As Soon as Possible:
Time Optimal Control for Timed Automata*

Eugene Asarin' and Oded Maler?

! Institute for Information Transmission Problems, 19 Bol. Karetnyi per. 101447
Moscow, Russia, asarin@iitp.ru
2 VERIMAG, 2, av. de Vignate, 38610 Giéres, France, Oded.Maler@imag.fr

Abstract. In this work we tackle the following problem: given a timed
automaton, and a target set F' of configurations, restrict its transition re-
lation in a systematic way so that from every state, the remaining behav-
iors reach F' as soon as possible. This consists in extending the controller
synthesis problem for timed automata, solved in [MPS95,AMPS98], to
deal with quantitative properties of behaviors. The problem is formulated
using the notion of a timed game automaton, and an optimal strategy is
constructed as a fixed-point of an operator on the space of value functions
defined on state-clock configurations.

1 Introduction

Most of the research on verification and synthesis of discrete systems is based
on the following approach: the set L of all possible behaviors of the system is
partitioned into L, and L-,, the former consisting of behaviors satisfying a
certain property . Verification is the task of checking whether L, is empty
while synthesis is the restriction of the transition relation of the system in order
to achieve this fact. A typical example would be the property that all behaviors
of the system eventually reach a subset F' of the state-space.

In many situations, however, this all-or-nothing classification of behaviors as
good or bad is too crude, and we would like to distinguish, for example, between
behaviors which reach F’ within one or million steps. This suggests a richer model
where quantitative performance measures are associated with behaviors based on
length, cumulative cost of states and transitions, probabilities, etc. Verification
is then transformed into finding the worst-case performance measure, while syn-
thesis is rephrased as the search for an optimal controller, minimizing the above
quantity. Timed automata (TA) [AD94] are system models where quantitative
timing constraints are added to discrete transition systems. So far most of the
work on verification and synthesis for TA concentrated on qualitative all-or-
nothing properties' and the only (important) role of the timing information was

* This work was partially supported by the European Community Esprit-LTR Project
26270 VHS (Verification of Hybrid systems), the French-Israeli collaboration project
970MAEFUTS (Hybrid Models of Industrial Plants) and by Research Grants 97-01-
00692 and 96-15-96048 of Russian Foundation of Basic Research.

to constrain the set of possible behaviors. In this work we associate a most nat-
ural performance measure to behaviors of TA, namely the time which elapses
until they reach a certain set F' of configurations.

In order to treat the synthesis problem we use our previously-introduced
[MPS95,AMPS98] model of Timed Game Automaton (TGA) which is nothing
but the usual timed automaton of [AD94] where the actions are partitioned into
those of the controller and those of the uncontrolled environment. On this model
various controller synthesis problems for qualitative properties can be formulated
and solved. One example is the eventuality problem: find the set of “winning”
states from which the controller can enforce the TGA into a set F, and compute
the “strategy” for these states. In this work we solve the following quantitative
generalization: find for each state the minimal time in which the controller can
enforce the automaton into F', regardless of uncontrolled events, and construct a
controller which achieves this optimum for each state. Previous techniques could
only tell whether or not this minimal time is finite.

As in [AMPS98] the solution is obtained by a backward fixed-point calcula-
tion on the state-space of the TGA. The main difference is that the iteration
is performed on a function from the TGA state-space into IR which denotes
roughly the min-max of the temporal distance from the state to F' (this is simi-
lar to value/policy iterations used in dynamic programming, e.g. [Ber95]). Since
the state-space of a TGA is non-countable, these functions cannot be tabulated,
as is done in shortest-path algorithms on finite graphs. Fortunately we prove that
as in the restricted case of functions from clocks to {0, 1}, all the value functions
encountered in the iteration of our synthesis algorithm belong to a special well-
founded class of functions admitting a simple linear-algebraic representation.
This guarantees the termination of our algorithm.

The rest of the paper is organized as follows: In section 2 we re-introduce
the Timed Game Automaton model. In section 3 we formulate the controller
synthesis problem and describe our synthesis algorithm. In section 4 we prove
that the algorithm is effective and correct (partial correctness and termination).

