous, but *dsh* clones are autonomous
- Some *fz* alleles show an autonomous polarity phenotype
- Increasing Pk actually increases Dsh and Fz accumulation

Modeling Planar Cell Polarity

Discrete model

if Dsh_{distal} then Fz_{distal} if Fz_{distal} then Pk[†] proximal

Hybrid model

$$\begin{array}{l} q_{1}: \mathsf{Dsh}_{\mathsf{distal}} > \mathsf{thresh}_{\mathsf{Fz}} \\ \frac{d[\mathsf{Fz}_{\mathsf{distal}}]}{dt} = \lambda_{\mathsf{Fz}}[\mathsf{Fz}_{\mathsf{distal}}] + R_{\mathsf{Fz}} \\ \vdots \end{array}$$

Continuous model

 $\frac{\partial [\mathsf{DshFz}]}{\partial t} = P_1 - P_4^{\dagger} - P_9^{\dagger} + \mu_{\mathsf{DshFz}} \nabla^2 [\mathsf{DshFz}]_D$: $P_1 = R_1 [\mathsf{Dsh}] [\mathsf{Fz}] - A_1 B \lambda_1 [\mathsf{DshFz}]$: $P_4 = R_4 [\mathsf{DshFz}]^{\dagger} [\mathsf{Vang}] - \lambda_4 [\mathsf{DshFzVang}]$ $P_9 = R_9 [\mathsf{DshFz}]^{\dagger} [\mathsf{VangPk}] - \lambda_9 [\mathsf{DshFzVangPk}]$

Time rate of change of proximal Dsh concentration = Transport *from* center compartment if [Fz] higher than threshold -Transport *to* center compartment if [Pk] is higher than threshold

f is a discrete switching function that depends on the Fz / Pk concentrations and on a switching threshold

Modeling Planar Cell Polarity

Discrete model

if Dsh_{distal} then Fz_{distal} if Fz_{distal} then Pk[†] proximal

Hybrid model

$$\begin{array}{l} q_{1}: \mathsf{Dsh}_{\mathsf{distal}} > \mathsf{thresh}_{\mathsf{Fz}} \\ \frac{d[\mathsf{Fz}_{\mathsf{distal}}]}{dt} = \lambda_{\mathsf{Fz}}[\mathsf{Fz}_{\mathsf{distal}}] + R_{\mathsf{Fz}} \\ \vdots \end{array}$$

Continuous model

 $\frac{\partial [\mathsf{DshFz}]}{\partial t} = P_1 - P_4^{\dagger} - P_9^{\dagger} + \mu_{\mathsf{DshFz}} \nabla^2 [\mathsf{DshFz}]_D$: $P_1 = R_1 [\mathsf{Dsh}] [\mathsf{Fz}] - A_1 B \lambda_1 [\mathsf{DshFz}]$: $P_4 = R_4 [\mathsf{DshFz}]^{\dagger} [\mathsf{Vang}] - \lambda_4 [\mathsf{DshFzVang}]$ $P_9 = R_9 [\mathsf{DshFz}]^{\dagger} [\mathsf{VangPk}] - \lambda_9 [\mathsf{DshFzVangPk}]$

A Continuous Model for PCP

Model 4 proteins and introduce 6 complexes:

Protein interactions modeled as binding/unbinding reactions

$$\mathsf{DshFz}^{\dagger} + \mathsf{VangPk} \underset{\lambda_9}{\overset{R_9}{\rightleftharpoons}} \mathsf{DshFzVangPk}$$

Dagger denotes a component in a neighboring cell

Reaction Equations There are 10 such reaction equations: Dsh Vang R_1 $Dsh + Fz \rightleftharpoons Dsh Fz$ $A_1 B \lambda_1$ Dsh $Fz^{\dagger} + Vang \rightleftharpoons FzVang$ Vang + Pk $\stackrel{\sim}{\rightleftharpoons}$ Vang Pk Vang Dsh R_4 $DshFz^{\dagger} + Vang \rightleftharpoons DshFzVang$ R_5 Reaction-based direct asymmetry $Dsh^{\dagger} + FzVang \stackrel{\sim}{\rightleftharpoons} DshFzVang$ $A_1^{\dagger} B^{\dagger} \lambda_5$ signal: $Fz^{\dagger} + VangPk \stackrel{R_{6}}{\rightleftharpoons} FzVangPk$ $A_1 = \begin{cases} M_1 < 1 \\ 1 \end{cases}$ distal vertex otherwise $FzVang + Pk \stackrel{i}{\rightleftharpoons} FzVangPk$ $Dsh^{\dagger} + FzVangPk \stackrel{R_{8}}{\rightleftharpoons} DshFzVangPk$ Pk and Vang dependent inhibition $A^{\dagger}_{1}B^{\dagger}\lambda_{8}$ of Dsh recruitment: $DshFz^{\dagger} + VangPk \stackrel{\rightarrow}{\rightleftharpoons} DshFzVangPk$ $B = (1 + K_h(K_{\mathsf{Pk}}[\mathsf{Pk}] +$ R_{10} [VangPk] + [FzVangPk] + [DshFzVangPk] + $DshFzVang + Pk \rightleftharpoons DshFzVangPk$ λ_{10} $K_{Vang}([Vang] + [FzVang] + [DshFzVang]))^{K_p}$

