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“I think the right way, of course, is to say that what we have to look at is the whole structural

interconnection of the thing; that all the sciences, and not just the sciences but all the efforts of

intellectual kinds.”

[Richard Feynman]
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Abstract

This thesis is part of an effort to advance the algorithmic analysis of timed systems from a proof-
of-concept phase toward industrial usage, by improving the performance of timing verification
algorithms. Models and tools based on timed automata can be used for timing and performance
analysis of complex systems, hardware and software alike, but the problem of scalability pre-
vents the adaptation of these techniques by industry.

The two major contributions of the thesis are an improved algorithm for symbolic reachability
computation which reduces significantly the state exposition, and a compositional divide-and-
conquer methodology based on conservative approximation of timed components.

With standard reachability computation, a discrete state reached by different orderings of the
same set of transitions, will lead often to different symbolic states, contributing to additional
state explosion. We provide an algorithm which avoids this problem, taking advantage of the
fact that the union of all the zones of these symbolic states is convex and hence they can be
merged into one zone. This algorithm has been implemented and tested experimentally.

The second contribution of this thesis benefits from the modularity of component based systems
to build for each component a model which approximates its timed interface behavior. These
models could be reused for the modeling of the interface of component reusing this last compo-
nent. Thus the modeling process is done hierarchically starting from the leaves and abstracting at
each level the internal complexity of every component, focusing only on their external behavior
which is sufficient for their reuse.

Two abstraction techniques are developed in the thesis, one specialized for systems that have
to respond to a finite number of events, and one more general for systems working in arbitrary
general environment. Both techniques are based on introducing auxiliary input-related clocks,
performing reachability computation and then projecting the timing constraints of the obtained
automaton on the auxiliary clocks. As a result we obtain an automaton with fewer clocks whose
quantitative semantics is an over-approximation but its qualitative semantics is exact. Further
steps of hiding and minimization lead to a small automaton for the component.
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Chapter 1

Introduction

This thesis is part of an effort to make formal verification of timed models of hardware and soft-
ware systems applicable to industrial size problems. This effort is inspired by the developments
that took place in the last 30 years in the domain of algorithmic verification of discrete untimed
models. Hence we open this chapter with a very quick introduction to formal verification and its
role in the design process, followed by the major motivations for extending it to timed models
and a high-level survey of the development of verification tools for timed automata.

1.1 Formal Verification

Hardware and software systems are inevitably growing in scale and functionality leading to very
complex systems. In such systems the likelihood of subtle errors is increasing substantially. To
avoid undetected bugs which can be extremely expensive1 to repair, verification and validation
procedures have taken a central place in the design flow of contemporary systems.

The most prevalent approach to design verification is simulation. Within this approach one
analyzes the response of a model of the system to a series of stimuli, that is, possible scenarios
of input events. Although this process can detect bugs, it cannot guarantee correctness because
the number of such scenarios is prohibitively large, if not infinite. Much of the work in this
area is concerned with finding a representative sample of the input stimuli which “covers”, in
some sense, all the interesting cases. The correct functioning of the system in the presence
of these stimuli can increase our confidence in its overall correctness but the number of such
test cases can be extremely large. In many application domains verification has become the
major bottleneck in design flow and may represent up to 80% of the overall design cost. With
marketing pressures demanding shorter and shorter design cycles, for larger and more complex

1Especially in hardware if the bugs are discovered after fabrication.

1



2 CHAPTER 1. INTRODUCTION

products, it has been recognized that traditional verification practices, which are mostly test
based, are not sufficient and complementary methods are needed to meet the design validation
challenge. Formal verification suggests an alternative approach to tackle these problems.

Formal methods refer to mathematically rigorous techniques to establish design correctness. The
correctness of a system (design, implementation) is defined relative to its specification which
reflects our expectations from the observable behavior of the system. Mathematically speaking,
a formal specification should unambiguously distinguish correct and incorrect system behaviors.
Formal logic is considered as the universal formalism for formalization. However, since we
are interested in the dynamic behavior of systems, temporal logics which allow us to express
more naturally the succession of events in time, turned out, following the suggestion of Pnueli
[Pnu77, Pnu81], to be a more natural and popular specification formalism [MP91, EF06].

The other ingredient of the verification process (formal and informal verification alike) is a
mathematical model of the system dynamics. Such a model should be, in terms of observables,
at least as detailed as the specification so that the behaviors it generates can be checked against
it. In addition, it should be sufficiently detailed to include the features that are essential for
correctness. A model not satisfying this requirements will be at the risk of generating spuri-
ous counterexamples, namely, exhibiting incorrect behaviors which are impossible in a more
detailed model of the system. On the other hand, the model should be as abstract as possible to
make verification tractable. To give some examples, functional correctness of Boolean gate-level
models of circuits can be done while abstracting away from electrical properties of transistors,
while correctness of communication protocols is performed on models that focus on the control

structure and ignore the contents of the data which is transmitted.

The mathematical models used in both software and hardware verification are essentially dis-

crete transition systems (automata). In software such models can be derived from the actual
code by abstracting the values of variables and complex data structures. In hardware, such mod-
els are often based on models already used by CAD tools for simulation and synthesis. Such
models exist at various levels of abstractions ranging from silicon and transistor models, via
Boolean networks up to high-level functional models. Formal verification of hardware is tradi-
tionally done at the RTL (register transfer level) and gate levels which are modeled naturally as
finite-state automata. Recently attempts have been made to extend formal verification toward
higher levels (SystemC) as well as to lower levels that involve electricity and time delays. As
we shall see later, this work is part of the latter effort.

Once we have the specifications and an appropriate model of the system, we can start the veri-
fication process whose aim is to provide a proof that the system satisfies the specification, that
is, all the behaviors it may exhibit are correct. Two basic proof methodologies can be used to
establish this fact, one is deductive, that is, using theorem proving and one is algorithmic, best
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known as model-checking.

The deductive approach consists of using a set of axioms and inference rules to prove that the
system satisfies its specification. Such proofs are typically long and tedious and theorem proving
tools may help a lot in the book keeping associated with the process. However, there is no way
to replace the human in the loop for suggesting auxiliary theorems and proof strategies. Hence
the process is only partially automated and requires highly-skilled professionals with a lot of
patience and understanding of the design. A deductive framework for linear-time temporal logic
is presented in [MP95b].

The algorithmic approach, the source of inspiration for this thesis, uses graph algorithms to ex-
plore all the paths in a finite-state model of a system. The behaviors that correspond to these
paths are checked against the specifications. The idea of model checking for temporal properties
was introduced in the seminal papers of Clarke and Emerson [CE81], and Queille and Sifakis
[QS82] for the branching-time temporal logic CTL and was later extended to the linear-time
LTL in [LP85]. In automata-theoretic terms this process can be viewed as checking containment
between two ω-regular languages, one generated by the system and the other derived from the
specification [VW86]. Other approaches to verification used automata also as a specification
formalism [HK90, Kur94]. There are many variants of model checking problems that differ in
the choice of specification formalisms, the conformance relation used to compare implementa-
tion and specification (trace inclusion, refinement ordering, observational equivalence [CPS93]),
etc. More on the topic can be found in books such as [CGP99, BBF+01].

Unlike theorem proving, model checking is, in principle, fully automatic: the user provides
a high-level representation of the model and the specifications to be checked, and the model
checker can decide correctness without further intervention. If it turns out that the specification is
not satisfied by the model, a counterexample is produced. Counterexamples represent, perhaps,
the most valuable outcome of model checking as they may capture subtle errors in the design
that could pass unnoticed by non-exhaustive simulation.

The main limitation of model-checking is that, in general, it requires exploring the complete
state graph of the model, a graph whose size increases exponentially with the number of system
components. This problem, known as the state explosion problem, has always been considered
as a major barrier which, for a long time, has restricted the applicability of this methodology to
verify rudimentary sized systems.

Dealing with the state explosion is still one of the major research concerns in algorithmic ver-
ification. Several breakthroughs took place over the years, including symbolic model checking
[BCM+90, McM92b] which, by representing sets of states via Boolean formulae, provided for
the analysis of huge transition graphs which could not be explicitly enumerated. Another per-
formance improvement, known as bounded model checking [BCC+03], takes advantage of the
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Modeling

Verification

Specification
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correct
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Figure 1.1: Model Checking.

capabilities of modern SAT solvers to check whether all system behaviors up to certain length
are correct. Although these techniques cannot change the inherent computational hardness of
the verification problem, they succeeded in increasing the size of practically verifiable systems
by several orders of magnitude and moved formal verification from theory to practice.

Beyond the contribution of these and other techniques, the only scalable way to cope with state
explosion is to use the same principles used by the designers of complex systems, that is com-

positional (modular, hierarchical) reasoning. The underlying observation is that a designer of a
component of a complex system does not maintain in his head the huge global transition graph
associated with the whole system. An individual component is designed to work properly based
on a small abstract model of its environment (the rest of the system) which focuses on those as-
pects of the other parts of the system which are relevant for the interaction with the component.
Compositional proof methodologies such as assume-guarantee reasoning are subject to ongoing
research, and like in theorem proving, a major issue here is the automatic generation of abstract
models of components. Much of this thesis will be concerned with automatic abstraction of
timed systems.

1.2 Timed Systems

The level of abstraction of discrete transition systems is very useful for proving functional cor-
rectness but it is not sufficiently detailed for certain purposes. We will illustrate this claim using
two classes of applications, one from hardware and one from software.
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Delays in Circuits: Suppose we realize a synchronous sequential machine using gates and
latches. The discrete abstraction of the system as an automaton is valid if the time it takes for
the gates to compute the next-state function is always smaller than the period of the clock. To
see whether this relation between period and maximal delay holds or to compute the maximal
frequency in which the circuit can work, we need to refine the gate model from an instantaneous

Boolean function into a model where the output reacts to a change in its input within some
propagation delay. In industrial practice, timing analysis and functional verification are often
done separately: first, the maximal frequency is determined by approximating the maximal
delay of the circuit by the sum of delays along the longest path from input to output, regardless
of the logic. This process is called static timing analysis to distinguish it from simulation which
considered “dynamic”. After that, functional verification is pursued on the untimed model.
While this separate treatment of logic and timing is the only practical way to cope with the
complexity of large circuits such as processors, it is clear that the full picture on the systems
behavior is obtained by combining the logic and timing into one model. For example, it might
be the case that due to the logical structure of the circuit, the longest path is a “false path” and
cannot be exercised by any input scenario. A more detailed model which interleaves discrete
changes with propagation of delays will be more faithful to the dynamics of the circuit. Such
models can also be useful for analyzing asynchronous circuit that operate without a central clock
and to which static timing analysis is difficult to apply.

Performance of Real-time Software: The terms real-time or embedded software are often used
to denote systems that interact with the external physical world, for example control of airplanes,
cars and other complex systems. In such interactions, the importance of timely response cannot
be underestimated, and the system may become useless, or even dangerous, if it produces the
right result in the wrong time. Less safety critical, but economically no less important are sys-
tems that process and transfer streams of data of various types (communication, music, video).
In such systems the so-called quality of service can make the difference between a useful and a
useless system.

Consider a scheduler which receives requests for some common resources from different clients

and allocates the resources according to some rule. Using classical verification with automata,
one can prove that the scheduler does not commit errors such as allocating the same resource
simultaneously to two or more clients (mutual exclusion) or entering a state where no client
can progress (deadlock avoidance). There are, however other properties of interest which are
not captured by the discrete model. Suppose the clients are real-time programs that need to
complete their execution within some deadline. In order to check whether a given scheduler
guarantees that every client will be serviced within its respective deadline, we need to introduce
into the model quantitative timing information such as the expected execution time of each type
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of client, the constraints on the time between successive arrivals of clients, etc. As in the case
of circuits, incorporating this kind of information amounts to refining the way we model the act
of executing a piece of code. In the traditional modeling with automata, such an act could be
seen as a instantaneous action, while in a timed model it is split into a sequence consisting of:
1) the discrete event of starting the process; 2) passage of time during the execution; and 3) the
discrete event of termination (see Figure 1.2). Only on the basis of this quantitative information
one can check whether such a system meets its deadlines or infer other time-related performance
measures such as throughput and latency.

a

q q′ q

Start a Time passage

q′

End a

Figure 1.2: Refining a discrete transition into a process that takes time.

It is worth observing that like in static timing analysis, early work on real-time scheduling was
based on separation of concerns. In the classical Liu and Layland model [LL73], the tasks are
assumed to be unrelated to each other (except for requiring the same processor) and to arrive
with a fixed period. Hence their schedulability could be computed cheaply according to an
analytic condition on their deadlines, periods and execution times. However, it is commonly
recognized that such techniques are not satisfactory for modern and complex systems that admit
sporadic arrivals, more complex inter-dependence among tasks, combination of hard and soft
constraints and multi-processors.

These two application domains show the need for models that combine discrete events with
time passage, models that can capture the competition between parallel processes and the subtle
interaction between logic and timing. Such models augment the discrete state variables of a
system with additional variables that measure the elapse of time between events. Using these
variables one can express the duration of processes by measuring the evolution of such variables.
Various approaches have been proposed for extending transition systems with quantitative tim-
ing information, for example timed variants of Petri nets [Ram74, MF76, BD91, Rok94], timed
discrete-event systems [BW94, CL06] and Max-Plus systems [BCOQ93]. The most fruitful ap-
proach to these problems came from the verification community which at the end of the 80s
started exploring the extension of verification methodology toward real time systems, for exam-
ple, [dBHdRR92].

Most of the current literature and tools in algorithmic timed verification is based on the timed

automaton model, an automaton augmented with real-valued clock variables, first introduced
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formally in the seminal paper of Alur and Dill [AD90, AD94]. Other models proposed around
the same time are the timed transition systems of Henzinger, Manna and Pnueli [HMP92] and
a precursor of timed automata proposed by Dill [Dil89] based on counters, clocks that go down
to zero. The results of [AD90] showed that the basic verification-related questions such as lan-
guage and ω-language emptiness, are decidable in this model despite its infinite state space. The
complexity of these problems was shown to be PSPACE-complete, at least as hard as untimed
verification. It is interesting to note that the finite-quotient property underlying this decidability
result has been discovered much earlier by Berthomieu and Menasche in the context of timed
Petri nets [BM83] but did not have a similar impact at that time.

Since the publication of [AD90] several research groups worked on various theoretical aspects
of timed automata and on building progressively more efficient verification tools based on this
model. The decidability result of [AD90] was based on transforming the timed automaton into
a finite quotient, also known as the region graph, on which discrete verification algorithms
could be applied. This construction turned out to be impractical and further efforts focused on
finding more efficient ways to perform verification. We mention some of these efforts without
attempting to be exhaustive or chronological.

The tool KRONOS [DOTY95, Yov97] has been developed at Verimag under the supervision
of Sifakis, starting with the theses of Yovine [Yov93], Olivero [Oli94] and Daws [Daw98]. It
was initially based on the results reported at [HNSY94] for model-checking timed automata
against TCTL formulae using a backward reachability algorithm, manipulating sets of clock
values called zones which are defined by conjunctions of difference constraints among pairs of
clock variables. Zones can be represented by difference-bound matrices (DBM), as has actu-
ally been suggested in [Dil89]. Around the same time a real time extension of the SPIN model
checker [Hol97] has been developed by Tripakis using a zone-based forward reachability al-
gorithm [TC96]. The tool OPENKRONOS has been developed in the thesis of Tripakis [Tri98]
using on-the-fly forward reachability. Later, these and other ideas have been integrated into the
IF toolbox [BSGS04].

The tool UPPAAL [LPY97] has been developed in collaboration between Yi from Uppsala and
Larsen from Aalborg, starting with [YPD94, LPY95, BLL+95] and being the topic of the thesis
of Pettersson [Pet99]. Over the years, UPPAAL has been subject to continuous large invest-
ments in many aspects that make a tool usable, including a graphical user interface which is
popular among end users, and many algorithmic and software engineering improvements, see
for example [ABB+01, BBD+02] and the thesis of Behrmann [Beh03]. The verification engine
of UPPAAL, like that of IF is based today on on-the-fly forward reachability on zones, to be
described in the next section.

While we can say that the verification of timed systems has passed the proof-of-concept phase,
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there is still much to be done in fighting the state explosion problem, aggravated by the pres-
ence of the additional state variables, the clocks. Despite all the improvements made over the
years, one may observe that a performance breakthrough, similar to symbolic model checking
in untimed verification, has not yet taken place in the timed domain, and one cannot point out
an application area where timed automata has proliferated into the daily practice. This thesis is
part of an effort to change this situation, using the IF toolset [BSGS04] as an implementation
medium.

1.3 Thesis Framework

The goal of this thesis is to develop methods that will allow us, eventually, to analyze systems
modeled by timed automata with dozens and even hundreds of components, each with its own
state variables and clocks. Since our major challenge is algorithmic we have chosen to focus on
large synthetic examples rather than on industrial case studies. Most of our work uses networks
of Boolean gates with delays according to the model proposed in [MP95a] due to the facility of
generating large examples within this model. This is not meant to imply that circuit models at
the gate level are the most appropriate application domain. As the reader will see, the approach
developed in this thesis applies to a wide class of systems, including embedded software, where
the future applications of these techniques are more likely to be found.

The major contributions of the thesis are the following:

1. A new reachability algorithm which exploits the fact that the union of all zones reached by
different permutations of a set of local actions is convex. This result removes a particular
contribution to the state explosion associated with timed automata, which is due to the fact
that different interleavings of the same actions lead to different zones.

2. Development of a divide-and-conquer methodology for large networks of timed compo-
nents, consisting of analyzing subsystems in isolation and then performing automatic ab-
straction on their timed automaton models, to yield small complexity approximate models.
Such models can replace the more detailed models in a compositional reasoning frame-
work.

3. Development of the major ingredient of this methodology, an algorithm for automatic
abstraction of timed components which over-approximates their timed input-output be-
havior. The abstraction procedure involves some novel ideas for timed automata such
as the use of dynamic clocks which are associated with those input events to which the
system has not yet fully responded.
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4. Implementation of all these ideas into a tool chain, based on IF. This includes translation
from high-level circuit descriptions to timed automata, extension of the timed automaton
model and verification algorithms to deal with dynamic input clocks which are created
and discarded according to the propagation of their corresponding event in the circuit, and
procedures for abstraction and minimization.

The rest of the thesis is organized as follows: Chapter 2 is a a quick introduction to timed au-
tomata and their verification. In Chapter 3 we present the new reachability algorithm that uses
the convexity result for interleaving; Chapter 4 discusses circuit timing analysis and presents
the timed circuit model used in the thesis and shows how we model such circuits using timed
automata. In Chapter 5 we present the first ideas underlying our abstraction technique, starting
with closed systems, that is, systems whose inputs change at most once at the beginning. The
more general abstraction technique for open reactive systems is presented in detail in Chap-
ter 6 together with some preliminary experimental results. Chapter 7 gives a relatively-short
description of the implementation effort associated with these developments. Conclusion and
suggestions for further research close this thesis.
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Part I

Timed Automata and Interleaving

11





Chapter 2

Timed Automata

This chapter gives an introduction to the basics of timed automata to be used in the rest of the
dissertation. Section 2.1 introduces timed automata informally through an example. Section 2.2
defines formally the syntax and the semantics of timed automata. The infinite transition system
that a timed automaton specifies must be reduced, via some equivalence relation, into a finite
graph in order to be analyzed. Section 2.3.1 focuses on the commonly-used verification approach
which constructs a graph called the reachability graph or simulation graph which captures all
the possible qualitative behaviors that the automaton may exhibit. Such a graph can be converted
back into a timed automaton with special features described in Section 2.3.2.

Timed automata are introduced in this chapter as in the original papers, that is, with a “flattened”
state space admitting no product structure. This presentation style is useful for introducing zone-
based reachability techniques, but the reader should keep in mind that we want to treat large
products of timed automata in which states are encoded using explicit discrete variables. We
also adhere in this chapter to the “classical” event-based definitions where input-output symbols
are associated with transitions, but when we move in subsequent chapters to circuits, we will
use a state-based (or signal-based) semantics and associate input-output symbols with states.

2.1 Timed Automata through an Example

In this section we give the basic intuitions concerning timed automata using an example of a
timed system. This example will serve in the sequel to illustrate certain definitions and transfor-
mations.

Description of the timed system In many systems, excessive heat, for instance, is often con-
sidered to be a pathological sign and keeping the system operating in such conditions may cause

13
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severe problems that could be impossible to fix. To prevent such a serious damage, a component
is often added to the system, to stop it if the symptoms endure. Between detection and shutdown
the user is given a chance to resolve the problem and avoid the system outage. An informal
description of the prevention component is given by the following operating rules:

• The component is in an idle state as long as the system functions properly.

• Once an anomaly is detected, a warning light is turned on to give the user a first indication.

• In addition to the warning light, the anomaly detection triggers a saving process for all
the current system applications. This urgent operation is achieved within a delay dsave (1
minute). Meanwhile the user cannot start any repair task.

• After dsave time from the anomaly detection the user can intervene and try to repair the
source of the problem.

• Within a delay dalarm (3 minutes), if the problem has not been fixed, an additional acoustic
alarm is turned on.

• The user can deactivate this alarm anytime and return to the state where only the warning
light is on, and then proceed to reparation.

• However if this reparation is not achieved within a delay dalarm (3 minutes) from the alarm
deactivation, then the acoustic alarm will be turned on again. Further deactivating of the
alarm by the user is still possible.

• If the problem has not been fixed within a total delay of danomaly (8 minutes) from detec-
tion then the system will be forced to stop immediately.

• On the other hand, if successful repair is claimed by the user then the prevention system
will wait for densure (5 minutes) before returning to its idle state. However, if the problem
reappears within this delay, then the anomaly is considered as serious and the system will
be shut down immediately, without further attempts to repair it.

System Modeling Looking at these operating rules, we can notice that the system has several
hard timing constraints. Timed automata are one of the natural formalisms for modeling this
kind of systems. In fact, the timed automaton given in Figure 2.1 constitutes a formal model of
the previously-described prevention system.

This automaton is presented as a discrete structure of five nodes, called discrete states or lo-

cations. Discrete states are supposed to capture all information about the current status of the
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stop

alert alarm

resolved

idle

x := 0, y := 0

a (Anomaly)

x = 5
e

x := ⊥
x ≤ 5

x := ⊥
f (Anomaly)

x := 0, y := ⊥
x ≥ 1

d (Repaired)

c
x ≤ 8

y := 0
h

x ≥ 8

x := ⊥, y := ⊥ x := ⊥
x ≥ 8

g

y := ⊥
y = 3

b

x ≤ 8 ∧ y ≤ 3 x ≤ 8

⊥

⊥

Figure 2.1: A timed automaton modeling the prevention system.

system, except for timing information. In the example above we have five possible states: an
idle state which represents the normal operation mode of the controlled system; state alert which
models the first detection of the anomaly, which means also that the warning light is turned on;
state alarm representing the state of the system when the alarm is activated; state resolved which
stands for the system waiting after a repair has been attempted and state stop modeling the sit-
uation when no successful repair has been done in time and the system is shut down by the
prevention component.

The edges of this discrete structure represent events or transitions which change the discrete
state of the system. For example, the anomaly detection event will make the system change
its state from idle to alert. Then, a repair attempt will make it switch from state alert to state
resolved. Events are considered to be atomic and instantaneous.

Notice that time progress, which is not expressed explicitly in this structure, takes place inside

the discrete states. Actually, time passage is recorded using positive real variables called clocks.
All the active clocks of the system increase synchronously at the same rate. These clocks can
be set to zero, or deactivated1 when a transition is taken. To model the prevention system, two
clock variables x and y are used. The transition from idle to alert as well as the transition from
alarm to alert are transitions that perform clock resetting.

Clocks constraints are used to restrict the behavior of the automaton by forcing it to leave a state
or forbidding it from taking a certain transition. There are two different styles for expressing
these constraints. In the first style that we describe below, there is a separate treatment of con-
straints associated with states and transitions. In the other style, advocated by [SY96, BST97],
both types of information are associated with the transitions.2

1This concept of clock deactivation will be explained in the sequel.
2Note that by transition we mean here a transition of one component of a system which will correspond to a
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Constraints on states are expressed using staying conditions called invariants [HNSY94] which
are timing conditions related to each discrete state. The automaton may stay in the state (while
the active clocks are progressing) as long as the state invariant holds, otherwise it has to leave

the state via one of the enabled transitions.

The second type of timing constraints are the transition guards. A transition can be taken only
if its guard constraint is satisfied. For instance, in the given example, the system can stay at
the alert state as long as the invariant (x ≤ 8) ∧ (y ≤ 3) is satisfied. From this state, the
transition labeled by d (anomaly repair) can be taken only after the value of clock x exceeds the
threshold dsave = 1, which expresses the inability to repair before application saving. Notice
that there is no urgency in taking this transition and the user may as well decide not to take it
at all even though its guard x ≥ dsave is satisfied. But in any case, the automaton should leave
state alert before clock x exceeds danomaly or clock y exceeds dalarm. Hence transition d could
be taken at any time in which the value of clock x is in the time interval [dsave, danomaly] = [1, 8].
The ability to take a transition anywhere within an interval of time introduces a dense non-

determinism which is a very useful modeling feature when we have uncertain information about
process durations. The upper bound of the interval is urgent and the system must leave the
“alert” state when x = 8. If at that time no transition is enabled then the system will be in a
blocking state. We will avoid such blocking situations in our modeling approach.

The last notion that we present via this example is that of clock activity, first introduced by
Yovine and Daws [DY92] in order to reduce the number of clocks and the complexity of timed
verification. A clock is said to be active at some discrete state when its value is relevant for the
future evolution of the system, for example, when the clock appears in the state invariant or in a
guard of a transition outgoing from the state. In the automaton of Figure 2.1 the value of clock
y is not relevant at state resolved because the only references to its value are in state alert and
its outgoing transition, and all the paths from resolved to alert reset this clock without testing its
value. Hence we can conclude that clock y is inactive in state resolved.

