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]
Context of the Thesis

@ Ph.D CIFRE with STMicroelectronics, supervised by,

e Oded Maler, Verimag,
e Bruno Jego and in collaboration with Thierry Lepley,
STMicroelectronics

@ Minalogic project ATHOLE

o low-power multi-core platform for embedded systems
o partners: ST, CEA, Thales, CWS, Verimag
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Outline

@ Context and Motivation
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Embedded Systems

There is an increasing requirement for performance under low power
constraints:

@ Need to integrate more
functionnalities in
Embedded devices,

@ Applications are
becoming more
computationaly
intensive and power
hungry,
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The Emergence of Multicore Architectures

@ Running 2 processors in the same chip at half the speed will be less energy
consuming and equally performant,

Voltage = 1 Voltage = -15%

-15%
1
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Embedded Multicore Architectures:

@ Platform 2012: a manycore computation fabric,

P2012 Fabric
[ Cluster, [ Cluster;
4
Cluster; Clusters
| 4
Clustery_; Clustery
v
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Embedded Multicore Architectures:

@ Platform 2012: a manycore computation fabric,

@ main characteristic: explicitly managed Memories:

Cluster

P2012 Fabric
[ Cluster, w
Cluster; Clusters
| 4
Clustery_; Clustery
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Embedded Multicore Architectures:

@ Platform 2012: a manycore computation fabric,

@ main characteristic: explicitly managed Memories:

Cluster

Features:
P2012 Fabric
@ Scratchpad memories
(No caches), .
Clusterg
Cluster; Clusters
Clustery_; Clustery
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Embedded Multicore Architectures:

@ Platform 2012: a manycore computation fabric,
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Embedded Multicore Architectures:

@ acts as a general purpose programmable accelerator:
= Heterogeneous Multicore Architectures,

P2012 Fabric
Cluster
Clusterg
ARM ‘
Host
ARM Cluster, Clusters
corte® l | ‘
Clustery_; Clustery
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Embedded Multicore Architectures:

@ acts as a general purpose programmable accelerator:
= Heterogeneous Multicore Architectures,

P2012 Fabric
Cluster
st mw
ARM
Host ‘
ARMP‘Q Cluster, Clusters
corte* l | ‘
Clustery_; Clustery

V/

This is the class of architectures in which we are interested !! )
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Heterogeneous Multi-core Architectures

@ a powerful host processor and a multi-core fabric to accelerate
computationally heavy kernels.

Multi—core fabric

Host CPU

1 Interconnect

vV
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Heterogeneous Multi-core Architectures

@ a powerful host processor and a multi-core fabric to accelerate
computationally heavy kernels.

/—4'@‘“‘"“
Host CPU /
Ty

Interconnect ‘
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Heterogeneous Multi-core Architectures

@ Offloadable kernels work on large data sets, initially stored in a distant
off-chip memory.

Algorithm
for i=0 to n—1

Y1 = (X))
od

Multi—core fabric

Host CPU

Interconnect

I = I N A A A A \/

([T ITTT ~ TTITTTTIT]Y
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Heterogeneous Multi-core Architectures

@ High off-chip memory latency: accessing off-chip data is very costly

Algorithm
for i=0 to n—1

Y[l = f(X[1)

Read, N N L
N \ L Multi-core fabric

Host CPU

Interconnect

Write

I I I A 4
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Context and Motivation

Heterogeneous Mult

i-core Architectures

@ Data is transferred to a closer but smaller on-chip memory, using DMAs

(Direct Memory Acces

s).

