
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial :

Présentée par

Julien Legriel

Thèse dirigée par Oded Maler

préparée au sein Verimag
et de EMSTII

Multi-Criteria Optimization and its
Application to Multi-Processor
Embedded Systems

Thèse soutenue publiquement le 4 octobre 2011,
devant le jury composé de :

Denis Trystram
Professeur à l’INP Grenoble, Président
Lothar Thiele
Professeur à ETHZ, Rapporteur
Eugène Asarin
Professeur à Paris 7, Rapporteur
Philippe Baptiste
Chargé de recherche à l’école Polytechnique, Examinateur
Jean-José Berenguer
Ingénieur à STMicroelectronics, Examinateur
Peter Niebert
Maître de Conférence à L’université de Provence, Examinateur
Oded Maler
Directeur de recherche à Verimag, Directeur de thèse

Acknowledgements
I first want to say that it was a pleasure and great experience to have Oded as advisor. On
one hand I had much liberty, but on the other hand Oded was very available to support and
guide me during all Ph.D phases (and even thereafter for finding a job !). I hope to have
learned from his particular way to look at science in a positive, fresh and ambitious way.

I sincerily thank Lothar Thiele and Eugène Asarin for taking the time to review this
thesis, as well as Denis Trystram, Philippe Baptiste and Peter Niebert for their participation
to the jury. This thesis has been conducted in the framework of a partnership between
Verimag and STMicroelectronics and I would like to acknowledge STMicroelectronics
Grenoble members, Bruno Jego, Gilbert Richard, Jean-José Bérenguer and others for their
sympathy and technical collaboration.

Verimag laboratory is a really enriching and convivial place for doing a Ph.D, and I
would like to thank all people I interacted with and learned from. In particular I am very
grateful to Scott Cotton and Colas Le Guernic for their decisive participation in the work
on multi-criteria optimization. I also express my gratitude to my Ph.D mates Selma Saidi
and Jean-francois Kempf, whose collaboration and moral support were really helpful.

But going daily to Verimag was also a pleasure due to the joyful atmosphere brought
by Stéphane, Jean-Noël, Chaouki, Tayeb, Nicolas and all others I forgot. I want to thank
these people for all the fun we had in extra-work activities (running, swimming, Grenoble
Ekiden, soccer, bowling, poker etc.).

Finally I will end this acknowledgement with a thank you to my family, especially my
parents Monique et Alain. I would not have gone so far without their full support from the
very beginning.

2

Contents

Contents 3

Introduction (French) 1

Introduction 3

1 Multi-Criteria Optimization 5
1.1 Introduction . 5

1.1.1 Multi-Criteria Optimization through Examples 5
1.1.2 On the Relevance of Modeling Several Criteria 6

1.2 Formalization . 9
1.3 Quality Assessment . 11

1.3.1 Desirable Properties . 11
1.3.2 Quality Indicators . 11
1.3.3 Comparing Non-deterministic Algorithms 14

1.4 Existing Solution Methods . 16
1.4.1 Classical Methods . 16

1.4.1.1 Weighted Sum . 16
1.4.1.2 Epsilon-Constraint Method 18
1.4.1.3 Weighted Metric Method 18
1.4.1.4 Normal Boundary Intersection Method 19

1.4.2 Evolutionary Algorithms . 20

2 Satisfiability-Based Approximation Algorithms 23
2.1 Introduction . 23
2.2 Preliminary Definitions . 25
2.3 Knee Points . 29
2.4 The Algorithm . 32

