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Abstract. In this work we propose a model that can be used to study the dynam-
ics of mass action systems, systems consisting of a large number of individuals
whose behavior is influenced by other individuals that they encounter. Our ap-
proach is rather synthetic and abstract, viewing each individual as a probabilistic
automaton that can be in one of finitely many discrete states. We demonstrate the
type of investigations that can be carried out on such a model using the Populus
toolkit. In particular, we illustrate how sensitivity to initial spatial distribution can
be observed in simulation.

1 Introduction

Mass action is a fundamental notion in many situations in Chemistry, Biochemistry,
Population Dynamics and Social Systems [2]. In this class of phenomena, one has a
large population of individuals partitioned into several types of “species”, whose dy-
namics is specified by a set of reaction rules. Each reaction indicates the transformation
that is likely to take place when individuals of specific types come into contact. For
example, a rule of the form

A+B → A+ C

says that when an instance of A meets an instance of B, the latter is transformed into
C. Denoting by nA and nB the number of instances of A and B existing at a certain
moment, the likelihood of an (A,B)-encounter is proportional to nA · nB . Hence the
rate of change of nB will have a negative contribution proportional to nA · nB and that
of nC will have the same magnitude of positive contribution. Combining for each of
the species the negative contributions due to reactions in which it is transformed into
something else with the positive contributions due to reactions that yield new instances
of it, one can obtain a system of polynomial1 differential/difference equations.

Hybrid systems research led in the past to interactions between several branches of
Computer Science and Control that have resulted in new ways to specify and analyze
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the behavior of complex dynamical systems [12, 13]. The present paper is a preliminary
step in a research program, initially inspired by [5], to pull into the CS sphere of ideas,
additional domains currently dominated by the culture of Applied Mathematics and
Scientific Computing, most notably the modeling and simulation of chemical reactions
inside the cell [1, 8, 4, 9].

Our approach is top-down and synthetic in the sense of defining a class of general
mathematical models for such systems, inspired by common knowledge on the way
chemical reactions work but still abstracting away from many problem-specific details
due to Chemistry, Physics and even some Geometry. We believe that better concep-
tual and computational insights can be achieved on cleaner models, focused on what
we view as essential features of the phenomenon, before adding the additional details
associated with each concrete problem. We hope that investigating such models will
eventually lead to novel ways to simulate and control mass action systems with po-
tential applications, among others, in drug design and social engineering. These issues
have been studied, of course, for many years in various contexts and diverse disciplines,
[11, 3] to mention a few, but we hope, nevertheless and despite the present apparently
naive beginning, to provide a fresh look at the subject.

The rest of this paper is organized as follows. In Section 2 we present the basic
model of the individual agent (particle) as a probabilistic automaton capable of being
in one out of several states, and where transition labels refer to the state of the agent
it encounters at a given moment. In Section 3 we discuss several ways to embed these
individual agents in a model depicting the evolution of a large ensemble of their in-
stances. In Section 4 we describe three such aggregate models, starting with a rather
standard model where state variables correspond to the relative concentrations of parti-
cle types. Such models depict the dynamics of the average over all behaviors and they
are typically realized by ordinary differential equations (ODEs) but we prefer to work
in discrete time.

The second model is based on stochastic simulation under the well-stirred assump-
tion. The third model embeds the particles in space where they perform some type of
random motion and encounters may occur when the distance between two particles
becomes sufficiently small. The model thus obtained is essentially a kind of a reaction-
diffusion model for a restricted class of reactions. In Section 5 we briefly describe the
Populus tool kit that we developed for exploring the dynamics of such models and
illustrate its functionality. In particular, we demonstrate the effects of the initial spa-
tial distributions of certain particle types which result in deviations from the behavior
predicted by a well-stirred version of the model.

2 Individuals

We consider population-preserving mass action systems where new individuals are not
born and existing ones neither die nor aggregate into compound entities: they only
change their internal state. A particle can be in one of finitely-many states and its (prob-
abilistic) dynamics depicts what happens to it every time instant, either spontaneously



or upon encountering another particle. The object specifying a particle is a probabilistic
automaton:2

Definition 1 (Probabilistic Automaton). A probabilistic automaton is a triple A =
(Q,Σ, δ) where Q is a finite set of states, Σ is a finite input alphabet and δ : Q×Σ ×
Q→ R is a probabilistic transition function such that for every q ∈ Q and a ∈ Σ,∑

q′∈Q
δ(q, a, q′) = 1.