Algorithm
for i=0 to n—1

Y1l = £(X1i])
od

Host CPU

Data Block Transfers

_-block 1

—

Multi-core fabric

bloc]

"’r
[TTTTT]Y
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DMA Data Transfers: Single Buffering

s: number of array elements in one block,

blocky block; blockm_» blockm_1

s
-— —

X[o] | xp X[n—{1]
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DMA Data Transfers: Single Buffering

s: number of array elements in one block,

blocky block; blockm_» blockm_1

X[o] | xp X[n—{1] X

s
-— —

while (i < n/s)
i++

n

i=0

Fetch(block;)
Compute(block;)

Write back(block;)
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DMA Data Transfers: Single Buffering

s: number of array elements in one block,

blocky block; blockm_» blockm_1
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s
-— —
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DMA Data Transfers: Single Buffering
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DMA Data Transfers: Single Buffering

s: number of array elements in one block,

blocky block; blockm_» blockm_1

HENEEEEN

1] X

X[n—

while (i < n/s)
i++

n

i=0

Fetch(block;)
Compute(block;)

Write back(block;) dma_put(block;, local-buffer, s)

4

@ Sequential execution of computations and data transfers. J
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DMA Data Transfers: Double Buffering

Asynchronous DMA calls:

Fetch(blocko) dma_get(local — buffer[1], blocky, s)

[ "v~<___ dma.get(local — buffer[2], block;,s, s)

Compute(block;) M Feteh(blockisr)
Write back(block;)
Compute(blockn/s) — 1)

while (i < (n/s) — 1)

it

Write back(blocky/s)1)

24 October 2012 25
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DMA Data Transfers: Double Buffering

Asynchronous DMA calls:

Fetch(blocks) dma_get(local — buffer[L], blocks, s)

[ "v~<___ dma.get(local — buffer[2], block;,s, s)
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DMA Data Transfers: Double Buffering

Asynchronous DMA calls:

Fetch(blocko) dma_get(local — buffer[1], blocky, s)

while (i < (n/s) — 1)

it

Compute(block;)
Waite back(block;)
Compute(block(n/s) — 1)

Write back(blocky/s)1)

@ Overlap of computations and data transfers.

“~~.__ dma_get(local — buffer[2], blocki,y, s)

" Feteh(blocki1)

-t

)
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Context and Motivation

DMA Data Transfers: Double Buffering

Asynchronous DMA calls:

Fetch(blocko) dma_get(local — buffer[1], blocky, s)

[ "~~<___ dma.get(local — buffer[2], block;,s, s)

Compute(block;) M Feteh(blockisr)

Wite back(block;)
Compute(block(n/s) — 1)

Write back(blocky/s)1)

while (i < (n/s) — 1)

it

~
)

@ Overlap of computations and data transfers.
24 October 2012 28
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Context and Motivation

Double Buffering Pipelined Execution

Overlap of,
o Computation of current block,

@ Transfer of next block.

Input

Transfer by
Computation

Output ‘
Transfer : .
- Time
Prologue
I Proc idle time
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Context and Motivation
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Double Buffering Pipelined Execution
Overlap of,

o Computation of current block,

@ Transfer of next block.

Input :

Transfer by ‘ by ‘ by [ by | by |

Computation [N b NN 5 WM b B b [N b |

Output ‘ by ‘ by ‘ by ‘ by ‘ by ‘

Transfer : : Time
Prologue Epilogue ‘

I Proc idle time

Performance can be further improved by an appropriate choice of data J

granularity.
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Granularity of Transfers

@ 1Dim Data:
block size s

Selma Saidi

blocky block;

blockn

[0}

xI1)

- 5 —
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Context and Motivation

Granularity of Transfers

@ 1Dim Data:
block size s
blocks block, blockn._» blockp._1
STl T[T TTI T -
- 5 — & n
@ 2Dim Data: . X
block shape T ﬁ/
(sla 52) ‘ I )
S1
[N
block(ji. j»)

-~ M=

24 October 2012 34
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Context and Motivation

Granularity of Transfers

@ 1Dim Data:
block size s
blocky blocky blockn. > blockp._1
xto] | xq ‘ ‘ ‘ ‘ ‘ Xin 1] X
s ]
@ 2Dim Data: X(it, i)
block shape o ﬂ/
(Sla 52) ‘ ¥ )
S1
[N
block(ji. j>)

-—

Contribution: |
We derive optimal granularity for 1D and 2D DMA transfers,
34
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Our Contribution:

We derive optimal granularity for 1D and 2D DMA transfers,

@ 1Dim data work was published in Hipeac 2012,
S.Saidi, P.tendulkar, T.Lepley, O.Maler, “Optimizing explicit data transfers for data
parallel applicationson the Cell architecture ”
@ 2D data work was published in DSD 2012,
S.Saidi, P.tendulkar, T.Lepley, O.Maler, “Optimal 2D Data Partitioning for DMA
Transfers on MPSoCs”
o extended version of the paper submitted to: "Embedded Hardware Design:
Microprocessors and Microsystems™ Journal.

vV
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Outline

@ Context and Motivation

© Contribution
@ Problem Definition

@ Optimal Granularity for a Single Processor
@ 1Dim Data
@ 2Dim Data

@ Multiple Processors
@ Shared Data

© Experiments on the Cell.BE
@ The move towards Platform 2012

© Conclusions and Perpectives \/
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Outline
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@ Multiple Processors
@ Shared Data

vV

Selma Saidi Optimizing DMA Transfers 24 October 2012 37



Contribution Problem Definition

Outline

© Contribution
@ Problem Definition

vV
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Contribution Problem Definition

Software Pipelining

@ We want to optimize execution of the pipeline.

Prologue

vV
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Contribution Problem Definition

Software Pipelining

@ We want to optimize execution of the pipeline.

Prologue

Optimal Granularity:
What is the Granularity choice that optimizes performance?
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Computation Regime and Transfer Regime

Contribution

Problem Definition

@ T and C: Transfer and Computation time of a block

Transfer Regime T > C:

Input transfer by

by

b, | by [ b ]

[

by

by

C

b P70 b U2 b B2] by B2

b P77 b 220 b U2 b U0 b

Output transfer

by ] b ] b ] by

[ b ]

bs

bs

by

bs

Prologue

bz

Proc Idle Time

Epilogue

v,

Computation Regime C > T:
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Contribution Problem Definition

Computation Regime and Transfer Regime
@ T and C: Transfer and Computation time of a block

Transfer Regime T > C:

Input transfer by b [ b [ b [ b | b [ b [ b [ b ]
¢ i b P77 b U7 b B2 by B2Zd b 22D b B2 b U271 b B2 b
Output transfer [ & T b [ b | by | b | S " ™ by
Prologue Epilogue
7777 Proc Idle Time
v,
Computation Regime C > T:
Input transfer by by ] by J
(¢! by [ by I b,
Output transfer [ by [ by ] by
Prologue Epilogue Time
v,
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Contribution Problem Definition

In the Computation Regime:

Granularity s:

Input transfer by by ] by ]
c by ] by [ by
Output transfer [ by ] by ] by
Prologue Epilogue Time
G | 0 o / 5
ranularity s': s > s:
Input transfer i by ]
Computation by I by
Output transfer [ by ] T
Prologue Epilogue Time
D
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Contribution Problem Definition

Optimal Granularity: Problem Formulation

1Dim Data: block size 2Dim Data: block shape

Find s* such that,

Min T(s) s.t.

vV
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Contribution Problem Definition

Optimal Granularity: Problem Formulation

1Dim Data: block size 2Dim Data: block shape

Find s* such that, Find (s7,s5) such that,
Min T(s) s.t.
Min T(s1,s2) s.t.
T(s) < C(s)
s) € [1..n] T(s1,%) < C(s1, %)
s< M (s1,52) € [1..nm] x [1..n2]

51><52§M

vV
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Qpiitiiel Gy for @ Siige Pressssa
Outline

© Contribution

@ Optimal Granularity for a Single Processor
@ 1Dim Data
@ 2Dim Data
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Optimal Granularity for a Single Processor
Optimal Granularity : 1Dim Data

Characterization of Computation and Transfer Time:

vV
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Optimal Granularity for a Single Processor
Optimal Granularity : 1Dim Data

Characterization of Computation and Transfer Time:

@ s: nb array elements clustered in one (Contiguous) block,

Computation time C(s): DMA Transfer time T(s):

/
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@ s: nb array elements cluste

