
Thesis Defense

Pattern Matching with Time
— Theory and Applications

Doğan Ulus

January 15, 2018
Grenoble, France

Supervisor Reviewers Examiners Invited

Oded Maler Rajeev Alur Saddek Bensalem Eugene Asarin
Radu Grosu Ahmed Bouajjani Dejan Nickovic
Kim G. Larsen Patricia Bouyer

Cyber-Physical Systems

• Systems that reside at the intersection of
communication, control, and physical processes.

• Emphasis on combination and coordination between
physical and computational elements.

• Examples include self-driving vehicles, robots,
internet-of-things, smart grids,

References References

Temporal Behaviors

• Time is crucial for physical
processes and CPS.

• CPS generate temporal
behaviors
• Expressed in sequential forms:

signals, waveforms, time series,
event sequences.
• Streamed or logged.

• Analyze temporal behaviors to
understand/control/learn CPS.

2 36

References References

Detecting Patterns in Temporal Behaviors

• Specific shapes on waveforms:

• Rise and falls, various pulses, decays, . . .

• Specific arrangements of physical observations.

• High speed period after high acceleration, . . .

• Sequences of actions, simultaneous occurrences,
repetitions.

• Overtaking a car.
• Speeding-up while overtaken. (illegal)

• Detecting such patterns is an important problem.

3 36

References References

Detecting Patterns in Temporal Behaviors

• Specific shapes on waveforms:

• Rise and falls, various pulses, decays, . . .

• Specific arrangements of physical observations.

• High speed period after high acceleration, . . .

• Sequences of actions, simultaneous occurrences,
repetitions.

• Overtaking a car.
• Speeding-up while overtaken. (illegal)

• Detecting such patterns is an important problem.

3 36

References References

Pattern Matching over Text — First Example

• Consider some text (from my manuscript) such as

”This thesis concerns patterns and how to detect them in temporal
behaviors generated by various systems. These can be known
patterns, good or bad patterns, correct or incorrect patterns, simple
or complex patterns, but, more precisely, these are timed patterns
expressed in some intuitive and well-defined formalisms, namely
timed regular expressions and metric compass logic.”

• How to find patterns in this text?

• Press ctrl + F , then type “patterns”

Find: patterns

4 36

References References

Pattern Matching over Text — First Example

• Consider some text (from my manuscript) such as

”This thesis concerns patterns and how to detect them in temporal
behaviors generated by various systems. These can be known
patterns, good or bad patterns, correct or incorrect patterns, simple
or complex patterns, but, more precisely, these are timed patterns
expressed in some intuitive and well-defined formalisms, namely
timed regular expressions and metric compass logic.”

• How to find patterns in this text?

• Press ctrl + F , then type “patterns”

Find: patterns

4 36

References References

Pattern Matching over Text — First Example

• Consider some text (from my manuscript) such as

“This thesis concerns patterns and how to detect them in temporal
behaviors generated by various systems. These can be known
patterns, good or bad patterns, correct or incorrect patterns, simple
or complex patterns, but, more precisely, these are timed patterns
expressed in some intuitive and well-defined formalisms, namely
timed regular expressions and metric compass logic.”

• How to find patterns in this text?

• Press ctrl + F , then type “patterns”

Find: patterns

4 36

References References

Pattern Matching over Text — Advanced

• Regular expressions for more complex patterns.

• Natural numbers: 0|[1-9][0-9]*

• Dates: YYYY/MM/DD
((19|20)?[0-9]2[- /.](0?[1-9]|1[012])[- /.](0?[1-9]|[12][0-9]|3[01]))*

• URLs:
(((http|https|ftp):)?([[a-zA-Z0-9]_])+(_)([[a-zA-Z0-9]])2,4([[a-zA-Z0-9]+=%& _ ?]*))

• Even more complex:

• Math expressions: 11 + 6, (3 + 45)× 2, . . .
• Time phrases: 15 January 2015, August 5, last week, . . .