2 Games on Timed Systems

2.1 The Context

Timed games are extensions of discrete games (or equivalently of plant models
used in the theory of supervisory control for discrete event systems [RW87])
where the players’ actions may take place anywhere on the physical time axis,
subject to certain timing constraints. For such games we take the model of timed
automata [AD94], in which automata are equipped with auxiliary continuous
variables called clocks which grow uniformly when the automaton is in some

! To be more precise, quantitative information can be expressed in various real-time
logics, but not in its full richness: one can verify whether all behaviors of a system
reach the target within a given fixed bound, but not determine the minimal constant
for which such a property is true.

state. The clocks interact with the transitions by participating in pre-conditions
(guards) for certain transitions and they are possibly reset when some transitions
are taken.

In this continuous-time setting, a player might choose at a given moment to
wait some time t and then take a transition. In this case, it should consider not
only what the adversary can do after this action but also the possibility that
the latter will not wait for t time, and perform an action at some t' < t.

For a more elaborate description of the game-theoretic approach to untimed
and timed synthesis, the reader is encouraged to look at the lengthy introductions
of [AMP95,AMPS98] as well as [TLS98].

2.2 Timed Game Automata

Let @ be a finite set of states and let X = IRi for some integer d be the
clock space. We denote elements of X as © = (z1,...,24) and use x + ¢ for
x + (t,t,...,t). Elements of Q x X are called configurations. A subset of X is
called a k-zone if it can be obtained as a boolean combination of inequalities of
the form z; < ¢, 2; < ¢, v; —x; < ¢, where ¢ € {0,1,...,k}. The set of zones is
denoted by Z(X). A zone Z is right-open if for any € Z there is a 7 > 0 such
that the interval (x,z + 7) is also included in Z. These properties of subsets
of X extend naturally to subsets of @ x X, e.g. we say that P C Q x X is a
zone if it can be written as finite union of sets of the form {g;} x P; such that
every P; is a zone. A function p : X — X is a reset function if it sets some of
the coordinates of its argument to 0 and leaves the others intact. The set of all
such functions is denoted by J(X). We assume two finite sets of actions A and
B, a special empty action € and let A° = AU {e} and B = B U {e}. The set
A represents our actions (i.e. possible actions of the controller), while B stands
for uncontrollable actions of the environment. The action ¢ stands for “wait and

2

see’.

Definition 1 (Timed Game Automaton).

A Timed game automaton (TGA) is a tuple A = (Z,A, B, T4, T8 6§, p) where
Z CQ xX isazone, Q and X are the state and clock spaces, A and B are two
distinct action alphabets, T4 C Q x X x A and TP C Q x X x B* are timing
constraints for the two types of actions, the functions 0 : Q X A x B¢ — @Q and
p:Q x A® x B® — J(X) indicate which state is reached when performing a
(possibly joint) action and which clocks are reset in that occasion.

Further requirements are the following: for every state ¢ and action a € A¢,
the set T4(¢,a) = {x : (¢,x,a) € T"} is a k-zone. We assume k to be
fixed throughout the paper — it is the largest constant in the definition of
the TGA. Similar requirements hold for T%. We assume that §(q,e,¢) = ¢ and
that p(g,¢,¢€) is the identity function (if both sides refrain from action nothing
happens). We require that the automaton is strongly non-Zeno, that is, in every
cycle in the transition graph of the automaton (induced by 4), there is at least
one transition which resets a clock variable z; to zero, and at least one transition

which can be taken only if x; > 1. This is a very important condition as it pre-
vents the controller and the environment to achieve their goals using unrealistic
tricks that stop time.

The last requirement is that the zone T4(q,¢) is right-open for any q. This
means that if player A is allowed to wait in a configuration (g, x), then it can
really wait for a small additional positive amount of time. This requirment is
important for preventing infeasible zero-time idling in A’s strategy

Intuitively, when the automaton is at a configuration (g,), time can progress
as long as both players agree, that is, (¢,,c) € TP NT4. As soon as one of
them can take an action, i.e. (¢,x,a) € T4 for some a € A or (q,z,b) € T?
for some b € B, or both, a transition can be taken. This can be formalized as
follows:

Definition 2 (Steps and Runs). A joint step of a TGA A is (¢,) — (¢', ')
which is either

1. a time step (of duration t):
(¢:2) = (g2 +1)

such that t > 0, and for every t' < t,
(¢, x+t,e) e TANTE,
2. a discrete step
(arb) ! !
(q7 :I’.) — (q , L)

such that (a,b) # (,¢), (¢, ,a) € T4, (¢,z,b) € TP, ¢’ = 6(¢,a,b), and
x' = p(q,a,b)(x).