Model Development

$$\begin{array}{c} \mathsf{Dsh} + \mathsf{Fz} \stackrel{R_1}{\underset{A_1B\lambda_1}{\rightleftharpoons}} \mathsf{Dsh}\mathsf{Fz}\\ \mathsf{Dsh}\mathsf{Fz}^{\dagger} + \mathsf{Vang} \stackrel{R_4}{\underset{\lambda_4}{\rightleftharpoons}} \mathsf{Dsh}\mathsf{Fz}\mathsf{Vang}\\ \mathsf{Dsh}\mathsf{Fz}^{\dagger} + \mathsf{Vang}\mathsf{Pk} \stackrel{R_9}{\underset{\lambda_9}{\rightleftharpoons}} \mathsf{Dsh}\mathsf{Fz}\mathsf{Vang}\mathsf{Pk}\end{array}$$

Net production rate = Forward reaction rate – Backward reaction rate

$$P_{1} = R_{1}[\text{Dsh}][\text{Fz}] - A_{1}B\lambda_{1}[\text{DshFz}]$$

$$P_{4} = R_{4}[\text{DshFz}]^{\dagger}[\text{Vang}] - \lambda_{4}[\text{DshFzVang}]$$

$$P_{9} = R_{9}[\text{DshFz}]^{\dagger}[\text{VangPk}] - \lambda_{9}[\text{DshFzVangPk}]$$

Local time rate of change of complex concentration = Reaction production rate + Diffusion rate

$$\frac{\partial [\mathsf{DshFz}]}{\partial t} = P_1 - P_4^{\dagger} - P_9^{\dagger} + \mu_{\mathsf{DshFz}} \nabla^2 [\mathsf{DshFz}]_D$$

Parameter Selection

All of the model parameters are unknown and not measurable from the available data

- Express PCP phenotypes as feature constraints
- Search for a feasible solution by adjusting model parameters using an optimization algorithm

Optimizer

Minimize sum of quadratic penalty functions enforcing feature constraints

Objective Feature Constraints

Case	Obj	Constraint description
Wild-type	J _{wt}	Dsh and Fz accumulation distally
		Vang and Pk accumulation proximally
<i>dsh</i> clone	J _{dsh}	Autonomous phenotype
fz clone	J _{fz}	Distal polarity reversal
<i>Vang</i> clone	J _{Vang}	Proximal polarity reversal
<i>pk</i> clone	J _{pk}	No polarity reversal
>> <i>dsh</i> clone	J _{>>dsh}	Proximal polarity reversal
>>fz clone	J _{>>fz}	Proximal polarity reversal
>> <i>Vang</i> clone	J _{>>Vang}	Distal polarity reversal
>> <i>pk</i> clone	J _{>>pk}	Distal polarity reversal
fz ^{autonomous} clone	J _{fza}	Autonomous phenotype
>>fz ^{autonomous} clone	J _{>>fza}	Proximal polarity reversal
>>pk-en	J _{pk-en}	<i>pk</i> overexpression results in accumulation greater than or equal to wild-type

Governing model

$$X(t,s) = \begin{pmatrix} [\mathsf{Dsh}](t,s) \\ [\mathsf{Pk}](t,s) \\ [\mathsf{Fz}](t,s) \\ [\mathsf{Vang}](t,s) \\ [\mathsf{DshFz}](t,s) \\ [\mathsf{VangPk}](t,s) \\ [\mathsf{FzVang}](t,s) \\ [\mathsf{DshFzVang}](t,s) \\ [\mathsf{FzVangPk}](t,s) \\ [\mathsf{DshFzVangPk}](t,s) \end{pmatrix}$$

 $\theta \in \mathbb{R}^{37}$ is the parameter vector to estimate: reaction, diffusion rates, initial concentrations, asymmetry parameters

Parameter ID via Optimization

- Hair polarity = f(X(T, .))
 (Hair polarity is a function of Dsh concentration in each cell)
- Parameter ID problem:

minimize
$$J(\theta) = ||f(X(T,.)) - f^{\text{observed}}||_2^2$$

subject to $\frac{\partial X(t,s)}{\partial t} = P(X(t,s),\theta) + \mu(\theta) \cdot \nabla_s^2 X(t,s)$