• Lexers, parsers, phrase taggers, named entity recognizers, . . .

• Rely on regular expression matching over text.

• The moral: Pattern matching is a means of extracting
information and abstracting data.

5 36

References References

Pattern Matching over Text — Advanced

• Regular expressions for more complex patterns.

• Natural numbers: 0|[1-9][0-9]*

• Dates: YYYY/MM/DD
((19|20)?[0-9]2[- /.](0?[1-9]|1[012])[- /.](0?[1-9]|[12][0-9]|3[01]))*

• URLs:
(((http|https|ftp):)?([[a-zA-Z0-9]_])+(_)([[a-zA-Z0-9]])2,4([[a-zA-Z0-9]+=%& _ ?]*))

• Even more complex:

• Math expressions: 11 + 6, (3 + 45)× 2, . . .
• Time phrases: 15 January 2015, August 5, last week, . . .

• Lexers, parsers, phrase taggers, named entity recognizers, . . .

• Rely on regular expression matching over text.

• The moral: Pattern matching is a means of extracting
information and abstracting data.

5 36

References References

Pattern Matching over Text — Advanced

• Regular expressions for more complex patterns.

• Natural numbers: 0|[1-9][0-9]*

• Dates: YYYY/MM/DD
((19|20)?[0-9]2[- /.](0?[1-9]|1[012])[- /.](0?[1-9]|[12][0-9]|3[01]))*

• URLs:
(((http|https|ftp):)?([[a-zA-Z0-9]_])+(_)([[a-zA-Z0-9]])2,4([[a-zA-Z0-9]+=%& _ ?]*))

• Even more complex:

• Math expressions: 11 + 6, (3 + 45)× 2, . . .
• Time phrases: 15 January 2015, August 5, last week, . . .

• Lexers, parsers, phrase taggers, named entity recognizers, . . .

• Rely on regular expression matching over text.

• The moral: Pattern matching is a means of extracting
information and abstracting data.

5 36

References References

Problem Overview

• Inspired from textual pattern matching.

• Find all matches of a pattern over a temporal behavior.

Pattern
Matching

Temporal
Behavior

Matches
on Time Axis

Pattern

6 36

References References

Challenges

From texts to temporal behaviors:

• Time is dense. Naive discretization does not scale.

• Lengths (durations) are more important for temporal
behaviors than texts.

• Temporal behaviors are multi-dimensional unlike text.

• Temporal patterns talk about different dimensions.

In this thesis, we address these challenges by

• Treating time in a symbolic and quantitative way.

• Making intersection (parallel composition) a first-class
operation.

7 36

References References

Challenges

From texts to temporal behaviors:

• Time is dense. Naive discretization does not scale.

• Lengths (durations) are more important for temporal
behaviors than texts.

• Temporal behaviors are multi-dimensional unlike text.

• Temporal patterns talk about different dimensions.

In this thesis, we address these challenges by

• Treating time in a symbolic and quantitative way.

• Making intersection (parallel composition) a first-class
operation.

7 36

References References

Contributions

• Introduce the algebra of timed relations that serves as a
computational framework for the rest.

• Propose timed regular expressions as a concise, intuitive,
and highly-expressive timed pattern specification language.

• Introduce metric compass logic and propose it as another
timed pattern specification language.

• Provide offline matching algorithms for timed regular
expressions and metric compass logic.

• Introduce derivatives of timed regular expressions and
provide an online matching algorithm based on derivatives.

• Implement timed pattern matching algorithms and provide the
tool Montre with some examples and case studies.

8 36

Introduction

Algebra of Timed Relations

• Goal: Develop a computational framework

• Define basic objects
• Define basic operations

Timed Pattern Matching

Going Online for Expressions

Montre and Case Studies

Conclusions

References References

Time Periods

• A time period (t, t ′)
is a pair such that
t < t ′.

• It begins at t, ends at
t ′, and has a duration
of t ′ − t.

