
Trade-offs in Resource Allocation Problems

Abhinav Srivastav

Thesis Advisors:
Dr. Oded Maler Prof. Denis Trystram

February 16, 2017

Introduction

Agenda

Multi-Objective Optimization

Formulating trade-offs
Solution Methods
Background
Our algorithm
Experimental results
Conclusion

Trade-offs in Scheduling

Theoretical guarantees
Scheduling
Resource augmentation
Previous work
Our approach
Results
Conclusion

1 / 64

Introduction

Motivation

Many real-life optimization problems involve multi-criteria
Solutions are evaluated with respect to several, possible conflicting, objectives
A solution is better in a criterion and has worse performance in other criterion
Results in set of incomparable solutions
Such problems arise in engineering, operation research, telecommunication,
finance, medicine, etc.

2 / 64

Introduction

Example 1: Tour Planning
1/18/2017 Nice, France to Grenoble, France - Google Maps

https://www.google.co.in/maps/dir/Nice,+France/Grenoble,+France/@44.2912995,5.4393681,287958m/data=!3m1!1e3!4m14!4m13!1m5!1m1!1s0x12cdd0106a... 1/1

Imagery ©2017 Landsat / Copernicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Map data ©2017 Google, Inst. Geogr.
Nacional

50 km

2:05 PM - 8:45 PM (6 h 40 min)Nice, France to Grenoble, France

Multiple criteria: distance, tolls, traffic, scenic value, etc.
Best route?

3 / 64

Introduction

Example 2: Scheduling

Modern day processors can vary their processing speed
- High speed leads to shorter execution time of a job
- More speed means more energy consumption

Trade-off between energy consumption and execution time

4 / 64

Introduction

Multi-Objective Optimization

5 / 64

Multi-Objective Optimization

Formalizing Trade-offs

Problems with trade-offs can be seen as multi-objective optimization problems

Addressed by providing a set of incomparable solutions
- Example: route 1 = {382 kms, 4 tolls}

route 2 = {463 kms, 1 toll}

6 / 64

Multi-Objective Optimization

Formalizing Trade-offs

Problems with trade-offs can be seen as multi-objective optimization problems

Addressed by providing a set of incomparable solutions
- Example: route 1 = {382 kms, 4 tolls}

route 2 = {463 kms, 1 toll}

6 / 64

Multi-Objective Optimization

Mathematical Formalization

S represents the solution space
- Example: route 1, route 2 and route 3

C represents the cost space
- Example: distance, tolls, scenic values

F : S → C represents a set of d-objective functions, i.e. F = {f1, ..., fd}
- Example: f1(route 1) = 382 kms

f2(route 1) = 4 tolls

A multi-objective problem can be seen as a tuple ϕ = {S, C,F}

7 / 64

Multi-Objective Optimization

Mathematical Formalization

S represents the solution space
- Example: route 1, route 2 and route 3

C represents the cost space
- Example: distance, tolls, scenic values

F : S → C represents a set of d-objective functions, i.e. F = {f1, ..., fd}
- Example: f1(route 1) = 382 kms

f2(route 1) = 4 tolls

A multi-objective problem can be seen as a tuple ϕ = {S, C,F}

7 / 64

Multi-Objective Optimization

Mathematical Formalization

S represents the solution space
- Example: route 1, route 2 and route 3

C represents the cost space
- Example: distance, tolls, scenic values

F : S → C represents a set of d-objective functions, i.e. F = {f1, ..., fd}
- Example: f1(route 1) = 382 kms

f2(route 1) = 4 tolls

A multi-objective problem can be seen as a tuple ϕ = {S, C,F}

7 / 64

Multi-Objective Optimization

Mathematical Formalization

S represents the solution space
- Example: route 1, route 2 and route 3

C represents the cost space
- Example: distance, tolls, scenic values

F : S → C represents a set of d-objective functions, i.e. F = {f1, ..., fd}
- Example: f1(route 1) = 382 kms

f2(route 1) = 4 tolls

A multi-objective problem can be seen as a tuple ϕ = {S, C,F}

7 / 64

Multi-Objective Optimization

Partial Order

s strongly dominates s′ iff ∀i ∈ {1, ...d} : fi(s) ≤ fi(s′) and for some j,
fj(s) < fj(s′)
- Example: F(route x) = {382 kms, 1 toll}

F(route y) = {263 kms, 0 tolls}

s is incomparable with s′ iff ∃ i, j ∈ {1, ..., d} : fi(s) < fi(s′) and fj(s) > fj(s′)
- Example: F(route x) = {382 kms, 1 toll}