Computation time C(s):
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@ s: nb array elements cluste

Computation time C(s):

@ w: time to compute
one element,

C(s)=w-s

Selma Saidi
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DMA Transfer time T(s):
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Optimal Granularity : 1

Dim Data

Characterization of Computation and Transfer Time:

@ s: nb array elements cluste

Computation time C(s):

@ w: time to compute
one element,

C(s)=w-s

Selma Saidi

red in one (Contiguous) block,

DMA Transfer time T(s):

o /: fixed DMA initialization cost,
@ «: transfer cost per byte,

@ b: size of one array element,
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Optimal Granularity for a Single Processor
Optimal Granularity : 1Dim Data

Characterization of Computation and Transfer Time:

@ s: nb array elements clustered in one (Contiguous) block,

Computation time C(s): DMA Transfer time T(s):

@ w: time to compute o /: fixed DMA initialization cost,
one element, @ a: transfer cost per byte,

@ b: size of one array element,

Cs)=w-s T(s)=/+a-b-s /

v
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Optimal Granularity for a Single Processor
Optimal Granularity : 1Dim Data

Pb Formulation Optimal Granularity s*:

Min T(s) s.t.
T(s) < C(s)
s € [1.n] e
S S M T=C
: L c
@ s: block size = : ree 1 &)
@ M: Memory limitation
‘ . — T(s)
I 1 ‘
; i
Transfer Domain Computation Domain /
o
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Optimal Granularity for a Single Processor
Optimal Granularity : 1Dim Data

Pb Formulation Optimal Granularity s*:

Min T(S) s.t. C(s*) = T(s¥)
T(s) < C(s)
s € [1.n] .
s<M T=C
: @
@ s: block size : rse 1 &)
@ M: Memory limitation
; T(s)
/ 1 ‘
- wo*
Computation Domain /
o

Selma Saidi Optimizing DMA Transfers 24 October 2012 48



Qpiitiiel Gy for @ Siige Pressssa
Outline

© Contribution

@ Optimal Granularity for a Single Processor
@ 1Dim Data
@ 2Dim Data
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Optimal Granularity for a Single Processor
Optimal Granularity : 2Dim Data

Characterization of Computation and Transfer Time:

@ (s1 X s2): nb array elements clustered in one (square) block,

— X(i.2) Computation time C(s1, 52):

my | block(j1,j2)

. vV
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Optimal Granularity for a Single Processor
Optimal Granularity : 2Dim Data

Characterization of Computation and Transfer Time:

@ (s1 X s2): nb array elements clustered in one (square) block,

— X(iv.i2) Computation time C(s1, 52):
| / @ w: time to compute one
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Contribution Optimal Granularity for a Single Processor

Optimal Granularity : 2Dim Data

stride
src addr ‘
\ :ﬁ— Sy — i
} ,,,,,,
s1 b1t
L.

Strided DMA Transfer time T (s, s):

@ /i transfer cost overhead per line,

T(51,52)=/—I-/151—|-Cu-b-51-52

Vv
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Contribution Optimal Granularity for a Single Processor

Optimal Granularity : 2Dim Data

stride
src addr ‘
\ :ﬁ— Sy — i
} ,,,,,,
s1 b1t
L.

Strided DMA Transfer time T (s, s):

@ /i transfer cost overhead per line,

T(51,52)=/—I-/151—|-Cu~b-51-52

/
Strided DMA transfers are costlier than contiguous transfers )i
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Optimal Granularity for a Single Processor
Influence of the Block Shape on the DMA Transfer Cost

o Different block shapes with same area BUT different DMA transfer
time,

=2 ‘

(51752) = (174) (51352) = (232) (51152) = (47 1)
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Optimal Granularity for a Single Processor
Optimal Granularity : 2Dim Data

@ C(s1,5) : computation time of a block,
@ T(s1,s2) : transfer time of a block,

A,
T
A
2 7
i
e

il
I T
Lt
T

Time

A

ST

T

e g
AT

G

e e a Sy g
-.':.,,-,t,r,t,:,,',’,m: AT
£/

i
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Optimal Granularity for a Single Processor
Optimal Granularity : 2Dim Data

o C(s1,%):
® T(s1,5):

Selma Saidi

computation time of a block,
transfer time of a block,

S1

n

Computation Domain

T<C

Transfer Domain

T>C

/% np

Optimizing DMA Transfers
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Optimal Granularity for a Single Processor
Optimal Granularity : 2Dim Data

Pb Formulation

Min T(s1,%) s.t.