• Illustrated on the
xy -plane.

t t ′ Time

t

t ′ − t

t ′

x = y

x

y

9 36

References References

Timed Relations

• A timed relation is a
finitely representable
set of time periods.

• Boolean combinations
of half-planes of six
types:

1 x < c
2 c < x
3 y < c
4 c < y
5 y − x < c
6 c < y − x

x

y

• Constraints 1 and 2 on beginnings
3 and 4 on ends
5 and 6 on durations

10 36

References References

Representing Timed Relations

• A zone is a convex timed
relation, formed only by
intersections of 1 to 6 .

• Represent a timed relation Z
by a finite union RZ of
zones.

• Ensure: Tightest bounds for
zones.

• Ensure: No zone in the
representation covers
another.

x

y

11 36

References References

Operations on Timed Relations

• Boolean (set) operations

• Union (∪), Intersection (∩), and Complementation ()

• Sequential operations

• Concatenation (·) and Repetition (+)

• Compass operations

• Based on binary relations between time periods
(so called Allen’s relations).

• Timed relations are closed under Boolean, sequential, and
compass operations.

• Efficient algorithms to compute over finite unions of zones.
(e.g. several adaptations of the plane sweep algorithm)

12 36

Introduction

Algebra of Timed Relations

Timed Pattern Matching

• Goal: Introduce TPM

• Define timed behaviors
• Define timed pattern specification languages
• Compute matches offline

Going Online for Expressions

Montre and Case Studies

Conclusions

References References

Timed Behaviors

• Continuous observations of some propositions denoting some
states and activities of systems.

• Modeled as a sequence of uniform segments.

• For example, a behavior w over p1, p2, and p3

p1

p2

0 2 4 6 8 10 12

p3

w = (0, 1.5,
[

0
0
0

]
), (1.5, 2,

[
1
0
0

]
), (2, 3.2,

[
1
1
0

]
), . . .

• Argue that continuous-time functions complicate needlessly.

13 36

References References

Timed Regular Expressions (TRE)

• Extend REs with the notion of time and timing constraints.

• Describe timed patterns (sets of timed behaviors).

• Defined inductively over a set P of atomic propositions:

• An atomic proposition p ∈ P is a TRE.
• If ϕ1 and ϕ2 are TREs, then ϕ1 ∪ ϕ2, ϕ1 · ϕ2, and ϕ+

1 are
TREs.
• If ϕ1 and ϕ2 are TREs, then ϕ1 ∩ ϕ2 and 〈ϕ1〉I are TREs.

• Intuitively,

• p specifies that p holds continuously for an arbitrary duration.
• ϕ1 · ϕ2 specifies that ϕ2 occurs right after ϕ1.
• ϕ1 ∩ ϕ2 specifies that ϕ1 and ϕ2 occurs simultaneously.
• 〈ϕ〉I specifies that duration of ϕ is in the interval I .

14 36

References References

Timed Regular Expressions (TRE)

• Extend REs with the notion of time and timing constraints.

• Describe timed patterns (sets of timed behaviors).

• Defined inductively over a set P of atomic propositions:

• An atomic proposition p ∈ P is a TRE.
• If ϕ1 and ϕ2 are TREs, then ϕ1 ∪ ϕ2, ϕ1 · ϕ2, and ϕ+

1 are
TREs.
• If ϕ1 and ϕ2 are TREs, then ϕ1 ∩ ϕ2 and 〈ϕ1〉I are TREs.

• Intuitively,

• p specifies that p holds continuously for an arbitrary duration.
• ϕ1 · ϕ2 specifies that ϕ2 occurs right after ϕ1.
• ϕ1 ∩ ϕ2 specifies that ϕ1 and ϕ2 occurs simultaneously.
• 〈ϕ〉I specifies that duration of ϕ is in the interval I .

14 36

References References

Timed Regular Expressions (TRE)

• Extend REs with the notion of time and timing constraints.