F(route y) = {272 kms, 4 tolls}

8 / 64

Multi-Objective Optimization

Partial Order

s strongly dominates s′ iff ∀i ∈ {1, ...d} : fi(s) ≤ fi(s′) and for some j,
fj(s) < fj(s′)
- Example: F(route x) = {382 kms, 1 toll}

F(route y) = {263 kms, 0 tolls}

s is incomparable with s′ iff ∃ i, j ∈ {1, ..., d} : fi(s) < fi(s′) and fj(s) > fj(s′)
- Example: F(route x) = {382 kms, 1 toll}

F(route y) = {272 kms, 4 tolls}

8 / 64

Multi-Objective Optimization

Pareto Front

s is a Pareto optimal solution iff ∀s′ ∈ S, s′ does not strongly dominate s′

Pareto front: A set with all Pareto optimal solutions

9 / 64

Multi-Objective Optimization

Problem and Solution

A trade-off problem can be formulated as a multi-objective problem
ϕ = {S, C,F}
The objective is to find the Pareto front

10 / 64

Multi-Objective Optimization

Finding Pareto front

Difficulties
- Many discrete problems are NP-complete, even in the single objective case
- There can be a large number of solutions in the Pareto front

Solution
- We need an approximation of the Pareto front

Definition

A ⊆ S is an approximation iff s and s′ are incomparable ∀s, s′ ∈ A.

Optimality is no more guaranteed
There may be a solution s ∈ S that strongly dominates s′ ∈ A

11 / 64

Multi-Objective Optimization

Finding Pareto front

Difficulties
- Many discrete problems are NP-complete, even in the single objective case
- There can be a large number of solutions in the Pareto front

Solution
- We need an approximation of the Pareto front

Definition

A ⊆ S is an approximation iff s and s′ are incomparable ∀s, s′ ∈ A.

Optimality is no more guaranteed
There may be a solution s ∈ S that strongly dominates s′ ∈ A

11 / 64

Multi-Objective Optimization

Finding Pareto front

Difficulties
- Many discrete problems are NP-complete, even in the single objective case
- There can be a large number of solutions in the Pareto front

Solution
- We need an approximation of the Pareto front

Definition

A ⊆ S is an approximation iff s and s′ are incomparable ∀s, s′ ∈ A.

Optimality is no more guaranteed
There may be a solution s ∈ S that strongly dominates s′ ∈ A

11 / 64

Multi-Objective Optimization

Generating Pareto front

Numerous optimizers in the literature
Our focus is on the local search algorithms
They are very effective in solving hard single-objective problems
- Example: Best solutions for travelling salesman problem (TSP)

Extensions to multi-objective scenario

12 / 64

Multi-Objective Optimization

Local Search

Consider a single objective version of TSP:
Given n cities
∀i, j ∈ 1, .., n : dij

Find the tour with smallest total distance
Example:

13 / 64

Multi-Objective Optimization

Representing a Solution

Each solution s ∈ S is defined by the values assigned to a set of discrete variables
Example:

14 / 64

Multi-Objective Optimization

Local Operator L : S → S

Transforms a solution to another solution by making local changes in the
representation
Example:

15 / 64

Multi-Objective Optimization

Neighborhood N(s)

Dist(s, s′): smallest number of changes required to transform s into s′

There exist multiple solutions at any fixed distance
A set of all such solutions is called the neighborhood of the solution

16 / 64

Multi-Objective Optimization

Neighborhood N(s)

Dist(s, s′): smallest number of changes required to transform s into s′

There exist multiple solutions at any fixed distance
A set of all such solutions is called the neighborhood of the solution

16 / 64

Multi-Objective Optimization

Local Search

17 / 64

Multi-Objective Optimization

Extensions to Multi-objective Scenario

Problems
- The cost space is multi-dimensional, C ⊂ Rd

- N(s) may contain multiple incomparable solutions
- Outcome is also a set of incomparable solutions

Solutions
- Scalarize multiple objectives into a single objective
- Another approach is to use the notion of dominance in the local search
- Such algorithms are known as Pareto local search (PLS)

18 / 64

Multi-Objective Optimization

Extensions to Multi-objective Scenario

Problems
- The cost space is multi-dimensional, C ⊂ Rd

- N(s) may contain multiple incomparable solutions
- Outcome is also a set of incomparable solutions

Solutions
- Scalarize multiple objectives into a single objective
- Another approach is to use the notion of dominance in the local search
- Such algorithms are known as Pareto local search (PLS)

18 / 64

Multi-Objective Optimization

Pareto Local Search

Data structure
- PLS maintains a set P of non-dominated solutions
- Each solution s ∈ P is flagged either as visited or unvisited