A run of a TGA A starting from (qo, o) is a sequence of joint steps

€:(qo, o) — (q1, 1) — ...

Note that (¢, z,c) € T4 N TP means that both A and B agree to let time
progress by a positive amount. On the other hand it is possible to reach a state
where € is not permitted by one or more of the two players: in such a situation
the only thing that can happen is a discrete step.

For ease of notation we introduce the total transition function 6 : Q x X x
A*x B - @ xXU{T,L}. Put

(¢,) whena =b=¢,(¢,x,e) € TANTE
< _ 1 when (¢,x,a) ¢ T4
0,200 = T when (g, @,a) € T4, (g, @,b) ¢ TP
(65(0,0,5), p(y0,B)(@) otherwise.

Notice that the last line corresponds to the “normal” case when (a,b) # (g,¢),
(¢,z,a) € TA, and (q,z,b) € TB.

Clearly, replacing T# by any subset of it, will restrict the range of action
that the player A can chose at certain configurations, and hence decrease the set
of behaviors of the TGA. We formulate various controller synthesis problems as
finding appropriate restrictions of T4, that we call strategies. These strategies
are not necessary deterministic as they might allow A more than one action at
a given configuration.

3 The Problem and the Algorithm

Definition 3 (Brachystochronic Problem). Given a TGA A and a set F' C
Q x X find a strategy T2 C T4 for player A which allows him or her to reach
the target set F' as fast as possible whatever player B does.

The following algorithm is a generalization of the synthesis method for even-
tuality games on timed automata. The algorithm iterates over the value function
which gives an upper estimate of arrival times to the set F. When we have a
value function f: Q@ x XU{T, 1L} - IRy U{0,00} at any step of the iteration it
means that we have a controller which allows to reach F' from (g,) in no more
than f(g,x) time. The algorithm for finding the value function has the following
form:

Algorithm 1 (Value Iteration for TGA).

{Initialization}

0 when (¢, z) € FU{T
folg,) = {oo (()ther)wise; tr
n:=0;

{Iteration}
repeat
n:=n+1;
fo=7m(fr-1);

until f, = fn_1;
{Strategy extraction}

fe = f(n);

T4 = a(f.).

The operators used in the algorithm are as follows:

7(f) = min{f, Tace(f), Trate ()}, (1)
where)
Taet(f)(g, @) = min max f(6(q, x, a, b)) (2)

and

WIdle(f)(Qv 1’.) = téllg; U(qa T, t) (3)

where
v(g,z,t) = maX(SliIzg(q, z,7),t+ f(g,x +1)) (4)
and
9(g,@,7) = max(r + f((g,z +7,2,b))) (5)

Intuitively g(q,x,7) specifies the worst (largest) f of the configuration in
which the game might be after B has performed an action at 7 while A was
idling. Similarly v(q, x,t) is the worst thing that can happen to A after deciding
to idle for ¢ time at (g,): it includes all the possible outcomes of B’s actions
at 7 < t. The best waiting time for A is the ¢ which minimizes v(q, z,t) and
its outcome 7iqle is compared with wa.; which denotes the best outcome of an
immediate action.

The strategy extraction operator is given by the formula

aAct(f)(qv m) when WAct(f)(qv m) < WIdle(f)(qv m)

a(f)(q,) = {e} when mqie(f)(q,) < macs(f)(q,)
’ aact(f)(g,®) U {e} when maci(f)(q,) = maie(f) (g,) < o0
0 when mac(f)(q,) = m1a1e(f) (g, ®) = 00

where

aAct(f)(q> LE) = {(L € TA(q> $)| ?61%)5(f(g(q> Z,a, b) = WACt(f(qy m))}

Unfortunately, the subtleties of real-valued time complicate the situation a
bit. The problem is that the strategy extracted by a might violate the right-
openness requirement. This can happen in a situation where player A has to
take a transition the sooner the better but after time t¢y. This is reflected in the
strategy a(f) as follows: player A has action e enabled until ¢y including ty and a
“good” discrete transition enabled after to. But formally speaking, this strategy
is blocking at time tq.