• Describe timed patterns (sets of timed behaviors).

• Defined inductively over a set P of atomic propositions:

• An atomic proposition p ∈ P is a TRE.
• If ϕ1 and ϕ2 are TREs, then ϕ1 ∪ ϕ2, ϕ1 · ϕ2, and ϕ+

1 are
TREs.
• If ϕ1 and ϕ2 are TREs, then ϕ1 ∩ ϕ2 and 〈ϕ1〉I are TREs.

• Intuitively,

• p specifies that p holds continuously for an arbitrary duration.
• ϕ1 · ϕ2 specifies that ϕ2 occurs right after ϕ1.
• ϕ1 ∩ ϕ2 specifies that ϕ1 and ϕ2 occurs simultaneously.
• 〈ϕ〉I specifies that duration of ϕ is in the interval I .

14 36

References References

Duration Constraints Explained

p1

p2

� p1

� p2

� p1 · p2

� p1

� p2

� p1 · p2

15 36

References References

Duration Constraints Explained

p1

p2

� p1

� p2

� p1 · p2

� p1

� p2

� p1 · p2

� 〈p1 · p2〉[5,7] 2 〈p1 · p2〉[5,7]

(satisfies the constraint) (falls short)

15 36

References References

Metric Compass Logic (MCL)

• Extends modal logic of time periods with timing constraints.

• Originally proposed for AI. We use for matching.

• Defined inductively over a set P of atomic propositions:

• An atomic proposition p ∈ P is a MCL formula.
• If ϕ1 and ϕ2 are formulas, then ϕ1 ∪ ϕ2, ϕ1 ∩ ϕ2, and ϕ1 are

formulas.
• If ϕ is a formula, then I ϕ, I ϕ, I ϕ, I ϕ, I ϕ, and

I ϕ are formulas.

16 36

References References

Metric Compass Logic (MCL)

• Extends modal logic of time periods with timing constraints.

• Originally proposed for AI. We use for matching.

• Defined inductively over a set P of atomic propositions:

• An atomic proposition p ∈ P is a MCL formula.
• If ϕ1 and ϕ2 are formulas, then ϕ1 ∪ ϕ2, ϕ1 ∩ ϕ2, and ϕ1 are

formulas.
• If ϕ is a formula, then I ϕ, I ϕ, I ϕ, I ϕ, I ϕ, and

I ϕ are formulas.

16 36

References References

Diamonds Explained

� ϕ

� ϕ

� ϕ

� ϕ

� ϕ

� ϕ

� ϕ

• Express all possible situations between time periods.

• Extended with timing constraints.
(Restrict range of quantification at one side)

17 36

References References

Diamonds Explained

� ϕ

� I ϕ

� I ϕ

� I ϕ

� I ϕ

� I ϕ

� I ϕ

• Express all possible situations between time periods.

• Extended with timing constraints.
(Restrict range of quantification at one side)

17 36

References References

Timed Pattern Matching

• A computation for identifying all segments of a timed
behavior that satisfy a timed pattern.

• Patterns specified in TRE and MCL.

• The set of all satisfying segments is called the match set of
the pattern ϕ over a timed behavior w .

Mw (ϕ) = {(t, t ′) | w [t, t ′] satisfies ϕ}

Computing match set = Evaluating ϕ to a timed relation

18 36

References References

Timed Pattern Matching

• A computation for identifying all segments of a timed
behavior that satisfy a timed pattern.

• Patterns specified in TRE and MCL.

• The set of all satisfying segments is called the match set of
the pattern ϕ over a timed behavior w .

Mw (ϕ) = {(t, t ′) | w [t, t ′] satisfies ϕ}

Computing match set = Evaluating ϕ to a timed relation

18 36

References References

Timed Pattern Matching

• A computation for identifying all segments of a timed
behavior that satisfy a timed pattern.

• Patterns specified in TRE and MCL.