T(Sl, 52) S C(Sl, 52)

(51,52) € [1..!71] X [1..’12]

51X52§M

@ s;: block height

@ sp: block width

Selma Saidi

il

Sil

Computation Domain

T<C

Transfer Domain

T>C

/¥

)
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Optimal Granularity for a Single Processor
Optimal Granularity : 2Dim Data

Pb Formulation 81

Min T(s1,s) s.t.
ny
T(Sl, 52) S C(Sl, 52)
(51,52) € [1..!71] X [1..’12]
51 X 5 < M
S1
@ s;: block height ,
S1
@ sp: block width )
2
Sy = s;l, ny )
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Optimal Granularity for a Single Processor
Optimal Granularity : 2Dim Data

s1

2

(1/9)( + Iy) no

Block Height : s7 =1
Block Width : s = (1/¢)(h + k)

7/

Optimal granularity is the Contiguous block to reach the computation regime: J
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Kluligle Privsassess
Outline

© Contribution

@ Multiple Processors

vV
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Kluligle Privsassess
Multiple Processors

@ Partitioning: p contiguous chunks of data
Pl , P) , P;; , P4

Array

@ Processors are identical: same local store capacity, same double
buffering granularity...etc.

Selma Saidi Optimizing DMA Transfers 24 October 2012
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Wil Piocessars
Multiple Processors

Pipelined execution for several processors:

Input Transfer by. by by
P T
3
[

OutputTransfer

Time

Prologue

U222 2272727]  ProcIdle time

@ processors DMA requests are done concurrently,

vV
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Wil Piocessars
Multiple Processors

Pipelined execution for several processors:

Input Transfer by, by, by \ bs, by, bs |
P 7/, 7
Gl 7 b 7]
P 7 b ¥ 7|
OutputTransfer
Prologue Time
Lol 22220772777] Procldle time )

@ processors DMA requests are done concurrently,
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Wil Piocessars
Multiple Processors

Pipelined execution for several processors:

Input Transfer bo, by, by \ bs, by, bs [ be.br.bs ]
” A B R U
P 7Z WY 7 b Z|
P 7 b ¥ A b A
OutputTransfer :
Prologue Time
Lol 22220772777] Procldle time )

@ processors DMA requests are done concurrently,
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Wil Piocessars
Multiple Processors

Pipelined execution for several processors:

Input Transfer bo, by, by \ bs, by, bs [ be.br.bs ]
Po 777 Z I A b 7|
Py A b B ZIEY. A b 1
B 7T 5 F Z IR 2, 7|
OutputTransfer [ _bob.b, [ bsbabs ‘ be. br. bg ]
Prologue i i Epilogue i
Lol 22220772777] Procldle time )

@ processors DMA requests are done concurrently,
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Wil Piocessars
Multiple Processors

Pipelined execution for several processors:

Input Transfer bo, by, by \ bs, by, bs [ be.br.bs ]

Po 7 b I A b Z 7

Py Z b 7 b A b 1

P 7 b [ A b ZE7 7
OutputTransfer ‘ [ bo.bi.by [ by babs ‘ be, bz, bg ]

- Time
Prologue Epilogue
Grizzii7722277]  Procldle time )

