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Abstract� In this work we tackle the following problem� given a timed
automaton� and a target set F of con�gurations� restrict its transition re�
lation in a systematic way so that from every state� the remaining behav�
iors reach F as soon as possible� This consists in extending the controller
synthesis problem for timed automata� solved in �MPS���AMPS���� to
deal with quantitative properties of behaviors� The problem is formulated
using the notion of a timed game automaton� and an optimal strategy is
constructed as a �xed�point of an operator on the space of value functions
de�ned on state�clock con�gurations�

� Introduction

Most of the research on veri�cation and synthesis of discrete systems is based
on the following approach� the set L of all possible behaviors of the system is
partitioned into L� and L��� the former consisting of behaviors satisfying a
certain property �� Veri�cation is the task of checking whether L�� is empty
while synthesis is the restriction of the transition relation of the system in order
to achieve this fact� A typical example would be the property that all behaviors
of the system eventually reach a subset F of the state�space�

In many situations� however� this all�or�nothing classi�cation of behaviors as
good or bad is too crude� and we would like to distinguish� for example� between
behaviors which reach F within one or million steps� This suggests a richer model
where quantitative performance measures are associated with behaviors based on
length� cumulative cost of states and transitions� probabilities� etc� Veri�cation
is then transformed into �nding the worst�case performance measure� while syn�
thesis is rephrased as the search for an optimal controller� minimizing the above
quantity� Timed automata �TA� 	AD
�� are system models where quantitative
timing constraints are added to discrete transition systems� So far most of the
work on veri�cation and synthesis for TA concentrated on qualitative all�or�
nothing properties� and the only �important� role of the timing information was
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to constrain the set of possible behaviors� In this work we associate a most nat�
ural performance measure to behaviors of TA� namely the time which elapses
until they reach a certain set F of con�gurations�

In order to treat the synthesis problem we use our previously�introduced
	MPS

�AMPS
�� model of Timed Game Automaton �TGA� which is nothing
but the usual timed automaton of 	AD
�� where the actions are partitioned into
those of the controller and those of the uncontrolled environment� On this model
various controller synthesis problems for qualitative properties can be formulated
and solved� One example is the eventuality problem� �nd the set of �winning�
states from which the controller can enforce the TGA into a set F � and compute
the �strategy� for these states� In this work we solve the following quantitative
generalization� �nd for each state the minimal time in which the controller can
enforce the automaton into F � regardless of uncontrolled events� and construct a
controller which achieves this optimum for each state� Previous techniques could
only tell whether or not this minimal time is �nite�

As in 	AMPS
�� the solution is obtained by a backward �xed�point calcula�
tion on the state�space of the TGA� The main di�erence is that the iteration
is performed on a function from the TGA state�space into IR which denotes
roughly the min�max of the temporal distance from the state to F �this is simi�
lar to value�policy iterations used in dynamic programming� e�g� 	Ber

��� Since
the state�space of a TGA is non�countable� these functions cannot be tabulated�
as is done in shortest�path algorithms on �nite graphs� Fortunately we prove that
as in the restricted case of functions from clocks to f�� �g� all the value functions
encountered in the iteration of our synthesis algorithm belong to a special well�
founded class of functions admitting a simple linear�algebraic representation�
This guarantees the termination of our algorithm�

The rest of the paper is organized as follows� In section � we re�introduce
the Timed Game Automaton model� In section � we formulate the controller
synthesis problem and describe our synthesis algorithm� In section � we prove
that the algorithm is e�ective and correct �partial correctness and termination��

� Games on Timed Systems

��� The Context

Timed games are extensions of discrete games �or equivalently of plant models
used in the theory of supervisory control for discrete event systems 	RW����
where the players� actions may take place anywhere on the physical time axis�
subject to certain timing constraints� For such games we take the model of timed
automata 	AD
��� in which automata are equipped with auxiliary continuous
variables called clocks which grow uniformly when the automaton is in some