Find the best model in this class

Adjoint-based Algorithm

Gradient of the cost function:

 $\nabla J = -\langle q, \nabla_{\theta} P(X, \theta) + \nabla_s^2 X \cdot \nabla \mu(\theta) \rangle$

provided that costate q(s,t) satisfies

$$\frac{\partial q(t,s)}{\partial t} = -\nabla_x P(X,\theta)^T q(s,t) - \mu(\theta) \cdot \nabla_s^2 q(s,t) \quad \text{(adjoint PDE)}$$
$$q(T,s) = 2(f(X(T,s)) - f^{observed})^T \nabla f(X(t,s)) \quad \text{(boundary conditions)}$$

Algorithm 1 :

- (1) Guess parameter θ
- (2) Solve PDE numerically
- (3) Solve Adjoint PDE numerically
- (4) Update parameter $\theta := \theta \alpha \nabla J$

Wild-type Numerical Results

[Amonlirdviman, Khare, Tree, Chen, Axelrod, Tomlin, Science 307, Jan. 2005]

Loss-of-Fz Numerical Results

Dsh Distribution w/ Resulting Hair Pattern, 14 x 20 periodic cell array

fz clones

[Amonlirdviman et al, Science 307, Jan. 2005]

Domineering nonautonomy distal of cloned mutant cells

[Vinson and Adler, Nature 329, 549-51, 1987]

Loss-of-Vang Numerical Results

Domineering nonautonomy proximal of cloned mutant cells

[Taylor, et al., *Genetics* **150**, 199-210, 1998]

Dsh Distribution w/ Resulting Hair Pattern, 14 x 20 periodic cell array *vang* clones

[Amonlirdviman et al, Science 307, Jan. 2005]

Biological Insights

- Demonstrates sufficiency
- Explains even non-intuitive results

Suppose you overexpress Pk in part of the wing:

Dsh

 Suggests mechanism for explaining phenotypes of different mutant Fz alleles

fz nonautonomous allele – All Fz function removed

fz autonomous allele – Fz–Dsh interaction reduced to 0.01%

- Propose that Fz autonomous proteins are deficient in complexing with Dsh, but retain Vang interaction
- Nonautonomous *fz* alleles lose both interactions

Hypothesis makes two predictions:

- Autonomous Fz protein recruits Vang to neighboring membranes; nonautonomous Fz protein should not
- Both proteins should fail to recruit Dsh

- Vang::YFP does not accumulate at boundaries of *fz^{R52}* (nonautonomous) clones
- Vang::YFP accumulates at boundaries of *fz^{F31}* (autonomous) clones

[Amonlirdviman et al, Science 307, Jan. 2005]

- Dsh::GFP is not recruited by fz^{R52} (nonautonomous)
- Dsh::GFP is poorly recruited by *fz^{F31}* and more poorly recruited by *fz^{J22}* (autonomous)

[Amonlirdviman et al, Science 307, Jan. 2005]

"Lawrence Challenge"

 Conditions proposed by Lawrence, Casal, and Struhl prior to publication of results from the *Drosophila* abdomen

"Lawrence Challenge"

• Example of nonautonomy in the absence of a core polarity component, *pk*

Insights into Nonautonomy

- Demonstrated that the feedback loop can fully reproduce characteristic PCP phenotypes – Unidentified diffusible factors unnecessary
- Showed that the feedback loop model more readily accounts for slight nonautonomy of clones of *dsh* and autonomous *fz* alleles
- Proposed a mechanistic explanation for the difference between autonomous and nonautonomous *fz* alleles, motivating experiments supporting this hypothesis
- Predicted other phenotypes not used to train the model

Understanding fat clones

The role of cell geometry

- Polarity defects correlate to irregular cell geometry
- Frequency of polarity defects can be modified by altering cell shape

Are polarity defects a consequence of the Fz feedback loop when confronted with irregular cell geometries?

[Courtesy Dali Ma]

Understanding fat clones

ft clone

Simulated polarity

[Ma et al., Submitted, 2006]

Understanding fat clones

[Ma et al., Submitted, 2006]

Summary and current work

- Demonstrated the sufficiency of the model [Factor X unnecessary]
- Begun to derive insights into the nature of domineering non-autonomy
- Proposed and conducted experiments exploring the interaction of Dsh with different Fz alleles
- Developing analytical tools for parameter identification based on hybrid systems methodology and adjoint method
- Interaction of PCP with other protein networks

Mathematical modeling of Planar Cell Polarity in the Drosophila Wing

Keith Amonlirdviman Dali Ma Robin Raffard Jeffrey D. Axelrod Claire J. Tomlin

NIH, DARPA, Stanford's Bio-X program, Honeywell Labs