In our model Q = {q1, . . . , qn} is the set of particle types and each instance of the au-
tomaton is always in one of those. The input alphabet isQ∪{⊥} intended to denote the
type of another particle encountered by the automaton and with the special symbol ⊥
indicating a non-encounter. An entry δ(q1, q2, q3) specifies the probability that an agent
of type q1 converts to type q3 given that it encounters an agent of type q2. Likewise
δ(q1,⊥, q3) is the probability of converting into q3 spontaneously without meeting any-
body. We use the notation q1

q2−→ q3 for an actual invocation of the rule, that is, drawing
an element of Q according to probability δ(q1, q2, .) and obtaining q3 as an outcome.

Table 1 depicts a 3-species probabilistic automaton. Looking at the diagonal of the
⊥ matrix we can observe that the three species are rather stable in isolation. On the
other hand, they may influence each other significantly upon encounter. For instance,
q3 transforms q1 to q3 with probability 0.3 while q1 transforms q2 to q3 and q3 to q1
with probabilities 0.4 and 0.7, respectively.

δ ⊥ q1 q2 q3
q1 q2 q3 q1 q2 q3 q1 q2 q3 q1 q2 q3

q1 0.9 0.1 0.0 1.0 0.0 0.0 0.7 0.2 0.1 0.7 0.0 0.3
q2 0.1 0.8 0.1 0.0 0.6 0.4 0.0 1.0 0.0 0.1 0.9 0.0
q3 0.0 0.0 1.0 0.7 0.0 0.3 0.3 0.4 0.3 0.0 0.0 1.0

Table 1. A 3-species probabilistic automaton.

Our models are synchronous with respect to time: time evolves in fixed-size steps
and at every step each particle detects whether it encounters another (and of what type)
and takes the appropriate transition. The definition of when an agent meets another
depends, as we shall see, on additional assumptions on the global aggregate model.
Remark: It is worth noting that we restrict ourselves to reaction rules which are “locally
causal” in the following sense: when an (A,B)-encounter takes place at time t, the state
of A at time t+ 1 is does not depend on the state of B at t+ 1 and vice versa: states of
particles at time t+1 depend only on states at t. Compared to more general probabilistic

2 A probabilistic automaton [15] is a Markov chain with an input alphabet where each input
symbol induces a different transition matrix. It is also known as a Markov Decision Process
(MDP) in some circles.



rewrite rules that can specify the outcome of an (A,B)-encounter, our formalism can
express rules which are products of simple rules. For instance, in a general rule like

A+B → A1 +B1 (p11) | A1 +B2 (p12) | A2 +B1 (p21) | A2 +B2 (p22)

the probabilities of the four outcomes should sum up to 1 while in our formulation
they should satisfy the additional condition p11/p12 = p21/p22. This restriction is not
crucial for our approach but it simplifies some calculations.

3 Aggregation Styles

Consider now a set S consisting of m individuals put together, each being modeled as
an automaton. The set of all possible global configurations of the system (micro-states
in Physpeak) is the setQS of all functions from S toQ. This is an enormous state space
of size nm. A very useful and commonly-used abstraction is the counting abstraction
obtained by considering two micro-states equivalent if they agree on the number of
particles of each type, regardless of their particular identity. The equivalence classes of
this relation form an abstracted state-space P of macro-states (also known as particle
number representation) each being an n-dimensional vector:

P = {(X1, . . . , Xn) : ∀i 0 ≤ Xi ≤ m ∧
n∑

i=1

Xi = m}.

Models that track the evolution of an ensemble of particles are often viewed as dynam-
ical systems over this abstract state-space.

For our purposes we classify models according to two features: 1) Individual vs.
average dynamics; 2) Spatially-extended vs. non-spatial (well-stirred) dynamics. For
the first point, let us recall the trivial but important fact that we have a non-deterministic
system where being in a given micro-state, each particle tosses one or more coins,
properly biased according to the states of the other particles, so as to determine its
next state. To illustrate, consider a rule which transforms a particle type A into B with
probability p. Starting with m instances of A, there will be m coin tosses each with
probability p leading to some number close to m · p indicating how many A’s convert
into B′s. Each individual run will yield a different number (and a different sequence
of subsequent numbers) but on the average (over all runs) the number of A’s will be
reduced in the first step from m to m · (1− p).