The work of [DY92] had two major parts. The first was the (approximate) detection of such
clock inactivity by performing a syntactic data-flow analysis of the automaton. Then this infor-
mation was used to reduce the dimensionality of the clock space, by manipulating in each state
polyhedra whose dimension is equal to the number of clocks active in this state. In our modeling
framework we express clock deactivation explicitly by assigning a clock value to ⊥ and, as we
shall see, in the class of automata that we use for modeling, clock activity tracking is self-evident
and we can benefit from the dimensionality reduction without performing the analysis.

family of transitions in the global automaton after composition.
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2.2 Preliminary Definitions

The major novelty in timed automata is the connection between the discrete dynamics and the
timing constraints. To express such relations we need to be able to speak of clock constraints
and resets and of sets of clock valuations encountered during the verification process. We use Z
and R to denote, respectively the integer and real numbers, while N and R+ will stand for their
respective non-negative restrictions. Throughout this thesis we will use R+ as the time domain
on which clock variables range, but most of the definitions will hold also for N. We use R⊥ to
denote R+ ∪ {⊥} were ⊥ is a special symbol meaning “inactive” or “irrelevant”. We extend the
addition operation to R⊥ by letting ⊥+ d = ⊥.

2.2.1 Clocks, Time Constraints and Zones

Clocks and Valuations

Let C = {c1, ..., cn} be a finite set of variables called clocks, each ranging over R⊥ . A clock

valuation is a function v : C → R⊥ assigning to each clock c ∈ C its value v(c). The set of
possible valuations of C is then Rn⊥ . A clock c is said to be active in valuation v iff v(c) 6= ⊥,
otherwise it is inactive. Due to the distinction between active and inactive clocks, we will have
to deal with clock valuations of varying dimensionality. Given some C ′ ⊆ C, we use VC′ to
denote valuations in which v(c) 6= ⊥ iff c ∈ C ′. Elements of VC′ are then non-negative real
vectors (points) of dimension |C ′| ≤ n. The projection operation v′ = v/C′ maps elements of
VC to elements of VC′ by letting v′(c) = v(c) if c ∈ C ′ and v′(c) = ⊥ otherwise.

In timed automata, clock valuations change due to two types of activities: time progress which
happens inside a discrete state and clock assignments which take place during discrete transi-
tions:

Time progress: Let d be a non-negative real. We say that clock valuation v′ is the result of
applying d-time-progress to clock valuation v, denoted by v′ = v + d, if for every clock c,
v′(c) = v(c) + d. Note that by the definition of addition on R⊥ , all the clocks inactive in v do
not change their value while all the other clocks advance uniformly.

Clocks assignments: A clock assignment is a function γ : Rn⊥ → Rn⊥ indicating a transfor-
mation of clock values which occurs during a transition. The type of assignments that we allow
in the definition of timed automata is restricted to compositions of one or more of the following
basic assignments:
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• ci := 0 (resetting to zero)

• ci := ⊥ (deactivation of a clock)

• ci := cj (clock copying)

We denote by v′ = γ(v) the fact that v′ is the result of applying assignment γ to clock valuation
v and use γ1 ◦ γ2 for composition of assignments. The set of all assignments obtained by arbi-
trary compositions of basic assignments is denoted by ΓC . We use the shorthand rC′ to denote
resetting all the clocks in some C ′ ⊆ C and killC′ to denote the deactivation of these clocks. We
define the restriction of some γ ∈ ΓC to a set of clocks C ′ ⊆ C as the assignment γ/C′ ∈ ΓC′

obtained from γ by removing all basic assignments that mention clocks outside C ′.

Clocks Constraints

Clocks constraints are used to express the influence of clock values on the discrete dynamics
(invariants and transition guards). We restrict ourselves to a family of constraints that we denote
by ΨC , defined by the following grammar:

ψ ::= true | ci ≺ k | ci − cj ≺ k |ψ ∧ ψ

where ci, cj ∈ C, k ∈ N and ≺∈ {<,≤,=,≥, >}. The constraints of the form x ≺ k and
x− y ≺ k are called atomic.

We define the restriction of some ψ ∈ ΨC to a set of clocks C ′ ⊆ C, denoted by ψ/C′ , as
the constraints syntactically obtained by adding to the ψ all the minimal constraints of the form
c ≤ d and c − c′ ≤ d which are implied by the constraints in ψ, and then removing all the
constraints that mention a clock outside of C ′.

Timed Zones

Clock constraints define subsets of the set of clock valuations, those that satisfy them. These are
subsets of Rm+ where m ≤ n is the number of active clocks in the state where they are evaluated.
We will always assume that constraints evaluated in a state mention only variables that are active
in that state. We use v |= ψ to denote the fact that valuation v satisfies a clock constraint ψ, and
[[ψ]] to denote all satisfying valuations.

Every constraint ψ ∈ ΨC is a conjunction of atomic constraints. Knowing that the set of valu-
ations satisfying an atomic constraint defines a half-space, every constraint ψ ∈ ΨC will define
a convex polyhedron which is the intersection of those half-spaces. We use, in addition to [[ψ]],
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the notation Zψ for this polyhedron and call it the timed zone associated with ψ. The set of all
the zones defined on C will be denoted ZC . Since the half-spaces are either orthogonal (ci ≺ k)
or diagonal (ci − cj ≺ k) with integer k, the vertices of these polyhedra are integer points and
there is a finite number of zones in any bounded subset of Rn.

Remark: It is a well-known fact in the theory of timed automata that there is a constant l,
the largest constant appearing in the clock constraints of an automaton, beyond which further
changes in the value of clock c do not matter for any constraint of the form c ≺ k because
substituting any l′ > l instead of l for c will preserve the truth value of the constraint. Hence, for
all practical purposes, we can see clock valuations as ranging over [0, l], implying a finite number
of zones. However, as shown in [Bou02], this fact should be exploited with care, otherwise,
subtle bugs related to difference constraints can be manifested. We do not get into the details
of this technical issue in this thesis to avoid making the definitions and notations heavier. The
automata that we use in this thesis do not use difference constraints in their definition.

In the following we will define some useful operations on zones that will be used throughout
this document. Let C ′ ⊆ C be a set of clocks, and let Z1, Z2 ∈ ZC be two timed zones defined
on C, then:

(a) (b)

(d) (e)

(c)

(f)

c2

c1 c1c1

c1 c1c1

c2 c2

c2c2

Z1

Z2 Z2

Z1

Z1

Z2 Z2 Z2

Z1

Z1 t Z2

Z
↗
1

Z1 ∩ Z2

r{c2}(Z2)Z2/c1

Figure 2.2: Operations on timed zones.

Z1 ∩ Z1 is the intersection of two zones Z1 and Z2, which is a convex zone, see Figure 2.2-
(b).

Z1 t Z2 is what we call the timed convex hull of the two zones Z1 and Z2 defined as:

Z1 t Z2 = min{Z ∈ ZC | (Z1 ⊆ Z) ∧ (Z2 ⊆ Z)},
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that is the smallest (in terms of inclusion) timed zone containing both Z1 and Z2,
see Figure 2.2-(c). Since zones are not closed under union, Z1 t Z2 can be used as
an over-approximation of Z1 ∪ Z2.

Z
↗ is what we call the forward projection of Z, that is, all clock valuations that can

result by applying time progress to elements of Z:

Z
↗

= {v ∈ VC | ∃d ≥ 0, v − d ∈ Z} ,

see Figure 2.2-(f).

Z/C′ is the projection of a zone Z on a clock subset C ′ ⊆ C:

Z/C′ = {v/C′ | v ∈ Z},

see Figure 2.2-(d). This operation is related to clocks deactivation.

γ(Z) is the result of applying the clock assignment function γ to all the elements of Z:

γ(Z) = {γ(v) | v ∈ Z} .

As we did previously we will distinguish two particular instances of this operation:

rC′(Z) is the resetting of the clocks within the set C ′ ⊆ C, see Figure 2.2-(e).

killC′(Z) is the deactivation (or “killing”) of clocks of the set C ′. Note that
killC′(Z) = Z/C\C′ .

It is important to note the difference between rC′(Z) and killC′(Z). Applying killC′ we may
reduce the dimensionality of the space on which the zone is defined. Applying rC′ we may
reduce the dimensionality of the set but not of the space on which it is defined3, and after some
time progress the set will regain its reduced dimensions. It is not hard to see that zones are closed
under all the above operations. Moreover, all these operations can be computed efficiently on a
DBM representation of the zones. More details can be found, for example, in [Yov93].

2.2.2 Timed Automata Syntax and Semantics

DEFINITION 2.1 (Timed Automaton) A timed automaton is a tuple A = (Q, q0, C,Σ, I,∆)

where:
3In fact, we may increase the dimension if we reset a clock which was previously inactive.
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Q is a finite set of discrete states,

q0 ∈ Q is the initial state

C is a finite set of clocks,

Σ is a finite set of labels,

I ∈ Q→ ΨC is a function associating a staying condition (invariant) with every state q. The

automaton is permitted to stay at q only as long as the clock constraint I(q) is

satisfied.

∆ ⊆ Q×ΨC × Σ× ΓC ×Q

is the transition relation consisting of elements of the form e = (q, g, a, γ, q′)

where:

q, q′ ∈ Q are, respectively, the source and the target of the transition,

g ∈ ΨC is an enabling condition called the transition guard. It restricts the

execution of the transition to clock valuations that satisfy it.

a ∈ Σ is the transition label,

γ ∈ ΓC is a clock assignment function which takes place during a transition.

We assume, without loss of generality, that from every state q there is at most one transition
labeled by a for every a ∈ Σ.

Example The automaton of Figure 2.1 is defined as:

Q : {idle, alert, alarm, resolved, stop},

q0 : {idle},

C : {x, y},

Σ : {a, b, c, d, e, f, g, h},

I : {idle 7→ true,
alert 7→ x ≤ 8 ∧ y ≤ 3,
alarm 7→ x ≤ 8,
resolved 7→ x ≤ 5,
stop 7→ true}
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∆ : {(idle, true, a, r{x,y}, alert
)
,(

alert, y = 3, b, kill{y}, alarm
)
,(

alarm, x ≤ 8, c, r{y}, alert
)
,(

alert, x ≥ 1, d, r{x} ◦ kill{y}, resolved
)
,(

alert, x ≥ 8, h, kill{x,y}, stop
)
,(

resolved, x = 5, e, kill{x}, idle
)
,(

resolved, true, f, kill{x}, stop
)
,(

alarm, x ≥ 8, g, kill{x}, stop
)}.

Let us remark that it is sometimes more convenient to refer to guards, invariants and sets of
clock valuations as syntactic objects (constraints) and sometimes as semantic geometric objects
(zones). In order not to introduce too many notations we will use the same symbols I and g for
both, so that we can write v |= I as well as v ∈ I or g ∧ ψ as well as g ∩ Z.

Parallel Composition of Timed Automata

A timed automaton is often considered to be an element in a network of components running in
parallel and communicating with each other. The global behavior of such a network is captured
by the global timed automaton, called the product. There are many variations of composition de-
pending mainly on the interaction mechanisms through which the automata influence each other.
At this point we use a definition based on a distributed alphabet [DR95] where each component
Ai has its alphabet Σi. The alphabets of the components may have non-empty intersections and
any global transition labeled by a must involve a local a-transition in every automaton Ai such
that a ∈ Σi. Independent local transitions (transitions with different labels) enabled at the same
global state can be executed in any order (interleaving).

DEFINITION 2.2 (Parallel Composition of Timed Automata)
Let N = {Ai = (Qi, qi0, C

i,Σi, I i,∆i) | i ∈ {1, .., n}} be a network of timed automata. We

assume the sets of clocks of each pair of automata to be disjoint and denote by J (a) the indices

i such that a ∈ Σi. The composition of these automata, denoted by A1 ‖ .. ‖ An is a timed

automaton A = (Q, q0, C,Σ, I,∆) where:

Q = Q1 × . . .×Qn is the set of global discrete states of the form q = (q1, . . . , qn),

q0 = (q1
0, . . . , q

n
0 ) is the initial state,

C =
⋃n
i=1Ci is the global set of clocks,

Σ =
⋃n
i=1 Σi is the global alphabet,
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I is the global state invariant I (q) =
∧
i∈{1..n} I

i(qi),

∆ is the global transition relation consisting of tuples of the form

((q1, . . . , qn), g, a, γ, (q′1, . . . , q′n)) such that

• for every i 6∈ J (a), q′i = qi,

• for every i ∈ J (a), (qi, gi, a, γi, q′i) ∈ ∆i,

• g =
⋂
i∈J (a) g

i,

• γ = ◦i∈J (a)γ
i

Notice that since each assignment γi operates on a distinct set of clocks, the composition of
assignments is commutative. An example of a timed automata product is given in Figure 2.3.
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Figure 2.3: A timed automata product: C = A ‖ B.

Semantics of Timed Automata

Timed automata define infinite transition systems whose states are configurations of the form
(q, v) consisting of a discrete state q and a clock valuation v. The initial configuration is s0 =

(q0,⊥) with all clocks inactive and the transitions are either discrete transitions of the automaton
or time-passage transitions. This is formalized by the notion of a step.

DEFINITION 2.3 (Steps) A step of a timed automaton A is one of the following:

• A discrete step: (q, v)
a−→ (q′, v′), for some transition (q, g, a, γ, q′) ∈ ∆ such that v |= g

and v′ = γ(v),

• A time step: (q, v)
d−→ (q, v + d) for some d ∈ R+ such that v + d satisfies I(q).
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Note that the concatenation of two time steps is a time step:

(q, v)
d1−→ (q, v + d1)

d2−→ (q, v + d1 + d2) ≡ (q, v)
d1+d2−→ (q, v + d1 + d2).

Conversely, due to the dense nature of the real numbers, a time step can be split into any number
of smaller time steps.

A compound step is a discrete step followed by a time step (possibly of zero duration):

(q, v)
a,d−→ (q′, v′ + d) ≡ (q, v)

a−→ (q′, v′) d−→ (q′, v′ + d)

A run of the automaton A starting from a configuration (q, v) is a finite sequence of compound
steps.4 In the following we use the notation (q, v)

ξ−→ (q′, v′) for runs.

These definitions apply to products as well. Note that a global time step in a global state q =

(q1, . . . , qn) is just a local (and uniform) time step for each component Ai. The global invariant
requires that all local invariants hold at v + d. On the other hand a global discrete step labeled
by a is a local discrete step for all components Ai such that a ∈ Σi.

Example The following is a run of the automaton presented in Figure 2.1. It starts at idle,
where it can stay indefinitely. After 16 minutes it moves to state alert while detecting an
anomaly and reset clocks x and y, stays at alert for 3 minutes without any intervention from the
user, then moves to alarm and so on until it reaches stop and stays there for 14 minutes until
the end of the run.

(idle, (⊥,⊥))
16−→ (idle, (⊥,⊥))

a−→ (alert, (0, 0))
3−→ (alert, (3, 3))

b−→ (alarm, (3,⊥))
5−→ (alarm, (8,⊥))

g−→ (stop, (⊥,⊥))
14−→ (stop, (⊥,⊥))

2.3 Symbolic Reachability

Having defined timed automata and their semantics, we would like to verify them, that is, to
see what the possible runs of a given automaton are, and whether they satisfy a given property.
However, since the state space is infinite, simple enumeration of the possible runs is impossible.
Fortunately, these runs can be grouped into equivalence classes, each consisting of runs having
the same qualitative form in the sense that their sequences of discrete steps are identical. The

4The first step can be a pure time step.
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enumeration of possible runs is done in a set-based fashion, computing in one step all the suc-
cessors of a set of configurations by an arbitrary passage of time and by transitions, as will be
explained in the sequel.

The original decidability proof for verification of timed automata [AD90] was based on parti-
tioning the state space into a finite number of equivalence classes called regions. Regions are
the “atomic” zones from which all other zones can be constructed. Two configurations (q, v)

and (q, v′) are region-equivalent if for every transition guard g, v |= g iff v′ |= g, and if by
letting time pass they reach the same region. Hence for every sequence of regions visited by
a run from (q, v) there is a run from (q, v′) visiting the same sequence. The timed automaton
can thus be reduced to a finite automaton whose states are regions with discrete transitions and
special transitions that correspond to the passage of time. Region equivalence is guaranteed to
capture all the qualitative behaviors of any automaton, but its force is also its weakness because
the large number of regions renders this approach impractical.

Consequently, existing verification tools [DOTY95, BLL+95, BSGS04] use more efficient veri-
fication methods based on coarser equivalence relations that depend on the structure of the par-

ticular automaton to be verified. The most popular approach today is on-the-fly forward search
based on zones. This approach has the following advantages: 1) It does not explore the parts of
the state space which are not reachable from the initial state; 2) It does not refine zones beyond
what is necessary and will typically result in a number of generated zones much smaller than
the number of regions; 3) It uses an efficient data structure, the DBM, to store and manipulate
zones.

2.3.1 From Timed Automata to Reachability Graphs

The principle of symbolic reachability computation for discrete systems is to take a represen-
tation of a set P of states reachable after k steps, and compute from it the set succ(P ) of its
successors by all transitions, that is, the set

succ(P ) =
⋃
q∈P

⋃
a∈Σ

{succa(q)}.

The application of this idea to timed automata is more subtle. Successors by different transitions
are treated separately and enumeratively, while the symbolic treatment is reserved for time
passage and clock valuations. In other words, the basic element in the computation is an object
consisting of one discrete state and a set of clock valuations. To this object one applies time
passage of arbitrary duration and transitions as formalized below.

A symbolic state of a timed automaton A = (Q, q0, C,Σ, I,∆) is a pair (q, Z) where q ∈ Q is a
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discrete state and Z is a zone. Symbolic states are closed under the following operations:

• The time successor of a symbolic state (q, Z) is the symbolic state (q, Z ′) where Z ′ is the
set of clock valuations reachable from Z by letting time progress without violating the
staying condition I(q):

postt(q, Z) = {(q, v + d) | (v ∈ Z) ∧ (d ≥ 0) ∧ ((v + d) |= I(q))} = (q, (Z
↗ ∩ I(q)))

We say that (q, Z) is time-closed if (q, Z) = postt(q, Z).

• Let (q, g, a, γ, q′) ∈ ∆ be a transition. The a-transition successor of a symbolic state
(q, Z) is the set of configurations reached by taking this transition. Only clock valuations
of Z that satisfy the guard g are concerned with this transition. This clock valuations will
be transformed according to the assignment function γ while taking this transition:

posta(q, Z) = {(q′, v′) | ∃v ∈ Z, v |= g ∧ v′ = γ(v)} = (q′, (γ(Z ∩ g)))

• The a-successor of a symbolic state (q, Z) is the set of configurations reached from (q, Z)

by an a-transition followed by passage of time:

succa(q, Z) = postt(posta(q, Z)) = (q′, (γ(Z ∩ g))↗ ∩ I(q′))

To have a better feel of the way these operations are used in a set-based computation of all the
runs of a timed automaton, let us look closely at the relation between a symbolic state and its
successor.

Proposition 2.1 Let (q′, Z ′) = succa(q, Z) for a transition (q, g, a, γ, q′). A configuration

(q′, v′) belongs to (q′, Z ′) if and only if it is the endpoint of a compound step

(q, v)
a,d−→ (q′, v′)

for some (q, v) ∈ (q, Z) and some d ≥ 0.5

Hence computing (q′, Z ′) amounts to computing “in parallel” the first segment of an uncountable
number of runs, all starting from (q, Z) by making an a-transition followed by arbitrary passage
of time.

5Note, however, that not all elements of (q, Z) are the start points of such compound steps because for some
points, the time successors will not intersect g.
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Equipped with these operators under which the set of symbolic states is closed, we can now
introduce the forward reachability algorithm for timed automata which computes this way all
the runs of A. We present the breadth-first version of the algorithm but other exploration orders
are possible. The algorithm terminates because there are finitely many zones in any bounded
subset of Rn⊥ .

Algorithm 2.1 Forward reachability algorithm (breadth first).
Explored := ∅
New := ∅
Waiting := {(q0,⊥)}
while (Waiting 6= ∅) do

for each (q, Z) ∈ Waiting do
for each (q, g, a, γ, q′) ∈ ∆ do
New := New ∪ succa(q, Z)

Explored := Explored ∪ (q, Z)
Waiting := New\Explored
New := ∅

return (Explored)

As a byproduct, this algorithm produces the reachability (or simulation) graph which can be
viewed as the finite state automaton defined below.

DEFINITION 2.4 (Reachability Graph) The reachability graph associated with a timed au-

tomaton A = (Q, q0, C,Σ, I,∆) is a finite automaton G = (S, s0,Σ, δ) such that S is the small-

est set of symbolic states containing the initial state s0 = (q0,⊥) and closed under {succa}a∈Σ.

The transition relation δ consists of all triples of the form ((q, Z), a, (q′, Z ′)) such that (q′, Z ′) =

succa(q, Z).

The fundamental property of the reachability graph is the following: for every sequence over
Σ that this automaton may generate, there is a run of the timed automaton A generating the
same sequence of events. In other words, the timed automaton A and the automaton G based
on its reachability graph generate the same subsets of Σ∗ or Σω. Hence, if the properties we
are interested in are purely qualitative, that is, concerned with the order of events, not with
the distance between them, and if they have no alternating path quantifiers,6 applying classical
model checking algorithms to G, we will obtain results which are valid for A as well. For
branching-time properties, there is a finer equivalence relation, the time-abstract bisimulation
[TY01], whose induced finite-state quotient can be used for verification (and synthesis).

Example of Reachability Graph The reachability graph of the timed automaton presented
as an example in Figure 2.1 is depicted in Figure 2.4. Looking at the example we see some

6For example, properties expressed in LTL or in the existential or universal fragments of CTL.
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important features of the reachability graph. The first is that some discrete states of the timed
automaton are “split” into several copies, each with a different zone. For example the alert

state has three copies depending on the number of times (zero, one, or two) the alarm was set
and then disabled by the user. The reason these states are considered as different is due to the
different values of x which determine the number of times the alarm can be triggered before the
condition x ≥ 8 will impose shutdown. Another important aspect of the reachability graph is
that it eliminates states and transitions which are impossible according to timing constraints, for
example, the transition labeled b is not possible in (alert, Z7). The effect of this reduction is not
very visible in this example where all states are reachable, but will be more significant when we
treat large products of timed automata where many global states may turn out to be unreachable
due to competition among parallel processes.

(idle, Z0) (resolved, Z3)

(stop, Z5)

(alert, Z1) (alarm, Z2) (alert, Z4) (alarm, Z6)

(alert, Z7)

Z0 : ⊥
Z1 : 0 ≤ x = y ≤ 3
Z2 : 3 ≤ x ≤ 8
Z3 : 0 ≤ x ≤ 5

Z4 : 3 ≤ x ≤ 8 ∧ 0 ≤ y ≤ 3 ∧ 3 ≤ x− y ≤ 8
Z5 : ⊥
Z6 : 6 ≤ x ≤ 8
Z7 : 6 ≤ x ≤ 8 ∧ 0 ≤ y ≤ 2 ∧ 6 ≤ x− y ≤ 8

d

b

a

f
g

bc

dd

e

c

h

hg

Figure 2.4: The reachability graph of the timed automaton of Figure 2.1.

2.3.2 From Reachability Graphs to Interpreted Timed Automata

Although the reachability graph, viewed as an untimed automaton, suffices for untimed verifica-
tion, it is more useful for our purposes to see it as a timed automatonAr, semantically equivalent
to the timed automaton A from which it was derived.

DEFINITION 2.5 (Interpreted Timed Automaton) LetA = (Q, q0, C,Σ, I,∆) be a timed au-

tomaton and let G = (S, s0,Σ, δ) be its corresponding reachability graph. The interpreted timed

automaton for A is Ar = (S, s0, C,Σ, I
r,∆r) such that Ir(q, Z) = Z and for every transition

((q, Z), a, (q′, Z ′)) ∈ δ, corresponding to a transition (q, g, a, γ, q′) ∈ ∆ we define a transition

((q, Z), g ∩ Z, a, γ, (q′, Z ′)) ∈ ∆r.
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In other words, we restrict the invariant and transition guards of each symbolic state (q, Z)

to those clock valuations against which they are to be evaluated, namely those in Z. Clearly,
the semantics of A and of Ar are equivalent. The interpreted timed automaton inherits the
properties of the simulation graph in the sense that, unlike A, all the paths in its transition
graph are paths which are indeed realizable when timing constraints are taken into account.
Thus, even if we later relax the timing constraints in Ar and introduce more behaviors, we do
not introduce any new qualitative behavior.7 This is certainly not true of A: if we remove the
timing constraints from it, we will typically add more behaviors and ignore the timing constraints
altogether. Relaxation of the timing constraints in Ar, after having used them to eliminate
behaviors, is the crucial ingredient of our abstraction techniques to be described after. The
interpreted timed automaton derived from the timed automaton of Figure 2.1 and its reachability
graph of Figure 2.4 is shown in Figure 2.5.
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Figure 2.5: Interpreted timed automaton of the timed automaton of Figure 2.1.

Complexity As mentioned earlier, in the worst case the size of the reachability graph can be
as large as that of the region graph but in practice it can be much smaller. To compute the worst-
case number of zones, assume we have n interacting timed automata, each having m discrete
states and one clock, ranging over [0, d]. The number of discrete states in the product can be up
to mn. The number of zones in [0, d]n can be up to dnn! (assuming that all clock constraints use

7In fact, G can be seen as an extreme form of relaxation where all guards and invariant are replaced by true.
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non-strict inequalities). Hence the number of symbolic states in the reachability graph can be up
to mndnn! and each of them takes O(n2) space. As one can see, this is not an easy problem.



Chapter 3

On Interleaving in Timed Automata

In this chapter we present a major improvement to the symbolic reachability algorithm for timed
automata which reduces significantly the number of generated zones.

3.1 Introduction

When analyzing large asynchronous products of automata, one faces the following phenomenon.
Except for synchronized actions, each automaton may evolve locally, taking its own transitions
independently of the others and ordering between transitions of different automata is not con-
strained. Interleaving semantics enters the picture when we want to give semantics to the product
automaton in terms of global runs. According to this approach, the set of global runs is con-
sidered to be the set of all possible ways to interleave (or shuffle) these independent actions
in a manner consistent with the local orders implied by each automaton. To illustrate the idea
consider the two automata of Figure 3.1. The first automaton takes local transition a before
the synchronized transition c, while the second automaton takes local transition b before c. The
corresponding local behaviors are a · c and b · c while a global behavior would be a sequence
consisting of a and b in any order followed by c, an element of the language (a · b + b · a) · c.
Speaking in order-theoretic terms, and letting ta, tb and tc denote, respectively, the times when
the transitions take place, a global run should satisfy ta < tc and tb < tc while the ordering
between ta and tb is not fixed1. The part of the global automaton between 00 and 11, which
specifies different interleavings of independent actions is called a diamond. Needless to say, the
size of such diamonds (and the number of global runs) grows exponentially with the number of
components. This issue has been studied extensively both from a purely semantic perspective

1This is why techniques that deal with the explosion caused by interleaving are often called partial-order tech-
niques.
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and from a practical point of view [God96, PPH97, DR95]. A typical question in this domain
would be to find conditions under which it will be sufficient to look at some representatives of
the set of these global runs in order to satisfy a property. We are not dealing here with these
issues but rather with the additional overhead that interleaving introduces into the verification
of timed automata. We will demonstrate the problem in Section 3.2 and then prove a simple
convexity result in Section 3.3 that will allow us to define in Section 3.4 an improvement to the
symbolic reachability algorithm (Algorithm 2.1) which eliminates this type of explosion. This
algorithm has been incorporated into the IF toolbox and the experimental results are reported in
Section 3.5.
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0,11,0

0,00

1

2

a

c

0

1

2

b

c

a

ab
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c

Figure 3.1: Composing two automata with independent actions a and b and a common action c.