Basic steps in each iteration
- Select a unvisited solution s ∈ P
- Generate neighbors N(s) of s
- Merge N(s) with P using dominance criteria

19 / 64

Multi-Objective Optimization

Pareto Local Search

Data structure
- PLS maintains a set P of non-dominated solutions
- Each solution s ∈ P is flagged either as visited or unvisited

Basic steps in each iteration
- Select a unvisited solution s ∈ P
- Generate neighbors N(s) of s
- Merge N(s) with P using dominance criteria

19 / 64

Multi-Objective Optimization

Pareto Local Search

Pros:
- No scalarization needed
- Outcomes are mutually incomparable
- PLS provides fast convergence to Pareto local optimum
- It can handle problems with large number of optimal solutions

Cons:
- PLS searches only a subset of the solutions space
- The unvisited solutions from P are remove if dominated by a new solution
- This restricts convergence to Pareto front
- This can also have a negative effect on the spread of solution (diversity)

20 / 64

Multi-Objective Optimization

Pareto Local Search

Pros:
- No scalarization needed
- Outcomes are mutually incomparable
- PLS provides fast convergence to Pareto local optimum
- It can handle problems with large number of optimal solutions

Cons:
- PLS searches only a subset of the solutions space
- The unvisited solutions from P are remove if dominated by a new solution
- This restricts convergence to Pareto front
- This can also have a negative effect on the spread of solution (diversity)

20 / 64

Multi-Objective Optimization

Our Contribution

We propose a new algorithm, DAPLS
DAPLS does not prematurely remove candidate solutions
We show that it provides better convergence to the Pareto front
It maintains same diversity (spread of solutions) comparison to PLS

21 / 64

Multi-Objective Optimization

Intuition behind DAPLS

22 / 64

Multi-Objective Optimization

Double Archive Pareto Local Search

Data structures
- DAPLS maintains a set P of non-dominated solution
- An additional set L to maintain the candidate solutions
- The set P is presented as the final outcome

Basic steps in each iteration
- Select a solution s ∈ L without replacement
- Generate neighbors N(s) of s
- Merge N(s) with P using dominance criteria
- Merge (N(s) ∩ P) to L without using dominance criteria

(N(s) ∩ P) consists of new solutions added to P

L contains solutions that may be dominated

23 / 64

Multi-Objective Optimization

Double Archive Pareto Local Search

Data structures
- DAPLS maintains a set P of non-dominated solution
- An additional set L to maintain the candidate solutions
- The set P is presented as the final outcome

Basic steps in each iteration
- Select a solution s ∈ L without replacement
- Generate neighbors N(s) of s
- Merge N(s) with P using dominance criteria
- Merge (N(s) ∩ P) to L without using dominance criteria

(N(s) ∩ P) consists of new solutions added to P

L contains solutions that may be dominated

23 / 64

Multi-Objective Optimization

Double Archive Pareto Local Search

Data structures
- DAPLS maintains a set P of non-dominated solution
- An additional set L to maintain the candidate solutions
- The set P is presented as the final outcome

Basic steps in each iteration
- Select a solution s ∈ L without replacement
- Generate neighbors N(s) of s
- Merge N(s) with P using dominance criteria
- Merge (N(s) ∩ P) to L without using dominance criteria

(N(s) ∩ P) consists of new solutions added to P

L contains solutions that may be dominated

23 / 64

Multi-Objective Optimization

Benchmark

Multi-objective quadratic assignment problem
Given: - Given n facilities and n locations

- Distance between each pair of locations dij

- Multi-dimensional flow between each pair of facilities f k
ab

Find: A mapping π from facilities to locations that
minimizes Ck(π), ∀k ∈ {1, · · · , d}

Ck(π) =

n∑
a=1

n∑
b=1

Fi
ab.dπ(a),π(b)

Several instances of bi-objective and tri-objective QAP

Instances are generated with MQAP tool, Knowles et al. 2003

24 / 64

Multi-Objective Optimization

Experimental Results

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Obj val 2 1e8

3.0

3.5

4.0

4.5

5.0

5.5

6.0

O
b
j
v
a
l
1

1e8

PLS
QPLS
DAPLS

3.0 3.5 4.0 4.5 5.0 5.5
Obj val 2 1e8

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

O
b
j
v
a
l
1

1e8

PLS
QPLS
DAPLS

Median attainment surfaces for n = 50 with ρ = 0.25 (on left) and ρ = 0.75 (on right)