To overcome this problem we introduce non-blocking approximations ac(f)
for small ¢ > 0, which satisfy the right-openness conditions (but use non-integers
in the guards). As we will show in the next section, taking this strategy for ¢
small enough, player A can reach F in time arbitrarily close to f.(q,).

The ¢-relaxed strategy is obtained from «(f) by enabling the & action on a
narrow stripe: a.(f) = a(f) U{(q, z,¢) : (¢,x) € Sc(f)}, where

S¢(f) = interior{(q, @) : Ta1e(f)(¢, ®) < maet(f)(g, ®) + <}

4 Correctness Proof

4.1 Partial correctness

Our first aim is to prove that if the algorithm converges then it gives the optimal
least-restrictive solution of the problem.

Lemma 1. If player A uses the strategy T,ﬁg = ac(fn—1)) from an initial posi-
tion in (q,x) with v = f,(q,x) < oo, then the TGA reaches the target set F in
no more then v+ng time with no more then n transitions whatever the adversary
does.

Proof. Straightforward induction over n. O
Let A > 0 be any given (small) positive number.

Corollary 1. Suppose that algorithm 1 converges in N iterations. Let ¢ = A\/N
If player A uses the strategy T:"g = ac(f.) from an initial position (q,x) such
that v = fi(q,) < oo then the TGA reaches the target set F' in no more then
v + A time whatever the adversary does.

Lemma 2. For every (q,x) and n, player B can prevent the TGA from reaching
F during at least n steps or f,(q,x) — A time, whatever player A does.

Proof. Straightforward induction over n. O

Corollary 2. Whatever player A does from an initial position (q,x) player B
can prevent the TGA from reaching the target set F' during at least f.(q,x) — A
time.

Corollary 3. If from an initial position (q,x) player A makes a transition not
in T2, then the adversary B can prevent the TGA from reaching the target set
F during strictly more than f.(q,x) time.

These corollaries imply the partial correctness of the algorithm.
Claim. Suppose the algorithm 1 converges. Then

1. The function f.(q,x) gives the infimal time necessary for A to drive the
TGA from (g, z) to F whatever B does;

2. The strategy T;‘}g = a.(f«) guarantees arrival to F in time f.(q,x) + \;

3. It is least restrictive: any strategy which guarantees arrival to F' in time
f«(q,) is a sub-strategy of TA.

4.2 Simple functions

Now we need to prove two properties of Algorithm 1. The first one is effectiveness:
the algorithm manipulates functions from @ x R"™ to IR and we need to find a
finite representation of these functions in order to implement the algorithm.
The second issue is to prove that the algorithm converges. Both effectiveness
and finite convergence follow from the fact that all the functions used in the
algorithm belong to the following class which is closed under the operator .

Definition 4. A function f: X — IRy U{0, 00} is referred to as a k-simple one
iff it can be represented as

_ c; when x € D;
) = {dj —xy; whenx € Ej
where Dy, i =1,...,M and E;,j =1,...,N are k-zones, E; C {z|z;; <k} and
ci,dj € NU{oo}. A function f:Q x X — IRy U{0,00} is k-simple if f(q,-) is
k-simple for any fized q € Q

The additional boundedness condition on the E;’s means that the value of
xy; can influence f only when z;; < k, the largest constant in the definition of
the TGA. Clearly, any k-simple function admits a finite representation as a list
of zones D; and E; and of constants ¢; and d;. It is easy to see that equality of
k-simple functions is decidable, and that they satisfy some closure properties:

Lemma 3. If f(x), g(x) are k-simple and p(x) a reset function, then max(f, g),
min(f, g) and f(p(x)) are k-simple as well. The set {x|f(x) < g(x)} is a k-zone.

Notice that all closure results mentioned in this subsection are effective in
the sense that it is possible to transform algorithmically representations of the
original functions into representations of the resulting functions.

Another property of k-simple functions will be crucial for the proof of con-
vergence of the algorithm.

Lemma 4 (Well-foundedness). Any decreasing sequence of k-simple func-
tions is finite.

4.3 Effectiveness and convergence

The key step in the proof of convergence and effectiveness of Algorithm 1 is
the closure of simple function under the operators used in the algorithm. Let
A(xz,Z) be the largest backward distance from « to a zone Z, i.e. A(xz,Z) =
sup{t > 0|z +t € Z}. It is easy to see that A is simple in the first argument.