3.2 Zone Explosion due to Interleaving

Consider the product A ‖ B of the two timed automata of Figure 3.2-(a). Each automaton may
choose to make its own independent transition which resets its own clock. In the untimed model,
the two possible interleavings, a ·b and b ·a converge to the same state (1, 1) as in Figure 3.2-(b).
However this is not the case for the simulation graph produced by the symbolic reachability
algorithm for timed automata, as shown in Figure 3.2-(c). The algorithm will generate two
symbolic runs depending on whether a occurred before b or vice versa:

ξab : ((0, 0),⊥)
a−→ ((1, 0), Za)

b−→ ((1, 1), Zab)

ξba : ((0, 0),⊥)
b−→ ((0, 1), Zb)

a−→ ((1, 1), Zba)
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with
Za = {x |x ≤ 5} Zb = {y | y ≤ 3}
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Figure 3.2: (a) Two timed automata; (b) their discrete diamond; (c) results of reachability anal-
ysis.

As we see, unlike the case of untimed systems, the two paths do not commute as they lead to two
different zones Zab and Zba. If we look closer we see that the constraints defining these zones
differ in one inequality: in Zab we have x ≤ y because transition a which resets x occurred
before transition b that resets y, and likewise Zba has the constraint y ≤ x. In general if we have
n such components, the standard reachability algorithm for timed automata will generate up to n!

zones, each corresponding to a different order of these actions. To continue the computation, this
algorithm will have to generate the successors of each of these zones separately by intersecting
each of them with the same guards of transitions outgoing from the same discrete state. It is not
hard to see that continuing this way, the verification of very simple timed automata that do not
even interact, will lead to very quick explosion in time and, mostly, in space.

However if we look closer at Zab and Zba, either as a set of inequality constraints or as geomet-
rical objects (Figure 3.3), we observe that their union is the convex zone

Z =

{
(x, y) | x ≤ 5

y ≤ 3

}

obtained by removing the constraints on the difference between x and y. In other words, Z
represents the set of all (1, 1)-configurations which are reachable by taking a and b, in any order.
Since Z is a convex zone, to which we can apply intersection, we can think of the following
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optimization. For every guard g of a transition outgoing from (1, 1), instead of computing both
Zab∩g and Zba∩g in order to find transition successors, we can merge them into Z = Zab∪Zba
(see Figure 3.3) and compute Z ∩ g instead. Due to distributivity of union and intersection we
get the same set of configurations

Z ∩ g = (Zab ∪ Zba) ∩ g = (Zab ∩ g) ∪ (Zba ∩ g),

but represented as a single zone instead of two. In the next section we show that this is not
accidental and that the union of all zones reachable by different interleavings of a fixed set of
actions is convex and such zones can be progressively merged to eliminate the type of explosion
associated with interleaving.
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Figure 3.3: Semantics preserving reduction of the simulation graph by merging two zones whose
union is convex.

3.3 Convexity Result

We first introduce some definitions and notations concerning the states and runs of a product

A = A1 ‖ A2 ‖ ... ‖ An

of n timed automata. Global configurations of the product are of the form s = (q, v) where
q = (q1, ..., qn) and v = (v1, ..., vn) where each (qi, vi) is a local configuration of automaton Ai

consisting of its discrete state qi and the valuation vi of its clocks. Given a run ξ of A, we let
the local run ξi be the projection of ξ on automaton Ai. This projection is done in three stages.
First we project the configurations appearing in ξ on the states and clocks ofAi. Then we “hide”
transitions in which Ai does not participate, that is, we replace every transition label a′ 6∈ Σi,
by the “silent” symbol ε. Finally, we collapse together time steps which are separated by silent
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transitions. This is done by applying, successively, the following transformation:

(q, v)
d,a−→ (q′, v′)

d′,ε−→ (q′′, v′′) =⇒ (q, v)
a,d+d′−→ (q′′, v′′).

Example: Consider again the product A ‖ B of Figure3.2-(a) and a global run ξ consisting
of five steps. The discrete steps are an a-transition, taken by A and a b-transition, taken by B.
The other three steps are time steps, which are common to the two automata. Global states are
represented as tuples of the form ((qA, qB), (vx, vy)):

ξ : ((0, 0), (0, 0)) 6−→ ((0, 0), (6, 6)) a−→ ((1, 0), (0, 6)) 3−→ ((1, 0), (3, 9)) b−→ ((1, 1), (3, 0)) 1.3−→ ((1, 1), (4.3, 1.3))

The projection of ξ on automaton B works as follows:

1. Projection on the states and clock valuations of B:

ξ1 : ((0), (0)) 6−→ ((0), (6)) a−→ ((0), (6)) 3−→ ((0), (9)) b−→ ((1), (0)) 1.3−→ ((1), (1.3))

2. Hiding the transition a in which B does not participate:

ξ2 : (0, 0) 6−→ (0, 6) ε−→ (0, 6) 3−→︸ ︷︷ ︸ (0, 9) b−→ (1, 0) 1.3−→ (1, 1.3)

3. Combining time steps separated by hidden transitions which gives the projected run:

ξB : (0, 0) 9−→ (0, 9) b−→ (1, 0) 1.3−→ (1, 1.3)

As explained in the previous chapter, symbolic reachability computation groups together runs
that are qualitatively equivalent, a notion that we formalize below.

DEFINITION 3.1 (Qualitative equivalence) Two runs ξ and ξ′ are qualitatively equivalent, de-

noted by ξ ≈ ξ′, if they go through the same sequence of discrete transitions and may differ only

on timing. The class of runs qualitatively equivalent to ξ is denoted [ξ].

An equivalence class can thus be seen as a sequence of events that we denote as [ξ] = a1 ·
a2 · · · am.

Example: Consider three global runs ξ1, ξ2, ξ3, of A ‖ B of Figure 3.2-(a):

ξ1 : ((0, 0), (0, 0)) 6−→ ((0, 0), (6, 6)) a−→ ((1, 0), (0, 6)) 3−→ ((1, 0), (3, 9)) b−→ ((1, 1), (3, 0)) 1.3−→ ((1, 1), (4.3, 1.3))
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ξ2 : ((0, 0), (0, 0)) 4−→ ((0, 0), (4, 4)) a−→ ((1, 0), (0, 4)) 1−→ ((1, 0), (1, 5)) b−→ ((1, 1), (1, 0)) 2−→ ((1, 1), (3, 2))

ξ3 : ((0, 0), (0, 0)) 2−→ ((0, 0), (2, 2)) b−→ ((0, 1), (2, 0)) 2−→ ((0, 1), (4, 2)) a−→ ((1, 1), (4, 0)) 0.7−→ ((1, 1), (4.7, 0.7))

For these runs we have ξ1 ≈ ξ2 as [ξ1] = [ξ2] = a · b but ξ3 6≈ ξ1 because [ξ3] = b · a. Let us now
look at the local projections of these runs on A and B:

ξA
1 : (0, 0) 6−→ (0, 6) a−→ (1, 0) 4.3−→ (1, 4.3) ξB

1 : (0, 0) 9−→ (0, 9) b−→ (1, 0) 1.3−→ (1, 1.3)

ξA
2 : (0, 0) 4−→ (0, 4) a−→ (1, 0) 3−→ (1, 3) ξB

2 : (0, 0) 5−→ (0, 5) b−→ (1, 0) 2−→ (1, 2)

ξA
3 : (0, 0) 4−→ (0, 4) a−→ (1, 4) 0.7−→ (1, 4.7) ξB

3 : (0, 0) 2−→ (0, 2) b−→ (1, 0) 2.7−→ (1, 0.7)

These projections are qualitatively equivalent:

ξA1 ≈ ξA2 ≈ ξA3 and ξB1 ≈ ξB2 ≈ ξB3

because in each of them, the automaton is taking the same transition:

[
ξA1

]
=

[
ξA2

]
=

[
ξA3

]
= a and

[
ξB1

]
=

[
ξB2

]
=

[
ξB3

]
= b.

This leads to the following definition of local equivalence.

DEFINITION 3.2 (Local equivalence) Let ξ and ξ′ two global runs ofA = A1 ‖ A2 ‖ ... ‖ An,

and let ξi and ξ′i be their local projections on Ai. We say that ξ and ξ′ are locally equivalent,

denoted by ξ ∼ ξ′, iff all their local projections are qualitatively equivalent:
∧n
i=1(ξ

i ≈ ξ′i).

The class of runs locally equivalent to ξ is denoted 〈ξ〉.

We will write

〈ξ〉 = a1
1 · a1

2 · · · a1
m1
‖ a2

1 · a2
2 · · · a2

m2
‖ . . . ‖ an1 · an2 · · · anmn

to express the fact that 〈ξ〉 consists of all the runs whose projection on every component Ai

belong to the same qualitative equivalence class ai1 · ai2 · · · aimi
. For our example all the three

runs are locally equivalent, ξ1 ∼ ξ2 ∼ ξ3, with their equivalence class being

〈ξ1〉 = 〈ξ2〉 = 〈ξ3〉 = a ‖ b.

Clearly qualitative equivalence is stronger than local one, ξ ≈ ξ′ ⇒ ξ ∼ ξ′, because it requires
both local equivalence and the same interleaving order. Another obvious observations is that
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two locally equivalent runs that start from the same discrete state, end up in the same discrete
state.

We can now state the main result of this chapter:

THEOREM 3.1 (Convexity) Let Z be a time zone and let q and q′ be two global states of A.

Let ξ be a run starting at q and ending at q′. Then the set

Z ′ = RZ,〈ξ〉 ≡
⋃

ξ′∈〈ξ〉

{
v′ | ∃v ∈ Z, (q, v)

ξ′−→ (q′, v′)
}

is convex.

The proof is given via a characterization of the reachable clock valuations by a quantified for-
mula consisting of conjunctions of atomic clock constraints on the values of clocks and some
auxiliary time-stamp variables. Since convex sets are closed under projection the result will fol-
low. For economy of notation we assume that ξ is such that each automaton Ai makes exactly
k steps. The restriction of Ai to the states and transitions involved in ξ is of the form depicted
in Figure 3.4, that is, Ai starts from qi0 with invariant I i0, then takes a transition, guarded by gi1,
labeled by ai1 and involving reset ri1, to state qi1, etc.

qi
1

Ii
1 Ii

k

qi
k

Ii
k−1

qi
k−1

gi
k, a

i
k, r

i
kgi

1, a
i
1, r

i
1qi

0

Ii
0

Figure 3.4: The part of Ai which participates in ξi.

As a first step we extend the description of local runs to include the time stamps of the transitions:

ξi : (qi0, v
i
0, t

i
0) → (qi1, v

i
1, t

i
1) → · · · → (qik−1, v

i
k−1, t

i
k−1) → (qik, v

i
k, t

i
k).

Each tij variable denotes the absolute time at which the corresponding transition has been taken.
Every global run in 〈ξ〉 is uniquely determined by the values tij and vij for i = 1..n and j =

0..k + 1 and can be seen as a point in some space of appropriate dimension.

All the runs satisfy the natural local ordering among time stamps of transitions of the same
automaton:

n∧
i=1

k−1∧
j=0

(tij ≤ tij+1).

Those runs that are ≈-equivalent agree also on the linear ordering of all time stamps which
characterize the particular interleaving (shuffle) of the local runs.
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We can now proceed, progressively, to the logical characterization of the set of reachable con-
figurations. We will use the following auxiliary notations and abbreviations:

• Global states after step j: qj = (q1
j , . . . q

n
j )

• Global clock valuations after step j: vj = (v1
j , . . . v

n
j )

• The set of local valuations appearing in a local run ξi: vi = {vi0, . . . , vik},

• The set of local time stamps appearing in a local run ξi: ti = {ti0, . . . , tik}

• The set of all valuations: v =
⋃
i vi

• The set of all time stamps: t =
⋃
i t
i.

The family of predicates {Φi
j} characterizes the clock values and time stamps in a valid step j of

automaton Ai. The predicate Φi
j(v

i
j−1, t

i
j−1v

i
j, t

i
j) holds if the jth transition is taken at tij−1 and

then time elapses until tij . This is nothing but a recapitulation of the definition of a compound
step, namely that the transition guard is satisfied, the reset takes place and the subsequent time
passage does not violate the staying condition of qij:

Φi
j(v

i
j−1, t

i
j−1v

i
j, t

i
j) =




vij−1 |= gij ∧
∃v v = rij(v

i
j−1) ∧

tij−1 ≤ tij ∧
vij = v + tij − tij−1∧
vij |= I ij




It is not hard to see that this condition defines a convex zone. Note that this definition is invariant
under a shift of global time, in other words, Φi

j(v, t, v
′, t′) is equivalent to Φi

j(v, t+ d, v′, t′ + d)

for every d. We can now define what constitutes a valid run of Ai in isolation, without taking
into account synchronization constraints. We keep this definition shift-invariant as well and do
not yet insist on the initial zone which is defined globally:

Φi(ti, vi) =
k−1∧
j=1

Φi
j(v

i
j−1, t

i
j−1v

i
j, t

i
j)

The predicate which defines what constitutes a valid global run is a conjunction of the con-
ditions for local runs with additional conditions that take care of all the synchronization as-
pects, including the fact that all runs start and terminate simultaneously. For every a ∈ Σ let
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Sa = {(i, j) | aij = a} be the set of steps that synchronize on a. To force all a-transitions to take
place at the same time we define the predicate

Ψa(t) =
∧

(i,j),(i′,j′)∈Sa

tij = ti
′
j′ .

The condition for a valid global run starting at Z0 is then:

Φ(t,v) =




t10 = t20 = ... = tn0 ∧
v0 ∈ Z0 ∧∧n
i=1 Φi(vi, ti) ∧∧
a∈Σ Ψa(t) ∧

t1k+1 = t2k+1 = ... = tnk+1




Note that the first and last conditions can be viewed as synchronization conditions for two addi-
tional fictitious transitions start and end in which all automata participate. This set is a convex
subset of the space consisting of all valuations and time stamps in the run, and so is its projection
on the set of valuations after the last step, which is the reachable set:

RZ,〈ξ〉(vk) ≡ ∃t∃v1, . . . ,vk−1Φ(t,v1, . . .vk−1,vk).

2

Note that an alternative (but longer) way to obtain the result would be to define Φ(t,v) separately
for each class of ≈, which will involve a specific linear order over all t, and then the union over
all these classes will eliminate these order constraints.

Let us mention that the result extends naturally to arbitrary “linear” hybrid automata with convex
guards and invariants.

3.4 Application to Reachability Computation

We will now modify the standard reachability computation algorithm for timed automata (Algo-
rithm 2.1) to take advantage of this result. The idea is to generate symbolic states in a breadth-

first manner and at each level merge those reached by locally-equivalent runs, that is, by the same
set of compound steps. Note the breadth-first exploration is suitable here because it groups to-
gether symbolic states reached by the same number of discrete transitions, and only such states
can potentially be equivalent and hence be merged.
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Let us note that this merging can be done progressively and we need not wait until the whole
diamond is generated. Suppose we have three automata and three independent transitions a, b
and c. We first compute Za, Zb and Zc. From there we compute their successors Zab, Zac, Zba,
Zbc, Zca and Zcb. At this stage we can merge three pairs of zones:

Za‖b = Zab ∪ Zba Za‖c = Zac ∪ Zca Zb‖c = Zbc ∪ Zcb,

compute their successors and then merge them all into one zone

Za‖b‖c = Z(a‖b)c ∪ Z(a‖c)b ∪ Z(b‖c)a.

To identify zones that can be merged we need to decorate symbolic states with (partially ordered)
path information.

DEFINITION 3.3 (Shuffle Expression) A shuffle expression over a distributed alphabet Σ =

Σ1 ∪ . . . ,∪Σn is

α = α1 ‖ . . . ‖ αn

with αi ∈ (Σi)∗. Concatenation of a shuffle expression and a symbol a is defined as

(α1 ‖ . . . ‖ αn) · a = (β1 ‖ . . . ‖ βn)

where

βi =

{
αi if a 6∈ Σi

αi · a otherwise.

Algorithm 3.1 performs breadth-first exploration and stores symbolic states together with their
shuffle expressions. At each level it scans the newly-generated zones stored in New and performs
the Merge operation which replaces every set of symbolic states of the form

{(q, Z1, α), . . . , (q, Zm, α)}

by a single state (q, Z, α) where Z is the convex hull of all these zones. From Theorem 3.1 it
follows that Z is exactly the union of the zones. Note that the path labels of a zone need not be
kept after its successors have been computed. This also guarantees termination due to the finite
number of zones.

Let us illustrate Theorem 3.1 and Algorithm 3.1 through an example. Consider the product of
the two timed automata of Figure 3.5. The standard reachability algorithm will generate for
these automata the 19-state simulation graph depicted in Figure 3.6. If we merge the zones
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Algorithm 3.1 Breath-first forward reachability with merging.
Explored := ∅
New := ∅
Waiting := {(q0,⊥, ε ‖ .. ‖ ε)}
while (Waiting 6= ∅) do

for each (q, Z, α) ∈ Waiting do
for each (q, g, a, γ, q′) ∈ ∆ do
New := New ∪ (succa(q, Z), α · a)

Explored := Explored ∪ (q, Z)
New := Merge(New)
Waiting := New\Explored
New := ∅

return (Explored)

reachable by locally-equivalent runs, we obtain the reduced graph of Figure 3.7 which has only
9 states. Figure 3.8 shows how the reduced simulation graph is generated by Algorithm 3.1 as
an alternating sequence of successor computation and zone merging.

y 1

0

a

a’
x 2

(A) (B)

y:=0

0

1

b
x:=0

b’

x

2 2

1

True True

5 y 3

Figure 3.5: A product of two timed automata.

3.5 Experimental Results

We have implemented Algorithm 3.1 inside the IF toolbox. To confirm the complexity reduction
empirically we have first tested the algorithm products of chain-like automata. Such automata
are notorious for generating state explosion due to interleaving. We have considered two simple
families of synthetic benchmarks shown in Figure 3.9. The first consists of parallel composi-
tions of n independent reset sequences of length m each. The second class consists of parallel
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Figure 3.6: The reachability graph for the automata of Figure 3.5 generated by the standard algo-
rithm. Each symbolic state si is represented by its discrete state qi = (qAi , q

B
i ) and, graphically,

by its zone Zi.
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Figure 3.7: A reduced reachability graph for the system of Figure 3.5.

compositions of k independent synchronization chains, each being a parallel composition of n
synchronized sequences of length m. A synchronized sequence (Aij) alternates between actions
that synchronize with the left (ai,j) and the right (ai+1,j) neighbor while separating them by at
least 4 time units.
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Figure 3.8: The reduced simulation graph of Figure 3.7 as generated on the fly by Algorithm 3.1.
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Figure 3.9: The structure of the synthetic benchmarks.

n=2 n=4 n=6 n=8 n=10
Independent reset sequences
m=1 5 / 4 65 / 16 1957 / 64 109601 / 256 ⊥ / 1024
m=2 13 / 9 633 / 81 75973 / 729 ⊥ / 6561 ⊥ / 59049
m=3 25 / 16 2713 / 256 732529 / 4096 ⊥ / 65536 ⊥ / ⊥
Synchronization chains k = 1
m=1 4 / 4 6 / 6 8 / 8 10 / 10 12 / 12
m=2 8 / 8 37 / 17 236 / 30 1600 / 47 10949 / 68
m=3 12 / 12 86 / 32 1441 / 72 30841 / 140 660615 / 244
Synchronization chains k = 3
m=1 2012 / 64 812375 / 216 ⊥ / 512 ⊥ / 1000 ⊥ / 1728
m=2 97142 / 512 ⊥ / 4913 ⊥ / 27000 ⊥ / 103823 ⊥ / 314432
m=3 745197 / 1728 ⊥ / 32768 ⊥ / 373248 ⊥ / ⊥ ⊥ / ⊥

Table 3.1: Experimental results on the synthetic acyclic benchmarks.

The experimental results obtained for the two benchmarks for different values of n, m and k are
summarized in Table 3.1. Each entry in the table is of the form B/C where B is the number of
symbolic states encountered in an ordinary breadth-first exploration, while C is the number of
states explored by Algorithm 3.1. We limit ourselves to instances with less than 106 symbolic
states, and use the ⊥ symbol to denote the fact that this limit has been reached. Let us note
that we achieve an exponential reduction both for the interleaving of independent actions (reset
sequences) and for strongly-synchronized actions (a single synchronization chain with k = 1).
The reduction is clearly much more impressive in the synchronized case, where reductions based
on partial order or symmetry are not directly applicable.

We have implemented Algorithm 3.1 into the IF toolset [BSGS04] and tested its performance
on several publicly-available benchmarks. Table 3.2 compares the performance of the new al-
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Size Kronos Uppaal Uppaal-A IF IF-U
2 -/- -/0.01s -/0.00s 29/0.003s 18/0.002s
3 -/- -/0.03s -/0.01s 165/0.01s 53/0.01s
4 752/- -/0.23s -/0.06s 1099/0.07s 164/0.03s
5 3552/- -/5.09s -/0.29s 8453/1.07s 527/0.04s
6 16320/- -/310.97s -/1.34s 74939/21.06s 1726/0.20s
7 73620/- -/51598.17s -/5.89s 762429/595.75s 5693/1.75s
8 ⊥/⊥ ⊥/⊥ -/25.83s ⊥/⊥ 18792/5.73s
9 ⊥/⊥ ⊥/⊥ -/113.53s ⊥/⊥ 61883/28.42s
10 ⊥/⊥ ⊥/⊥ -/498.88s ⊥/⊥ 202994/367.76s
11 ⊥/⊥ ⊥/⊥ -/2525.31s ⊥/⊥ 662873/4489.23s

Table 3.2: Results on the Fisher protocol benchmark. The Uppaal-A column corresponds to
results obtained using the convex-hull approximation, while the IF-U column represents our
new algorithm. Table entries represent the number of symbolic states and computation time.
The symbol “-” means “ not reported” (or “irrelevant” for the case of computation time on older
computers) and ⊥ means “too big”.

gorithm on the Fisher mutual-exclusion protocol benchmark with other reported results. We
compare with old Kronos results reported in [Tri98], Uppaal results reported in [Upp] and re-
sults obtained with IF without using the new algorithm. It is interesting to note that although our
new algorithm performs much better than the standard Uppaal machinery, their performances
are similar when the convex-hull approximation option of the latter is employed. Our result
shows that this “approximation” can be easily made exact.

3.6 Related Work

The application of partial-order techniques to timed systems has been subject to several publi-
cations [Rok94, RM84, YS97, DRGK98, BJLY98, Min99, Zha02, LNZ05, ZYN03]. Although
Theorem 3.1 is related to some of the work mentioned in the next paragraph, it has not been
stated explicitly and, moreover, its exploitation by a breadth-first version of the standard timed-
automaton reachability algorithm has never been considered.

The algorithm of Rokicki [Rok94, RM84], using a variant of timed Petri nets is similar to ours by
computing a zone which corresponds to the interleaving of independent transitions. This work
which has been done in parallel with the development of the first verification tools for timed au-
tomata, used another terminology and has not proliferated to the timed automaton culture. Two
more recent efforts, which are more ambitious with respect to “real” partial-order reductions,
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are those of Zhao [Zha02] and of Niebert et al. [LNZ05, ZYN03]. Both works use additional
clocks in their algorithms and use zones over the extended clock space (“event zones” in the
terminology of [LNZ05, ZYN03], “local successors” in the terminology of [Zha02]) that rep-
resent all configurations reached by interleavings of independent actions. We use the auxiliary
clocks only in the proof of convexity which can be deduced via their results. It is worth noting
that our result does not require independence of actions. It would be interesting to compare the
reductions provided by the two approaches in terms of scope and performance.

An interesting idea which was first proposed in [BJLY98], inspired by distributed simulation, is
to use local time scales, that is to compute successors for each automaton separately on its own
clock subspace, and somehow combine these local zones upon synchronization. Although the
idea is elegant, it suffers from several problems including the implicit global synchronization
that takes place at time zero, and the fact that you need to augment each automaton with an
additional clock that measures its corresponding total elapsed time. This idea, however, inspired
our proof of convexity.

As a final remark, let us note that reducing the number of zones by taking their convex hull
has been considered in the past [Tri98] but always as an over-approximation. We speculate that
the reason for not discovering this result is due to the fact that the systems studied were cyclic,
in which the same discrete state could be reached by different paths, not all of which being
permutations of the same set of transitions. That is why the possibility of exact convex hull
escaped the attention.
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Chapter 4

Timed Automata with Discrete State
Variables

In the rest of this thesis we will use timed digital circuits as a challenge (“killer application”)
for timed automata analysis technology. Circuits viewed at gate level may have an enormous
number of state variables. For synchronous circuits viewed at the functional level, one needs a
Boolean variable for every state-holding element. For asynchronous circuits, or for synchronous
circuits viewed at the timed level of abstraction, the situation is worse: a variable is needed
for every wire outgoing from a gate. Hence it is very natural to associate the states of the
corresponding automata with valuations of these state variables. It is worth mentioning that the
traditional theory of automata (and also that of timed automata) is based on a “flattened” state
space which does not speak of variables nor has a Cartesian product structure. On the other
hand, all practical approaches to verification (for example, a popular tool like SMV [McM92a])
do use a structured state space accessed via variables.

Another advantage of using variables explicitly is the fact that most of contemporary systems,
hardware as well as software, are component based. A major concept within this framework
is that of encapsulation, the abstraction of components behaviors to their interfaces in order to
control the complexity of such systems. Using variables it is easier to speak of the restriction
of a system to its interface and about other related notions such as composition, abstraction,
projection and refinement. In this chapter we will present some definitions that will allow us to
speak comfortably about timed automata as components.