• The set of all satisfying segments is called the match set of
the pattern ϕ over a timed behavior w .

Mw (ϕ) = {(t, t ′) | w [t, t ′] satisfies ϕ}

Computing match set = Evaluating ϕ to a timed relation

18 36

References References

Timed Pattern Matching

• A computation for identifying all segments of a timed
behavior that satisfy a timed pattern.

• Patterns specified in TRE and MCL.

• The set of all satisfying segments is called the match set of
the pattern ϕ over a timed behavior w .

Mw (ϕ) = {(t, t ′) | w [t, t ′] satisfies ϕ}

Computing match set = Evaluating ϕ to a timed relation

18 36

References References

Timed Pattern Matching — Example

Timed
Pattern

Matching

p1

p2

p3

Match Set
ϕ = p1 · 〈p2 · p3〉[2,4] ∩
〈p1 · p2〉[3,5] · p3

19 36

References References

Computing Matches Offline

ϕ = p1 · 〈p2 · p3〉[2,4] ∩ 〈p1 · p2〉[3,5] · p3

∩

·
p1

〈〉[2,4]·

p2

p3

·
〈〉[3,5]·

p1

p2 p3

M(ϕ)

20 36

References References

Computing Matches Offline

ϕ = p1 · 〈p2 · p3〉[2,4] ∩ 〈p1 · p2〉[3,5] · p3

∩

·
p1

〈〉[2,4]·

p2

p3

·
〈〉[3,5]·

p1

p2 p3

M(ϕ)

20 36

References References

Computing Matches Offline

ϕ = p1 · 〈p2 · p3〉[2,4] ∩ 〈p1 · p2〉[3,5] · p3

∩

·
p1

〈〉[2,4]·

p2

p3

·
〈〉[3,5]·

p1

p2 p3

M(ϕ)

20 36

References References

Computing Matches Offline

ϕ = p1 · 〈p2 · p3〉[2,4] ∩ 〈p1 · p2〉[3,5] · p3

∩

·
p1

〈〉[2,4]·

p2

p3

·
〈〉[3,5]·

p1

p2 p3

M(ϕ)

20 36

References References

Computing Matches Offline

ϕ = p1 · 〈p2 · p3〉[2,4] ∩ 〈p1 · p2〉[3,5] · p3

∩

·
p1

〈〉[2,4]·

p2

p3

·
〈〉[3,5]·

p1

p2 p3

M(ϕ)

20 36

References References

Computing Matches Offline

ϕ = p1 · 〈p2 · p3〉[2,4] ∩ 〈p1 · p2〉[3,5] · p3

∩

·
p1

〈〉[2,4]·

p2

p3

·
〈〉[3,5]·

p1

p2 p3

M(ϕ)

20 36

References References

Interpreting Matches

Timed
Pattern

Matching

p1

p2

p3

ϕ = p1 · 〈p2 · p3〉[2,4] ∩
〈p1 · p2〉[3,5] · p3

21 36

References References

Interpreting Matches

Timed
Pattern

Matching

p1

p2

p3

ϕ = p1 · 〈p2 · p3〉[2,4] ∩
〈p1 · p2〉[3,5] · p3

21 36

Introduction

Algebra of Timed Relations

Timed Pattern Matching

Going Online for Expressions

• Goal: Develop online TPM

• Define derivatives of TRE
• Compute matches using derivatives

Montre and Case Studies

Conclusions

References References

Why Going Online?

• Offline matching requires the whole behavior beforehand.

• Reacting to events and patterns as soon as they occur.

• Alerting humans (for bad patterns)
• Taking automatic actions

• No need to store temporal behaviors.

22 36

References References

Sequential Model of Computation (Recap)

• Formalizes online computations.

• Defines a sequence-to-sequence transformation
x1x2x3 . . . xn → y1y2y3 . . . yn, as follows.

s0
x1−→ s1

x2−→ s2
x3−→ s3

x4−→ . . .
xn−→ sn

↓ ↓ ↓ . . . ↓
y1 y2 y3 . . . yn

• The output yi at the step i is completely determined by the
initial state and the input x1 . . . xi .