Individualistic models, those used in stochastic simulation algorithms (SSA), gen-
erate such runs, one at a time. On the other hand, “deterministic” ODE models compute
at every step the average number of particles for each type where this average is taken in
parallel over all individual runs . For well-behaving systems, the relationship between
this averaged trajectory and individual runs is of great similarity: the evolution in ac-
tual runs will appear as fluctuating around the evolution of the average. On the other
hand, when we deal with more complex systems where, for example, trajectories can
switch into two or more distinct and well-separated equilibria, the behavior of the av-
erage is less informative, especially when the number of molecules is small. There is a



whole research thread, starting with [6], that feeds on this important distinction (see for
example, [16, 10] for further discussions).

The other issue is whether and how one accounts for the distribution of particles in
space. Ignoring the spatial coordinates of particles, the probability of a particular type
of encounter depends only on the total number of particles of each type, which is equiv-
alent to the well-stirred assumption: all instances of each particle type are distributed
uniformly in space and hence all particles will see the same proportion of other particles
in their neighborhood. This is very convenient computationally because we can work
directly on the abstract state-space of particle counts. On the other hand, in spatially ex-
tended models each particle is endowed with a location which changes quasi-randomly
and what it encounters along its moving neighborhood determines the interactions it is
likely to participate in. Such a particle will be exposed to what happens locally along its
trajectory rather than to the global number of particles. Note that embedding particles
in an Euclidean-like space is just one possibility and one can think or putting them in
more abstract graph-based space where distance between locations is defined by the
length of shortest path, as is common in social models.

4 Implemented Aggregate Models

We will now describe in some detail the derivation of three models: average dynamics,
individual well-stirred dynamics and spatially-extended dynamics. All our models are
in discrete time which will hopefully make them more accessible to those for whom the
language of integrals is not native. For the others, note that our model corresponds to a
fixed time-step simulation.

4.1 Average Well-Stirred Dynamics

To develop the average dynamics under the well-stirred assumption we normalize the
global macro-state of the system, a vector X = (X1, . . . , Xn), into x = (x1, . . . , xn)
with xi = Xi/m and hence

∑
xi = 1 (population fractions). Let α, 0 ≤ α ≤ 1 be

a density parameter which determines the probability of encountering another particle
in one step. The evolution in this state space over time is the outcome of playing the
following protocol at every time step. First, α ·m of the particles on average encounter
others and hence follow a binary reaction rule while the remaining (1−α) ·m particles
do not interact and hence follow the solitary transition function. The dynamics is of the
general form3

x′ = x+∆(x),

where for each variable, the additive change can be written as

∆(xk) = (1− α)∆1(xk) + α∆2(xk)

3 We export the primed variable notation from program verification where x stands for x[t] and
x′ denotes x[t+ 1].



where

∆1(xk) =

n∑
i=1

(xi · δ(qi,⊥, qk)− xk · δ(qk,⊥, qi))

∆2(xk) =

n∑
i=1

n∑
j=1

(xixj · δ(qi, qj , qk)− xkxi · δ(qk, qi, qj))

Here, ∆1 and ∆2 are the expected net contributions to xk by the solitary (resp. bi-
nary) reactions, each summing up the transformations of other agents into type k minus
the transformation of type k into other types. Thus, we obtain a discrete-time bilinear
dynamical system, which is linear when α = 0.

Taking the particle automaton of Table 1 and deriving the dynamics for the sparse
situation where α = 0.1, we obtain

x′1 = x1 − 0.09x1 + 0.09x2 − 0.06x1x2 + 0.08x1x3 + 0.08x2x3
x′2 = x2 + 0.09x1 − 0.18x2 − 0.04x1x2 + 0.06x2x3
x′3 = x3 + 0.09x2 + 0.1x1x2 − 0.08x1x3 − 0.14x2x3

(1)

Starting from initial state x = (0.4, 0.3, 0.3) and following the dynamics, the system
converges to the state (0.366, 0.195, 0.437). The same individual model, in a dense
situation characterized by α = 0.9, yields

x′1 = x1 − 0.01x1 + 0.01x2 − 0.54x1x2 + 0.72x1x3 + 0.72x2x3
x′2 = x2 + 0.01x1 − 0.02x2 − 0.36x1x2 + 0.54x2x3
x′3 = x3 + 0.01x2 + 0.9x1x2 − 0.72x1x3 − 1.26x2x3

(2)

This system, started in the same initial state x = (0.4, 0.3, 0.3), converges to state
(0.939, 0.027, 0.033). Let us point out once more that this deterministic dynamics tracks
the evolution of the average population fraction of particles over all individual runs.