Another deviation from the standard timed automaton model is that we use signals (rather than
time-event sequences, see [ACM02]) to define the semantics of timed automata. Hence we
will give here also the necessary definitions concerning signals over a set of variables. Most of
the definitions apply to an arbitrary domain D but toward the end we will shift to the Boolean

49



50 CHAPTER 4. TIMED AUTOMATA WITH DISCRETE STATE VARIABLES

domain B.

4.1 Variables, Valuations and Assignments

Let X = {x1, . . . , xm} be a finite set of variables ranging over a domain D. An X-valuation is
a function

v : X → D

assigning to each xi a value v(xi). The set of such X-valuations, which are just elements of Dm,
is denoted by VX .

Every X ′ ⊆ X defines a projection function

/X′ : VX → VX′

such that v′ = v/X′ if v′(x) = v(x) for every x ∈ X ′.

In the automata to be defined later in this chapter, where states are associated with X-valuations,
each transition corresponds to a change in one or more state variables that we formalize as
assignment functions.

DEFINITION 4.1 (Assignments) Let v and v′ be two X-valuations. The function

fv : VX → VX

is the constant function defined for every u ∈ VX as fv(u) = v. The function

fv,v′ : VX → VX

is such that for every u,u′ ∈ VX , u′ = fv,v′(u) when

u′(x) =

{
v′(x) if v(x) 6= v′(x)

u(x) if v(x) = v′(x)

In other words, fv,v′ acts as the identity on all the variables on which v and v′ agree and assigns
to the other variables their value in v′. Needless to say, v′ = fv,v′(v). We denote the set of
X-assignments by FX . Given two valuations v,v′ we let ρ(v,v′) be the number of variables on
which v and v′ differ. We say that assignment fv,v′ is, respectively, silent, single or multiple if
ρ(v,v′) = 0, ρ(v,v′) = 1 or ρ(v,v′) > 1. Clearly, every multiple assignment can be written as
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a composition of single assignments.The projection f/V′ of an assignment f on a subset X ′ of
the variables is defined naturally by restriction.

Examples Let X = {x1, x2, x3, x4}, let v = (1, 3, 2, 7) and v′ = (2, 3, 5, 7). Then

fv′ = {x1 := 2, x2 := 3, x3 := 5, x4 := 7}

and
fv,v′ = {x1 := 2, x3 := 5}.

When we work in the Boolean domain we may use the simpler notation x↓ for x := 0 and x↑ for
x := 1. Let v = (0, 1, 1, 0) and v′ = (1, 1, 0, 0). Then

fv′ = {x1
↑, x2

↑, x3
↓, x4

↓},

and
fv,v′ = {x1

↑, x3
↓}.

In further sections, we will associate variable valuations with automaton states and assignments
with transitions. Then, when composing automata we will need to check compatibility between
valuations over two non-disjoint sets of variables.

DEFINITION 4.2 (Compatibility) LetX1 andX2 be two sets of variables and letX = X1∪X2

and X = X1 ∩X2. Two valuations v1 ∈ VX1 and v2 ∈ VX2 are said to be compatible if they

agree on shared variables

v1
/X = v2

/X .

From two such compatible valuations we can naturally construct a joint valuation v1 ‖ v2 :

X → VX which agrees with v1 and v2 on all variables. Likewise, two assignments f 1 ∈ FX1

and f 2 ∈ FX2 are compatible if

f 1
/X = f 2

/X

and one can construct from them a joint assignment f 1 ‖ f 2 : VX → VX .

4.2 Signals

The behavior of a system defined over X is a function from the time domain to VX . In our case,
the time domain is R+ and such behaviors are called signals.
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DEFINITION 4.3 (X-Valued Signals) A signal over a set X of variables ranging over a dis-

crete domain is a partial function

ξ : R+ → VX

whose domain of definition is some interval [0, t), t ∈ R+ ∪ {∞}, which can be partitioned into

a countable sequence of left-closed right-open intervals J = J1, J2, J3, . . . each of the form

Jk = [tk−1, tk), such that ξ(τ) = ξ(τ ′) = ξ(J) if τ and τ ′ belong to the same interval J .

We use |ξ| = t to denote the duration of the signal and say that ξ is finite if |ξ| <∞ and infinite
otherwise. The coarsest partition of R+ in which the uniformity condition holds is Jξ satisfying
ξ(Jk) 6= ξ(Jk+1). We will denote the set of finite and infinite X-signals by S∗(X) and Sω(X),
and let S(X) = S∗(X) ∪ Sω(X). The concatenation operation ξ1 · ξ2 is defined naturally for
any ξ1 ∈ S∗(X), ξ2 ∈ S(X), as it is defined for sequences.

The more commonly-used semantic domain for timed automata are the time-event sequences,
consisting of events separated by time durations, which are also equivalent to the timed traces

of [AD94] which are sequences of events with non-decreasing time stamps. Signals can be
represented in two forms, one is state based and the other is event based, where the events
correspond to changes in the signal value (assignments). In this form they can be viewed as
a special subclass of time-event sequences in which events x↑ and x↓ that specify changes in
the same variable should satisfy additional constraints, for example, every two occurrences of
x↑ should be separated by an occurrence of x↓. More theoretical background on signals and
time-event sequences can be found in [ACM02].

x2

x1

x3

· · ·

2 7 10 17

· · ·

· · ·

Figure 4.1: A signal over the Boolean variables {x1, x2, x3}.

State-based Representation of Signals We will use the notation

vr11 · vr22 · vr33 · · ·
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to denote a signal ξ with vk = ξ(Jk) and rk = |Jk| = tk− tk−1, that is a signal whose value is v1

for duration r1, then v2 for duration r2, etc. The signal appearing in Figure 4.1 will be written
in a state-based form as:

ξ =

0
B@

1

0

0

1
CA

2

·

0
B@

0

1

0

1
CA

5

·

0
B@

0

0

0

1
CA

3

·

0
B@

1

0

1

1
CA

7

· · · , (4.1)

Event-based Representation of Signals A signal of the form vr11 · vr22 · vr33 · · · will be repre-
sented as

fv1 · r1 · fv1,v2 · r2 · fv2,v3 · r3 · · ·

The signal (4.1) can be written in an event-based form as:

ξ = {x1
↑, x2

↓, x3
↓} · 2 · {x1

↓, x2
↑} · 5 · {x2

↓} · 3 · {x1
↑, x3

↑} · 7 · · ·

or as

ξ =

0
B@

↑
↓
↓

1
CA · 2 ·

0
B@

↓
↑
=

1
CA · 5 ·

0
B@

=

↓
=

1
CA · 3 ·

0
B@

↑
=

↑

1
CA · 7 · · ·

It is important to note that in this representation, an assignment which involves several variables
is considered instantaneous, without any order imposed on the changes in the variables. How-
ever, when we consider signals associated with the behaviors of timed automata, an assignment
may be realized by a sequence of transitions, each performing a single assignment on one vari-
able. In this case the ordering of assignments should be consistent with a natural “causality”
partial order among variables, where x ≺ x′ should hold if x influences x′, for example if x is
an input variable and x′ is a state variable for some automaton (see next section). Assuming a
partial order x1 ≺ x2, x1 ≺ x3, the signal of (4.1), can be written as either

x1
↑ · x2

↓ · x3
↓ · 2 · x1

↓ · x2
↑ · 5 · x2

↓ · 3 · x1
↑ · x3

↑ · 7 · · ·

or
x1
↑ · x3

↓ · x2
↓ · 2 · x1

↓ · x2
↑ · 5 · x2

↓ · 3 · x1
↑ · x3

↑ · 7 · · ·

The projection ξ′ = ξ/X′ of an X-signal ξ on some X ′ ⊆ X is defined naturally by either
projecting the valuations in a state-based representation, or by deleting variables outside X ′

from the assignment in an event-based description. As discussed in the previous chapter in the
context of local runs, such a projection may reduce the number of changes in the signal value
and may result in a time partition Jξ′ coarser than Jξ. The projection of signal (4.1) on {x1, x3},
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shown in Figure 4.2, is represented in a state-based form as

ξ/{x1,x3} =

 
1

0

!2

·
 

0

0

!5

·
 

0

0

!3

·
 

1

1

!7

· · · ≡
 

1

0

!2

·
 

0

0

!8

·
 

1

1

!7

· · · ,

and in an event-based form as

ξ/{x1,x3} =

 
↑
↓

!
· 2 ·

 
↓
=

!
· 5 ·

 
=

=

!
· 3 ·

 
↑
↑

!
· 7 · · · ≡

 
↑
↓

!
· 2 ·

 
↓
=

!
· 8 ·

 
↑
↑

!
· 7 · · ·

In this projection the assignment which involved only a change in x2 became silent.

The untiming of a signal is the sequence

µ(ξ) = v1 · v2 · v3 · · · ≡ fv1 · fv1,v2 · fv2,v3 · · ·

which is similar to the definition of qualitative behavior given in the previous chapter. The
untiming of the signal (4.1) will be represented as:

0
B@

1

0

0

1
CA ·

0
B@

0

1

0

1
CA ·

0
B@

0

0

0

1
CA ·

0
B@

1

0

1

1
CA · · ·

in the state-based representation, and as

0
B@

↑
↓
↓

1
CA ·

0
B@

↓
↑
=

1
CA ·

0
B@

↓
=

=

1
CA ·

0
B@

↑
=

↑

1
CA · · ·

or
x1
↑ · x2

↓ · x3
↓ · x1

↓ · x2
↑ · x2

↓ · x1
↑ · x3

↑ · · ·

in the event-based representation.

x3

2 10 17

· · ·

x1 · · ·

Figure 4.2: The signal of Figure 4.1 projected on {x1, x3}.

Finally let us mention a special class of signals called ultimately constant which are signals that
at some point “stabilize”and do not change their values. Such signals can be written as

vt11 · vt22 · · ·v∞k or fv1 · t1 · fv1,v2 · t2 · · · fvk−1,vk
· ∞.
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The event-based representation of signals will allow us to stay close to the traditional definitions
of timed automata where input and output values are associated with transitions rather than
giving new definitions where these values are associated with states.

4.3 Timed Automata with Variables

In this section we associate every timed automaton with a set X of variables, partitioned into
disjoint subsets of input and state variables X = Xin ] Xst. The difference between these
two classes of variables is that those in Xin are controlled by the external environment and the
automaton can follow their evolution passively, and only react to changes in their values. On
the other hand, variables in Xst are the variables “owned” exclusively by the automaton which
controls their values. A subset Xou ⊆ Xst of the state variables, called output variables, are
observable to the outside world and can serve as input variables for other components. The
interface variables of the automaton are its input and output variables Xio = Xin ]Xou.

The connection between states and variable valuations is defined via the function

λ : Q→ VX

associating with every discrete state q of the automaton one X-valuation v = λ(q). The projec-
tions of λ on the input, state, output and interface variables are denoted by λin, λst, λou, and λio
respectively.

There are two points worth mentioning: 1) we will allow multiple states to be mapped to the
same valuation. This is to accommodate for future use in interpreted timed automata where the
reachability graph of an automaton may have several symbolic states corresponding to the same
discrete state; 2) We will consider the value of input variables to be part of the state, hence every

change in the input will cause a transition to a different state, and there will be only one valuation
associated with each state. This amounts to composing every automaton with an unconstrained
generator of its inputs. At a first glance this looks like an unnecessary blow up of the state space,
but, when analyzed, the automaton should be composed anyhow with a generator of its inputs,
so this overhead is an illusion.

DEFINITION 4.4 (Timed Automata over Variables) A timed automaton over a set X of vari-

ables is a triple AX = (A, X, λ) where A = (Q,FX , q0, C, I,∆) is a timed automaton, X is

a set of variables, and λ : Q → VX is a function mapping states to X-valuations. This func-

tion induces a mapping between transition labels and X-assignments where every transition

(q, a, g, γ, q′) such that λ(q) = v and λ(q′) = v′, is labeled by a = fv,v′ .
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We require the timed automaton to be input enabled, that is, if from every state q and for every
x ∈ Xin there is a transition which changes the value of x, that is, a transition to a state q′ such
that λ(q)(x) 6= λ(q′)(x). This reflects the fact that the input variables are not controlled by the
automaton.

The semantics of AX is defined in terms of steps and runs, inherited from the definition of A,
and in terms of the signals “carried” by these runs. With each compound step

(q, v)
fv,v′ ,t−→ (q′, v′)

between discrete states q and q′ such that λ(q) = v and λ(q) = v′, we associate the finite
X-signal of duration t, represented, respectively, in state-based and event-based forms as

v′ t and fv,v′ · t.

The signal carried by a run is the concatenation of the signals carried by its compound steps.

We denote by [[A]] ⊆ S(X) the set of signals carried by all runs of A and use [[A]]in, [[A]]ou

and [[A]]io for the sets of their projections on the respective sets of variables. In particular,
[[A]]io ⊆ S(Xio) is called the observable behavior of A. Likewise we will use µ([[A]]) and
µ([[A]]io) for the untiming of those signal languages (qualitative behaviors).

Let us remark that the observable behavior [[A]]io of an input-enabled automaton A can be seen
also as a non-deterministic causal and duration-preserving function (transduction)

hA : S(Xin) → 2S(Xou),

which associates with each input signal one or more output signals. We use the relational def-
inition of [[A]]io, knowing that its projection on the input [[A]]in is the set of all input signals
S(Xin).

Given two timed automata A and A′ having the same set Xio of interface variables, we say that
A′ is an over approximation of A, denoted by A v A′, if [[A]]io ⊆ [[A′]]io. This will always be
the case when A′ is obtained from A by relaxing some of the timing constraints, or by merging
two or more discrete states.

Composition

We will now define the composition of two timed automata with variable sets X1 and X2 such
that

X1
st ∩X2

st = ∅.
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In this setting, the interaction between components is realized via the shared variables

X = X1 ∩X2 = (X1
in ∩X2

in) ] (X1
ou ∩X2

in) ] (X2
ou ∩X1

in).

When one automaton takes a transition that changes the value of a shared variable, the other
automaton must take a similar transition as well. If the variable is an input for both automata,
that is, x ∈ X1

in∩X2
in, it remains an input of the composed system. On the other hand a variable

is an output variable of one automaton and an input for another, it becomes a state variable of
the composed system which controls its value.

A composition is cyclic is there are “loops” of influence between components:

(X1
out ∩X2

in 6= ∅) ∧ (X2
out ∩X1

in 6= ∅).

Cyclic composition may introduce undesired phenomena into the composed systems such as
what is called an unstable behavior: spontaneous oscillations between values without any exter-
nal stimulus. However it is well known that some of these loops are harmless and stable. Our
implementation allows such cyclic compositions and uses the algorithm of [Mal94] to check
stability. However, to simplify the presentation we will assume acyclic composition. Let us
summarize the above by a definition.

DEFINITION 4.5 (Composition of X-Automata: Variable Classification) The set of variables

in a composition of two timed automata over variable sets X1 and X2, is X = X1 ∪X2, where

Xst = X1
st ]X2

st,

Xin = (X1
in −X2

ou) ∪ (X2
in −X1

ou),

and

Xou ⊆ X1
ou ]X2

ou.

Note that the definition of Xou is not unique, allowing it to be any subset of X1
ou ] X2

ou. This
reflect a liberty in the design of a composed system concerning which variables that will be
exposed to the external world and which will be hidden. We do not enter this choice of Xou

to the formal definition of the composition in order to keep it associative. When we apply it to
circuits we compose all the automata together and specify explicitly the set of output variables
of the whole product.

The following definition identifies potential global states of the product as pairs of states whose
valuations are compatible.
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DEFINITION 4.6 (Consistent Global States) LetAX1 = (A1, X1, λ1) andAX2 = (A2, X2, λ2)

be two timed automata. We say that a pair of states (q1, q2) ∈ Q1 × Q2 is consistent if

λ1(q1)/X = λ2(q2)/X .

We denote the set of consistent global states by Q̂1 ×Q2.

DEFINITION 4.7 (Composition of Timed Automata with Variables) LetAX1 = (A1, X1, λ1)

withA1 = (Q1, FX1 , q1
0, C

1, I1,∆1) andAX2 = (A2, X2, λ2) withA2 = (Q2, FX2 , q2
0, C

2, I2,∆2),

be two timed automata with variables, such that (q1
0, q

2
0) is consistent. Their composition AX1 ‖

AX2 = AX = (A, X, λ) with A = (Q,FX , q0, C, I,∆) where

• The set of variables is X = X1 ∪X2 classified according to Definition 4.5

• The set of discrete states is Q = Q̂1 ×Q2

• The initial state is (q1
0, q

2
0)

• The set of clocks is C = C1 ] C2

• The staying condition I is defined for every global state as I((q1, q2)) = I1(q1) ∧ I2(q2))

• The transition relation consists of all transitions of the form

((q1, q2), f, g, γ, (q′1, q′2))

for which one of the following holds:

1. q′2 = q2 and there is a transition (q1, f, g, γ, q′1) ∈ ∆1 such that f/X is the identity

function

2. q′1 = q1 and there is a transition (q2, f, g, γ, q′2) ∈ ∆2 such that f/X is the identity

function

3. there are two transitions (q1, f 1, g1, γ1, q′1) ∈ ∆1 and (q2, f 2, g2, γ2, q′2) ∈ ∆2 such

that f 1
/X = f 2

/X is not the identity function, f = f 1 ‖ f 2, g = g1∧g2 and γ = γ1 ◦γ2

• The mapping from states to variables λ : Q → X is defined for every global state as

λ((q1, q2)) = λ1(q1) ‖ λ2(q2).

The first two cases in the definition of ∆ correspond to local transitions ofA1 andA2, transitions
that do not touch shared variables. To these transitions we apply the interleaving semantics, let-
ting them be taken independently. The third case corresponds to two transitions, one in each
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automaton, whose respective assignments change the values of some shared variables in a con-
sistent way. Hence transitions preserve state consistency.

We mention a special class of timed automata which is closed under acyclic composition.

DEFINITION 4.8 (Input-Dependent Timed Automata) A timed automaton A is input depen-

dent if every non-trivial cycle in its transition graph involves at least one transition which

changes the value of some input variable.

Proposition 4.1 (Closure under Acyclic Composition) If bothAX1 andAX2 are input-dependent,

so is their acyclic composition A = AX1 ‖ AX2 .

PROOF 4.1 Suppose, without loss of generality, that X1
ou ∩ X2

in 6= ∅. Suppose A does have

a non-trivial cycle without change in its input. Then, at least one of its projections on A1 or

A2 must be a non-trivial cycle. Such a cycle in A1 will contradict the fact that A1 is input-

dependent. Otherwise, the projection on A1 is a trivial cycle without a change in its output, and

the induced cycle in A2 contradicts the fact that A2 is input-dependent. 2

Proposition 4.2 (Input-Dependent Automata and Ultimately-Constant Inputs) LetAX be an

input-dependent timed automaton. Then for every ultimately-constant input signal ξin, any out-

put signal ξou ∈ hAX
(ξin) is ultimately constant.

PROOF 4.2 Suppose the contrary. Then the run carrying ξou (and ξin) should exercise a non-

trivial cycle infinitely-many times. Since the automaton is input-dependent, this will require

infinitely-many changes in ξin which contradicts the assumption about its being ultimately-

constant.



60 CHAPTER 4. TIMED AUTOMATA WITH DISCRETE STATE VARIABLES



Chapter 5

Timed Circuits

Modern circuits may contain up to hundred million transistors. The development of computer-
based tools and methodologies to facilitate the design of such enormously-complex systems is
at the center of the EDA (Electronic Design Automation) industry which involves today around
billion dollars a year and more than 20,000 employees, not counting those working inside the
semiconductor industry itself. This thesis is concerned with two topics related to circuit design
and analysis methodology. The first topic is that of timing, the interaction between the physical

properties of the circuit and its logical functionalities. The main issue in timing is how to get
more computing throughput from the circuit and how to coordinate the speeds of different parts
of a complex system. The second topic is modular (hierarchical, component-based) design and
analysis of circuits, which is the only way to manage their complexity. Our main contribution is
in creating a computer-supported framework for handling timing aspects in a modular fashion.

The choice of digital circuits as principal experimental framework for evaluating our techniques
seems to be good one. It allows us to generate large examples of arbitrary size and benefit
from the simplicity to express systems defined over Boolean variables. We recall also that
due to the prohibitive costs of post-fabrication bugs, hardware was an important driving force
behind practical verification technology and we hope it will play a similar role in timing analysis.
Nevertheless, we stress once more that the techniques developed here can be applied to systems
whose basic building blocks are more complex than Boolean gates as well as systems whose
components are realized in software. In fact, our methodology applies to any system consisting
of interconnected components each computing some discrete function within some time delay.

The rest of this chapter is organized as follows. In Section 5.1 we discuss some trade-offs
between circuit performance and the complexity of analyzing its behavior. In Section 5.2 we
describe briefly some hierarchical design principles. Section 5.3 mentions various approaches
for modeling delays in Boolean gates while Section 5.4 described the gate delay model that we

61



62 CHAPTER 5. TIMED CIRCUITS

use throughout the rest of this thesis and the way we represent circuits composed of such gates
using timed automata. Finally, Section 5.5 demonstrates how existing timed-automata is used to
analyze such circuits.

5.1 Circuit Timing

Digital circuits can be classified into two major categories. The first category includes combina-

tional circuits, that is, logic circuits without feedback. Their output is a function of, and only of,
the present input values. As such they obey simple laws and the analysis of their functionality
is rather straightforward. Such circuits have no memory and cannot maintain a state. When
the capability to store information is added, we speak about sequential circuits. In this class
of circuits, the output depends not only on the present input values but also on their history.1

For this kind of circuits, timing is an aspect of a major importance that has to be well studied
and understood. To be more precise, timing is important as well for combinational circuits but
it will not affect their logical functionality: by ignoring timing we still know what the circuit
computes, if not when. Variations in component timing characteristics in sequential circuits may
affect what they compute and the abstraction of timing aspects which makes the study of combi-
national circuits so simple, is, unfortunately, no longer possible. Consequently, no simple theory
exists for describing and studying the behavior of this type of circuits in a faithful and efficient

manner.

The most successful design and analysis approach for sequential circuits, and indeed the domi-
nant approach to date, starts by breaking all feedback loops with registers and latches, which are
circuit elements that store values presented at their inputs on a shared clock signal. This way the
sequential circuit is divided into combinational sections, each of which is easily analyzed. In
this approach, time is assumed to be quantized and the global clock, which is a periodic signal,
controls the communication between those combinational sections. The computation of the out-
put of every section must be completed within less than a fixed amount of time called the clock

period. As long as this condition is met (ignoring certain other details), the circuit is guaranteed
to work reliably.

Thanks to the simplicity of this approach, nearly all sequential logic today is clocked or syn-

chronous. However, this design methodology suffers from many drawbacks, the major among
them is the cost associated with the global, periodic clock. The fixed clock period of syn-
chronous circuits is chosen as a result of worst-case timing analysis. It is not adaptive and

1Mathematically speaking, the difference between the two is similar to the difference between Boolean functions
and automata over Boolean variables.
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cannot exploit the fact that in many situations the average-case behavior is much better than the
worst case.

Even a small circuit like the one of Figure 5.1-(a) can be used to illustrate some of the inefficient
utilization of resources in clocked circuits. In this circuit the input is fed in parallel into two
inverters, one slow with propagation delay 10 and one fast with delay 2. The output of both are
fed into an AND gate with delay 10. The period of the clock signal should be greater than 20

time units, which is the maximal propagation delay from input to output.
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x 0
z 0
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Figure 5.1: Example: (a) a clocked circuit; (b) a pipelined circuits; (c) a wave-pipelined circuits.
The numbers indicate the propagation delays associated with the gates.

Many techniques have been introduced to improve the performance of synchronous designs.
Pipelining is one of the most studied and applied techniques. It consists in inserting clocked
registers at specific points of the circuit. The clock rate of the circuit given above, can double by
introducing two registers as shown in Figure 5.1-(b), because once the inverters have propagated
their values, they can start processing the next input. Another technique for improving the
performance of clocked circuits is called retiming [LS91]. It consists of certain transformations
that move latches across the circuit while preserving its behavior and possibly reducing the
minimal clock period.

Wave-pipelining is another method for high-performance circuit design which implements pipelin-
ing in logic without the use of intermediate latches or registers. The idea was originally intro-
duced by Cotton [Cot69], based on the observation that the rate at which logic signals can prop-
agate through a circuit depends not on the longest path delay but on the difference between the
longest and the shortest path delay. As a result, several computations, called waves, that is, logic
signals related to different clock cycles, can propagate through the logic simultaneously. One can
also view wave-pipeline as a kind of latch-free pipelining, in which each gate capacitances can
serve as a virtual storage element. Figure 5.1-(c) illustrates the idea. Although wave-pipelining
may potentially lead to more efficient designs, it is rarely used because the reliability of such
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circuits is hard to prove and in most (but not all) cases the gain in performance does not justify
the complexity and cost of the design compared to classical synchronous logic.

Pipelining and related techniques can prevent certain parts of a circuit from being idle while they
can do something useful, but they do not resolve the inherent problem associated with the worst-

case reasoning underlying clocked circuits, illustrated again using the circuit of Figure 5.1-(a).
The maximal propagation delay occurs when the input falls and the AND gate has to wait for the
slow inverter to rise in order to start rising by itself. On the other hand, when the input rises,
the fall of the fast inverter is sufficient for lowering the AND gate, hence a propagation delay
is only 12, much less than the clock period. A clocked circuit cannot adapt to the actual rate
and has to be ready for the worst case. Arithmetic circuit performance, for instance, is typically
dominated by the propagation delay of carry signals, where the worst-case propagation situation
rarely occurs.

In addition to the potential inefficiency of the computation, the maintenance of a global clock is
associated with other severe problems such as clock skew, high power consumption, and could
make it hard to compose systems.

Clock skew Clock skew is a phenomenon in synchronous circuits in which the clock signal ar-
rives at different components at different times, which may produce a global dysfunction.
This can be due to multiple causes, such as wire-interconnect length, temperature varia-
tions, capacitive coupling, and so on. As the clock rate of a circuit increases, less variation
can be tolerated. This problem is usually hard to deal with and it is typically resolved at
the expense of system performance.

Power consumption Synchronous circuits suffer also from an excessive consumption of power.
In fact, the global clock is distributed over all the system, at each cycle every sub-system
is activated even if it is not needed at a particular time.