• Closely related to automata. (Focus on input/output)

23 36

References References

Derivatives of Regular Expressions

• A technique to compute word acceptance for REs.

• A set of rewrite rules Dx(ϕ) that yields the residual
expression w.r.t. a letter x .

• Empty word check for the output.

• A sequential computation using derivatives:

ϕ0
Da1−→ ϕ1

Da2−→ ϕ2
Da3−→ ϕ3

Da4−→ ϕ4
Da5−→ ϕ5

↓ ↓ ↓ ↓ ↓
0 1 0 0 1

• Output at each step: Acceptance of the word read so far.

24 36

References References

Derivatives of Timed Regular Expressions

• Adapting derivatives for dense time.

• This involves a derivation w.r.t. all factors of a segment.

• Necessitates a more symbolic approach.
• Solved by considering timed relations to be constant values in

timed regular expressions.
(Booleans −→ Timed Relations)

• The resulting set of rules

• Maintains elegance of classical derivatives.
• Easy to show its correctness.

25 36

References References

Online Timed Pattern Matching

• A sequential computation for matches.

• The state of the online procedure is a single expression.

• For each segment u of the input:

• Derive the current expression with respect to u = (t, t ′, a).
• Extract matches from the derived expression.

ψ0
∆u1−→ ψ1

∆u2−→ ψ2
∆u3−→ ψ3

∆u4−→ ψ4

↓ ↓ ↓ ↓

• Output at each step: Matches ending in the current segment.

26 36

Introduction

Algebra of Timed Relations

Timed Pattern Matching

Going Online for Expressions

Montre and Case Studies

• Describe our timed pattern matcher tool

• Demonstrate some case studies:

• Measuring performance of a communication protocol
• Detecting sprints of soccer players

(Not here)
• Detecting daily activities over a video dataset

(Not here)

Conclusions

References References

Montre: Tool Description

• Montre is a command-line program
that implements timed pattern matching algorithms.

• In C++ and PureLang (term rewriting language).

• Provides a standard text-based input/output interface.

• Enhanced by Anchors and Boolean Layer.

• Available at github.com/doganulus/montre

27 36

References References

Montre: A tool in the pipeline

• For most applications, many different tasks have to be done.

• Timed pattern matching is not an isolated task.

Timed domain

Cyber
Physical
System

Behaviors

Observation

Timed
Behaviors

Timed Abstraction

Timed
Patterns

Timed
Pattern

Matching
Matches

Montre

Extracted
Behaviors

More analysis

More analysis

28 36

References References

Montre: Performance

Offline Algorithm Online Algorithm
Input Size Input Size

Test Patterns 100K 500K 1M 100K 500K 1M

p 0.06/17 0.27/24 0.51/33 6.74/14 29.16/14 57.87/14
p · q 0.08/21 0.42/46 0.74/77 8.74/14 42.55/14 81.67/14

〈p · q · 〈p · q · p〉I · q · p〉J 0.23/28 1.09/77 2.14/140 28.07/14 130.96/14 270.45/14
〈p · q〉I · r ∩ p · 〈q · r〉J 0.13/23 0.50/51 1.00/86 15.09/15 75.19/15 148.18/15

p · (q · r)+ 0.11/20 0.49/37 0.96/60 11.53/15 52.87/15 110.58/15

p 0.18/12 0.95/45 1.88/92

I p 0.07/16 0.29/65 0.66/163

I p 0.49/23 1.98/100 3.92/163

I J p 0.08/20 0.32/37 0.96/60
(p · q) 0.40/31 1.98/143 3.93/268

(p · q) ∩ I q 0.43/38 2.17/179 4.30/304

• A few seconds for offline, a few hundred seconds for online.
(size 1M)

• Linear execution time for typical inputs.