4.2 Individual Well-Stirred Dynamics

The second model, whose average behavior is captured to some extent by the previous
one, generates individual behaviors without spatial information following Algorithm 1.
A micro-state of the system is represented as a set L of particles, each denoted as (g, q)
where g is the particle identifier and q is its current state. The update round of the algo-
rithm consists of repeatedly choosing a particle g and deciding probabilistically whether
it interacts with another particle. If this is the case, another particle g′ is randomly se-
lected, and they both undergo their respective probabilistic binary reactions. Otherwise,
g is subject to a unary reaction. Reacting particles are removed from the list and the
process terminates when the list becomes empty. Other variants of this procedure are
mentioned in the next section.



Algorithm 1 (Individual Well-Stirred Dynamics)
Input: A list L of particles and states
Output A list L′ representing the next micro-state

L′ := ∅
repeat

draw a random particle (g, q) ∈ L; L := L− {(g, q)}
draw binary/solitary with probability α
if solitary then

apply solitary rule q ⊥−→ q′

L′ := L′ ∪ {(g, q′)}
else

draw a random particle (g′, q′) ∈ L; L := L− {(g′, q′)}
apply binary rules q

q′−→ q′′ and q′
q−→ q′′′

L′ := L′ ∪ {(g, q′′), (g′, q′′′)}
endif

until L = ∅

After each update round, particle types are counted to create macro-states. The cur-
rent description and implementation of the algorithm is at the level of micro-states and
a more efficient stochastic simulation algorithm working directly on macro-states is
discussed in Section 6.

4.3 Individual Spatial Dynamics

In our third model the particles are embedded in space, each particle represented as
(g, q, y) with y being it spatial coordinates ranging over a bounded rectangle. The next
state is computed in two phases that correspond to diffusion and reaction. First, each
particle is displaced by a vector of random direction and magnitude (bounded by a
constant s). For mathematical convenience reasons we use periodic boundary conditions
that treat the rectangle as a torus: when a particle crosses the boundary of the rectangle
it reappears on the other side.

Then for each particle we compute its set of neighbors N , those residing in a ball
of a pre-specified interaction radius r, typically in the same order of magnitude as s.
When N is empty the particle undergoes a unary reaction, otherwise it interacts with
a randomly chosen particle in N , as describe in Algorithm 2. Other variants of the al-
gorithm may differ by not taking the complementary transition q′

q−→ q′′′, and by not
removing g and g′ from L (such variations apply also to the well-stirred model). We
have observed empirically that these variations did not influence model behavior signif-
icantly. We should point out that the parameters we used so far rendered the situation
rather dense with the typical distance between particles comparable to the interaction
radius, frequently resulting in particles having multiple neighbors.



Algorithm 2 (Individual Spatial Dynamics)
Input: A list L of particles and states including planar coordinates
Output A list L′ representing the next micro-state

L′ := ∅
foreach particle (g, q, y) ∈ L

draw randomly h ∈ [0, s] and θ ∈ [0, 2π]
y := y + (h, θ)

endfor
repeat

draw (g, q, y) ∈ L
L := L− {(g, q, y)}
N := {(g′, q′, y′) ∈ L : d(y, y′) < r}
if N = ∅ then

apply solitary rule q ⊥−→ q′

L′ := L′ ∪ {(g, q′, y)}
else

draw (g′, q′, y′) ∈ N
L := L− {(g′, q′, y′)}
apply binary rules q

q′−→ q′′ and q′
q−→ q′′′

L′ := L′ ∪ {(g, q′′, y), (g′, q′′′, y′)}
endif

until L = ∅

The connection between this model, embedded in a rectangle of areaw, and the non-
spatial ones can be made via the estimation of the density factor α. The probability of
a particle g not interacting with another particle g′ is the probability of g′ being outside
an interaction ball, that is, β = (πr2)/w, and the odds of g not interacting with any of
the other m − 1 particles is (1 − β)m−1. After the reaction the number of remaining
particles is either m − 1 or m − 2 and a good estimation of the average probability to
interact is:

α ≈ 1−
∑m−1

i=1 (1− β)i

m
= 1− 1− (1− β)m)

mβ
.