� To be more precise� quantitative information can be expressed in various real�time
logics� but not in its full richness� one can verify whether all behaviors of a system
reach the target within a given �xed bound� but not determine the minimal constant
for which such a property is true�



state� The clocks interact with the transitions by participating in pre�conditions
�guards� for certain transitions and they are possibly reset when some transitions
are taken�

In this continuous�time setting� a player might choose at a given moment to
wait some time t and then take a transition� In this case� it should consider not
only what the adversary can do after this action but also the possibility that
the latter will not wait for t time� and perform an action at some t� � t�

For a more elaborate description of the game�theoretic approach to untimed
and timed synthesis� the reader is encouraged to look at the lengthy introductions
of 	AMP

�AMPS
�� as well as 	TLS
���

��� Timed Game Automata

Let Q be a �nite set of states and let X � IRd
� for some integer d be the

clock space� We denote elements of X as x � �x�� � � � � xd� and use x � t for
x � �t� t� � � � � t�� Elements of Q � X are called con�gurations� A subset of X is
called a k�zone if it can be obtained as a boolean combination of inequalities of
the form xi � c� xi � c� xi � xj � c� where c � f�� �� � � � � kg� The set of zones is
denoted by Z�X�� A zone Z is right�open if for any x � Z there is a � � � such
that the interval �x�x � �� is also included in Z� These properties of subsets
of X extend naturally to subsets of Q � X � e�g� we say that P � Q � X is a
zone if it can be written as �nite union of sets of the form fqig � Pi such that
every Pi is a zone� A function � � X � X is a reset function if it sets some of
the coordinates of its argument to � and leaves the others intact� The set of all
such functions is denoted by J �X�� We assume two �nite sets of actions A and
B� a special empty action 	 and let A� � A � f	g and B� � B � f	g� The set
A represents our actions �i�e� possible actions of the controller�� while B stands
for uncontrollable actions of the environment� The action 	 stands for �wait and
see��

De�nition � �Timed Game Automaton��
A Timed game automaton �TGA� is a tuple A � �Z�A�B� TA� TB� 
� �� where
Z � Q�X is a zone� Q and X are the state and clock spaces� A and B are two
distinct action alphabets� TA � Q�X � A� and TB � Q�X �B� are timing
constraints for the two types of actions� the functions 
 � Q�A� �B� � Q and
� � Q � A� � B� � J �X� indicate which state is reached when performing a
�possibly joint� action and which clocks are reset in that occasion�

Further requirements are the following� for every state q and action a � A��
the set TA�q� a� � fx � �q�x� a� � TAg is a k�zone� We assume k to be
�xed throughout the paper � it is the largest constant in the de�nition of
the TGA� Similar requirements hold for TB� We assume that 
�q� 	� 	� � q and
that ��q� 	� 	� is the identity function �if both sides refrain from action nothing
happens�� We require that the automaton is strongly non�Zeno� that is� in every
cycle in the transition graph of the automaton �induced by 
�� there is at least
one transition which resets a clock variable xi to zero� and at least one transition



which can be taken only if xi 	 �� This is a very important condition as it pre�
vents the controller and the environment to achieve their goals using unrealistic
tricks that stop time�

The last requirement is that the zone TA�q� 	� is right�open for any q� This
means that if player A is allowed to wait in a con�guration �q�x�� then it can
really wait for a small additional positive amount of time� This requirment is
important for preventing infeasible zero�time idling in A�s strategy

Intuitively� when the automaton is at a con�guration �q�x�� time can progress
as long as both players agree� that is� �q�x� 	� � TB 
 TA� As soon as one of
them can take an action� i�e� �q�x� a� � TA for some a � A or �q�x� b� � TB

for some b � B� or both� a transition can be taken� This can be formalized as
follows�

De�nition � �Steps and Runs�� A joint step of a TGA A is �q�x� �� �q��x��
which is either