@ processors DMA requests are done concurrently,

T(s,p)=1+a(p)-b-s

a(p) : transfer cost per byte given contentions of p concurrent transfer requests:
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Kluligle Privsassess
Multiple Processors: Optimal Granularity

e Optimal granularity given p processors: s*(p),

S1

T =C
time n .
C(s)
- Tu(s)
s*(1)
1 S e
s Y
s*(1) n n
(a) One-dimensional data (b) Two-dimensional data

vV
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Kluligle Privsassess
Multiple Processors: Optimal Granularity

e Optimal granularity given p processors: s*(p),

S1

T =C
time n ]
C(s)
To(s)
- Ti(s)
e =)
o 1 S
() s() o n o
(a) One-dimensional data (b) Two-dimensional data

vV
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Kluligle Privsassess
Multiple Processors: Optimal Granularity

e Optimal granularity given p processors: s*(p),

S1

T,=C T,=C
time n |
)
7.(6)
- Ti(s)
o - 1
() s(p) on -
(a) One-dimensional data (b) Two-dimensional data
Optimal Granularity increases with number of processors J
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Contribution Multiple Processors

Summary:

We derived optimal granularity,

@ main idea: balance between computation and transfer time of a block,
@ 2D data: block shape influences transfer time (overhead per line, /1)

@ multiple processors: number of processors influence transfer time

(with a(p))

vV
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Local Memory Constraint

@ What if Optimal Granularity does not fit in Local memory?

@ take available memory space,
@ reduce the number of processors,

S1

M/sy Tp=C

time ny

2

s'(p) M s"(p) M | y
(a) One-dimensional data (b) Two-dimensional dat
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Contribution Shared Data

Outline

© Contribution

@ Shared Data

Selma Saidi Optimizing DMA Transfers

24 October 2012
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Contribution Shared Data

Applications with shared data: 1Dim

@ Data parallel loop with shared input data:
for i:=0ton—1do

d Y[i] = X[, V) VI = (X[ — 1), X[i — 2], ..o, X[i — &}

vV
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Contribution Shared Data

Applications with shared data: 1Dim

@ Data parallel loop with shared input data:

fori:==0ton—1do
od
@ Neighboring blocks share data:

T

7
0 Neighboring Shared Data

vV
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Shared Data: 2Dim

Contribution Shared Data

@ Data parallel loop with shared input data:

for i :=1 to ny do
for i := 2 to n» do

Y, io] := £(X[ir, i2], V[iv, i2]);

od

@ symmetric window,

Selma Saidi

n

K2,

m

Optimizing DMA Transfers

cy X[ = ky 2]}

k)2

Vi, ] = {X[h — 1, b], X[, 2 — 1],

24 October 2012
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Contribution Shared Data

Optimal Granularity : 1Dim Data

Compare strategies for transferring shared data:

© Replication: via DMA transfers from the off-chip memory to local
memory.

@ Inter-processor communication: processors exchange data via the
network-on-chip between the cores;

© Local buffering: via local copies done by the processors.

Based on a parametric study, we derive optimal strategy and granularity
for transferring shared data,

vV
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Contribution Shared Data

Optimal Granularity : 2Dim Data

@ we consider Replication for transferring shared data,

@ R: size of replicated data.

(51% 52) = (2v 2)

vV
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Contribution Shared Data

Optimal Granularity : 2Dim Data

Influence of the block shape on the size of share data:
@ Compare Transfer cost of a flat and a square block,

R: size of replicated data.

vV
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Contribution Shared Data

Optimal Granularity : 2Dim Data

Influence of the block shape on the size of share data:
@ Compare Transfer cost of a flat and a square block,

R: size of replicated data.

© More Replicated data
Overhead \/

Selma Saidi Optimizing DMA Transfers 24 October 2012 69



Contribution Shared Data

Optimal Granularity : 2Dim Data

Influence of the block shape on the size of share data:
@ Compare Transfer cost of a flat and a square block,

R: size of replicated data.

R=12
R=14

,,,,, o
si=1 5 =2
""" b

5 =2

(s1,%) = (1,4) (s1,%) =(2,2)
© More Replicated data © More transfer lines \/

Overhead Overhead
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Contribution Shared Data

Optimal Granularity : 2Dim Data

Influence of the block shape on the size of share data:
@ Compare Transfer cost of a flat and a square block,

R: size of replicated data.