0.8 0.9 1.0 1.1 1.2 1.3 1.4
Obj val 2 1e9

0.6

0.7

0.8

0.9

1.0

1.1

O
b
j
v
a
l
1

1e9

PLS
QPLS
DAPLS

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Obj val 2 1e9

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

O
b
j
v
a
l
1

1e9

PLS
QPLS
DAPLS

Median attainment surfaces for n = 75 with ρ = 0.25 (on left) and ρ = 0.75 (on right)
25 / 64

Multi-Objective Optimization

Conclusion

We treat trade-offs as a multi-objective problem

DAPLS for solving multi-objective combinatorial problems

Our method improves upon the previous works
- Provides better convergence to the optimal Pareto front
- Provides same spread of solutions as PLS and QPLS

How does DAPLS perform on other kind of problems?
How to deal with problems in higher dimension?
Performance of DAPLS in tabu search, simulated annealing, other models?

26 / 64

Multi-Objective Optimization

Conclusion

We treat trade-offs as a multi-objective problem

DAPLS for solving multi-objective combinatorial problems

Our method improves upon the previous works
- Provides better convergence to the optimal Pareto front
- Provides same spread of solutions as PLS and QPLS

How does DAPLS perform on other kind of problems?
How to deal with problems in higher dimension?
Performance of DAPLS in tabu search, simulated annealing, other models?

26 / 64

Trade-offs in Scheduling

27 / 64

Scheduling

Theoretical Guarantees

Heuristics are known to perform well on real-world problems
Generally, they provide no guarantee on the quality of solutions
Guarantees for understanding the complexity of the problem
Instances on which particular heuristic will perform well

28 / 64

Scheduling

Approximation Ratio

We assume the offline setting
The entire instance beforehand
We focus on minimization problems, e.g. Scheduling

Definition
An algorithm is ρ-approximation iff

ρ ≥ max
I

{
Cost of the algorithm on input instance I

Optimal cost on input instance I

}

29 / 64

Scheduling

Competitive Ratio

We assume the online setting
The instance is revealed as the time progresses
Again our focus is on minimization problems

Definition
An algorithm is ρ-competitive iff

ρ ≥ max
I

{
Cost of the algorithm on input instance I
Optimal offline cost on input instance I

}

30 / 64

Scheduling

Scheduling Model

The problem of allocation resources to a set of requests

We consider the client-server model where
- Resources are modelled as machines
- Requests are modelled as jobs

Such systems include
- Operating systems,
- High performance platforms,
- Web-servers, etc.

31 / 64

Scheduling

Preliminaries

A scheduling problem consists of
- a set of jobs J = {J1, ..., Jn}
- a set of machinesM = {1, ...,m}

Each job j ∈ J is characterised by
- a processing requirement pj

- a release time rj

- a weight wj

Machine environment
- Single machine m = 1
- Parallel machines m > 1
- Unrelated machines m > 1

In parallel machines, each job has machine-independent processing time
In unrelated machines, each job has machine-dependent processing times

32 / 64

Scheduling

Types of Schedules

33 / 64

Scheduling

Problem Definition

We focus on non-preemptive scheduling
Our aim is to reduce the time a job spends in a system, Flow time

34 / 64

Scheduling

Objective Functions

The first measure is based on the average performance of the system
Average weighted flow-time:

∑
j

wjFj

Average flow-time measure is known to have extreme outliers

The second measure is based on minimizing these extreme outliers
Maximum weighted flow: max

j
wjFj

35 / 64

Scheduling

Special Case

We consider the problem of fair scheduling
Jobs should wait proportionally to their processing requirement
The most relevant metric is stretch
Stretch Sj =

Fj

pj

Specialized case of wjFj with wj = 1/pj

36 / 64

Scheduling

Max-stretch Problem

Each job j ∈ J is characterised by
- a processing requirement pj

- a release time rj

- a weight wj = 1
pj

Machine environment : single machine m = 1

Objective function: min max
j∈J

wjFj = Fj/pj

Our model considers the online problem where the jobs’ processing time are
known at their release time

37 / 64

Scheduling

Previous Results

Bender et al. 1998: Non-preemptive problem cannot be approximated within
factor of Ω(n1−ε)

Interesting results can be derived in instance-dependent parameter ∆ = pmax
pmin

Bender et al. 1998: Any online algorithm has at least Ω(∆1/3) for preemptive
problem
Saule et al. 2012: An improved lower bound of

(1+∆
2

)
was shown for the

non-preemptive problem
Legrand et al. 2008: FCFS is known to be ∆-competitive

38 / 64

Scheduling

Our Contributions

Theorem
There is no ρ∆-competitive non-preemptive algorithm for minimizing max-stretch on
a single machine for any fixed ρ <

(√
5−1
2

)
≈ 0.618 .