Compositionality While efficient solutions are sometimes proposed to deal with power con-
sumption or clock skew problems, compositionality which is a principal aspect of con-
temporary systems, is always hard to consider with synchronous logic. Indeed, composing
modules running at different frequencies is extremely arduous if not impossible. When
this is feasible, the speed of the whole system will be imposed by the clock rate of the
slowest component, which often means a further decrease in performance.

An alternative asynchronous design methodology has been proposed since the first days of cir-
cuit design. The basic idea is that a component in the circuit which produces some data to be
used by other components, activates these components upon completing its computation. These
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components, instead of looking periodically for their data, will be notified when the data is
ready. This approach has several advantages:

1. The components are activated as soon as their data are ready;

2. The overhead of a central clock (in terms of power consumption and distribution over the
circuit) is avoided;

3. Composition is much easier.

The downside of this nice and intuitive idea is that it may lead to unstable electrical behavior
due to “races” among parallel processes that require additional circuitry in order to be avoided.
Moreover, the mechanisms for coordination among components, such as handshaking, intro-
duce a lot of communication overhead that should be added to the circuit, especially if one wants
to follow a purely “speed-independent” approach where nothing is assumed about the relative
speeds of the components. This overhead can be reduced significantly if timing is taken into ac-
count but, as mentioned before, timing of circuits with feedback is complex and cannot benefit
from the efficient abstractions used for this purpose in the synchronous methodology. Conse-
quently the design of asynchronous circuits is much more complex (for the same size) and they
did not know the same success as their synchronous counterparts, except for some niches where
power consumption is important and computations are sporadic rather than periodic.

The success of design based on synchronous logic is not due to circuit performance but mostly
for its capacity to abstract time and thus to enormously reduce the complexity and the cost of
the design. It is worth mentioning that a similar approach has been advocated by proponents of
synchronous languages for developing real-time software. The so-called “synchrony hypothe-
sis” according to which the computer is supposed to be much faster than its environment, allows
the programmer to focus on the functionality of the software, and delegate the treatment of the
timing aspects to others.

Static timing analysis is the most popular timing analysis methodology used in industry. The
effectiveness of this technique is due to the abstraction of the functional aspect of the system,
while focusing only on the quantitative timing aspect. In other words, a circuit is considered
as a network of cells representing delays without logic functions. However, such technique
can not be used for the analysis of asynchronous circuits because by separating the two aspects
time and logic, several phenomena, such as hazards, become invisible in the model. Even for
synchronous circuits, this separation between the two aspects, time and logic, is at the origin
of several problems, such as false paths which can lead to an over-approximation of the min-
imal clock period and a decrease in system performance. In what follows, we will show how
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such problems completely disappear when we use a model which covers both logic and timing
simultaneously.

As a final conclusion, existing frameworks for the design and analysis of timed circuit (and
systems in general) are not completely finalized. They are often unable to offer at the same
time precise modeling formalisms, as well as exhaustive, efficient and automatizable analysis
methods.

5.2 Circuit Structure

As detailed in the section 5.2, digital circuits are usually defined hierarchically as component-
based systems. Each component is a network of sub-components communicating through a
finite set of shared boolean variables. Thus digital circuits expose the characteristics required
by our platform. We will exploit then these characteristics in order to better model and analyze
them.

Circuits seen at a low level are transistors through which electrical current flows controlled
by the voltage present on their terminal wires. This current flow will produce voltage which
can increase or decrease in certain specific points of the circuits. Starting from a certain level,
depending on the considered technology, the voltage could be considered as high or low, and
indicate then a valuation of a single Boolean variable, also known as a bit. By combining
transistors in certain ways, one can build circuits realizing Boolean functions. Moreover, a
given Boolean function can be built in many ways, depending on the considered technology, as
well as on other requirements concerning power consumption, speed and size.

More complex Boolean functions can be built from the simpler ones by replicating the corre-
sponding collection of transistors anywhere a basic Boolean function is required. On this new
level, called the logic level, current and voltage notions are encapsulated in an idealized version
of building blocks defining logic operations and basic logical functions. Gates are basic standard

cells that could at their turn be composed to construct standard cells of much greater complex-
ity, such as a 2-bit full-adder, or muxed D-input flipflop. Those standard cells could at their
turn be composed to define even more complex cells, and so on. This component-based design

methodology was responsible for allowing designers to scale ASICs (application-specific inte-
grated circuits) from comparatively simple single-function circuits (of several thousand gates),
to complex multi-million gate devices such as systems-on-a chip (SoC).

The structure of a circuit, could be regarded as a block diagram, a graph the nodes of which
are components, and the edges, called wires represent the communication between the nodes.
Component-based design is an approach to circuits development that relies on the concept of
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reuse. Each conceived circuit could be reused as an elementary building block in the design of
more complex circuits. Such a component can appear more than once in a single circuit; we
speak then about different instances of components of the same type or class. For example, the
circuit A shown in Figure 5.2 consists of six components: three instances of the circuit B, two
instances of the circuit C, and one instance of the circuit D. Circuits B, C, and D, at their turn,
can be defined similarly as networks of more basic components. This recursive description of a
circuit can be viewed as a tree (see Figure 5.3) the nodes of which are instances of circuits. The
root of this tree is the main circuit, the leaves (called primitive or basic components) are logic
gates, and the rest of the nodes are intermediate components.
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Figure 5.3: Hierarchical structure of a circuit.

Consider a set of interacting components C = {C1, . . . Ck} belonging to a level i in the hierar-
chy. The interaction between these components is via wires that connect some output ports of
one component with some input ports of other components. The whole level can then be seen as
a more complex component C at level i−1 whose set of input-output ports is subset of the ports
of the basic components, those that can interact with other high-level components. Other ports
of the components in C become internal as they are used for connecting these components at
level i but are not visible for interaction at level i−1. Not surprisingly, this pattern of interaction
is captured by the automata with variables introduced in the previous chapter where variables
in Xin and Xou represent, respectively, the input and output ports of the component, and com-



68 CHAPTER 5. TIMED CIRCUITS

position with shared variables mimics the process of connecting two or more components via
wires.

When a circuit is used as a component at a higher level, some abstraction of its internal working
can be tolerated and only its interface behavior should be considered. However, such a restriction
to the interface does not necessarily mean a significant reduction of its state space because any
sequential function has its inherent state space structure through which it is realized. The only
hope to obtain a smaller description of the reused component, is to give an approximation of its
input-output behavior which will be sufficient for fulfilling its functionalities at the higher level.
For example, a component may compute the values for two of its output ports in some order, but
for the higher-level system this order may not be important. Naturally, such an approximation
will be more “non deterministic” and will allow more behaviors than the exact model. Our goal
is to to apply this idea of over-approximation to the timing aspects of the interface behavior of
the component, and in order to do that we have to speak before on timing and delays in the
context of the basic components.

5.3 Delays in Digital Circuits

When viewed as mathematical objects, Boolean functions, like any other class of functions, are
timeless: when we say that y = f(x), we say nothing about the time it takes to compute y
once x is given. On the other hand, when we speak of mechanisms that compute functions,
we need to take into consideration the fact that computation itself is a process that takes time.
When computation is realized in software, its execution time is the accumulated duration of the
instructions executed between its initiation and completion. When the computation is realized
directly in hardware, the computation time, also known as the propagation delay, corresponds
to the time that elapses between the moment a new input appears at the input ports of the circuit,
until the corresponding new value of the function appears at the output ports.

The delay in circuits is due to the characteristics of transistors, of interconnecting wires and
many other physical considerations. The estimation of propagation delays, by simulation or
by analytic methods is a topic of ongoing research which is outside the scope of this thesis.
We focus on the following question: given the delay characteristics of the basic components,
for example Boolean gates, determine the timing properties of a large network built from such
components.

There are many delay models used in academic and commercial tools such as PrimeTime or
SPICE, differing from each other by their fidelity to the physical reality, their level of detail
and by the complexity of their analysis. Simple deterministic delay models associate a single
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number d with a gate, indicating that the gate output will switch exactly d time after a change in
the input. The most rudimentary models will assign the same delay value to all gate types while
progressively more sophisticated models, may differentiate between gate types, between delay
associated with rising and falling and may even go further and assign specific delay values to
each combination of changes in the input variables. For example, it may be the case that an AND

gate will rise at different speeds when its inputs move to 11 from 01 or from 10.

The advantage of deterministic delays is that they lend themselves easily to simulation, either in
isolation or in parallel with transistor-level simulation and as such can be used to have a good feel
concerning the behavior of the circuit. The disadvantages of this approach are evident: delays
cannot be known precisely and may vary even among gates of the same type due to fabrication
variations and the different electrical and physical contexts in which the gates operate. Hence
simulation with deterministic delays will cover only one of the uncountable number of behaviors
that the circuit may exhibit.

Other models cope with delay uncertainty by assigning to a gate an interval of possible delay
values. This can be an interval of the form [0, du] or, more interestingly, intervals of the form
[dl, du] assigning both a lower and an upper bound on the propagation delay. In this model,
known as the bi-bounded delay model [BS95], a change in the input of the gate which implies
a change in its logical function2 will propagate to the output port within some time t ∈ [dl, du].
Like deterministic delay models, these models can be refined to distinguish between the delays
associated with rising and falling, or between different combinations of input changes. Since our
goal is to demonstrate scalability of our technique rather than solve a specific circuit problem,
we will not go to this level of detail and use models in which there is one delay interval for rising
and one for falling.

Allowing the definition of non-deterministic delays does not imply covering all their possible
combinations. Using standard simulation tools, it is possible to simulate with different combi-
nations of values taken from the delay intervals, for example combination of lower and upper
bounds for each gate, but even the restriction to these “corner cases” cannot be covered by simu-
lation as the number of combinations grows exponentially with the number of gates. Moreover,
it is not clear that a bug, if exists, will be exhibited using one of these extreme values. The
approach that we take is that of formal verification: using timed automata we cover all pos-
sible behaviors of the circuit under any combination of choices of delay for each gate in its
corresponding interval. Of course, this generality has its high cost compared to deterministic
simulation.

2Not all changes are like that of course, some do not imply a change in the output.
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5.4 Circuit Model

We can now introduce the circuit model used in this thesis which is essentially the inertial

bi-bounded delay model [Dil89, BS95]. Each elementary gate is decomposed into two parts,
the first is an instantaneous Boolean gate whose output responds immediately to changes in its
input. However this value is not visible to the external world but serves as an input to the sec-
ond component, a delay element parameterized by the rising and falling delay intervals [d↑l , d

↑
u]

and [d↓l , d
↓
u]. The modeling of delay elements using timed automata, according to the proposal

of [MP95a], is the cornerstone of our approach, that we illustrate via the AND gate model of
Figure 5.4.
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Figure 5.4: A timed gate decomposed into a logical function and a delay element, and the
automata corresponding the these components: logical function at the left and a delay element
at the right. The states are labeled by pairs of the form vin/vou corresponding to valuations of
input and output variables.

The automaton for the logical function is straightforward. It has two input variables x0 and x1

and one output variable y. The transitions (triggered by the input) to and from state (1, 1)/1

change the value of the output variable. The automaton for the delay element has one input
variable y and one output variable z. State 0/0 is a stable state in which the input and output
agree and the automaton may stay in this state indefinitely as long as the input does not change.
Once the input rises, the automaton moves to the excited state 1/0 and resets clock c to zero.
This transition is not visible from the outside as the output variable remains low. The automaton
may stay in this state as long as the clock has not reached the upper bound d↑u, but may move to
the stable state 1/1 as soon as the clock reaches the lower bound d↑l . This transition is visible
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from the outside as it changes the value of the output. The “dense” nondeterminism, the ability
to switch or not to switch when the clock is in the interval [d↑l , d

↑
u], will generate uncountably-

many output signals for every input signal, to express delay uncertainty. If the inputs falls again
before its value is propagated to the output, the automaton returns to stable state 0/0. This way
changes in the input that persist for less than d↑l time are “filtered” away and are not propagated
to the output, those that persist for more than d↑u time must be propagated and those that last for
some time between d↑l and d↑u may be propagated or not. Such a delay is called inertial3 [BS95].
The behavior of the automaton when the input falls at 1/1 is similar.
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Figure 5.5: The timed automaton for an AND gate with propagation delay.

Composing these two automata we obtain the automaton of Figure 5.5 with input variables x0

and x1 and output variable z. This automaton is our model of an AND gate with propagation
delay. The construction of an automaton for a whole circuit is done by a straightforward com-
position of the automata corresponding to its gates with shared variables for ports connected
via wires. This way we obtain a model in which both timing and logic are coupled together, in
contrast with approaches that separate them.

5.5 Analysis

Once an automaton for a circuit is constructed, it can be subject to the verification technology
of timed automata described in Chapter 2. To illustrate how the analysis of a whole circuit looks
like, consider the adder circuit of Figure 5.6-(a) consisting of two AND gates, two XOR gates

3One may think of other, more physically-correct, ways to model this situation, for example, moving to an error
state or adding more clocks and states to model the return of an excited gate to its stable state.
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and one OR gate, each type with its specific delay intervals. After composing these automata we
obtain a global timed automaton with three input variables x0, x1 and x2 and two output variables
z0 and z1. At this point, the obtained automaton is completely open in the sense that there is
no constraint whatsoever on the input signals which are allowed to be arbitrary. Of course, no
circuit is supposed to function in the presence of this most general environment, and inputs are
typically constrained both logically (for example, their values encode some restricted domain,
or they follow some protocol) and in terms of timing (for example, bounded variability). These
restrictions on the input are easily represented by a timed automaton (the input generator) which
is composed with the circuit to obtain a model of the circuit with its environment. The size of
the automaton obtained by composing the circuit automaton with a restricted input generator
will typically (but not always) be much smaller than the automaton obtained by composing with
the most general environment. This is because in dense time, the completely-unrestricted input
generator can generate wild behaviors with unbounded variability.
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Figure 5.6: A circuit example: (a) a full adder; (b) an input generator.

To keep the presentation manageable we compose the circuit with a very simple input generator
which generates only one input signal, a scenario in which x2 rises at time zero, x1 rises at time
2 and x1 rises at time 7. This input is modeled by the automaton of Figure 5.6-(b). Although the
input is deterministic, there will be a lot of non-determinism in the circuit behavior due to delay
uncertainty. We compose the input model with the automaton for the circuit and run the forward
reachability algorithm to obtain the interpreted timed automaton depicted in Figure 5.8. This
automaton captures all the possible behaviors of the circuit in the presence of this particular
input, under all possible combinations of delays for the individual gates. Let us stress that
this type of analysis can be done with more general input models, including unrestricted input
generators, for which the result will certainly be larger.

Each path in the automaton of Figure 5.8 corresponds to one qualitative behavior, a set of runs
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that go through the same sequence of transitions. All runs start from a stable state where all
variables are low and all lead eventually to the same stable state where both output variables are
high. To relate the runs to the behavior of the circuit let us look at two sample runs. The first run

ξ1 : s0
x2
↑−→ s1

2−→ s1
x1
↑−→ s2

4−→ s2
z0↑−→ s3

1−→ s3
x0
↑−→ s5

2−→ s5
y1↑−→ s7

4−→ s7
z1↑−→ s11

starts with the rising of x2 which excites the XOR gate z0, followed by the rising of x1 which
excites y0. At time 6, z0 rises, “choosing” it maximal propagation delay 6, followed by the rise
of x0 at 7. This rise aborts the excitation of y0 as both inputs of the XOR gate are high. This
abortion is possible because only 5 time units have elapsed since the excitation of y0, which is
less than its upper bound. The rise of x0 also excites y1 which rises after 2 more time units,
exciting z1 which finally rises at time 13, reaching the stable final state.

The second run

ξ2 :

s0
x2
↑−→ s1

2−→ s1
x1
↑−→ s2

4−→ s2
z0↑−→ s3

1−→ s3
y0↑−→ s4

0−→ s4
x0
↑−→ s6

2−→ s6
y1↑−→ s10

1−→

s10
y2↑−→ s15

1−→ s15
z0↓−→ s21

0−→ s21
y0↓−→ s28

3−→ s28
y2↓−→ s35

0−→ s35
z1↑−→ s31

2−→ s31
z0↑−→ s11

starts with the same timed sequence of events x2
↑, x1

↑ and z0
↑, but this time the excited y0

chooses its minimal delay 5 and rises at time 7 just before the rise of x0. We will soon see that
contrary to naive intuition, this early stabilization of one gate may postpone the stabilization of
the whole circuit. The rising of y0 excites z0 to fall and y2 to rise while the rise of x0 excites
y1 to rise and y0 to fall. The subsequent events are the rise of y1 which excites z1 (as in ξ1), the
rise of y2 and the fall of z0. Only then y0 falls exciting z0 to rise again which happens, (after the
rising of z1) only at time 15. The signals corresponding to both runs are depicted in Figure 5.7.

This example is a small illustration of the complexities associated with a network of timed
components working in parallel. It also shows the impressive analysis power of timed automata.
An automaton like the one in Figure 5.8 tells us everything we might want to know about the
behavior of the circuit coupled with a given environment, including which sequences of events
are possible and the maximal stabilization time (the duration of the longest run). It can serve
as well as a basis for checking properties expressed in real-time temporal logics or as “public”
characterization of the circuit. The only remaining question is that of scalability: how far can we
go in terms of circuit size, and in terms of environment complexity? The answer is “not very”.
The ability to produce reachability graphs for timed automata is restricted to some dozens of
gates for acyclic input generators like the one presented in this example, and much less so for
cyclic inputs. This is the problem we are going to attack in the next two chapters.
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Figure 5.7: The signals associated with runs ξ1, and ξ2.
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Figure 5.8: The interpreted timed automaton obtained for the circuit composed with the input
generator. Runs ξ1 and ξ2 are marked by thick lines.
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Chapter 6

Abstraction: Acyclic Environments

We have seen in the previous chapter how to build a precise model of a timed circuit made of
gates with bounded delay uncertainties. This model generates all the behaviors that the circuit
may exhibit. However, this model, an interpreted timed automaton A, is quite large, having
one clock for every gate and a number of discrete states exponential in the number of gates.
On the other hand, when this circuit will be considered as a component in a larger system, its
interaction will be restricted to its interface variables. Our goal is to approximateA by a smaller
automatonA′ with fewer states and fewer clocks satisfying [[A]]io ⊆ [[A′]]io, that is, it will exhibit
all the behaviors of A and possibly some more. If we are lucky, and A′ is indeed much smaller
than A, but still preserves the properties that make A correct and usable, we can replace A
by A′ in the composition with the rest of the system, apply the same approximation procedure
to the composed system and so on. Using this divide-and-conquer methodology, we may end
up analyzing systems much larger than we could, if we tried to apply reachability computation
directly to the whole system. However, since this process accumulates approximations in every
step, we should be careful.

6.1 Acyclic Input Generators

Ideally, we would like to build the model (and then the reduced model) of a component relative to
its most general environment. This way we can reuse the model in different contexts. However,
when facing complexity issues one should make some pragmatic compromises. In this chapter
we will focus on a restricted subclass of environments (input generators), those that are modeled
by acyclic timed automata where all states except the terminal ones have bounded invariants. All
the input signals generated by such automata are ultimately constant and when composed with
input-dependent automata, they will lead to acyclic automata that exhibit ultimately-constant
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behaviors.

Such restricted environments may fit well into the synchronous design methodology discussed
in the previous chapter. According to this approach a circuit is decomposed into a combinational

part and a memory part. The inputs are presented to the combinational part in one burst at time
zero (or in a finite sequence of such bursts as in the example of the previous chapter) and no
further inputs are presented until the circuit stabilizes. Hence the input presented to the circuit
during one clock cycle can be modeled as an acyclic generator. Other software or hardware
systems that assume “well-behaving” inputs that wait for the systems to process previous input
instances, or that have admission controllers that do not allow new inputs before stabilization,
can be modeled this way as well.

A nice feature of such acyclic automata is that they reach a stable state after a finite amount
of time, bounded by the longest path (in the circuit or in the automaton). Hence if we add an
auxiliary clock ĉ which is reset at time zero, and never reset again, its domain will be bounded.
Such a clock measures absolute time and its value in any configuration is the time elapsed since
the beginning. Hence the maximal value of ĉ over all unstable reachable configurations is the
maximal propagation delay of the circuit. Such a clock has been used for similar purposes in
[AAM06] and elsewhere for solving acyclic optimal scheduling problems.

The abstraction that we propose for this setting takes advantage of this clock. The reduced
model will be an automaton having only ĉ as a clock, and output transitions will be thus guarded
by constraints on ĉ, which in this case will denote intervals of absolute time. For instance, a
transition labeled z↑ guarded by ĉ ∈ [t1, t2] indicates that along this path z will rise between t1
and t2 time since the beginning. However, the road to obtain this automaton is long as will be
detailed below. The major idea is to use the other clocks and state variables, those associated
with the gates, to eliminate impossible qualitative behavior and only then throw these clocks
and variables away by projecting the timing constraints on ĉ, and hiding transitions that do not
change the value of any observable variable.

6.2 The Abstraction Technique

6.2.1 Summary

The abstraction methodology that we develop in this chapter starts with the automaton AX

modeling the composition of the circuit with its input generator, having a set X of variables. It
can be summarized by the sequence of steps

AX
1⇒ A+ĉ

X

2⇒ Ar
X

3⇒ Aĉ
X

4⇒ AXou

5⇒ Am
Xou

(6.1)
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which is explained below.

1. From AX we construct A+ĉ
X by adding an auxiliary clock which does not participate in

transition guards or invariants hence it only observes the dynamics of the automaton and
measures absolute time.

2. We apply the forward reachability algorithm to A+ĉ
X to obtain the interpreted timed au-

tomaton Ar
X having the same semantics as A+ĉ

X , but with additional useful properties as
described in Chapter 2.

3. We then project the timing constraints of Ar
X on clock ĉ, thus relaxing them somewhat, to

obtain Aĉ
X . This is the most crucial part of our methodology.

4. We project Aĉ
X on the output variables to obtain AXou thus making certain transitions

silent .

5. We then reduce the discrete state space of AXou by merging states which are essentially
equivalent in terms of the untimed behaviors that they generate and after merging also
state invariants, transitions and transition guards we obtain the reduced automaton Am

Xou
.

Recalling the fact that [[A]] = [[A′]] implies [[A]]/X′ = [[A′]]/X′ for any subset X ′ of variables,
we will have the following relationships between the observable (output) semantics of these
automata:

[[AX ]]ou = [[A+ĉ
X ]]ou = [[Ar

X ]]ou ⊆ [[Aĉ
X ]]ou = [[AXou ]] ⊆ [[Am

Xou
]]

The corollary of this is
[[AX ]]ou ⊆ [[Am

Xou
]]

which by itself is not a very strong claim, since it holds for any abstraction, but if we look at the
qualitative semantics we have

µ([[AX ]]ou) = µ([[A+ĉ
X ]]ou) = µ([[Ar

X ]]ou) = µ([[Aĉ
X ]]ou) = µ([[AXou ]]) = µ([[Am

Xou
]]).

In other words, we preserve the qualitative semantics of the automaton and relax, to some extent,
its timing constraints. As we shall see, this relaxation of timing constraints is much less violent
than discarding them altogether and taking the untimed reachability graph (Definition 2.4) as
the reduced model.
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6.2.2 Interpreted Timed Automata with an Additional Global Clock

We start with the automaton AX which models the circuit composed with some acyclic input
generator, and in which all paths reach a stable state after a finite amount of time. The first
two steps are the augmentation of AX with the auxiliary clock ĉ and computing its interpreted
automaton via reachability computation. The first step is trivial for acyclic input generators, but
as we see in the next chapter, its adaptation to cyclic generators requires novel ideas. Automaton
A+ĉ
X is almost identical toAX with clock ĉ reset at the first transition; the clock ĉ does not appear

in any time constraint of A+ĉ
X , and it is thus inactive in every state of this automaton. The runs

of A+ĉ
X are isomorphic to the runs of AX with the valuation of ĉ serving as a time stamp. That

is, for any compound step of the form

(q, v)
a,d−→ (q′, v′ + d)

in AX there will be a compound step of the form

(q, v, t)
a,d−→ (q′, v′ + d, t+ d)

in A+ĉ
X if that step in AX could start at absolute time t.

We apply forward reachability to obtain the interpreted timed automaton Ar
X . Again, this au-

tomaton is similar to the one obtained for AX except for the fact that the zones associated with
its invariants and guards will have one additional dimension.

6.2.3 Projection on Global Time

The next step is to project all the zones appearing as invariants and guards of Ar
X on clock ĉ.

DEFINITION 6.1 (Clock Projection) Let AX = (A, X, λ) be a timed automaton, where A =

(Q,FX , q0, C, I,∆), and let C ′ be a subset of C. The projection of AX on C ′ is the timed

automaton AX/C′ = (A/C′ , X, λ), where A/C′ = (Q,FX , q0, C
′, I ′,∆′) such that for every

q ∈ Q, I ′(q) = I(q)/C′ and ∆′ consists of transitions of the form (q, a, g/C′ , γ/C′ , q
′) for every

(q, a, g, γ, q′) ∈ ∆.

Since such a projection relaxes the timing constraints, we have [[AX ]] ⊆ [[AX/C′ ]], and sinceAr
X

is an interpreted timed automaton, its projection on global time, Aĉ
X = Ar

X/{ĉ} preserves the
qualitative semantics, µ([[Ar

X ]]) = µ([[Aĉ
X ]]).

To gain some intuition on the kind of spurious behaviors added through this projection operation,
let us look at the example depicted in Figure 6.1. It consists of two components B1 and B2,
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which simply propagate the value of input x0 after some delay d1 ∈ [l1, u1] to z1, and later, after
a second relative delay d2 ∈ [l2, u2] to z2. Let c1 and c2 be the clocks of the components, and
let ĉ be the auxiliary clock. To simplify the discussion, consider an input generator with only
one input event, the rising of x0 at time 0. The corresponding interpreted timed automaton Ar

X

is shown in Figure 6.1-(b), while its projection Aĉ
X appears in Figure 6.1-(c). The respective

behaviors of these automata are illustrated in Figures 6.1-(d) and 6.1-(e).

s1

s2

s3

s0

x0 ↑
ĉ := 0

c1 := 0

c1 ∈ [l1, u1]

z1 ↑

c1 := ⊥
c2 := 0

c2 ∈ [l2, u2]

z2 ↑
c2 := ⊥
ĉ := ⊥

s1

s0

s2

s3

ĉ ∈ [l1 + l2, u1 + u2]

ĉ := ⊥
z2 ↑

ĉ ∈ [l1, u1]

z1 ↑

x0 ↑
ĉ := 0

z1

z2

[l1, u1]

[l2, u2]

x0

B2

B1

AĉAr

(d) (e)
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z1

t1
+

l2

t2 t1
+

u
2

l10 u
1

t1
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Figure 6.1: (a) A simple circuit; (b) The interpreted timed automaton Ar with the additional
clock ĉ; (c) The projection of Aĉ on the global clock; (d) A behavior of Ar; (e) A behavior of
Aĉ in which t2 ∈ [l1 + l2, u1 + u2] but t2 6∈ [t1 + l2, t1 + u2].