• Constant memory consumption for online algorithm.

29 36

References References

Case Study: DSI3 Protocol

• Distributed Systems Interface (DSI3) is a bus protocol
developed for the automotive industry.

• The communication is realized by voltage and current signals.

• The performance is evaluated by measuring some quantitative
properties such as time between consecutive discovery
pulses (#3).

(1) (4) (3)

(2)

Discovery response

Power ramp Discovery pulse End discovery pulse

30 36

References References

Case Study: Work Flow

• Our workflow for the DSI3 case study:

Electrical
Signals

Timed
Patterns

(describing
measurement

windows)

Noise Filtering

Timed Abstraction

Timed
Pattern

Matching

Measurement

Visualization Plots

31 36

References References

Case Study: Matching and Measuring

• Specify the pulse pattern:

ϕdp = 〈VMid · VLow · VMid〉[12,20]

∩ [0,5] VHigh ∩ [0,5] VHigh

• Specify the tail portion:

ϕdistpp = ϕdp ·VHigh ∩ ϕdp

• Compute the match set
M(ϕdistpp) over behaviors
of the protocol.

• Measure the duration of
each match and plot a
histogram.

time between 2 consecutive pulses

Label Voltage

VHigh > 7.8
VMiddle 4.92 - 7.8
VLow < 4.92

235.0 240.0 245.0 250.0 255.0 260.0 265.0

Measured duration (µs)

5

10

15

20

25

30

35

40

45

N
u

m
b

er
of

o
cc

u
rr

en
ce

32 36

References References

Conclusions

• Adapted pattern matching for temporal behaviors.

• Developed theoretical foundations and algorithms for timed
pattern matching.

• Implemented the first timed pattern matching tool.

• Explored several application areas via case studies.

33 36

References References

Future Work

• Improve the efficiency:

• Automata-based timed pattern matching
• Representing timed relations with decision diagrams

• Increase the expressiveness:

• Conjunctive grammars for timed patterns

• Specialize for some application domains:

• Runtime verification
• Temporal data analysis
• Robotics

34 36

References References

Publications

[1] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. “Timed
Pattern Matching”. In: Formal Modeling and Analysis of Timed Systems
(FORMATS). 2014.

[2] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. “Online Timed
Pattern Matching using Derivatives”. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). 2016.

[3] Dogan Ulus. “Montre: A Tool for Monitoring Timed Regular Expressions”. In:
Computer Aided Verification (CAV). 2017.

[4] Dogan Ulus and Oded Maler. “Specifying Timed Patterns using Temporal
Logic”. In: Hybrid Systems: Computation and Control (HSCC). 2018.

[5] Thomas Ferrère, Oded Maler, Dejan Nickovic, and Dogan Ulus. “Measuring
with Timed Patterns”. In: Computer Aided Verification (CAV). 2015.

35 36

References References

Publications

[6] Alexey Bakhirkin, Thomas Ferrère, Oded Maler, and Dogan Ulus. “On the
Quantitative Semantics of Regular Expressions over Real-Valued Signals”. In:
Formal Modeling and Analysis of Timed Systems (FORMATS). 2017.

[7] Eugene Asarin, Oded Maler, Dejan Nickovic, and Dogan Ulus. “Combining the
Temporal and Epistemic Dimensions for MTL Monitoring”. In: Formal
Modeling and Analysis of Timed Systems (FORMATS). 2017.

[8] Rajeev Alur, Konstantinos Mamouras, and Dogan Ulus. “Derivatives of
Quantitative Regular Expressions”. In: Models, Algorithms, Logics and Tools.
2017.

[9] Klaus Havelund, Doron Peled, and Dogan Ulus. “First-order temporal logic
monitoring with BDDs”. In: Formal Methods in Computer-Aided Design
(FMCAD). 2017.

[10] Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and
Dogan Ulus. “AMT2.0: Qualitative and Quantitative Trace Analysis with
Extended Signal Temporal Logic”. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). 2018.