R=12
R=14

,,,,, o
si=1 5 =2
""" b

5 =2

(s1,%) = (1,4) (s1,%) =(2,2)
© More Replicated data © More transfer lines \/

Overhead Overhead
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Contribution Shared Data

Optimal Granularity : 2Dim Data

Problem Formulation

Find (s7,s5) such that,

min T(s1 + k,sp + k) s.t.

T(Sl + k,sp + k) < C(51,52)
(51,52) S [1../71] X [1../72]
(s1+k)x(s2+k)<M

vV
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Contribution Shared Data

Optimal Granularity : 2Dim Data

S1

ny

vV
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Contribution Shared Data
Optimal Granularity : 2Dim Data

Optimal shape: between a square and a flat shape,

S1

ny

st = A+ (/0)(1/D)
L SoaTieman, A
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Outline

© Experiments on the Cell.BE

vV
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Experiments on the Cell.BE

Overview of Cell B.E. Architecture

SPU

SPU

SPU

MFC | MMU

MFC | MMU

MFC | MMU

PPU

MMU

/0

L2

XDR DRAM
Interface

EIB

Interface

SPU

SPU

SPU

MFC

MMU

MFC

MMU

MFC

MMU

MFC

MMU

Platform Characteristics:

Coherent
Interface

@ 9-core heterogeneous multi-core architecture, with a Power Processor
Element(PPE) and 8 Synergistic Processing Elements(SPE).

@ Limited local store capacity per SPE: 256 Kbytes

@ Explicitely managed memory system, using DMAs

Selma Saidi

Optimizing DMA Transfers

vV
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Measured DMA Latency

F T T T
F|—e—1SPU y
7 = 2 SPU
T;’) —e—4 SPU
& al o i
= 100 —~s8spU E
4 £
E [
G2
2
é,_‘:
% 108 | e
g )
It . o o i
= gt
I I I

Il Il Il B
16 64 256 1024 4096 16384

super-block size (s - b)

@ Profiled hardware parameters:

DMA issue time I « 400 clock cycles
Off-chip memory transfer cost/byte: 1 proc | a(1) | 0.22 clock cycles
Off-chip memory transfer cost/byte: p procs | a(p) | = p-«a(l) \/
inter-processor comm transfer cost/byte for B 0.13 clock cycles

Selma Saidi Optimizing DMA Transfers 24 October 2012 75



Experiments on the Cell.BE

Optimal Granularity: 1Dim Data, No

Execution Time (clock cycles)

@ predicted optimal granularities give good performance.

Selma Saidi

Sharing

15

0.5

16 64

—
256

— Il
1024

Il Il
4096 16384

super-block size (s - b)

—e— 2 SPU-pred —a— 8 SPU-pred —e— 2 SPU-meas

—+—8 SPU-meas

Optimizing DMA Transfers
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Optimal Granularity: 1Dim Data, Sharing

Y RN/ Y RY KN/ E

Neighboring Shared Data

Comparing several strategies:

106-2

108

Execution Time (clock cycles)

1078 - f
L aiiininis A - —
10‘24 2(J4S 4696 81‘92
super-block size (s - b) V
—e— 2 repl —#— 2 ipc —e— 2 local buffering

—+— 8 repl —— 8 ipc - #-- 8 local buffering
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Optimal Granularity: 2Dim Data, Sharing

@ We implement double buffering on a mean filtering algorithm,

108
T T T T
5.5 e meas sy x sy = 4K | | .
—m—meas 8; ¥ s = 2K s
—a—meas s ¥ o = 1K /

Pipeline Total Execution time

Block Height s

o predicted optimal granularities give good performance.
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Outline

@ The move towards Platform 2012

vV
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P2012 Memory Hierarchy

@ |Intra cluster L1 memory (256 Kbytes),
@ Inter cluster L2 memory,
@ Off-chip L3 memory

P2012 Fabric

ARM I ““““ = I'.‘"'.".‘.".".‘.
Host | EROOOOOOOL m[m[w]m[m[]w]w
Cluster 0 Cluster 1