Lemma 5 (Closure of k-simple functions under 7). If f(q,x) is k-simple
and the TGA is k-bounded, then waci(f), mae(f) and n(f) are k-simple. Their
representations can be found effectively.

Proof. For maci(f) it follows immediately from lemma 3 and the fact that for
any fixed a, b and ¢ the function §(q,-,a,b) is a reset function (restricted to a
zone).

The case of maie(f) is more difficult. Looking at equations (3), (4), and (5)
one can see that mqe(f) is obtained by elimination (via inf and sup) of the ¢
variable from functions whose domain includes state-space and time. For example
g(q,x,7) of (5) is defined as

glg,xz,7) = Igleag{T + f(0(g,x +7,,b)} =7+ Igleag{ﬂq,w +7,6,b)}

and from the closure of k—simple function under reset, we can conclude that
9(q,x,t) is of the form t + f'(q,x +t) for a k-simple function f’. This motivates
the definition of the following class of functions:

Definition 5 (Bizones and Nice Functions). A k-bizone is a union of sets
of the form {(x,t)|lx € C ANz +t € D} where C and D are k-zones. A function
f: X xRy — IRy U{0,00} is referred to as k-nice iff it can be represented as

. ¢; + t when (x,t) € D;
g(,t) = {dj — xy; when (z,t) € Ej,

where Di,i = 1,...,M and Ej,j = 1,...,N are k-bizones, E; C {x|x;;, < k}
and c;,dj € IN U {oo}.
Sublemma 6 (Properties of k-Nice Functions).

1. If f(x) is k-simple, then t + f(x + t) is k-nice.
2. If g and h are k-nice so are min{g, h} and max{g, h}.
3 If g(x, T) is k-nice, then h(x,t) = Sup g(x,T) is k-nice.

4. If g(x,t) is k-nice, then lnf g(x, t) is k-simple.

Proof.
1. Immediate from definitions.
2. Let (1)
_ ¢; +t when (x,t) € D;
g(e,t) = {di — ¢y, when (x,t) € E;,
and hen (2. 1)
. rm + t when (x,t) € P,
hiz,t) = {sm —xy, when (x,t) € Qum,
and let

u(x,t) = max{g(x,t), h(z,t)} = {gg:g 3}}122 zg:g z Zg:g,

To obtain a representation for u(x,t) we combine each line of the formula
for g with each line of the formula for h and verify that the following types
of sets, which appear when comparing lines of these formulae, are bizones.

{(z,t)|r +t < c+t}: In fact it is either IR7" or (), hence a bizone.

{(z,t)|s — z; < c+t}: It can be written as {(x,t)|z; +t > s — ¢}, which is
a bizone.

{(z,t)|s — z; < d —z;}: It is either R’:™" or @), hence a bizone.

{(z,t)]s —x; < d—x;}: It can be written as {(x,t)|z; —z; > s — d}, which
is a bizone.

When intersected with D; N Pp,, D; N Qp, E; N Py, and E; N Q,, these

sets produce bizones participating in the definition of the function u(x,t).

The boundedness condition is inherited from the bizones E; and @Q,,. The

reasoning for min is identical.

3. Let

(@,7) = ¢i + 7 when (z,7) € D;
9\>,T) = dj — x;; when (x,7) € Ej
and h(zx,t) = sup g(x, 7).

<t

S
Observe that the set [z, +t] = {x + 7|t € [0,t]} intersects finitely many D;
and E; sets from the definition of g. We associate with them the following
(partial) functions:

uj(x,t) = dj — when [,z +t]|NE; #0
vi(x,t) =¢; —t when x +t € D;
wi(x,t) =c;+ A(x,D;) when [z, x +t]ND; #0 N x+t ¢ D;
All the defining conditions are bizones, the functions are k-nice in @ and ¢

and so is h which is their max.
4. Similar to statement 3.

This concludes the proof of the sublemma. ad

It follows immediately from the sublemma that mqie(f) is k-simple. The case
of 7(f) is immediate from two previous cases and Lemma 3. a

Corollary 4. Algorithm 1 is effective.
Corollary 5. Algorithm 1 always converges.