Both behaviors consist of x↑0 at time 0, then z↑1 at some t1 and z↑2 at time t2. In the original
automaton, these should satisfy t1 ∈ [l1, u1] and t2 ∈ [t1 + l2, t1 + u2]. The first condition is
due to the guard c1 ∈ [l1, u1] of the transition from s1 to s2, because at any time t, c1 = t. The
second condition is imposed by the guard c2 ∈ [l2, u2] of the transition from s2 to s3, because
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at any t, c2 = t − t1. After the projection, the relation between t1 and t2 is broken, and the
projected guard ĉ ∈ [l1 + l2, u1 + u2] allows z↑2 to occur at any t2 ∈ [l1 + l2, u1 + u2], regardless
of t1. Roughly speaking, for each path, the projected automaton allows runs in which transitions
occur at times t1, t2, . . . if for each ti there exists a run of the original automaton in which this

transition occurs at ti. This over-approximation is the price we pay for reducing the number of
clocks. A similar reduction has been proposed in [ZMM03] for timed Petri nets.

Before moving further, to reduce the number of states let us note that after the projection, clock
ĉ changes its role from a passive observer of the dynamics to the sole guardian of the (relaxed)
timing constraints. Let us also repeat the important fact that this clock is never reset after time
zero. The result of applying this step to the full-adder example of the previous chapter is shown
in Figure 6.2.

6.2.4 Projection on Output Variables

All the previous transformations have led to timed automata defined on the same original set of
variables X . From now on we focus the output variables Xou of the component. Let us define
the projection of a timed automaton on a set of variables.

DEFINITION 6.2 (Variables Projection) Let AX = (A, X, λ) be a timed automaton, where

A = (Q,FX , q0, C, I,∆), and let X ′ ⊆ X . The projection of AX on X ′ is the timed automaton

AX/X′ = (A/X′ , X ′, λ/X′), where A/X′ = (Q,FX′ , q0, C, I,∆
′) where ∆′ is constructed from

∆ by replacing every transition of the form (q, g, f, γ, q′) by a transition (q, g, f ′, γ, q′) where

f ′ = f/X′ is the restriction of f to X ′.

In other words, this projection is a kind of a hiding operation that has no effect on the dynamics

of the automaton, only on the labeling of states and transitions. In particular, transitions that do
not change any variable in X ′ are labeled by the identity function that we denote by τ . Such
transitions are called silent. It is not hard to see that variable projection commutes with the
semantics:

[[AX/X′ ]] = [[AX ]]/X′ .

In our particular case we project automaton Aĉ
X on the output variables Xou to obtain AXou =

Aĉ
X/Xou . To illustrate the semantics of the projected system let us look at the signal carried by

run ξ1 of full adder of the previous chapter, presented here in an event-based form:

ξ1 : x↑2 · 2 · x↑1 · 3 · z↑0 · 1 · y↑0 · 0 · x↑0 · 1 · y↑1 · 1 · y↑2 · 1 · z↓0 · 0 · y↓0 · 3 · y↓2 · 2 · z↑1 · 1 · z↑0
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Figure 6.2: Projecting on the global clock ĉ: automatonAĉ
X . Invariants and guards are presented

as intervals.
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Projecting on the output variables {z0, z1} we first obtain the signal

ξ′1 : τ · 2 · τ · 3︸ ︷︷ ︸ ·z↑0 · 1 · τ · 0 · τ · 1 · τ · 1 · τ · 1︸ ︷︷ ︸ ·z↓0 · 0 · τ · 3 · τ · 2︸ ︷︷ ︸ ·z↑1 · 1 · z↑0

in which several transitions become silent. Collapsing each sequence of silent transitions into a
single time step we obtain the signal

ξ1/{z0,z1} : 5 · z↑0 · 4 · z↓0 · 5 · z↑1 · 1 · z↑0

So far the projected automaton AXou has the same structure (and observable semantics) as Aĉ
X ,

see Figure 6.3

6.2.5 Minimization

The next step is the reduction of the discrete state space by merging states which are equivalent in
some sense in terms of the qualitative behaviors that can be generated from them. The process
will transform automaton AXou into the timed automaton Am

Xou
having the same qualitative

semantics. The quantitative semantics ofAm
Xou

will be, in certain cases equivalent to that ofAXou

and will over-approximate it in other cases. In fact, a slight modification of our minimization
procedure that we mention at the end of the section can guarantee semantic equivalence. This
work is inspired by ideas appearing in [BFG+91] and [TY01].

Since all the steps in the minimization procedure merge states with identical variable valuations,
we will present it in terms of transformations on an ordinary timed automaton, with an action
alphabet Σ containing the special “silent” symbol τ . To facilitate the presentation we will use
the notation q a−→ q′ for the existence of a transition labeled by a from q to q′ and let q τ−→
q′ indicate the existence of a silent transition. The former will imply the existence of some
compound step (q, v)

t,a−→ (q′, v′) in the automaton while the other implies a compound step
(q, v)

t,τ−→ (q′, v′) which looks like a pure time step from the outside.

We present minimization as a sequence of three steps

A 1⇒ Ao 2⇒ Ab 3⇒ Am

explained below.

1. To remove silent transitions from A we collapse every sequence of transitions of the form
aτ ∗ into a single transition labeled by a. To do so we introduce states that correspond
to various chains of silent transitions. The resulting automaton Ao will have much more



6.2. THE ABSTRACTION TECHNIQUE 85

37
[15,−]

11
[12,−]

16
[9, 10]

9
[5, 14]

11
[9, 13]

1
[0, 6]

z1 ↑

z1 ↑z1 ↑z0 ↑

z0 ↑

z1 ↑

z1 ↑

5

3

2
[2, 6]

4

6

[7, 7][7, 9]

[7, 9]

8 10

1213

7
[8, 14]

[9, 9] [9, 9]
9

[8, 10]

[9, 9]

[12, 14]

[9, 10]

[9, 10]

[12, 14]

[12, 14][14, 14] [13, 14]

z1 ↑
[13, 14]

[14, 16]

[14, 14]

z0 ↑
[14, 15]

[14, 14]
z0 ↑

[12, 14]
z1 ↑ [12, 13]

[12, 14]
z1 ↑

z1 ↑

[13, 14]

14

22

18 17 21

29 30

3435

31

24

25

2726

32

[9, 9] [9, 10]

23

[10, 10] [10, 14] [9, 14] [9, 14] [9, 10]

[9, 13]

[10, 13] [13, 16] [13, 15] [9, 13]

[12, 13] [11, 14]

[12, 14]

[13, 16]

[14, 14]
[12, 13][12, 14]

[14, 14]

[5, 6]
z0 ↑

[15, 16]

z1 ↑
[13, 14]

z1 ↑
[13, 13]

⊥

z0 ↓

x2 ↑
ĉ := 0
start

z0 ↑
[14, 16]

0

19

1

15

[9, 14]

28
[9, 14]

z0 ↓

z1 ↑
[12, 13]

[5, 7]

z1 ↑

[12, 16]

[9, 10]

33

36

z0 ↑

[13, 13]

39
[13,−]

38
[14,−]

τ

τ

τ

τ

τ

τ

τ

τ τ

τ

τ
τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ τ

τ

τ

τ

z0 ↑

20

[0, 2]

z0 ↓

Figure 6.3: Projection on output variables, automaton AXou . The chains 〈0, 2〉, 〈2, 14〉, and
〈6, 26〉 are shaded in preparation for their transformation into states 1, 9 and 11 ofAo in the next
step.



86 CHAPTER 6. ABSTRACTION: ACYCLIC ENVIRONMENTS

non-determinism in the discrete transitions but every sequence of silent transitions will be
replaced by a time step inside a single state.

2. We compute the (qualitative) bisimulation relation ∼ on states of Ao and let the states of
Ab be the equivalence classes of ∼. The invariant of each class is the convex hull of the
invariants of its members.

3. For every pair of states of Ab we merge all the transitions between them having the same
label into one transition whose guard is the convex hull of the guards of the individual
transitions.

Eliminating Silent Transitions

Let A = (Q, q0,Σ, I,∆) be a timed automaton with silent transitions. A state q ∈ Q is directly

observable if it is the initial state q0 or there is some observable a and q′ such that q a−→ q′. We
denote by D(Q) the set of directly observable states. Given two states q, q′ ∈ D(Q) we say that
q′ is a chain-successor of q if there is a path

q
a−→ q1

τ−→ q2 · · · qk τ−→ q′

in the automaton. We denote by 〈q, q′〉 the set of states {q1, . . . , qk, q′} that appear in this silent
chain. Note that all states in 〈q, q′〉 admit the same variable valuation since the transitions inbe-
tween them are silent.

DEFINITION 6.3 (Automaton Ao) The automatonAo = (Qo, q0,Σ, I
o,∆o) is constructed from

A = (Q, q0,Σ, I,∆) as follows:

• Qo = {q0} ∪ {〈q, q′〉 : q, q′ ∈ D(Q)}

• Io(〈q, q′〉) =
⋃
p∈〈q,q′〉 I(p)

• ∆o contains a transition (〈q, q′〉, a, g, γ, 〈p, p′〉) for every transition (q′, a, g, γ, p) ∈ ∆.

It is not hard to see that the invariants thus obtained are convex, because clock ĉ is never reset
and the intervals associated with states appearing in a chain are contiguous. Hence [[Ao]] and [[A]]

coincide. The result of applying silent-transition removal to the full-adder example is shown in
Figure 6.4.
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Figure 6.4: Removing silent transitions, automaton Ao. The mapping of states of Qo to silent
chains of A is indicated at the bottom.

Merging Bisimilar States

Let A = (Q, q0,Σ, I,∆) be a timed automaton without silent transitions. The qualitative bisim-

ulation relation over Q is the largest equivalence relation satisfying

q ∼ q′ ≡ ∀a ∈ Σ

{
q

a−→ p ⇒ ∃p′(q′ a−→ p′ ∧ p ∼ p′)

q′ a−→ p′ ⇒ ∃p(q a−→ p ∧ p ∼ p′)

In other words q ∼ q′ if the same qualitative observable behaviors can be generated from both.
We let [q] denote the ∼ equivalence classes of q and denote the set of such classes by Q/ ∼.
Note again that all elements of [q] have the same variable assignment.

DEFINITION 6.4 (Automaton Ab) The automatonAb = (Qb, qb0,Σ, I
b,∆b) is constructed from

Ao = (Qo, q0,Σ, I
o,∆o) as follows:

• Qb = Qo/ ∼

• qb0 = [q0]

• Ib([q]) =
⊔
q′∈[q] I

o(q′)
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• ∆b contains a transition ([q], a, g, γ, [q′]) for every transition (p, a, g, γ, p′) such that p ∈
[q] and p′ ∈ [q′].

This transformation, by definition, preserves qualitative behavior, and may over-approximate
the timed behavior due to the use of convex hull.

Merging Transitions

The last step is to merge transitions between every pair of states which agree on the transition
label.

DEFINITION 6.5 (Automaton Am) AutomatonAm = (Qb, qb0,Σ, I
b,∆m) is obtained fromAb =

(Qb, qb0,Σ, I
b,∆b) by letting ∆m consist of transitions of the form (q, a, g, γ, q′) where

g =
⊔
{g′ | (q, a, g′, γ, q′) ∈ ∆b}.

As in the previous step, qualitative semantics is preserved while the timed semantics may grow
due to the use of convex hull. Let us remark that in many cases, including our example,

⋃
g′ is

already convex and the timed semantics is preserved. Moreover, we can guarantee preservation
of timed semantics if we restrict the merging of transitions and states to those whose corre-
sponding unions are convex and refine the equivalence relation accordingly. Let us note that in
the acyclic case, convexity of the union will be more frequent because we are dealing here with
one-dimensional zones (intervals) where the convexity of Z1 ∪ Z2 is equivalent to Z1 ∩ Z2 6= ∅.
The result of applying the last two steps to the full-adder example are shown in Figure 6.5.

As one can see, the reduction is quite significant. Starting from a timed automaton with 39

states and 5 clocks we end up with an automaton with 8 states and one clock which still gives
a reasonable representation of the behavior of the circuit. In the next section we show how
this reduction procedure can be used in a compositional analysis framework and report some
experimental results on a synthetic example.

6.3 Applications

6.3.1 A Divide and Conquer Analysis Algorithm

Suppose we have a big combinational circuit with interface variables Xin and Xou. Assuming a
restricted input modeled by an acyclic timed automatonAin, we want to build a timed modelAou
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Figure 6.5: (a) Merging bisimilar states, automaton Ab; (b) Merging transitions, automaton
Am
Xou

, the final result.
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of its output behavior. Such a model can, for example, tell us what is the maximal stabilization
time of the circuit. As the circuit is too big to be analyzed as a whole, we apply the following
divide-and-conquer approach. We partition the circuit into slices {P 1, · · · , P n}, and model
each sub circuit P i by a timed automaton Ai such that the (primary) input of the circuit is the
input of A1, the output of each Ai, i < n − 1, is the input of Ai+1 and the output of An is the
output of the circuit, see Figure 6.6. The model of the whole circuit is then

Ain ‖ A1 ‖ A2 ‖ · · · ‖ An.

Our idea is simple. Going from left to right we compose first Ain with A1, apply the reduction
technique to the resulting automaton, use it as an input generator forAi+1. After composition we
apply the reduction technique to obtain the input generator for Ai+1 and so on. This procedure
is summarized in Algorithm 6.1, using ρ to denote the reduction operation described in this
chapter.

Ain

Ain A3 AnA2

P 1 P 2 P 3 P n

A1

ρ
A2 A3 Anρ(B1)

An

ρ

ρ(Bn−1)

ρ(Bn)

Bn

ρ

ρ

Aou

B1

B2

Figure 6.6: A compositional analysis framework for acyclic circuits with acyclic inputs.

Let us remark that this technique is not restricted to purely-sequential decomposition, but may
admit parallel components. What is important is that the size of the slices will be small enough
so that their reachability graph can be computed before being reduced. Secondly, many graph
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Algorithm 6.1 Divide an Conquer Analysis
B := Ain ‖ A1

for i = 1 to n− 1 do
Bi+1 := ρ(Bi) ‖ Ai+1

end for
Aou := ρ(Bn)

partitioning algorithms can be used to decompose a circuit and, moreover, if the circuit was
constructed hierarchically, some hints for the decomposition may be already given by the circuit
structure.

6.3.2 Experimental Results

To illustrate experimentally the capabilities of this technique, we consider a synthetic family of
examples, based on a 4-gate circuit, see Figure 6.7. This circuit has 2 inputs and 2 outputs so
we can concatenate as many instances of it as we want. A concatenation of i instances will thus
have 4 · i gates and 4 · i clocks. We assume an input generator which generates a single scenario
and compare our compositional technique with a direct approach. Table 6.1 summarizes the
results: The first column gives the number of gates in the circuit. The next three columns
present the results obtained through the compositional method: the first column gives for each
line i the number of states in automaton Bi before the final reduction, the second column gives
the number of states obtained for the final reduced model Aou while the third indicates the total
time to compute Aou via successive applications of all the steps in our reduction procedure.
The last two columns give the results obtained when we proceed by modeling the whole system
as a single block. It is easy to see that, facing the whole circuit, we reach very quickly the
limitations of current timed automata technology (less than 20 gates) while using our method
we can analyze automata with almost 100 state variables and clocks.

6.4 Summary

We have developed and implemented an abstraction technique that can reduce dramatically the
size of the automaton corresponding to an acyclic composition of components, subject to acyclic
input generators, which preserves much of the timing characteristics of the system. We have
shown how using this technique we can analyze systems with almost 100 clocks and state vari-
ables. Let us discuss briefly the limitations of this approach.

The first limitation is related to the width of the circuit and the number of its input wires. The
number of possible input scenarios, even if we restrict ourselves to a single burst of switches at
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Gates Compositional analysis Direct analysis
Bi states Aou states time(h:m:s) A states time(h:m:s)

4 162 5 0 .58 162 0 .58
8 133 6 1 .28 1074 2 .20

12 756 9 2 .02 8172 14 .55
16 2690 11 3 .24 137548 7:41 .34
20 4080 30 11 .41 * *
28 50543 39 29 .47 * *
32 73502 48 39 .57 * *
36 95619 57 1:53 .68 * *
40 117736 66 3:12 .01 * *
44 139853 75 5:07 .23 * *
48 161970 84 7:31 .53 * *
52 184087 93 10:04 .82 * *
56 206204 102 14:41 .57 * *
60 228321 111 20:38 .43 * *
64 250438 120 28:14 .93 * *
68 272555 129 37:45 .58 * *
72 294672 138 49:35 .27 * *
76 316789 147 1:04:03 .58 * *
80 338906 156 1:04:03 .58 * *
84 361023 165 1:42:58 .68 * *
88 383140 174 1:58:55 .42 * *
92 405257 183 2:30:30 .08 * *
96 * * * * *

Table 6.1: Comparing the performance of direct and compositional analysis.

time zero, will grow exponentially with the number of inputs. Hence the technique is limited
to systems with a relatively-small number of input wires. When this is not the case, we can
still apply the following heuristics. We can focus each time on a small set of output variables,
compute backwards their “cones of influence” and extract the sub circuit that is responsible
for their behavior. This way we can obtain separate models for each output but loose some
information concerning their inter-dependence. Many other heuristics are possible and their
empirical evaluation on real-life examples is a topic for further research.

The other limitation of this approach is that it is not associative as it has to proceed from left
to right (or from inputs to outputs). The reason is that the reduced model is always a generator

rather than a transducer. Consequently, even if there is a component appearing in several places
in the circuit, we cannot build its reduced model once for all, and then reuse it everywhere this
component appears. Hence it cannot be employed within a hierarchical development method-
ology. This will be possible with the reduction technique to be presented in the next chapter,
where we consider arbitrary input models which may keep on changing indefinitely.
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Figure 6.7: A global view of the compositional approach. Graph A is the reachability graph
of the concatenation of 2 instances of the basic components; graph B is the reachability graph
of one instance which, after reduction and composition with a second instance yields graph C
which is finally reduced to a 6-state automaton.
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Chapter 7

Abstraction: General Environments

In this chapter we move on to the more challenging task of generating small-size abstractions of
timed components in the presence of more general environments that generate infinite streams

of input events. Section 7.1 motivates the technique by illustrating how it can be used as a major
ingredient in a hierarchical component-based development methodology and describes the major
difficulties in treating such environments. Section 7.2 describes the major novel aspect of the
technique, the dynamic creation and removal of auxiliary clocks associated with input events.
These clocks will define the temporal frame of reference relative to which output events will
be defined in the abstract model. The adaptation of the other ingredients of our abstraction
procedure (clock projection, variable projection and minimization) to this setting are described
in Section 7.3.

7.1 Introduction

7.1.1 Motivation

Consider the component-based system illustrated in Figure 7.1 constructed as a composition

A8 = A5 ‖ A6 ‖ A7

in which the components A5, A6 and A7 are themselves constructed from more basic compo-
nents:

A5 = A1 ‖ A3 , A6 = A1 ‖ A2 , A7 = A3 ‖ A4 ‖ A6.

In cases when the system is too large to be analyzed as a whole, we would like to develop an
abstraction operator ρ that will allow us to analyze the system in a divide-and-conquer manner,

95
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that is, generate a small approximating model of A8 using the following steps:

B1 = ρ(A1) , B2 = ρ(A2) , B3 = ρ(A3) , B4 = ρ(A4)

B5 = ρ(B1 ‖ B3) , B6 = ρ(B1 ‖ B2) , B7 = ρ(B3 ‖ B4 ‖ B6)

B8 = ρ(B5 ‖ B6 ‖ B7)

A7

A8

A2

A6

A5

A3A1

A1

A1 A2

A6

A4A3

Figure 7.1: Example of Component Based System.

We want to use the same type of abstraction for a component, regardless of its environment. For
example, we want to use the same reduced model B6 for A6 when it is composed with A3 and
A4 and when it is composed with A5 and A7. This is different from the situation described in
the previous chapter where we cut a circuit into slices with fixed location and environment.

As before we would like the abstraction to focus on the interface behavior of the components,
relating the timings of input and output events. In the acyclic setting, since we had only a finite

number of events, all arriving within a bounded amount of time after the beginning, we could let
the reduced model characterize all output events in terms of their absolute time, their distance
from time zero as measured by the auxiliary clock ĉ. This is no longer the case with cyclic input
generators due to the following reasons. First, the system is modeled as working indefinitely and
the temporal distance between time zero to events is unbounded and cannot be represented by
bounded clocks. Secondly, since the arrival pattern of input events is sporadic, it does not make
much sense to relate output events to time zero. We would rather relate each output event to the
input event that has triggered it. This way the reduced model will give an approximation of the
time it takes the system to respond to input events.

To this end, we let input events create their own clocks which, like clock ĉ of the preceding chap-
ter, will serve only for monitoring purposes, recording the “age” of the corresponding events.
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As we will see, the number of events “alive” in the system in any given moment is bounded by
the number and every event is propagated to the output (or aborted) within a finite amount of
time. When this happens, its corresponding input clock can be discarded (“killed”) and reused
for new events.

After performing reachability computation and computing the interpreted timed automaton as-
sociated with this automaton, we apply clock projection, but this time we project on the input
clocks. Hence, in the reduced model obtained after projection, hiding and minimization we will
have input transitions that reset input clocks, followed downstream by output transitions guarded
by conditions on the input clocks associated with the event that triggered them. This way the
relation between the timing of input and output events will be captured in the reduced model,
whose number of clocks will depend on the maximal number of live events in the system rather
than on the number of components.

7.1.2 An Overview of the Abstraction Procedure

The abstraction starts with the automaton AX modeling a network of timed components with-
out an input generator. This amounts to assuming the most general environment. It can be
summarized by the sequence of steps

AX ⇒ A+Ĉ
X ⇒ Ar

X ⇒ AĈ
X ⇒ AXio

⇒ Am
Xio

(7.1)

which is explained below.

1. From AX we construct A+Ĉ
X by adding auxiliary input clocks which do not participate

in transition guards or invariants hence they only observe the dynamics of the automaton
and measure the time elapsed since each input event. Each of these clocks is discarded
after a finite amount of time when all the reactions that the input event has triggered in the
system terminate or are aborted.

2. We apply the forward reachability algorithm to A+Ĉ
X to obtain the interpreted timed au-

tomaton Ar
X having the same semantics, but with the additional property that each of its

paths corresponds to a realizable qualitative behavior.

3. We relax the timing constraints ofAr
X by projecting them on clocks in Ĉ to obtainAĈ

X . To
be more precise, each transition guard is projected on the clock associated with the input
event that has triggered it.

4. We project AĈ
X on the input and output variables to obtain AXio

thus making internal
transitions silent.
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5. We then reduce the discrete state space of AXio
by merging states which are essentially

equivalent in terms of the untimed behaviors that they generate and after merging also
state invariants, transitions and transition guards we obtain the reduced automaton Am

Xio
.

At the end we will have the following relationships between the observable (input-output) se-
mantics of these automata:

[[AX ]]io = [[A+Ĉ
X ]]io = [[Ar

X ]]io ⊆ [[AĈ
X ]]io = [[AXio

]] ⊆ [[Am
Xio

]]

and the following relation between the qualitative semantics

µ([[AX ]]io) = µ([[A+Ĉ
X ]]io) = µ([[Ar

X ]]io) = µ([[AĈ
X ]]io) = µ([[AXio

]]) = µ([[Am
Xio

]]).

In other words, we preserve the qualitative semantics of the automaton and relax, to some extent,
its timing constraints. As a running example we will use the circuit of Figure 7.2 having one
input variable x, fed into two delay elements, whose outputs, the internal variables y1 and y2, are
the inputs for an AND gate whose output z is the output of the circuit. The full timed automaton
for this circuit is depicted in Figure 7.3. The automaton has 16 states and 3 clocks, {cx, cy1 , cy2}.

y1

y2

zx
D1

D2

Figure 7.2: An example of circuit

7.2 Adding Input Clocks

7.2.1 Life and Death of Events

In this section we discuss the propagation of input events in an acyclic network of timed com-
ponents. To facilitate the discussion we assume that all components have identical lower and
upper bounds l and u on their reaction time. When such an input event occurs it may excite one
or more of the components to which it is a direct input. In the absence of additional events, each
of those components will stabilize within some t ∈ [l, u] and emit a change in its output, which
may trigger reactions in some further components, and so on. Due to acyclicity, a component
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which has reacted to an input event cannot be influenced anymore by the same event. Conse-
quently all input events leave the system within a finite amount of time, bounded by d · u, where
d is the depth of the network, the maximal number of sequentially-connected components.

A second observation is that for an input event to be alive in the system there must be at least
one active clock triggered by it, and since each clock is reset by one event, the number of live
events is bounded by the number of clocks in the system which, in the case of circuits, is equal to
the number of gates. This is an upper bound and in practice the maximal number of live events
can be much smaller due to logical interference or additional bounded-variability assumptions
concerning the external environment. In the sequel we assume m to be the upper bound on the
number of live input events for each input variable.

In the circuit model that we use every two changes in the value of the same input variable must
be separated by at least l time in order for both to be alive in the system, otherwise the second
change aborts the first via a “regret” transition. Hence the maximal number of live events for
each input variable is bounded by m = d · u/l. Similar bounds will hold for other approaches
for treating excessive input variability and, in fact, one may see that the number of living events
in a network is always bounded by the number of its components.