�� a time step �of duration t�	

�q�x�
t
�� �q�x� t�

such that t � �� and for every t� � t�
�q�x� t�� 	� � TA 
 TB�


� a discrete step

�q�x�
�a�b�
�� �q��x��

such that �a� b� �� �	� 	�� �q�x� a� � TA� �q�x� b� � TB� q� � 
�q� a� b�� and
x
� � ��q� a� b��x��

A run of a TGA A starting from �q��x�� is a sequence of joint steps

� � �q��x�� �� �q��x�� �� � � �

Note that �q�x� 	� � TA 
 TB means that both A and B agree to let time
progress by a positive amount� On the other hand it is possible to reach a state
where 	 is not permitted by one or more of the two players� in such a situation
the only thing that can happen is a discrete step�

For ease of notation we introduce the total transition function �
 � Q �X �
A� �B� � Q�X � f��
g� Put

�
�q�x� a� b� �

����
���

�q�x� when a � b � 	� �q�x� 	� � TA 
 TB


 when �q�x� a� �� TA

� when �q�x� a� � TA� �q�x� b� �� TB

�
�q� a� b�� ��q� a� b��x�� otherwise�

Notice that the last line corresponds to the �normal� case when �a� b� �� �	� 	��
�q�x� a� � TA� and �q�x� b� � TB�



Clearly� replacing TA by any subset of it� will restrict the range of action
that the player A can chose at certain con�gurations� and hence decrease the set
of behaviors of the TGA� We formulate various controller synthesis problems as
�nding appropriate restrictions of TA� that we call strategies� These strategies
are not necessary deterministic as they might allow A more than one action at
a given con�guration�

� The Problem and the Algorithm

De�nition � �Brachystochronic Problem�� Given a TGA A and a set F �
Q�X �nd a strategy TA

�
� TA for player A which allows him or her to reach

the target set F as fast as possible whatever player B does�

The following algorithm is a generalization of the synthesis method for even�
tuality games on timed automata� The algorithm iterates over the value function
which gives an upper estimate of arrival times to the set F � When we have a
value function f � Q�X �f��
g � IR� �f���g at any step of the iteration it
means that we have a controller which allows to reach F from �q�x� in no more
than f�q�x� time� The algorithm for �nding the value function has the following
form�

Algorithm � �Value Iteration for TGA��

fInitializationg

f��q�x� �

�
� when �q�x� � F � f�g
� otherwise�

n �� ��
fIterationg

repeat
n �� n� ��
fn �� ��fn����

until fn � fn���

fStrategy extractiong
f� �� f�n��
TA
�
� 
�f���

The operators used in the algorithm are as follows�

��f� � minff� �Act�f�� �Idle�f�g� ���

where

�Act�f��q�x� � min
a�A

max
b�B�

f��
�q�x� a� b�� ���

and



�Idle�f��q�x� � inf
t�IR�

v�q�x� t� ���

where

v�q�x� t� � max�sup
��t

g�q�x� ��� t� f�q�x� t�� ���

and

g�q�x� �� � max
b�B

�� � f��
�q�x� �� 	� b��� �
�

Intuitively g�q�x� �� speci�es the worst �largest� f of the con�guration in
which the game might be after B has performed an action at � while A was
idling� Similarly v�q�x� t� is the worst thing that can happen to A after deciding
to idle for t time at �q�x�� it includes all the possible outcomes of B�s actions
at � � t� The best waiting time for A is the t which minimizes v�q�x� t� and
its outcome �Idle is compared with �Act which denotes the best outcome of an
immediate action�

The strategy extraction operator is given by the formula


�f��q�x� �

����
���


Act�f��q�x� when �Act�f��q�x� � �Idle�f��q�x�
f	g when �Idle�f��q�x� � �Act�f��q�x�


Act�f��q�x� � f	g when �Act�f��q�x� � �Idle�f��q�x� ��
� when �Act�f��q�x� � �Idle�f��q�x� ��

where


Act�f��q�x� � fa � TA�q�x�jmax
b�B�

f��
�q�x� a� b� � �Act�f�q�x��g�

Unfortunately� the subtleties of real�valued time complicate the situation a
bit� The problem is that the strategy extracted by 
 might violate the right�
openness requirement� This can happen in a situation where player A has to
take a transition the sooner the better but after time t�� This is re�ected in the
strategy 
�f� as follows� player A has action 	 enabled until t� including t� and a
�good� discrete transition enabled after t�� But formally speaking� this strategy
is blocking at time t��

To overcome this problem we introduce non�blocking approximations 
��f�
for small � � �� which satisfy the right�openness conditions �but use non�integers
in the guards�� As we will show in the next section� taking this strategy for �
small enough� player A can reach F in time arbitrarily close to f��q�x��

The ��relaxed strategy is obtained from 
�f� by enabling the 	 action on a
narrow stripe� 
��f� � 
�f� � f�q�x� 	� � �q� x� � S��f�g� where

S��f� � interiorf�q�x� � �Idle�f��q�x� � �Act�f��q�x� � �g�



� Correctness Proof

��� Partial correctness

Our �rst aim is to prove that if the algorithm converges then it gives the optimal
least�restrictive solution of the problem�

Lemma �� If player A uses the strategy TA
n�� � 
��fn���� from an initial posi�

tion in �q�x� with v � fn�q�x� � �� then the TGA reaches the target set F in
no more then v�n� time with no more then n transitions whatever the adversary
does�

Proof� Straightforward induction over n� ut

Let � � � be any given �small� positive number�

Corollary �� Suppose that algorithm � converges in N iterations� Let � � ��N
If player A uses the strategy TA

��� � 
��f�� from an initial position �q�x� such
that v � f��q�x� � � then the TGA reaches the target set F in no more then
v � � time whatever the adversary does�

Lemma �� For every �q�x� and n� player B can prevent the TGA from reaching
F during at least n steps or fn�q�x�� � time� whatever player A does�

Proof� Straightforward induction over n� ut

Corollary �� Whatever player A does from an initial position �q�x� player B
can prevent the TGA from reaching the target set F during at least f��q�x�� �
time�

Corollary �� If from an initial position �q�x� player A makes a transition not
in TA

�
� then the adversary B can prevent the TGA from reaching the target set

F during strictly more than f��q�x� time�

These corollaries imply the partial correctness of the algorithm�

Claim� Suppose the algorithm � converges� Then

�� The function f��q�x� gives the in�mal time necessary for A to drive the
TGA from �q�x� to F whatever B does�

�� The strategy TA
��� � 
��f�� guarantees arrival to F in time f��q�x� � ��

�� It is least restrictive� any strategy which guarantees arrival to F in time
f��q�x� is a sub�strategy of TA

�
�



��� Simple functions

Now we need to prove two properties of Algorithm �� The �rst one is e�ectiveness�
the algorithm manipulates functions from Q � IRn to IR and we need to �nd a
�nite representation of these functions in order to implement the algorithm�
The second issue is to prove that the algorithm converges� Both e�ectiveness
and �nite convergence follow from the fact that all the functions used in the
algorithm belong to the following class which is closed under the operator ��

De�nition �� A function f � X � IR��f���g is referred to as a k�simple one
i� it can be represented as

f�x� �

�
ci when x � Di

dj � xlj when x � Ej

where Di� i � �� � � � �M and Ej � j � �� � � � � N are k�zones� Ej � fxjxlj � kg and
ci� dj � IN � f�g� A function f � Q�X � IR� � f���g is k�simple if f�q� �� is
k�simple for any �xed q � Q

The additional boundedness condition on the Ej �s means that the value of
xlj can in�uence f only when xlj � k� the largest constant in the de�nition of
the TGA� Clearly� any k�simple function admits a �nite representation as a list
of zones Di and Ej and of constants ci and dj � It is easy to see that equality of
k�simple functions is decidable� and that they satisfy some closure properties�

Lemma �� If f�x�� g�x� are k�simple and ��x� a reset function� then max�f� g��
min�f� g� and f���x�� are k�simple as well� The set fxjf�x� � g�x�g is a k�zone�

Notice that all closure results mentioned in this subsection are e�ective in
the sense that it is possible to transform algorithmically representations of the
original functions into representations of the resulting functions�

Another property of k�simple functions will be crucial for the proof of con�
vergence of the algorithm�

Lemma � �Well	foundedness�� Any decreasing sequence of k�simple func�
tions is �nite�

��� E
ectiveness and convergence

The key step in the proof of convergence and e�ectiveness of Algorithm � is
the closure of simple function under the operators used in the algorithm� Let
��x� Z� be the largest backward distance from x to a zone Z� i�e� ��x� Z� �
supft 	 �jx� t � Zg� It is easy to see that � is simple in the �rst argument�

Lemma � �Closure of k	simple functions under ��� If f�q�x� is k�simple
and the TGA is k�bounded� then �Act�f�� �Idle�f� and ��f� are k�simple� Their
representations can be found e�ectively�



Proof� For �Act�f� it follows immediately from lemma � and the fact that for
any �xed a� b and q the function �
�q� �� a� b� is a reset function �restricted to a
zone��

The case of �Idle�f� is more di�cult� Looking at equations ���� ���� and �
�
one can see that �Idle�f� is obtained by elimination �via inf and sup� of the t
variable from functions whose domain includes state�space and time� For example
g�q�x� �� of �
� is de�ned as

g�q�x� �� � max
b�B

f� � f��
�q�x� �� 	� b��g � � �max
b�B

f�
�q�x� �� 	� b�g

and from the closure of k�simple function under reset� we can conclude that
g�q�x� t� is of the form t� f ��q�x� t� for a k�simple function f �� This motivates
the de�nition of the following class of functions�

De�nition � �Bizones and Nice Functions�� A k�bizone is a union of sets
of the form f�x� t�jx � C � x� t � Dg where C and D are k�zones� A function
f � X � IR� � IR� � f���g is referred to as k�nice i� it can be represented as

g�x� t� �

�
ci � t when �x� t� � Di

dj � xlj when �x� t� � Ej �

where Di� i � �� � � � �M and Ej � j � �� � � � � N are k�bizones� Ej � fxjxlj � kg
and ci� dj � IN � f�g�

Sublemma � �Properties of k	Nice Functions��

�� If f�x� is k�simple� then t� f�x� t� is k�nice�

� If g and h are k�nice so are minfg� hg and maxfg� hg�
�� If g�x� �� is k�nice� then h�x� t� � sup

��t
g�x� �� is k�nice�


� If g�x� t� is k�nice� then inf
t�IR�

g�x� t� is k�simple�

Proof�

�� Immediate from de�nitions�
�� Let

g�x� t� �

�
ci � t when �x� t� � Di

di � xli when �x� t� � Ei�

and

h�x� t� �

�
rm � t when �x� t� � Pm

sm � xln when �x� t� � Qm�

and let

u�x� t� � maxfg�x� t�� h�x� t�g �

�
g�x� t� when g�x� t� � h�x� t�
h�x� t� when g�x� t� � h�x� t��

To obtain a representation for u�x� t� we combine each line of the formula
for g with each line of the formula for h and verify that the following types
of sets� which appear when comparing lines of these formulae� are bizones�



f�x� t�jr � t � c� tg
 In fact it is either IRn��
� or �� hence a bizone�

f�x� t�js� xi � c� tg
 It can be written as f�x� t�jxi � t 	 s� cg� which is
a bizone�

f�x� t�js� xi � d� xig
 It is either IR
n��
� or �� hence a bizone�

f�x� t�js� xi � d� xjg
 It can be written as f�x� t�jxi� xj 	 s� dg� which
is a bizone�

When intersected with Di 
 Pm� Di 
 Qm� Ei 
 Pm� and Ei 
 Qm these
sets produce bizones participating in the de�nition of the function u�x� t��
The boundedness condition is inherited from the bizones Ei and Qm� The
reasoning for min is identical�

�� Let

g�x� �� �

�
ci � � when �x� �� � Di

dj � xlj when �x� �� � Ej �

and h�x� t� � sup
��t

g�x� ���

Observe that the set 	x�x� t� � fx� � jt � 	�� t�g intersects �nitely many Di

and Ej sets from the de�nition of g� We associate with them the following
�partial� functions�

uj�x� t� � dj � xlj when 	x�x� t� 
 Ej �� �

vi�x� t� � ci � t when x� t � Di

wi�x� t� � ci ���x� Di� when 	x�x� t� 
Di �� � � x� t �� Di

All the de�ning conditions are bizones� the functions are k�nice in x and t
and so is h which is their max�

�� Similar to statement ��

This concludes the proof of the sublemma� ut

It follows immediately from the sublemma that �Idle�f� is k�simple� The case
of ��f� is immediate from two previous cases and Lemma �� ut

Corollary �� Algorithm � is e�ective�

Corollary �� Algorithm � always converges�

Proof� The sequence fn is a decreasing sequence of k�simple functions� By virtue
of Lemma � it stabilizes� ut

Together with Claim ���� this concludes the correctness proof of the algorithm�

Theorem � �Main Result�� Algorithm � always converges and produces the
least�restrictive optimal strategy for the brachystochronic problem for Timed Au�
tomata�



� Example

Consider the ��clock TGA of �gure � where the adversary B is trivial and the
target set F is fq�g� From q� player A can choose between waiting� going to q�
�a losing sink�� to q� �while resetting the clock� or to q�� Intuitively� for smaller
values of x it might be better to do b and go to q� because A does not lose much
time by resetting the clock and can bene�t from the smaller transition guard�
The value function and strategy obtained by our algorithm are depicted below�

q x f TA
�

q� 	���� � f	g
q� 	���� � �
q� 	�� �� �� x f	g

	���� � fag
q� 	�� 
� 
� x f	g

	
��� � fag
q� 	�� �� � fbg

	�� �� � f	� bg
��� �� 
� x f	g
	�� 
� 
� x f	� cg
�
��� � fcg

As one can see� q� is a winning state right from the start while from q� you can
never reach q�� The clock spaces of q� and q� are partitioned into two intervals�
one after the clock values reach their respective guards� where the value of f is
�� and the interval before that� where f measures the time until the satisfaction
of the guards� Finally f�q�� x� is obtained as minff�q�� x�� f�q�� ��� f�q�� x�g and
one can observe that x � � is the breakpoint after which it is better to take the
c transition to q�� In the absence of an adversary� not all the complexities of the
algorithm are demonstrated in this example�

a

x � �

x � �

a

c

x � �

b

x �� �

a

q� q�

q�

q�q�

Fig� �� A TGA with a trivial adversary� Missing guards and invariants are true�



� Concluding Remarks

This work constitutes yet another step in the process of lifting classical results
from automata to timed automata� and the main result can be rephrased as
�nding �min�max� shortest paths in non�countable �but well�behaving� graphs�
The algorithm can be easily extended to models where integer costs are associ�
ated with transitions� However� assigning di�erent costs to the passage of time
at di�erent states will transform the model into a more general hybrid system
�such as the ones whose synthesis problem is treated in 	W
���� and will probably
make the problem harder� if not undecidable�

From the application point of view� many problems related to digital circuit
design or scheduling problems in manufacturing and telecommunication� can be
formulated as optimal control problems in the framework we have introduced�
We believe that unifying the qualitative �property�based� approach� which is
dominant in veri�cation� with optimization�oriented approaches used elsewhere�

is important for the development of hybrid systems research�
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