5 The Populus Toolkit: Preliminary Experiments

We developed a prototype tool called Populus, written in Java and Swing, for exploring
such dynamics. The input to the tool is a particle automaton (Definition 1, Tab. 1) along
with additional parameters such as the dimensions of the rectangle where particles live,
the geometric step size s, the interaction radius r and the initial number of each particle
type, possibly restricted to some sub-rectangles. The tool simulates the three models,
average well-stirred, individual well-stirred and spatially-extended, plots the evolution
of particle counts over time and animates the spatial evolution. We illustrate below the
type of exploration made available by the tool.



(a) (b)

(c) (d)

Fig. 1. (a) The evolution of a simple system where A is eventually transformed to B. The
smoother curves depict the average while the other curve shows an individual trajectory. (b-d) A
3-species system where the average trajectory (b) stabilizes rapidly while individual well-stirred
(c) and spatial (d) trajectories fluctuate.

5.1 Average and Individual Dynamics

Fig. 1 compares the behaviors of the averaged model (deterministic) and the individual
model (stochastic simulation) for two systems: a simple one where the two models
exhibit similar behaviors and a more complex one where the average behavior stabilizes
rapidly while individual trajectories, well-stirred and spatial, fluctuate.

5.2 Spatial and Well-stirred

To demonstrate the difference between spatial and non-spatial models we simulated a
system with 5 species, A to E. Particle type A does not change in any transition except
when it meets B and converts into C in certainty: δ(A,B,C) = 1 and δ(A, ·, A) = 1
otherwise. Particle typeB is unstable and each step it transforms intoD with probability
0.5: δ(B, ·, B) = δ(B, ·, D) = 0.5. Consequently it is destined to disappear after some
time. Particle type C is fully stable: δ(C, ·, C) = 1. It converts D, which is stable
under all other interactions, into E: δ(D,C,E) = 1 and δ(D, ·, D) = 1, otherwise.



Particle type E is almost stable and it transforms back into D with probability 0.01:
δ(E, ·, E) = 0.99 and δ(E, ·, D) = 0.01.

The logic behind this example is the following: there is a transient phase until B
disappears completely, leaving behind a number of C’s equal to the number of (A,B)
encounters that have occurred. The number of the non-converted A’s remains constant
thereafter. Then, there are transformations of D to E that depend on the number of C’s,
and interaction-independent transformations in the opposite direction. Such a system is
naturally sensitive to the initial spatial distribution of A and B that will determine how
many C’s will be eventually produced. We simulated the model starting from an initial
state where there are 50 instances of A, 50 instances of B and 200 instances of D. We
used a 20 × 20 square over which D was distributed uniformly under three scenarios
that differ in the initial distribution of A and B in space:

– Scenario 1: A and B are distributed uniformly all over space;
– Scenario 2: A and B are concentrated initially in a unit square in the middle;
– Scenario 3: A and B are concentrated inside distinct unit squares far apart from

each other.

The results of some runs for these scenarios are shown in Fig. 2. As a first observa-
tion, the behavior of the average model (a) and a well-stirred stochastic simulation (b)
are quite similar. The number of C’s produced in these models with α = 0.9 is around
13. The results of the spatial simulation of scenario 1 (c) are quite similar. In the two
runs of scenario 2 (d,e), due to the proximity of A and B there is a burst of (A,B)
encounters at the beginning leading to 30 and 36 instances of C and to higher levels
of E than under the well-stirred assumption. Finally, in scenario 3 (f) all B’s disappear
before meeting an A and hence no C nor E is produced.

6 Conclusions and Future Work

We presented a framework for studying abstract mass action dynamics based on a finite-
state automaton model of the individual agent. We demonstrated how questions such
as the sensitivity of some reactions to initial spatial distribution can be investigated
using such models. The design philosophy underlying our framework is that all potential
actions and reactions that change the state of the particle are written inside its individual
model. Then the invocation of these rules by instances of the population depends on
the assumptions underlying the aggregate model, its state update algorithm and the
particular global state of the system.

The current framework can be improved and extended in several directions that we
mention below, some being currently under investigation.

Non Mutual Interactions and Abstract Geometries Our model assumed that when
particles g and g′ interact, both of them undergo reactions. In many situations such
as epidemiology or social systems, the influence may work only in one way. As men-
tioned, this involves only minor changes in Algorithms 1 and 2 and may even simplify
their probabilistic analysis. Such applications may need other notions of distance and
neighborhood that reflect, for example, the separation distance between two individuals.