Proof. The sequence f,, is a decreasing sequence of k-simple functions. By virtue
of Lemma 4 it stabilizes. O

Together with Claim 4.1, this concludes the correctness proof of the algorithm.
Theorem 1 (Main Result). Algorithm 1 always converges and produces the

least-restrictive optimal strategy for the brachystochronic problem for Timed Au-
tomata.

5 Example

Consider the 1-clock TGA of figure 1 where the adversary B is trivial and the
target set F'is {q4}. From gy player A can choose between waiting, going to ¢
(a losing sink), to g2 (while resetting the clock) or to ¢3. Intuitively, for smaller
values of x it might be better to do b and go to ¢» because A does not lose much
time by resetting the clock and can benefit from the smaller transition guard.
The value function and strategy obtained by our algorithm are depicted below.

gz |f T2

q4|[0, 00) |0 {e}

q1 07 OO) o0 @

q2 0, 2) 2—x {E}
2,00) 10 {a}

gs|[0,5) |5 —=z|{e}
5,00) |0 {a}
(3,31 12 |{e,b}
(3,4) |5—z|{e}
[4,5] |5—z|{e,c}
(5,00)0 [{c}

As one can see, ¢4 is a winning state right from the start while from ¢; you can
never reach q4. The clock spaces of g2 and g3 are partitioned into two intervals:
one after the clock values reach their respective guards, where the value of f is
0, and the interval before that, where f measures the time until the satisfaction
of the guards. Finally f(qo,) is obtained as min{f(q1, z), f(g2,0), f(gs,2)} and
one can observe that x = 3 is the breakpoint after which it is better to take the
c transition to ¢3. In the absence of an adversary, not all the complexities of the
algorithm are demonstrated in this example.

Fig.1. A TGA with a trivial adversary. Missing guards and invariants are true.

6 Concluding Remarks

This work constitutes yet another step in the process of lifting classical results
from automata to timed automata, and the main result can be rephrased as
finding (min-max) shortest paths in non-countable (but well-behaving) graphs.
The algorithm can be easily extended to models where integer costs are associ-
ated with transitions. However, assigning different costs to the passage of time
at different states will transform the model into a more general hybrid system
(such as the ones whose synthesis problem is treated in [W97]), and will probably
make the problem harder, if not undecidable.

From the application point of view, many problems related to digital circuit
design or scheduling problems in manufacturing and telecommunication, can be
formulated as optimal control problems in the framework we have introduced.
We believe that unifying the qualitative “property-based” approach, which is
dominant in verification, with optimization-oriented approaches used elsewhere?
is important for the development of hybrid systems research.

References

[AD94] Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer
Science 126 (1994) 183-235

[AMP95] Asarin, E., Maler, O., Pnueli, A.: Symbolic Controller Synthesis for Discrete
and Timed Systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S.
(eds.): Hybrid Systems II. Lecture Notes in Computer Science, Vol. 999.
Springer (1995) 1-20

[AMPS98] Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller Synthesis for Timed
Automata. In: Proc. IFAC Symposium on System Structure and Control.
Elsevier (1998) 469-474

[Ber95] Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Sci-
entific (1995)

[MPS95] Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for
Timed Systems. In: Mayr, E.-W., Puech, C. (eds.): Proc. STACS’95. Lecture
Notes in Computer Science, Vol. 900. Springer (1995) 229-242

[PA9] Passino, K.M., Antsaklis, P.J.: On the Optimal Control of Discrete Event
Systems. In: Proc. CDC’89. IEEE (1989) 2713-2718

[RW87] Ramadge, P.J., Wonham, W.M.: Supervisory Control of a Class of Discrete
Event Processes. SIAM J. of Control and Optimization 25 (1987) 206-230

[TLS98] Tomlin, C., Lygeros, J., Sastry, S.: Synthesizing Controllers for Nonlin-
ear Hybrid Systems, in Henzinger, T.A., Sastry, S. (eds.): Hybrid Systems:
Computation and Control. Lecture Notes in Computer Science, Vol. 1386.
Springer (1998) 360-373

[W97] Wong-Toi, H.: The Synthesis of Controllers for Linear Hybrid Automata.
In: Proc. CDC’97. IEEE (1997) 4607-4612

2In [PA89], for example, transition costs are added to the discrete event models and
an optimal controller synthesis problem is formulated and solved.