36 36

Thank you for your attention!

Relational Semantics of Timed Regular Expressions

The satisfaction relation � of a timed regular expression ϕ in a
temporal structure W = (Ω(T),V) induced by a timed behavior w
with a time domain T , relative to a time period (t, t ′) ∈ Ω(T) is
defined as follows:

(W , t, t′) � p ↔ (t, t′) ∈ V (p)
(W , t, t′) � ϕ1 ∩ ϕ2 ↔ (W , t, t′) � ϕ1 and (W , t, t′) � ϕ2

(W , t, t′) � ϕ1 · ϕ2 ↔ ∃t′′. (W , t, t′′) � ϕ and (W , t′′, t′) � ψ
(W , t, t′) � ϕ1 ∪ ϕ2 ↔ (W , t, t′) � ϕ1 or (W , t, t′) � ϕ2

(W , t, t′) � ϕ+ ↔ ∃k ≥ 1. (W , t, t′) � ϕk

(W , t, t′) � 〈ϕ〉I ↔ (W , t, t′) � ϕ and t′ − t ∈ I

36 36

Relational Semantics of Metric Compass Logic

The satisfaction relation � of a metric compass logic formula ϕ in
a temporal structure W = (Ω(T),V) induced by a timed behavior
w with a time domain T , relative to a time period (t, t ′) ∈ Ω(T)
is defined as follows:

(W, t, t ′) � p ↔ (t, t ′) ∈ V (p)
(W, t, t ′) � ϕ ↔ (W, t, t ′) 2 ϕ
(W, t, t ′) � ϕ1 ∪ ϕ2 ↔ (W, t, t ′) � ϕ1 or (W, t, t ′) � ϕ2

(W, t, t ′) � I ϕ ↔ ∃t ′′ ∈ (t, t ′). t ′ − t ′′ ∈ I and (W, t, t ′′) � ϕ (B)
(W, t, t ′) � I ϕ ↔ ∃t ′′ ∈ (t ′,∞). t ′′ − t ′ ∈ I and (W, t, t ′′) � ϕ (B−1)
(W, t, t ′) � I ϕ ↔ ∃t ′′ ∈ (t, t ′). t ′′ − t ∈ I and (W, t ′′, t ′) � ϕ (E)
(W, t, t ′) � I ϕ ↔ ∃t ′′ ∈ (−∞, t). t − t ′′ ∈ I and (W, t ′′, t ′) � ϕ (E−1)
(W, t, t ′) � I ϕ ↔ ∃t ′′ ∈ (t ′,∞). t ′′ − t ′ ∈ I and (W, t ′, t ′′) � ϕ (A)
(W, t, t ′) � I ϕ ↔ ∃t ′′ ∈ (−∞, t). t − t ′′ ∈ I and (W, t ′′, t) � ϕ (A−1)

36 36

Derivatives of Timed Regular Expressions

Given a (left-reduced) timed regular expression ϕ and a uniform
timed behavior v : (t, t ′, a), applying the following rules yields an
expression ψ such that JψK = ∆v (JϕK).

∆v (Z) = ∅

∆v (p) =


Z ∪ Z · p if a(p) = 1 where

Z = {(r , r ′) | t ≤ r < r ′ ≤ t ′}
∅ otherwise

∆v (ψ1 · ψ2) = ∆v (ψ1) · ψ2 ∪ xt
(
ψ1 ∪∆v (ψ1)

)
·∆v (ψ2)

∆v (ψ1 ∪ ψ2) = ∆v (ψ1) ∪∆v (ψ2)
∆v (ψ1 ∩ ψ2) = ∆v (ψ1) ∩∆v (ψ2)

∆v (〈ψ〉I) = 〈∆v (ψ)〉I
∆v (ψ+) = xt(∆v (ψ))∗ ·∆v (ψ) · ψ∗

36 36

	Appendix