7.2.2 From A to A+Ĉ

From now on we assume additional properties of the timed automata that we obtain for circuits
(and other well-structured networks of timed components) and which are preserved under com-
position. Let us recall that we consider timed automata with variables AX = (A, X, λ) where
A = (Q,FX , q0, C, I,∆) is a timed automaton, X is a set of variables partitioned into input and
state variables, X = Xin ] Xst, with Xin = {x1, . . . , xn}, and a mapping λ : Q → VX from
states to variable valuations. Transitions in ∆ are of the form (q, f, g, γ, q′) where f is the as-
signment which changes the variable valuation from λ(q) to λ(q′). The additional assumptions
are:

1. Every transition in ∆ changes the value of exactly one variable. Consequently we can
partition ∆ into sets of input and state transitions ∆ = ∆in ]∆st.

2. The automata are input-enabled (or receptive) in the sense that every change of an input
variable is possible in every state and all transitions in ∆in are guarded by true.

3. All transitions in ∆st are guarded by clock constraints of the from c ∈ [l, u] involving only
a single clock.
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It is not hard to see that the automata for the basic gates and delay elements described in Chap-
ter 5 satisfy these properties, and that the composition described in Definition 4.5 preserves them
because we use interleaving semantics for transitions of state variables and the only synchro-
nized transitions are those that correspond to a change in an input variable shared by two or
more components.

For every transition δ ∈ ∆ we let χ(δ) be the set of clocks reset to zero by the transition. We
say that a transition is exciting if χ(δ) 6= ∅. An exciting transition is a transition which triggers
processes that will eventually be concluded by transitions guarded by clocks in χ(δ).

We will augment every discrete state of the automaton with additional machinery that keeps track
of the events which are alive in the system, and relates pending changes of states (represented
by active clocks) to these events. Let M = {0, . . . ,m} where m is the maximal number of live
events in the automaton. The additional structure consists of:

• An event-recording table (`, θ) consisting of

– A live-event counter ` : Xin →M indicating for each input variable x how many of
its events are alive.

– An association function θ : C → (Xin ×M) ∪ {⊥} relating every active clock with
the input event which is responsible for its activation. Event (x, i) is understood to
be the ith oldest x-event which is still alive in the system.

We denote the (finite) set of all event-recording tables for given Xin and M by E .

• A set of auxiliary input clocks

Ĉ = {cx[i] | x ∈ Xin, i ∈M}

with the intended meaning that cx[i] is the time elapsed since the occurrence of event
(x, i). A valuation of these clocks is a function u : Ĉ → R⊥. We will refer to the original
clocks of the component as internal clocks.

We can now proceed to the construction of the automaton. Since this construction does not
affect the mapping of states to variable valuations we define it in terms of A from which we
construct A+Ĉ = (Q+Ĉ , FX , q

+Ĉ
0 , C ∪ Ĉ, I+Ĉ ,∆+Ĉ) where Q+Ĉ = Q × E , q+Ĉ

0 = (q0, `0, θ0)

where `0(x) = 0 for every x and all clocks are inactive and θ0(c) = ⊥ for every c.

The transition relation ∆+Ĉ consists of transitions of the form δ+Ĉ = ((q, `, θ), f, g, γ̂, (q′, `′, θ′))

where γ̂ is a clock assignment on C ∪ Ĉ whose projection on C is identical to γ. The updated
event recoding table (`′, θ′) and the extended assignment γ̂ are computed according to the fol-
lowing algorithm.
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Algorithm 7.1 Computing ∆+Ĉ

Input: An extended state (q, `, θ) ∈ Q+Ĉ and a transition δ = (q, f, g, γ, q′) ∈ ∆

Output: A transition δ+Ĉ = ((q, `, θ), f, g, γ̂, (q′, `′, θ′)) ∈ ∆+Ĉ

γ′ := γ; `′ := `; θ′ := θ

if χ(δ) 6= ∅
if δ ∈ ∆in changing input variable x /* new event creation */
`′(x) := `′(x) + 1
e := (x, `′(x))
γ′ := γ′ ∪ {cx[`(x)] := 0}

elsif δ ∈ ∆st guarded by clock c /* event propagation */
e := θ(c)

for each c′ ∈ χ(δ)
θ′(c′) := e

for every non-resetting clock assignment in γ /* book keeping */
if of the form c := ⊥
θ′(c) := ⊥

elsif of the form c1 := c2
θ′(c1) := θ(c2)

for each x ∈ Xin /* clock killing and shifting */
for i = 1 to `′(x)

if θ′−1(x, i) = ∅
for j = i to `′(x)− 1
γ′ := γ′ ∪ {cx[j] := cx[j + 1]}
for each c ∈ θ′−1(x, j + 1)
θ′(c) := (x, j)

`′(x) := `′(x)− 1

This procedure has four major parts.

1. Initialization: γ′ inherits the clock assignments for the internal clocks from γ and the
initial event-recording table is the same as in the source state.

2. Treatment of excitation: when a transition triggers new internal processes by resetting
clocks, these clocks should be associated with the input event responsible for their excita-
tion. There are two cases:

(a) New event generation: the transition is due to a new input event on x and in this
case we increment the x event counter, initialize a new input clock and keep the
responsible event in a temporary variable e.
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(b) Event propagation: the exciting transition was not related to a new input event, and
in this case the responsible input event is inherited from the clock c which guarded
the transition.

Then every clock reset by the transition is associated with the input event in e.

3. Association book keeping: when clocks become inactive or when they are shifted, their
association is updated as well.1

4. Event death detection: if no clock points via θ to event (x, i) as its excitation reason, the
event is no longer alive and we discard clock cx[i]. To keep the number of clocks finite
we “shift” clocks cx[i + 1], . . . , cx[`(x)] to the left and modify the association function
accordingly. We will use kill(x, i) as a shorthand for this operation.

One can see that this procedure maintains the event-detection table well-formed in the following
sense:

1. Only active internal clocks are associated with input events:

θ(c) 6= ⊥ iff v(c) 6= ⊥.

2. These clocks are associated only with live events:

θ(c) = (x, i) only if i ≤ `(x).

3. Each live event has at least one internal clock associated with it:

i ≤ `(x) only if ∃c θ(c) = (x, i).

4. Only input clocks associated with live events are active:

u(cx[i]) 6= ⊥ iff i ≤ `(x).

The automaton thus obtained for our example is shown in Figure 7.4. Since two x-events can
be alive simultaneously in the circuit, the automaton has two additional clocks, cx[1] and cx[2].
Note that two states of the original automaton (s11 and s12) are split into two copies each, due to

1Shifting does not occur in the basic automata that model circuits, but they appear in the resulting abstraction
(see below) and should be treated when we apply the abstraction procedure recursively.
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different values of the event-recording table. To understand that consider the path

(s9, 1111)
x↓−→ (s10, 0111)

y2↓−→ (s12, 0101)
x↑−→ (s15, 1101)

x↓−→ (s′12, 0101)

starting from a stable state where all variables are high. The fall of x creates a new input event
(x, 1) with which both cy1 and cy2 are associated. Then when y2 falls, it excites z and its clock
is associated with (x, 1) as well. When x rises again it cancels the excitation of y1 but triggers
a new excitation of y2, this time related to the new event (x, 2). Finally when x falls once more
it aborts the excitation of y2 (and hence kills event (x, 2)) and triggers a new excitation of y1

associated with a new input event (x, 2). The difference between s12 and s′12 is hence because
θ(cy1) = (x, 1) in the former and θ(cy1) = (x, 2) in the latter.

7.3 Reachability, Projection and Minimization

We now describe briefly and informally the other steps of the procedure which are similar to the
corresponding steps for the acyclic environment.

7.3.1 Reachability Computation

Automaton A+Ĉ thus constructed is an ordinary timed automaton except for the fact that the
denotation of its input clocks may change from one state to another due to clock shifting. Its
configurations are of the form ((q, `, θ), (v, u)) where (v, u) is a joint valuation of the internal
and the input clocks.

After reachability computation we obtain the interpreted timed automaton whose states are of
the form ((q, `, θ), Z)) where Z is a zone over both types of clocks. As described in Chapter 2,
we intersect invariants and transition guards with these zones to obtain the interpreted timed
automaton Ar

X = (Ar, X, λ) with Ar = (Qr, FX , q
r
0, C ∪ Ĉ, Ir,∆r).

7.3.2 Clock Projection

The automaton AĈ = (Qr, FX , q
r
0, Ĉ, I

Ĉ ,∆Ĉ) is constructed from Ar by projecting the timing
constraints on clocks Ĉ. For each state p = ((q, `, θ), Z) ∈ Qr let Ĉ(p) be the set of input clocks
active at p. The invariant of p in AĈ is

I Ĉ(p) = Ir(p)/Ĉ(p).
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For every transition δ = (p, f, g, γ, p′) ∈ ∆r we define a transition δĈ = (p, f, gĈ , γĈ , p′) ∈ ∆Ĉ

by letting
γĈ = γ/Ĉ

and

gĈ =

{
γ/Ĉ if δ ∈ ∆r

in

γ/θ(c) if δ ∈ ∆r
in and is guarded by c

The automaton obtained after reachability computation and projection on the input clocks is
shown in Figure 7.5.

7.3.3 Variable Projection and Minimization

We now project AĈ on the set of interface variables Xio = Xin ] Xou. This operation hides
variable assignments that change internal variables (see Figure 7.6). However not all such tran-
sitions can be considered silent because they may kill an input clock. Suppose, for example,
that input event (x, i) is responsible for the excitation of one internal variable y. It may happen
that when y changes its value, this has no influence on the value of subsequent variables and
hence event (x, i) dies and its clock should be removed. The change in clock denotation due to
the shifting operation should be visible in the reduced model in order to preserve its intended
semantics.

LetAXio
= (Q,FXio

, q0, Ĉ, I,∆) be the automaton obtained after the projection on the interface
variables. The reduced model AXio

= (Qm, FXio
, qm0 , Ĉ, I

m,∆m) is obtained from AXio
by

performing the three minimization steps described in the previous chapter (collapsing silent
transitions, merging bisimilar states and merging transitions). The only difference is that the
action alphabet with respect to which we do minimization is Σ = FXio

× Γ(Ĉ) consisting of
pairs of the form (f, γ) with f being an assignment over interface variable and γ an assignment
over input clocks. A transition is considered silent only if both f and γ are the identity functions.

After performing minimization with respect to this alphabet, we let the invariant of a merged
state be the convex hull of the invariants of the individual states. Likewise we let the guard of
a merged transition be the convex hull of the individual guards. Unlike the acyclic case where
invariants were intervals, we do not have a guarantee for exact preservation of the quantita-
tive semantics and additional behaviors may be added. The qualitative semantics is, however,
preserved. It is worth mentioning that the clocks are not reset to zero by any silent transition.

The abstract model obtained at the end of the process is depicted in Figure 7.7. It has 11 states
and 2 clocks and gives an over-approximation of the timed input-output behavior of the circuit.
The reduction in this example is not so impressive because the circuit has only two internal
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variables and will be much more significant for larger circuits. Note also that we have assumed
the most general environment that may switch with unbounded frequency, and adding bounded-
variability assumptions will reduce the number of live events in a system. All steps in the
procedure described in this chapter, except for the minimization have already been implemented.

7.4 Conclusions

We have developed a new original technique for abstracting the behavior of timed components.
The essence of this technique is to use the internal clocks to compute what the component can
and cannot do and then get rid of these clocks by projecting on the observable input clocks that
we introduce into the model. As a result we obtain a model which focuses on what the potential
users of the component care about: the relation between the timing of input and output events.
This model is faithful to the qualitative semantics of the component but may relax the temporal
correlation between output events that depend on the same internal event. Such a reduced model
can serve as a specification of the component in a component library. The major advantage
of the abstraction operator ρ defined in this chapter is that it can be used naturally within a
component-based hierarchical development framework as described below.

It is not hard to see that ρ preserves the three properties defined at the beginning of Section 7.2.2,
namely that each transition changes one variable, that input transitions are unguarded and that
any state transition is guarded by a single-clock constraint. Hence, the procedure can be applied
recursively at all levels of a component-based system. We can summarize the application of this
procedure to a hierarchically designed system by the following recursive abstraction algorithm
ρ̂.

Algorithm 7.2 Hierarchical Abstraction ρ̂.
Input: A component-based system A
Output: A timed over-approximating abstraction of A

if A is a basic component
return(ρ(A))

elsif A = A1 ‖ A2 ‖ · · · ‖ Ak

return(ρ̂(ρ̂(A1) ‖ ρ̂(A2) ‖ · · · ‖ ρ̂(Ak)))

Moreover, once an abstraction of a particular component has been computed, it can be stored in
a library and be used each time that component appears rather than going down the recursion
again.
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cy2 ≥ 10

y2 ↑
cy2 := ⊥

cz := 0

y2 ↑
cy2 ≥ 10

cy2 := ⊥
cz := 0

y1 ↑
cy1 ≥ 6

cy1 := ⊥

x ↑
cy1 := ⊥
cy2 := ⊥

x ↑
cy1 := 0

cy2 := ⊥

x ↓
cy1 := 0

cy2 := ⊥

x ↑
cy1 := 0

cy2 := ⊥

x ↓
cy1 := ⊥
cy2 := 0

x ↓
cy1 := 0

cy2 := 0

x ↓
cy1 := 0

cy2 := 0

x ↑
cy1 := ⊥
cy2 := ⊥

cz := 0

y1 ↓
cy1 ≥ 6

cy1 := ⊥

y1 ↓
cy1 ≥ 6

cy1 := ⊥
y2 ↓

cy2 ≥ 10

cy2 := ⊥

z ↑
cz ≥ 1

cz := ⊥

z ↓
cz ≥ 1

cz := ⊥

z ↓
cz ≥ 1

cz := ⊥

z ↓
cz ≥ 1

cz := ⊥

z ↓
cz ≥ 1

cz := ⊥

z ↓
cz ≥ 1

cz := ⊥

x ↓
cy1 := ⊥
cy2 := 0

z ↓
cz ≥ 1

cz := ⊥

x ↑
cy1 := 0

cy2 := 0

x ↓
cy1 := ⊥
cy2 := ⊥

cy1 ≥ 6

y1 ↑
cy1 := ⊥

cz := ⊥

y2 ↓
cy2 ≥ 10

cy2 := ⊥
cz := ⊥

y1 ↓
cy1 ≥ 6

cy1 := ⊥

cz := 0

y2 ↓
cy2 ≥ 10

cy2 := ⊥

y2 ↓
cy2 ≥ 10

cy2 := ⊥
y1 ↓

cy1 ≥ 6

cy1 := ⊥

cy2 ≥ 10

y2 ↑
cy2 := ⊥

x ↓
cy1 := 0

cy2 := ⊥

x ↑
cy1 := ⊥
cy2 := 0

x ↓
cy1 := ⊥
cy2 := ⊥

cy1 ≥ 6

y1 ↑
cy1 := ⊥

x ↑
cy1 := 0

cy2 := 0

x ↑
cy1 := 0

cy2 := ⊥

z ↑
cz ≥ 1

cz := ⊥cz := ⊥

cy2 ≥ 10

y2 ↑
cy2 := ⊥

cy1 ≥ 6

y1 ↑
cy1 := ⊥
cz := ⊥

0100

1100

s2

1000

s1

0000

s0

s3

1010

s4

1110

s5 s6

0010

s8

0110

s9

1111

s10

0111

s12

0101

s11

0011

s13

0001

s15

1101

s16

1001

s14

1011

Figure 7.3: A timed automaton modeling the circuit of Figure 7.2.
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cz := 0

y2 ↑
cy2 ≥ 10

cy2 := ⊥

cy1 ≥ 6
y1 ↑

cy1 := ⊥

cz := ⊥

y2 ↓
cy2 ≥ 10

cy2 := ⊥

cy2 ≥ 10
y2 ↑

cy2 := ⊥

cz := 0

y1 ↓
cy1 ≥ 6

cy1 := ⊥

cy2 ≥ 10
y2 ↑

cy2 := ⊥

cz := 0

y1 ↑
cy1 ≥ 6

cy1 := ⊥

x ↑
cy1 := 0
cy2 := ⊥

x ↓
cy1 := ⊥
cy2 := 0

y1 ↓
cy1 ≥ 6

cy1 := ⊥

cy1 ≥ 6
y1 ↑

cy1 := ⊥

x ↓
cy1 := 0
cy2 := ⊥

x ↑
cy2 := 0
cy1 := ⊥

z ↓
cz ≥ 1

cz := ⊥

x ↓
cy1 := ⊥
cy2 := 0

x ↑
cy1 := 0
cy2 := ⊥

z ↓
cz ≥ 1

cz := ⊥

z ↑
cz ≥ 1

cz := ⊥ x ↑
cy1 := ⊥
cy2 := ⊥

x ↓
cy1 := 0
cy2 := 0

y2 ↓
cy2 ≥ 10

cy2 := ⊥ x ↑
cy1 := 0
cy2 := ⊥

x ↑
cy1 := 0
cy2 := 0

x ↓
cy1 := ⊥
cy2 := ⊥

cx[1] := cx[2]
cx[2] := ⊥

z ↓
cz ≥ 1

cz := ⊥
cx[1] := cx[2]

cx[2] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

z ↓
cz ≥ 1

cz := ⊥

cx[1] := cx[2]
cx[2] := ⊥

z ↓
cz ≥ 1

cz := ⊥

x ↓
cy1 := ⊥
cy2 := ⊥

cx[1] := ⊥

cx[1] := ⊥

y2 ↓
cy2 ≥ 10

cy2 := ⊥
cx[1] := ⊥

y1 ↓
cy1 ≥ 6

cy1 := ⊥ cx[1] := ⊥

z ↓
cz ≥ 1

cz := ⊥

cx[1] := ⊥

z ↑
cz ≥ 1

cz := ⊥

cx[2] := 0

x ↓
cy1 := 0
cy2 := 0

cx[2] := ⊥

x ↑
cy1 := ⊥
cy2 := ⊥

cx[1] := cx[2]
cx[2] := ⊥

cz := ⊥

y1 ↓
cy1 ≥ 6

cy1 := ⊥

z ↓
cz ≥ 1

cz := ⊥
cx[1] := cx[2]

cx[2] := ⊥

cy1 ≥ 6
y1 ↑

cy1 := ⊥
cz := ⊥

cx[1] := ⊥

cy2 ≥ 10
y2 ↑

cy2 := ⊥
cz := ⊥

cx[1] := ⊥

cx[2] := 0

x ↑

cy2 := 0
cy1 := ⊥

cx[2] := 0

x ↓
cy1 := 0
cy2 := ⊥

s0

s1

s4

s8

⊥

θ−1(x, 1) = {cy1 , cy2}

s12

cz := 0

y2 ↓
cy2 ≥ 10

cy2 := ⊥

s9

s10

s13

⊥

s2 s3

s6

s11

s15

s5

θ−1(x, 1) = {cy2} θ−1(x, 1) = {cy1}

θ−1(x, 1) = {cz}

θ−1(x, 1) = {cy2}θ−1(x, 1) = {cy1}

θ−1(x, 1) = {cz}

θ−1(x, 1) = {cy1 , cy2}

θ−1(x, 1) = {cy1 , cz} θ−1(x, 1) = {cz, cy2}

θ−1(x, 1) = {cz}

θ−1(x, 2) = {cy2} θ−1(x, 2) = {cy1}

s14
θ−1(x, 1) = {cz} θ−1(x, 1) = {cz}

θ−1(x, 1) = {cz}
s16

θ−1(x, 2) = {cy1 , cy2}

s′12
θ−1(x, 1) = {cz}

θ−1(x, 2) = {cy1}

s′11
θ−1(x, 1) = {cz}

θ−1(x, 2) = {cy2}

cx[1] := 0 cx[1] := 0

cx[1] := cx[2]
cx[2] := ⊥

θ−1(x, 2) = {cy1 , cy2}

cx[1] := 0 cx[1] := ⊥

cx[2] := 0 cx[2] := 0

cx[2] := 0 cx[2] := 0

cx[2] := 0 cx[2] := 0

x ↑
cy1 := 0
cy2 := 0

cx[1] := 0

cx[1] := 0 cx[1] := 0

z ↓
cz ≥ 1

cz := ⊥

x ↑
cy1 := ⊥
cy2 := 0

Figure 7.4: Adding input clocks to the automaton of Figure 7.3. Variable valuations of states are
the same as in Figure 7.3 and the association function is written inside the states.
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cx[1] ∈ [0, 6]

cx[1] ∈ [10, 14]

cx[1] ∈ [0, 6]

cx[1] ∈ [0, 12]cx[1] ∈ [0, 6]cx[1] ∈ [5, 12]

cx[1] ∈ [4, 8]

cx[1] ∈ [0, 6]

s1 : 1000

s4 : 1100

cx[1] ∈ [0, 12]

s5 : 1110

⊥
s7 : 1111

cx[1] ∈ [4, 8]

s11 : 0011

s13 : 1010s14 : 0010

s2 : 1100s3 : 0100

s8 : 0111

s12 : 0010

s15 : 1110

x ↑
cx[1] := 0

x ↓

cx[1] := ⊥

x ↑

cx[1] := ⊥

x ↓
cx[1] := 0

cx[1] := 0
x ↑

x ↓
cx[1] := 0

cx[2] := 0

cx[1] := ⊥

cx[1] := ⊥

cx[1] := ⊥

cx[2] := 0
x ↑

x ↓

cx[1] := 0
x ↑ x ↓

cx[1] := 0

cx[1] := 0

cx[1] := 0
x ↓

cx[1] ∈ [4, 12]

⊥
s0 : 0000

x ↑

cx[2] ∈ [0, 2]
cx[1]− cx[2] ∈ [10, 14]

s6 : 0110

cx[1] ∈ [4, 8]
cx[2] ∈ [0, 2]

cx[1]− cx[2] ∈ [4, 8]

s16 : 0110

cx[1] ∈ [4, 8]
cx[2] ∈ [0, 2]

cx[1]− cx[2] ∈ [4, 8]

s10 : 1011

cx[1] ∈ [4, 8]
cx[2] ∈ [0, 2]

cx[1]− cx[2] ∈ [4, 8]

s9 : 0011

x ↓
cx[2] := 0

x ↑
cx[2] := ⊥

x ↑
cx[2] := 0

x ↑
cx[2] := ⊥

cx[2] := 0
x ↓

y2 ↓
∈ [10, 12]

y1 ↓
cx[1] ∈ [4, 6]

y1 ↑
cx[1] ∈ [4, 6]

y2 ↑
cx[1] ∈ [10, 12]

cx[1] ∈ [10, 12]
y2 ↑

y2 ↓
cx[1] ∈ [10, 12]

cx[1] := cx[2]
cx[2] := ⊥ cx[1] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

∈ [11, 14]
z ↑

z ↑
cx[1] ∈ [11, 14]

y1 ↓
cx[1] ∈ [4, 6]

cx[1] ∈ [5, 8]
z ↓

z ↓
cx[1] ∈ [5, 8]

z ↓
cx[1] ∈ [5, 8]

z ↑
cx[1] ∈ [5, 8]

cx[1] := ⊥

cx[1] ∈ [4, 6]
y1 ↑z ↑

cx[1] ∈ [5, 8]

cx[1] ∈ [10, 14]

Figure 7.5: The automaton obtained from the automaton of Figure 7.4 by reachability computa-
tion and projection on the input clocks.
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x ↑
cx[1] := 0

x ↓

cx[1] := ⊥

x ↑

cx[1] ∈ [4, 8]

cx[1] := ⊥

x ↓
cx[1] := 0

cx[1] := 0
x ↑

cx[1] ∈ [10, 14]
cx[2] ∈ [0, 2]

cx[1]− cx[2] ∈ [10, 14]

x ↓
cx[1] := 0

cx[2] := 0

cx[1] ∈ [10, 12]
cx[1] := ⊥

cx[1] := ⊥

cx[2] := 0
x ↑

x ↓

ĉ0 := 0
x ↑

cx[1] ∈ [4, 6]

⊥

cx[1] := 0
x ↓

cx[1] ∈ [4, 12]

⊥ cx[1] ∈ [0, 6]

cx[1] ∈ [4, 8]
cx[2] ∈ [0, 2]

cx[1]− cx[2] ∈ [4, 8]

cx[1] ∈ [4, 8]
cx[2] ∈ [0, 2]

cx[1]− cx[2] ∈ [4, 8]

cx[1] ∈ [4, 8]
cx[2] ∈ [0, 2]

cx[1]− cx[2] ∈ [4, 8]

s16 : 00
s15 : 10

s13 : 10s14 : 00 s12 : 00

s9 : 01s10 : 11

s11 : 01

s8 : 01 s7 : 11

s5 : 10

s6 : 00

s3 : 00 s2 : 10

s1 : 10s0 : 00

τ

τ

τ

τ

s4 : 10

τ

cx[1] ∈ [0, 12]

cx[1] ∈ [10, 14]

cx[1] := ⊥

cx[1] := ⊥

cx[1] ∈ [0, 6]cx[1] ∈ [5, 12] cx[1] ∈ [0, 12]

cx[1] ∈ [4, 8]

cx[1] ∈ [0, 6]

cx[1] ∈ [0, 6]

cx[1] ∈ [10, 12]
cx[1] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

cx[1] := cx[2]
cx[2] := ⊥

x ↑
cx[2] := ⊥

cx[2] := 0
x ↓

cx[2] := 0
x ↑

z ↑
cx[1] ∈ [11, 14]

z ↑
cx[1] ∈ [11, 14]

cx[1] ∈ [5, 8]
z ↓ z ↓

cx[1] ∈ [5, 8]
z ↓

cx[1] ∈ [5, 8]

z ↑
cx[1] ∈ [5, 8]

z ↑
cx[1] ∈ [5, 8]

x ↓
cx[2] := 0

x ↑
cx[2] := ⊥

cx[1] := 0
x ↓

x ↑
cx[1] := 0

Figure 7.6: The automaton obtained from the one of Figure 7.5 after hiding internal variables.
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cx[1] ∈ [5, 14]

cx[1] := cx[2]
cx[2] := ⊥

z ↑

cx[1] ∈ [0, 6]

s4 : 00

cx[1] := cx[2]
cx[2] := ⊥

z ↓
cx[1] ∈ [5, 8]

cx[1] := cx[2]
cx[2] := ⊥

z ↓
cx[1] ∈ [5, 8]

s0 = {s0}
s1 = {s1}
s2 = {s2, s4, s13}
s3 = {s11}
s4 = {s3, s12, s14}
s5 = {s10}

s6 = {s9}
s7 = {s8}
s8 = {s7}
s9 = {s5, s15, s17}
s10 = {s6, s16}

cx[1] ∈ [0, 6]

cx[1] ∈ [0, 12]

x ↑
cx[1] := 0

cx[1] := ⊥
x ↓

cx[2] := 0
x ↓

s9 : 10

cx[1] ∈ [0, 14]
x ↑

cx[2] := 0

x ↑
cx[1] := 0

s2 : 10

⊥
s0 : 00

x ↓
cx[1] := 0

s7 : 01

cx[1] ∈ [0, 6]

cx[1] := ⊥
x ↑ ⊥

s8 : 11

cx[1] ∈ [0, 8]

s3 : 01
x ↓

cx[1] := 0 cx[2] := 0
x ↑

cx[1] ∈ [5, 14]

cx[1] := cx[2]
cx[2] := ⊥

cx[1] := ⊥

s1 : 10

cx[1] := ⊥
cx[1] ∈ [4, 12]

cx[1] := cx[2]
cx[2] := ⊥

z ↑ z ↓
cx[2] ∈ [5, 8]

z ↑
cx[1] ∈ [5, 14]

cx[1]− cx[2] ∈ [4, 14]
cx[2] ∈ [0, 2]
cx[1] ∈ [4, 14]

s10 : 00

x ↑
cx[1] := 0

x ↑
cx[1] := 0

cx[1] := 0
x ↓

ĉ1 := 0
x ↓

x ↑
cx[2] := 0

cx[1] ∈ [4, 8]
cx[2] ∈ [0, 2]

s5 : 11

cx[1]− cx[2] ∈ [4, 8] cx[1]− cx[2] ∈ [4, 8]

cx[1] ∈ [4, 8]

s6 : 01

cx[2] ∈ [0, 2]

cx[1] ∈ [5, 8]
z ↓

cx[1] := 0
x ↑

Figure 7.7: The final automaton obtained by minimization from the automaton of Fig-
ure 7.6. Bisimulation equivalence classes are indicated at the bottom of the figure. The over-
approximated the behavior of the circuit in Figure 7.2 and the automaton of Figure 7.3.
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Chapter 8

TCA: Timed Circuits Analyzer Toolbox

8.1 Introduction

It is fair to say that the experimental platform implemented during this thesis has been the driving
force of the development of our ideas. Major contributions introduced in this work has been
observed through examples of systems studied thinks to the implementation process.