Theorem

There exists an algorithm that achieves (1 + α∆)-competitive for the problem of

minimizing max-stretch non-preemptively, where α =
(√

5−1
2

)
.

Our idea is based on the waiting-time strategy

39 / 64

Scheduling

Our Contributions

Theorem
There is no ρ∆-competitive non-preemptive algorithm for minimizing max-stretch on
a single machine for any fixed ρ <

(√
5−1
2

)
≈ 0.618 .

Theorem

There exists an algorithm that achieves (1 + α∆)-competitive for the problem of

minimizing max-stretch non-preemptively, where α =
(√

5−1
2

)
.

Our idea is based on the waiting-time strategy

39 / 64

Scheduling

Accurate Models

Previous result was instance dependent (∆)
The aim is to provide theoretical guarantees independent of the instance
Flow time problems have strong lower bound
However, many heuristics perform well in practice

40 / 64

Scheduling

Trade-offs in Scheduling

The widely accepted norm is to use resource augmentation

Kalyanasundaram et al. 2000 proposed the idea of speed augmentation
- The online algorithm is equipped more speed in comparison to the optimal algorithm

Phillips et al. 2002 proposed the idea of machine augmentation
- The online algorithm is equipped more number of machines in comparison to the

optimal algorithm

Choudhury et al. 2015 proposed the idea of rejection model
- The online algorithm has slightly smaller instance in comparison to the optimal

algorithm

41 / 64

Scheduling

Trade-offs in Scheduling

The widely accepted norm is to use resource augmentation

Kalyanasundaram et al. 2000 proposed the idea of speed augmentation
- The online algorithm is equipped more speed in comparison to the optimal algorithm

Phillips et al. 2002 proposed the idea of machine augmentation
- The online algorithm is equipped more number of machines in comparison to the

optimal algorithm

Choudhury et al. 2015 proposed the idea of rejection model
- The online algorithm has slightly smaller instance in comparison to the optimal

algorithm

41 / 64

Scheduling

Re-defining Competitive Ratio

Speed augmentation: A job with processing requirement p will take p
s time units in

the algorithm while the optimal takes p time units

ρ ≥ max
I

{
Cost of the algorithm with speed s on input instance I

Optimal cost with speed 1 on input instance I

}

Rejection Model: the algorithm’s performance is computed on a slightly smaller
instance than the optimal algorithm

ρ ≥ max
I

{
Cost of the algorithm on input instance I ′

Optimal cost on input instance I

}
where I′ ⊆ I

42 / 64

Scheduling

Re-defining Competitive Ratio

Speed augmentation: A job with processing requirement p will take p
s time units in

the algorithm while the optimal takes p time units

ρ ≥ max
I

{
Cost of the algorithm with speed s on input instance I

Optimal cost with speed 1 on input instance I

}

Rejection Model: the algorithm’s performance is computed on a slightly smaller
instance than the optimal algorithm

ρ ≥ max
I

{
Cost of the algorithm on input instance I ′

Optimal cost on input instance I

}
where I′ ⊆ I

42 / 64

Scheduling

Problem Definition

We have a setM of m unrelated machines
Each job j has

a machine-dependent processing time, i.e. pij,∀i ∈M
a release time rj

a weights wj = 1

Our goal is to design a non-preemptive schedule that min
∑

j
Fj

Jobs arrive online
(pij,wj) are known at rj

43 / 64

Scheduling

Related Works

Offline settings:
- Kellerer et al. 1999: A strong lower bound of O(

√
n) exists in the classical model

- Bansal et al. 2007: There exists a 12-speed 2-approximation algorithm
- Im et al. 2015: A quasi-polynomial (1 + ε)-speed (1 + ε)-approximation algorithm

Online settings:
- Chekuri et al. 2001: Lower bound of Ω(n) for unweighted flow on a single machine
- Bunde et al. 2004: SPT is ∆/2-competitive for total flow on a single machine
- Tao et al. 2013: WSPT is O(∆)-competitive for parallel machines

44 / 64

Scheduling

Related Works

Offline settings:
- Kellerer et al. 1999: A strong lower bound of O(

√
n) exists in the classical model

- Bansal et al. 2007: There exists a 12-speed 2-approximation algorithm
- Im et al. 2015: A quasi-polynomial (1 + ε)-speed (1 + ε)-approximation algorithm

Online settings:
- Chekuri et al. 2001: Lower bound of Ω(n) for unweighted flow on a single machine
- Bunde et al. 2004: SPT is ∆/2-competitive for total flow on a single machine
- Tao et al. 2013: WSPT is O(∆)-competitive for parallel machines