(a) (b)

(c) (d)

(e) (f)

Fig. 2. The behavior of the 5-species system: (a) average well-stirred model; (b) an individual
well-stirred run; (c) a run of the spatial model scenario 1; (d,e) two runs of scenario 2; (f) a run
of scenario 3.



Stochastic Simulation based on Macro-States Algorithm 1 for well-stirred stochastic
simulation works at the micro-state level, iterating over all particles and updating them
one by one, resulting in O(m) complexity. This fact might limit its applicability when
some species exist in very large numbers. We are currently working on alternative up-
date protocols where the determination of the set of particles that undergo binary (and
unary) reactions, as well as its partitioning into pairs, are done in one preliminary step
preceding the reaction step. Based on this scheme it might be easier to derive a more
efficient simulation algorithm that works directly on macro-states that we sketch below
(similar ideas underlie the τ -leaping algorithm of [7]). The update rule for such an algo-
rithm will have the form4 x′ = x+∆(x) where∆(x) is a random variable over the space
of increment vectors which depends on the current macro-state. An increment vector is
∆ = (∆1, . . . ,∆n) such that ∆i ∈ [0, 1] for every i and

∑
i∆i = 0. The derivation of

increment probabilities involves several steps. Assuming α of the particles participate
in binary reactions, one needs to derive a probability over vectors u = (u1, . . . , um)
satisfying

∑
i ui = α, with ui indicating how many of those α particles are of type qi.

For each u we need further to compute a probability over the different ways to partition
it into pairs of particles, that is, a probability over vectors of the form (v11, . . . , vnn)
satisfying

∑
i

∑
j vij = α/2, with vij being the number of pairs (qi, qj) that react to-

gether. This will give us probabilities over all the encounter types that, together with the
rules of the automaton, can be used to derive probabilities over the increments.

More Efficient Spatial Simulation The complexity of our current naive implementa-
tion of the spatial simulation algorithm is O(m2) as we need to compute the neighbors
of each particle by scanning L. This complexity can be reduced to the necessary min-
imum by employing spatial data structures that can reduce the number of candidates
for neighborhood that are checked. More radical performance improvements can be
achieved by changing the semantics. Rather than following each particle in space we
can use a more coarse-grained simulation in the spirit of the finite-element method. It
consists in partitioning space into boxes and assuming each box to be well-stirred, hence
represented by its (local) macro-state. The diffusion phase can be realized by particles
flowing among neighboring boxes in rates proportional to their macro-state gradients.
The reaction phase will consist in applying Algorithm 1 inside each box. When the size
of the boxes tends to zero we obtain the current spatial algorithm and when it is the
whole W we have the well-stirred algorithm. Using box sizes situated between these
two extremes one can define and explore models that represent the whole spectrum
between the well-stirred and not stirred assumptions. Such algorithms will be more ef-
ficient than Algorithm 2 and will allow us to perform simulations with a richer range of
ratios between density, velocity and interaction radius.

Enriching the Model In the longer run we will consider more substantial extensions
of the model of the individual. So far the movement of particles in the spatial model
assumes the same speed for all particle types. This assumption seems to be relaxable

4 We write the algorithm using the normalized state notation x but the combinatorial calculation
underlying the derivation of probabilities will be based on the particle count X .



without much effort. Let us also note that movement in our model is very abstract, not
influenced by local densities of different particle types and it remains to be seen how
such aspects can be incorporated while avoiding full-fledged kinetic simulation.

Finally, we adhere so far to population-preserving reactions where particles only
change their state but do not combine together to form new entities. Given that the cre-
ation of new entities and structures is primordial for chemical and biological systems,
we should look at this feature of our modeling framework as a limitation that should
some day be removed. More generally, one can observe a tension between two types of
models. Models of the first type are more realistic and faithful to one or more concrete
physical phenomenon. They are, however full of details that may hide the forest and
yield cumbersome simulation procedures. Models of the second type are cleaner and
consequently are more amenable to systematic study that may even lead to some math-
ematical statements and general principles, at the risk of taking too much distance from
any reality. We hope to make the right choices in the future and this may depend on the
type and granularity of the real-life phenomena we want our models to capture.
Acknowledgment: We thank Eric Fanchon for many useful comments.
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