/M
:,;\e*“g ﬁ . L2

Cluster 2 Cluster 3

vV
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DMA Latency

we measure the DMA latency on P2012,
DMA performance Model:

T(s,p) =1+ a(p)bs

e 1P :
2 L= 2PE 1 | = 240cycles
5 —e 4PE
Z10TH e I
% 16 PE S
E 10° E P a(p)
2 Y 11025
A S S 2 | 0.45
16 61 2% 1024 40% 4 0.65
super-block size (s - b) 8 1 . 15
16 | 2.15 \/
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DMA Latency

we measure the DMA latency on P2012,
DMA performance Model:

T(s,p) =1+ a(p)bs

2 o l ﬁE ] I = 240cycles
3 e 4 PE
2 10'H . spp |
z |16 PE ]
£ p [a(p)
g0 ] 1 |0.25
= 2 | 045
1 Il Il 1 1 4 0-65
128 2688 5248 7808
super-block size (s - b) 8 1 15 V
16 | 2.15
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DMA Transfers in a Cluster

Shared Local Memory and shared DMA:
2 approaches for transferring data,

@ Liberal: Processors fetch data independently

@ Collaborative: Processors fetch data collectively

vV
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Liberal Approach: Processors fetch data independently

Off-chip Memory

T(s;p) =1+ a(p)bs
C(s,p) =o0+ws
s<M/p

DMA Transfers
Cluster

Computations

Program 1 (Liberal): Kernel( data_type global *GBuffer,

paraml, param2 ....) Opencl Kernel:

work item = processor
async_work_item_copy: DMA
async_work_item_copy(GBuffer, LBuffer, size, e); fetch for each processor

wait_event(e); V

}

data_type LBuffer [size];
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Off-chip Memory

Collab Approach: Processors fetch data Collectively

DMA Transfers

Cluster

T(s,p) =1+ a(l)bs
C(s,p) = o(p) + (w/p)s
s<M
Program 2 (Collaborative): Kernel

(data_type
GBulffer, data_type local *LBuffer, paraml, param2 ....)

global*

Opencl Kernel:
Selma Saidi

work group = cluster

async_work_group_copy(GBuffer, LBuffer, size, e);
wait_group_event(e);

async_work_group_copy: DMA
fetch for the cluster

Optimizing DMA Transfers

%
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The move towards Platform 2012

Liberal Approach: Processors fetch data independently

& increase of number of processors reduces max buffer size,

@ double buffering implementation results:
Optimal Granularity does not fit in the available memory space

Transfer Time (clock cycles)

10°

107

Selma Saidi

—e— 2 PE
| [-=— 8 PE
[|—e—16 PE
F .-
§ D P S
e

h
| . L S
\\\'\. L A A

3 .
r i S S
L | | |

4 16 64 256

super-block size (s-b)
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The move towards Platform 2012

Liberal Approach: Processors fetch data independently

© synchronization overhead,

@ double buffering implementation results:
Performance degradation when increase number of processors

Transfer Time (clock cycles)

Selma Saidi

10%-#

1066

1054

512

1 1
1024 2048

4096 81
super-block size (b - s)

Optimizing DMA Transfers

| |
92 16384
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On-going Work:

@ find the right balance between number of processors and Memory
space budget,

@ compare both liberal and collaborative approach,

vV

Selma Saidi Optimizing DMA Transfers 24 October 2012 87



Outline

© Conclusions and Perpectives \/
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Conclusion

@ We presented a general methodology for automating decisions about
Optimal granularity for data transfers,
@ we capture the following facts,

@ Block shape and size influence the transfer/computation Ratio,

@ DMA performance (sensitivity to the block shapes, number of
processors)

© tradeoff between Strided DMA overhead vs size of replicated data

vV
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Perspectives

@ Consider other applications patterns,

@ Capture variations (hardware and Software),

© Generalize the approach to more than 2 memory levels,
@ Integrate this work in a complete compilation flow,

© combine task and data parallelism,

o ..

vV
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Conclusions and Perpectives

Thank You !l

vV
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