44 / 64

Scheduling

Our Approach

We formulate our problem as a linear program
We use the concept of duality in optimization
Weak duality: the cost of dual problem is at most the cost of the primal problem

Competitive ratio can be defined as:

Objective value of Primal LP

Objective value of Dual LP

45 / 64

Scheduling

Decision Variables

Each job j ∈ J has a set of variables xj(t),∀t

Constraint on xj(t) ∈ {0, 1}
- xj(t) = 1 iff job is running at t
- xj(t) = 0, otherwise

Job j can run only after its release time rj

- xj(t) = 0,∀t < rj

Job as processing requirement of at most pj

-
∞∫
0

xj(t)dt = pj =⇒
∞∫
rj

xj(t)dt = pj

At each time, at most one job can run
-
∑

j
xj(t) ≤ 1, ∀t

46 / 64

Scheduling

Objective Function

Objective function: min
∑

j

∞∫
rj

(
t−rj

pj
+ 1
)

xj(t)dt

47 / 64

Scheduling

Objective Function

Objective function: min
∑

j

∞∫
rj

(
t−rj

pj
+ 1
)

xj(t)dt

47 / 64

Scheduling

Linear Programming Relaxation

Single Machine

min
∑
j∈J

∫ ∞

rj

(
t − rj + pj

pj

)
xj(t)dt

∫ ∞

rj

xj(t)
pj

dt ≥ 1 ∀j ∈ J∑
j∈J

xj(t) ≤ 1 ∀t ≥ 0

xj(t) ≥ 0 ∀j ∈ J , t ≥ 0

Unrelated Machines

min
∑
i∈M

∑
j∈J

∫ ∞

rj

t − rj + pij

pij
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J

∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t ≥ 0

xij(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

48 / 64

Scheduling

Linear Programming Relaxation

Single Machine

min
∑
j∈J

∫ ∞

rj

(
t − rj + pj

pj

)
xj(t)dt

∫ ∞

rj

xj(t)
pj

dt ≥ 1 ∀j ∈ J∑
j∈J

xj(t) ≤ 1 ∀t ≥ 0

xj(t) ≥ 0 ∀j ∈ J , t ≥ 0

Unrelated Machines

min
∑
i∈M

∑
j∈J

∫ ∞

rj

t − rj + pij

pij
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J

∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t ≥ 0

xij(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

48 / 64

Scheduling

Primal-Dual

Primal LP

min
∑
i∈M

∑
j∈J

∫ ∞

rj

t − rj + pij

pij
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J

∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t ≥ 0

xij(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

Dual LP

max
∑
j∈J

λj −
∑
i∈M

∫ ∞

0
γi(t)dt

λj

pij
− γi(t) ≤ t − rj + pij

pij
∀i ∈M, j ∈ J , t ≥ rj

λj, γi(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

49 / 64

Scheduling

Primal-Dual

Primal LP

min
∑
i∈M

∑
j∈J

∫ ∞

rj

t − rj + pij

pij
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J

∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t ≥ 0

xij(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

Dual LP

max
∑
j∈J

λj −
∑
i∈M

∫ ∞

0
γi(t)dt

λj

pij
− γi(t) ≤ t − rj + pij

pij
∀i ∈M, j ∈ J , t ≥ rj

λj, γi(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

49 / 64

Scheduling

Competitive Ratio

Competitive Ratio ρ can be defined as:

ρ =
min

∑
i∈M

∑
j∈J

∫∞
rj

t−rj+pij

pij
xij(t)dt

max
∑

j∈J λj −
∑

i∈M
∫∞

0 γi(t)dt

Dual LP plays the role of the optimal algorithm

50 / 64

Scheduling

Speed Augmentation

Primal LP (Online algorithm)

min
∑
i∈M

∑
j∈J

∫ ∞

rj

t − rj + pij

pij
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J

∑
j∈J

xij(t) ≤ (1 + εs) ∀i ∈M, t ≥ 0

xij(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

Dual LP (Optimal algorithm)

max
∑
j∈J

λj −
∑
i∈M

∫ ∞

0
γi(t)dt

λj

pij
− γi(t) ≤ t − rj + pij

pij
∀i ∈M, j ∈ J , t ≥ rj

λj, γi(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

51 / 64

Scheduling

Rejection Model

Primal LP (Online algorithm)

min
∑
i∈M

∑
j∈J\R

∫ ∞

rj

t − rj + pij

pij
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J \ R

∑
j∈J\R

xij(t) ≤ 1 ∀i ∈M, t ≥ 0

xij(t) ≥ 0 ∀i ∈M, j ∈ J \ R, t ≥ 0

Dual LP (Optimal algorithm)