This chapter introduces the tool TCA that represents an important contribution of this work.
The first version of the tool has more strongly focused on the study of digital circuits. The first
version of this tool implements the idea described in Chapter 6. It accepts a timed digital circuit
description, extract the cone of influence of a given variable set to be studied, and then splits
the resulting circuit into several partitions to model them one after one as explained before. The
ideas evolved, as well as the state of the tool. This chapter expose only the actual version of the
tool, which is related to the ides exposed in the last chapter.

8.2 Global View of the TCA Tool

The main input of the tool TCA is a structural description of a system. This description should
be given as a file having, by convention, the same name as the component with “.tc” as extension.
The goal of the tool is to generate a timed automaton describing the behavior of the interface of
this component. The internal functioning of the tool as well as the properties of the automaton to
be generated depend on a certain configuration of the tool. This configuration could be given by
the user through a specified file. The configuration file is perhaps the most difficult description
to write for a beginner. In order to make the tool accessible to larger class of users the command

$ tca -config [fileName.cf]

113



114 CHAPTER 8. TCA: TIMED CIRCUITS ANALYZER TOOLBOX

generates a standard configuration file fileName.cf. The current version of this file is given
by appendix 9.2. The user can start from this well commented file and then adapt it according
to its will. This technique is used in many tools, such as Doxigen. It is often the least expensive
solution to hide the complexity of using certain tools.

Let configFile.cf be the configuration file fixed by the user, and let “ComponentName.tc”
be the file describing the structure of the component to model, the command to start the modeling
process and end up generating the behavior of the interface of the component is the following:

$ tca configFile.cf componentName.tc

In the framework of this thesis, the behavior of a component, or its interface, are given through
a timed automaton. This one is expressed as an IF process. This process is delivered as a file
having by convention the same name as the modeled component, with “.ifp” as extension. For
example, the file generated by the above command will be named “componentName.ifp”.
This file will be saved for a later use. In fact, this model expressed in a such format, could be
directly exploited by the tool IF in order to analyze some properties of the component. It could
be also reused to model other components that incorporate it. As an example, the appendix 9.2
gives the model of a xor gate into the IF format. This could give a first idea about the syntax of
this format. For better definition of this syntax we invite the reader to refer to [BSGS04].

Structural Description To have an idea about the format of a structural description of a
component, we consider the component C4 given by Figure 8.2. Its description is given by the
file C4.tc below.1

The structural description of a component should first specify the global interface of the com-
ponent. This interface is given by the first line expressing the set of the input variables, together
with the second line expressing the set of output variables. The rest of the file describes, one
after one, all the sub-components of the system. Each sub-component is described in one line,
and that is in one of two possible formats:

1. The first syntax is specific to logic gates with well specified delays. This could be given
by the following syntax.

output-variable : [rising-delay][falling-delay] logic-function;

1This choice of the extension “.tc” for structural descriptions has historical reasons. The first version of the tool
does not consider component based systems, but just “timed circuits” where all the components are simple logic
gates with delay elements.
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SubComp.tc

SubComp.if

.ifp

.ifp

.ifp

COMPONENTS MODELS
LIBRARY OF

.tc

.tc

.tc

LIBRARY OF
COMPONENTS STRUCTURES

SubComp.ifp

(verification)

IF Toolbox

ITERATOR

COMPILER

ENGINE

configuration.cf CompName.tc

CompName.ifp

TCA

Figure 8.1: A Global view of the TCA tool.

[2, 3]

[5, 6]

AND

C0

x0

x1 y1

y2

z0

z1

y0

[2, 3]

[1, 2]

C4

C4.tc :
input {x0; x1}
output {z0; z1}

(y0, y1) : C0 (x0, x1);
y2 : AND (x0, x1);
z0 : [5,6][2,3] ((~y0*y1)+(y0*~y1));
z1 : [1,2][2,3] (y1*y2);

Figure 8.2: A digital circuit and its structural description.

The two last lines of the file C4.tc, are examples of this description. Such components
have a single output variable, the timing of the rising of its value is given by the first inter-
val, the timing of the falling is given by the second interval. The functional aspect of the
gate is expressed as logic function on its input variables. The operators “~”, “+”, and “*”,
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used in such description are denoting the “NOT”, the “OR” and the “AND” operations.

2. The second syntax used to describe components is more appropriate for component based
systems. The syntax of this description is as follow:

output-var-ordered-list : sub-comp-name (input-var-ordered-list);

This syntax is describing only the connection of the sub-component to the rest of the
network. The two first sub-components of the file C4.tc are described in this way: the in-
put variables of the sub-component C0 of C4 are then x0 and x1, and its output variables are
y0 and y1. Note that the order of the input and output variables lists of a sub-component
are important.

In the case of simple logic gates, note that the two above description could be used. For instance
an AND gate could be specified in the two different ways:

• y2 : [1,2][2,3] (x0*x1);

• y2 : AND (x0,x1);

The first description is giving the timing of the gate, then it is possible for the tool to generate its
model automatically. The generated model could be based on the one emphasized in this thesis,
defined by [MP95a], but other options exist. This can make the use of the tool easier, because
with the second description of the AND gate, the model of this component should be given by
the user. Note that the second way is more flexible, since very specific models, could be written
for a given gate.

8.3 Deeper View of the TCA Tool

As expressed on the diagram of Figure 8.1, the system is based on three major modules. This
section gives an idea on the role that every module of them is playing and how they are collabo-
rating.

8.3.1 The ITERATOR

The task of the ITERATOR is to provide the COMPILER with a sequence of structural descrip-
tion of components to model. At each time, all the sub-components of the provided component
structure should be already modeled. In other words, this module will perform the algorithm 7.2
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of the last chapter. Its role is to verify if the behavior descriptions of every sub-component of
considered component exists in the models library. If this is the case, it will send the struc-
tural description of the component to the COMPILER; otherwise it will start first by giving the
order to built the missing models. For that purpose the ITERATOR will consider every sub-
component, which is not modeled yet, and then continue recursively. Since we assume that at
least the models of the basic elements of the considered structures are given, the ending of the
ITERATOR process is guaranteed.

Example Let us consider the component C8, the structure of which is given by the file C8.tc.
This component is based on the components C4, C5, C6, and C7, given by their structural descrip-
tions C4.tc, C5.tc, C6.tc, and C7.tc.2 We assume that the models of the components AND, C0,
C1, C2, and C3 are already given, for they are basic components, or because their models have
been computed in a previous modeling process.

z0

z1

z2
C7

y1

y2

y3
x2

x1

x0 C5

C6

y0

y4

C8

C8.tc :
input {x0; x1; x2}

output {z0; z1; z2}

(z0, z1, z2, y4) : C7

(y1, y2, y3, y4);

(y2 ,y3) : C6 (x2, y4);

(y0 ,y1) : C5 (x0, x1);

x0

x1

x2

x3

z0

z1

z2

z3

C7

C6

C3 C4
y1

y0

C7.tc :
input {x0; x1; x2; x3}

output {z0; z1; z2; z3}

(z0, z1) : C6 (x0, x1);

(z2 ,z3) : C4 (y0, y1);

(y0 ,y1) : C3 (x1, x2, x3);

C6

C2C1

x0

x1

z0

z1

y0

y1

C6.tc :
input {x0; x1}

output {z0; z1}

(z0, z1) : C2 (y0, y1);

(y0 ,y1) : C1 (x0, x1);

2The component C4 is described by the example of the section 8.2.
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z0

z1

C5

x0

C1 C3
x1

y0

y1

C5.tc :
input {x0; x1}

output {z0; z1}

(z0, z1) : C3 (y0, y1, x1);

(y0 ,y1) : C1 (x0, x1);

Figure 8.3 gives an idea on the arborescence in the structure of this component. On this figure,
components for which a model already exists are colored.

C7C6

C8

C5

C1 C3 C1 C2 C4 C3 C6

C2C0ANDxor C1and

Figure 8.3: The arborescent structure of a component based system.

To model the component C8 the ITERATOR should send the file C8.tc to the COMPILER mod-
ule. But to do so, the sub-components C6 and C7 should be modeled first. For the same reasons,
C7 can not be modeled before C6 and C4. Finally, one decision that the ITERATOR can take is
to send the non-modeled component to the COMPILER, in the following ordered C6.tc, then

C4.tc, then C7.tc, then C8.tc.

8.3.2 The COMPILER

The COMPILER is supposed to receive from the ITERATOR a structural description of a com-
ponent. The models of all the sub-components referred by this description should have been
already computed, or given by the user, or possible to be generated automatically.

After verifying the consistency of the structure given at its input the compiler start translating
each sub-component of the network to an IF process. If the component is expressed as a logic
gate with rising and falling delay, the model of the gate will be generated directly. Unless, the
component should be an instance of a class for which the model has been computed and saved.
In this case, a simple renaming process will generate the corresponding IF Process.

8.3.3 The ENGINE

This module represents the major technical effort. It accepts at its input an IF file. This file de-
scribe the models of set of communicating components. The role of the ENGINE is to generate
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(y0, y1)  :   C0  (x0, x1);

output {x0; x1}
input   {x0; x1}

z1           :   [1,2][2,3]  (y0*y1);  
z0           :   [5,6][2,3]  ((~y0*y1)+(y0*~y1));
y2           :   AND  (x0, x1); endprocess;

...
process C0_proc(0);

endprocess;
...
process AND_proc(0);

endprocess;
...
process z0_var_proc(0);

endprocess;
...
process z1_var_proc(0);

system CompName;

endsystem;

CompName.tc CompName.ifp

Figure 8.4: The transformation performed by the COMPILER module.

a model of the interface of their product. Part of this module is built on the top of the IF-Engine.
So before giving an overview of this module, we first give a quick idea on the IF toolbox.

IF Tool Box

IF toolbox is an environment developed in Verimag, for modeling and validation of commu-
nicating real-time systems. The toolset is built upon a formalism, the IF language, allowing
structured automata-based system representations. Since its definition in 1998, the IF language
was continuously improved and become the interchange format between a set of validation tools
dedicated to real time systems. The whole IF toolset architecture is given in figure 8.5. More
details about different components of this architecture can be found in [BSGS04].

A part from its functionality, the quality and the modularity of the API that this toolbox presents
made from it the starting point of many projects inside and outside the laboratory Verimag. To
implement the the module ENGINE of TCA, we reused mainly the libraries of the IF-Engine
(represented by the colored box on Figure 8.5).

Overview of the the ENGINE

The input of the ENGINE module, as shown on figure 8.6, is an IF specification, that describes
a system as a set of timed automata, each is expressed as a process. The role of this module is
to perform the process of abstraction exposed in the last chapter.

As explained formally in the last chapter, the abstraction is performed as a sequence of steps.
The starting step consists of generating the interpreted timed automata of the product with the
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ATS
AGEDIS

Figure 8.5: The IF-toolbox.

extra global clocks. This step is done by the collaboration between the two modules: TCA-
Generator and TCA-Explorator. Briefly, the role of the Explorator is to generate the automaton,
asking continuously the Generator module to compute the successors of a given symbolic state.

The TCA-Generator is based on the libraries of the IF-Generator, but is different from this
former in several aspect. The major difference, is that the synchronization considered in the
TCA-Generator is based on shared variables, which is not the case with IF. The second major
difference is the dynamic aspect of the clocks. With IF-Generator, the number of the clocks
is static and must be declared a priory. However, with TCA-Generator, the global number of
clocks needed including the clocks related to the input events, can not really be decided at the
beginning. It computes clocks dynamically, killing off inactive ones, and ensure a canonical
form of the DBMs to control to the maximum the size of the model.

The TCA-Explorator is also based on the libraries of IF-Explorator of Figure 8.5. The two major
aspects added in TCA-Explorator are:

1. The first is the Forward Reachability Algorithm introduced in Chapter 3, used to reduce
the state explosion related to the interleaving semantics. This algorithm merges, on the fly,
states having the same shuffle expression given by Definition 3.3. That induces a dynamic
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Figure 8.6: An overview of the ENGINE module.

management of the symbolic states, which has not been necessary with IF.

2. The second difference is that TCA-Explorator should generate the whole structure of the
generated automaton for later steps, while the IF-Explorator can print it on the fly without
saving any transition data. Only reached states should be saved, by the IF-Explorator,
while the whole structure should be saved by TCA. To control the size of such systems,
that can grow very quickly, efficient and complex data structures are needed.

The built model Ar
X generated by the TCA-Exlporator will follow a sequence of transforma-

tions: Ar
X will be transformed first by projecting the time constraints, represented as DBMs,

on well defined global clocks. The resulting model AĈ
X is projected on the interface variables,

which leads to the model AXio
. This model will be minimized after in three steps, as shown on

Figure 8.5.

All the modelsAr
X ,AĈ

X ,AXio
,Ao

Xio
,Ab

Xio
andAm

Xio
are based on the same structures, every one

of them could be printed in several formats using five different PRINTERS modules:

1. The DOT format: for viewing.
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2. Le IFP format: expressing a timed automaton in the IF format.

3. The LTS format: which is recognized by several tools such as aldebaran.

4. The STATE format: describing in details every state of the automaton.

5. The CPT format: useful in the final minimization steps. At this level, a state could be a
partition including several states of a previous model. A transition could be also a group
of transitions. This file gives an idea on the content of every transition and state.

8.4 Conclusion

All in all the implementation effort consist of 113 classes and 35K lines of code. Even not
completely finalized, the TCA tool has been at the base of the ideas introduced in this thesis.
The tool consists of several modules. At the opposite of the earlier modules of the process,
which have been tested and improved several times, the last two modules, especially the module
performing the bisimulation refinement is still to be finalized. This represents actually the most
urgent thing to complete.



Chapter 9

Conclusions and Future Work

We believe this work lays down the foundation for an eventual solution of the major problem
of timed automata technology, the fact that it is not scalable. Below we summarize the achieve-
ments and discuss some of the work that still has to be done.

9.1 Summary

In this thesis we started by explaining the importance of extedning verification and analysis
methodology to timed systems. Timed automata provide a model in which the performance of
a system, hardware and software alike, can be naturally expressed. Then we have described
the state-of-the-art in the analysis of timed automata using a zone-based forward reachability
algorithm. We proposed a major improvement to this algorithm, taking advantage of the fact
that the the union of zones reached by different interleavings of independent action is convex.
Although this algorithm allowed us to analyze systems larger than what we could before, the
problem of unscalability remained and in the rest of the thesis we have opted for a compositional

divide-and-conquer methodology.

To facilitate the description of such a modular approach we have introduced timed automata
with discrete state variables whose sharing is the way the automata interact. We have then
described digital circuits with bi-bounded delays as the application domain on which we exper-
iment with our techniques, although it applies as well to other systems consisting of interacting
timed components. We then developed two abstraction techniques that take such a network of
timed components, modeled as a network of timed automata, and generates from it reduced
models with less states and clocks. The reduced models over-approximate the timed behavior
while preserving its qualitative untimed behavior.

123
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The first technique dealt with the special case of acyclic environments that generate a finite
number of events within a bounded time. For such systems we produce a reduced model which
is by itself an acyclic generator for the system’s output. The essence of the technique is in
introducing an auxiliary clock which measures absolute time, and then projecting the zones
obtained from reachability computation on this clock. The final reduced model is obtained by
hiding internal transitions and performing minimization.

The second technique is aimed at more general situations where the environment may produce
an infinite stream of events. In this case we introduce a set of dynamically-created clocks asso-
ciated with input events which are discarded and reused according to the propagation of events
throuhout the system. Performing a similar type of reachability computation, projecting on these
input clocks and minimizing we obtain models that relate, in an approximative manner, the tim-
ing of input and output events. We have proposed a recursive abstraction algorithm based on
this technique which applies naturally to hierarchically-structured component-based systems.

This thesis involved a lot of implementation effort not all of which is reported. It includes
the major ingredients of a hierarchical analysis methodology for network of timed components
starting from high-level specifications of circuits, via translation to timed automata, an efficient
analysis algorithm and an implementation of most of the steps of the abstraction techniques.

9.2 Future Work

We now mention what remains to be done, both in terms of completing the implementation and
further theoretical and empirical investigations.

• The most urgent thing is to complete the implementation of the minimization step for the
model with input clocks and thus complete a full tool chain.

• Once this is done we will experiment with examples, both synthetic and real-life in order
to assess the complexity reduction obtained by the abstraction technique and estimate how
far we can go in terms of size.

• Develop a methodology to assess the over-approximation incurred by the abstraction pro-
cess. For the moment there is no analytical way to compare the “distance” between the
semantics of a system and its approximation. Perhaps a method based on random simula-
tion can be found useful.

• The minimization procedure should be studied more thouroughly. In particular, since
circuits are non-blocking, bisimulation is a stronger relation than needed and it can be
repalced by a weaker notion.
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• The semantic interference between the convexity reduction and the abstraction procedure
should be studied in order to integrate the two procedures.

• The effect adding bounded variability assumptions should be studied empiricially. They
will certainly allow to analyze larger systems.

• Other modifications and improvements of the abstraction techniques are possible. In par-
ticular, using a different pool of clocks for each input variable rather than a joint pool
ordered by arrival has its advanatages and disadvantages in terms of facilitating state merg-
ing and this aspect should be empirically studied.

• The implementation should be extended to treat non-Boolean discrete variables as well as
systems whose events are not necesssarily related to changes in variables.
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Appendix A: The Default Configuration
File

# TCA 1.0

# This file describes the settings to be used by the TCA tool to work on a given circuit

#

# All text after a hash (#) is considered a comment and will be ignored

# Values that contain spaces should be placed between quotes (" ")

#

#---------------------------------------------------------------------------

# ITERATOR configuration

#---------------------------------------------------------------------------

# Path of the library of the behavioral models (the files *.ifp)

# (By default it is the current repository)

#

TC_MODELS_LIBRARY_PATH = .

#

# Path of the library of the structural models (the files *.tc)

# (By default it is the current repository)

#

TC_STRUCTURES_LIBRARY_PATH = .

#

# For closed systems the behavior of the environment should be given as an IF process (*.ifp)

# such models should exist in a given library (By default it is the current repository)

#

TC_INPUTS_MODELS_PATH = .

#

#---------------------------------------------------------------------------

# COMPILER configuration

#---------------------------------------------------------------------------
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# The generation of the model could start from a stable state of the system.

# But this is not obligatory

#

CIRCUIT_STABILIZATION = YES # you can change it by: NO

#

# When a component is a logic gate and when its description is given as a logic

# function with a delays, the compiler can generate two kinds of models:

# (a) DEFAULT: leads to the Oded&Amir 4-states-model

# (b) HAZARD: leads to a similar model without regret and with an additional error state

#

COMPONENT_MODELS = DEFAULT # you can change it by: HAZARD

#

#---------------------------------------------------------------------------

# ENGINE configuration

#---------------------------------------------------------------------------

# GENERATOR configuration

#--------------------------

# This tool is built on the IF tool libraries, so we still have its functionality.

# When the following variable is set to “NO”, the module GENERATOR will behave exactly

# like the IF GENERATOR. When this option is set to “YES” the GENERATOR will consider a

# synchronization between processes based on common variables.

#

TCA_SYNCH = YES # you can change it by: NO

#

# Adding dynamic global clocks: If this is the case, the tool will be based on the variable

# synchronization, and the variable TCA_SYNCH will be set to YES.

#

WITHWAVES = YES # you can change it by: NO

#

#--------------------------

# EXPLORATOR configuration

#--------------------------

# The Explorator of this tool still have all the functionality of the IF tool.

# The TCA is implementing also two new exploration algorithms: to :

# CU : reduce the state space explosion caused by the interleaving semantics.

# CU_IT: As the CU option but with Inclusion Test.

#

GRAPH-GENERATION = CU # you can change it by: CU_IT | DFS | BFS | DEBUG
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#

#--------------------------

# MINIMIZATION configuration

#--------------------------

# Projection of the clocks:

#

PROJECT_CLOCKS = YES # you can change it by: NO

#

# Hiding of the non observable action, and perform the (a.tau*) reduction:

#

HIDE_NON_OBSERVABLE = YES # you can change it by: NO

#

# Bisimulation partitioning algorithm could be stopped at different steps:

# After the discrete splitting: The default one, or

# continuing the splitting considering the overlapping between transitions

#

SEMANTICS_BISIMULATION = DEFAULT # you can change it to: OVERLAPPING

#

# The last step of the process is to compute the convex hull of invariant and guards

#

# CONVEX_HULL_TIME_MERGING = YES # you can change it to: NO

#

#--------------------------

# Printing configuration

#--------------------------

# The ENGINE role is to compute several transforming on an input automaton

# At each step the tool offer the possibility to print the intermediate automaton and

# that is in many possible formats. This set of files could be generated in a single run.

#

# Print the interpreted automaton before continuing the abstraction process

#

PRINT_INTERPRETED_IFP = NO # you can change it to: YES

PRINT_INTERPRETED_AUT = NO # you can change it to: YES

PRINT_INTERPRETED_STATE = NO # you can change it to: YES

#

# Print the automaton after time projection

#

PRINT_CGLBS_IFP = NO # you can change it to: YES
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PRINT_CGLBS_AUT = NO # you can change it to: YES

PRINT_CGLBS_STATE = NO # you can change it to: YES

#

# Print the automaton after variable hiding

#

PRINT_IO_IFP = NO # you can change it to: YES

PRINT_IO_AUT = NO # you can change it to: YES

PRINT_IO_STATE = NO # you can change it to: YES

#

# Print the automaton after (a.tau*) reduction

#

PRINT_TAUHIDE_IFP = NO # you can change it to: YES

PRINT_TAUHIDE_AUT = NO # you can change it to: YES

PRINT_TAUHIDE_STATE = NO # you can change it to: YES

PRINT_TAUHIDE_COMPLET = NO # you can change it to: YES (for a complete description)

#

# Print the automaton after bisimulation partitioning

#

PRINT_BMIN_IFP = NO # you can change it to: YES

PRINT_BMIN_AUT = NO # you can change it to: YES

PRINT_BMIN_STATE = NO # you can change it to: YES

PRINT_BMIN_COMPLET = NO # you can change it to: YES (for a complete description)

#

# Print the automaton after splitting partitions based on overlapping transitions

#

PRINT_OVERLAP_IFP = NO # you can change it to: YES

PRINT_OVERLAP_AUT = NO # you can change it to: YES

PRINT_OVERLAP_STATE = NO # you can change it to: YES

PRINT_OVERLAP_COMPLET = NO # you can change it to: YES (for a complete description)

#

# Complete process of reduction

#

PRINT_IFP = NO # you can change it to: YES

PRINT_AUT = NO # you can change it to: YES

PRINT_STATE = NO # you can change it to: YES

xii



Appendix 2: IF Process of an XOR Gate

process __z0(1);

var value boolean := false public;

var clk0 clock;

/*----- RISING ------*/

state STABLE_0 ;

deadline eager;

provided ( (({__x0}0).value and (not ({__x1}0).value ))

or (({__x1}0).value and (not ({__x0}0).value )));

informal "{__z0:0+}";

set clk0 := 0;

nextstate EXITEE_0;

endstate;

state EXITEE_0 ;

deadline eager;

provided not ( (({__x0}0).value and (not ({__x1}0).value ))

or (({__x1}0).value and (not ({__x0}0).value )));

informal "{__z0:0}";

reset clk0;

nextstate STABLE_0;

deadline delayable;

provided ( (({__x0}0).value and (not ({__x1}0).value ))

or (({__x1}0).value and (not ({__x0}0).value )));

when clk0 >= 2 and clk0 <= 5;

informal "{__z0+}";

task value := not value;

reset clk0;

nextstate STABLE_1;

endstate;

/*----- FALLING ------*/
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state STABLE_1 ;

deadline eager;

provided not ( (({__x0}0).value and (not ({__x1}0).value ))

or (({__x1}0).value and (not ({__x0}0).value )));

informal "{__z0:1-}";

set clk0 := 0;

nextstate EXITEE_1;

endstate;

state EXITEE_1 ;

deadline eager;

provided ( (({__x0}0).value and (not ({__x1}0).value ))

or (({__x1}0).value and (not ({__x0}0).value )));

informal "{__z0:1}";

reset clk0;

nextstate STABLE_1;

deadline delayable;

provided not ( (({__x0}0).value and (not ({__x1}0).value ))

or (({__x1}0).value and (not ({__x0}0).value )));

when clk0 >= 2 and clk0 <= 5;

informal "{__z0-}";

task value := not value;

reset clk0;

nextstate STABLE_0;

endstate;

endprocess;
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