max
∑
j∈J

λj −
∑
i∈M

∫ ∞

0
γi(t)dt

λj

pij
− γi(t) ≤ t − rj + pij

pij
∀i ∈M, j ∈ J , t ≥ rj

λj, γi(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

52 / 64

Scheduling

Speed Augmentation + Rejection Model

Primal LP (Online algorithm)

min
∑
i∈M

∑
j∈J\R

∫ ∞

rj

t − rj + pij

pij
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J \ R

∑
j∈J\R

xij(t) ≤ (1 + εs) ∀i ∈M, t ≥ 0

xij(t) ≥ 0 ∀i ∈M, j ∈ J \ R, t ≥ 0

Dual LP (Optimal algorithm)

max
∑
j∈J

λj −
∑
i∈M

∫ ∞

0
γi(t)dt

λj

pij
− γi(t) ≤ t − rj + pij

pij
∀i ∈M, j ∈ J , t ≥ rj

λj, γi(t) ≥ 0 ∀i ∈M, j ∈ J , t ≥ 0

53 / 64

Scheduling

Intuition behind Rejection

time0 P

1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

54 / 64

Scheduling

Intuition behind Rejection

time0 P1

P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 1

2 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12

3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject

54 / 64

Scheduling

Intuition behind Rejection

time0 P1 P + 12 3

. . .

2P

time0 1 2 3 P P + 1 2P + 1

time0 1 2 3 P P + 1 2P + 1 time0 1 2 3 P P + 1 2P + 1

P small jobs

each small job has flow time P

while in the optimal it has flow time 1

but we can reject
54 / 64

Scheduling

Rejection Policy

εr ∈ (0, 1): the rejection constant

1 At the beginning of the execution of job k on machine i
⇒ introduce a counter vk = 0

2 Each time a job j, with pij < pik, arrives during the execution of k
and j is dispatched to machine i

vk ← vk + 1

3 Interrupt and reject k the first time where vk ≥ 1
εr

Lemma
We reject at most an εr-fraction of the jobs

55 / 64

Scheduling

Rejection Policy

εr ∈ (0, 1): the rejection constant

1 At the beginning of the execution of job k on machine i
⇒ introduce a counter vk = 0

2 Each time a job j, with pij < pik, arrives during the execution of k
and j is dispatched to machine i

vk ← vk + 1

3 Interrupt and reject k the first time where vk ≥ 1
εr

Lemma
We reject at most an εr-fraction of the jobs

55 / 64

Scheduling

Rejection Policy

εr ∈ (0, 1): the rejection constant

1 At the beginning of the execution of job k on machine i
⇒ introduce a counter vk = 0

2 Each time a job j, with pij < pik, arrives during the execution of k
and j is dispatched to machine i

vk ← vk + 1

3 Interrupt and reject k the first time where vk ≥ 1
εr

Lemma
We reject at most an εr-fraction of the jobs

55 / 64

Scheduling

Scheduling Policy

time

time

do not reject

time

reject

kj

k j

j

A1 A2

A1 A2

A1 A2

56 / 64

Scheduling

Scheduling Policy

time

time

do not reject

time

reject

kj

k j

j

A1 A2

A1 A2

A1 A2

56 / 64

Scheduling

Scheduling Policy

time

time

do not reject

time

reject

kj

k j

j

A1 A2

A1 A2

A1 A2

For each machine i
schedule the jobs dispatched on i in Shortest Processing Time order

56 / 64

Scheduling

Scheduling Policy

time

time

do not reject

time

reject

kj

k j

j

A1 A2

A1 A2

A1 A2

Marginal increase
A1: set of jobs with shorter processing time than j

contribute to the flow time of the new job j

A2: set of jobs with longer processing time than j
the new job j delays them by pij

56 / 64

Scheduling

Scheduling Policy

time

time

do not reject

time

reject

kj

k j

j

A1 A2

A1 A2

A1 A2

Marginal increase

∆ij =



(
pik(rj) +

∑
`∈A1∪{j}

pi`

)
+ |A2| · pij if k is not rejected

∑
`∈A1∪{j}

pi` +

(
|A2| · pij − |A1 ∪ A2| · pik(rj)

)
otherwise

56 / 64

Scheduling

Charging Marginal Increase

Marginal increase

∆ij ≤


pik(rj) +

(∑
`∈A1∪{j}

pi` + |A2| · pij

)
if k is not rejected(∑

`∈A1∪{j}

pi` + |A2| · pij

)
otherwise

Recall rejection: increase the counter of k only if j has smaller processing time

Define:

λij =


1
εr

pij +

(∑
`∈A1∪{j}

pi` + |A2| · pij

)
if pij < pik

1
εr

pij + pik(rj) +

(∑
`∈A1∪{j}

pi` + |A2| · pij

)
otherwise

57 / 64

Scheduling

Dispatching Policy

Immediate dispatch at arrival and never change this decision

Dispatch j to the machine i of minimum λij

58 / 64

Scheduling

Dual Variables

λj = mini λij

(1 + εs).γi(t) =number of pending jobs on machine i

Recall dual objective ∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

≥ total marginal increase
= total flow time

=
(

1
1+εs

)
. total flow time

59 / 64

Scheduling

Dual Variables

λj = mini λij

(1 + εs).γi(t) =number of pending jobs on machine i

Recall dual objective ∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

≥ total marginal increase
= total flow time

=
(

1
1+εs

)
. total flow time

59 / 64

Scheduling

Dual Variables

λj = mini λij

(1 + εs).γi(t) =number of pending jobs on machine i

Recall dual objective ∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

≥ total marginal increase
= total flow time

=
(

1
1+εs

)
. total flow time

59 / 64

Scheduling

Dual Variables

λj = mini λij

(1 + εs).γi(t) =number of pending jobs on machine i

Recall dual objective ∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

≥ total marginal increase
= total flow time

=
(

1
1+εs

)
. total flow time

59 / 64

Scheduling

Putting All Together

rejection: update the counter of executed job when a new job arrives
⇒ reject if the counter exceeds a threshold based on εr

immediate dispatch: based on minimum λij

schedule: select the pending job of smallest processing time

Theorem

There exists an (1 + εs)-speed εr-rejection O
(

1
εrεs

)
-competitive algorithm for

minimizing total flow on a set of unrelated machines that rejects at most εr-fraction of
total number of jobs.

60 / 64

Scheduling

Putting All Together

rejection: update the counter of executed job when a new job arrives
⇒ reject if the counter exceeds a threshold based on εr

immediate dispatch: based on minimum λij

schedule: select the pending job of smallest processing time

Theorem

There exists an (1 + εs)-speed εr-rejection O
(

1
εrεs

)
-competitive algorithm for

minimizing total flow on a set of unrelated machines that rejects at most εr-fraction of
total number of jobs.

60 / 64

Scheduling

Our Results

Theorem

There exists an (1 + εs)-speed εr-rejection O
(

1
εrεs

)
-competitive algorithm for

minimizing
∑

wjFj on a set of unrelated machines that rejects at most εr-fraction of
total weights of jobs.

We also extend our analysis to the general problem of minimizing (
∑

wjFj
k)

1/k on a set of
unrelated machines

Theorem

There exists an (1 + εs)-speed εr-rejection O
(

k(k+2)/k

ε
1/k
r ε

(k+2)/k
s

)
-competitive algorithm that

rejects at most εr-fraction of total weights of jobs.

61 / 64

Scheduling

Conclusion and Future Works

Rejection is a powerful tool for analysing online scheduling algorithms
We presented O(1)-competitive algorithms for minimizing flow time problems
No online algorithm with performance guarantee was known

Is speed really necessary ?
How rejections can be extended to other scheduling problems?
Can rejections be a powerful tool for other online combinatorial algorithms?

62 / 64

Scheduling

Conclusion and Future Works

Rejection is a powerful tool for analysing online scheduling algorithms
We presented O(1)-competitive algorithms for minimizing flow time problems
No online algorithm with performance guarantee was known

Is speed really necessary ?
How rejections can be extended to other scheduling problems?
Can rejections be a powerful tool for other online combinatorial algorithms?

62 / 64

Scheduling

Publications

1 Double Archive Pareto Local Search
Oded Maler and Abhinav Srivastav
In Proc. of IEEE Symposium on Computational Intelligence, 2016

2 Online Non-preemptive Scheduling to Optimize Max-stretch on a Single
Machine
Pierre.F Dutot, Erik Saule, Abhinav Srivastav and Denis Trystram
In Proc. of International Computing and Combinatorics Conference, 2016

3 From Preemptive to Non-preemptive using Rejections
Giorgio Lucarelli, Abhinav Srivastav and Denis Trystram
In Proc. of International Computing and Combinatorics Conference, 2016

4 Online Non-preemptive Scheduling in a Resource Augmentation Model based
on Duality
Giorgio Lucarelli, Nguyen.K Thang, Abhinav Srivastav and Denis Trystram
In Proc. of European Symposium on Algorithms, 2016

63 / 64

Scheduling

Thank You!

64 / 64

	Introduction
	Multi-Objective Optimization
	Scheduling