2.4.1 The Selection Procedure . 35
2.5 Experimentation . 36
2.6 Extensions and Future Work . 37

2.6.1 Timeouts . 37
2.6.2 A Search by Successive Improvements 39

2.7 Conclusions . 40

3 Universal Restarting Strategies in Stochastic Local Search 43
3.1 Introduction . 43
3.2 Stochastic Local Search . 45

3

CONTENTS

3.3 Restarting Single Criteria SLS Optimizers 46
3.3.1 The Luby Strategy . 46
3.3.2 SLS optimizers . 48

3.4 Multicriteria Strategies . 49
3.5 Experiments . 51

3.5.1 Quadratic Assignment . 51
3.5.1.1 QAP SLS Design . 52
3.5.1.2 Experimental Results on QAP library 54

3.5.2 Multi-objective QAP . 54
3.6 Conclusion and Discussion . 56

4 Optimization for the Parallel Execution of Software 61
4.1 The Comeback of Multi-Processors as a Standard 61
4.2 Design Trends for Embedded Multi-Processors 64

4.2.1 Overview . 64
4.2.2 The P2012 Platform . 67

4.3 Parallelizing and Deploying Software 68
4.3.1 Parallelization . 68
4.3.2 Mapping and Scheduling . 70

4.4 Multi-Criteria Optimization for Deployment Decisions 72

5 Energy-Aware Scheduling 75
5.1 Introduction . 75
5.2 Problem Specification . 76

5.2.1 Execution Platforms . 76
5.2.2 Work Specification . 77

5.3 Satisfiability-Based Scheduling . 77
5.3.1 Background . 78
5.3.2 Constrained Optimization Formulation 79
5.3.3 Implementation and Experimental Results 80
5.3.4 Adding Communications . 82
5.3.5 Periodic Scheduling . 83
5.3.6 Bi-Criteria Optimization . 88

5.4 Scheduling with Stochastic Local Search 90
5.4.1 Introduction . 90
5.4.2 Implementation . 91
5.4.3 Experiments . 92

5.5 Discussion . 93

Conclusions 97

Conclusions (French) 99

Bibliography 101

4 CONTENTS

Introduction (French)

Dans cette thèse nous développons de nouvelles techniques pour résoudre les problèmes
d’optimisation multi-critère. Ces problèmes se posent naturellement dans de nombreux
domaines d’application où les choix sont évalués selon différents critères conflictuels
(coûts et performance par exemple). Contrairement au cas de l’optimisation classique,
de tels problèmes n’admettent pas en général un optimum unique mais un ensemble de
solutions incomparables, aussi connu comme le front de Pareto, qui représente les meilleurs
compromis possibles entre les objectifs conflictuels. La contribution majeure de la thèse
est le développement d’algorithmes pour trouver ou approximer ces solutions de Pareto
pour les problèmes combinatoires difficiles. Plusieurs problèmes de ce type se posent
naturellement lors du processus de placement et d’ordonnancement d’une application
logicielle sur une architecture multi-cœur comme P2012, qui est actuellement développé
par STMicroelectronics.

La première classe de méthodes que nous développons s’appuie fortement sur l’existe-
nce de puissants solveurs SMT (SAT Modulo Theories), qui peuvent fournir une réponse
à l’existence de solutions réalisables pour des systèmes de contraintes mixtes logiques
et numériques. Bien que n’étant pas conçu pour résoudre les problèmes d’optimisation
explicitement, il est possible d’utiliser ces solveurs comme oracles dans une procédure
de recherche binaire pour trouver des solutions optimales. La première contribution de
la thèse est le développement d’une telle procédure pour l’optimisation multi-critère, qui
peut être vu comme une généralisation multi-dimensionnelle de la recherche binaire. Nous
obtenons un algorithme qui fournit une bonne approximation du front de Pareto, donne une
garantie sur la qualité de l’approximation, et dirige les requêtes vers les parties inexplorées
de l’espace de coûts. Cet algorithme a été implémenté et testé sur des surfaces synthétiques.

La deuxième classe de méthodes que nous considérons est la recherche stochastique
locale, où les algorithmes d’optimisation parcourent l’espace des solutions de manière
quasi aléatoire, mais avec un biais en faveur des améliorations locales de la fonction de
coût. Ces algorithmes font occasionnellement des redémarrages pour éviter de stagner
dans la même partie de l’espace, et il s’avère qu’une politique de redémarrage particulière
optimise leur performance moyenne. La deuxième contribution de la thèse est l’adaptation
de cette politique au contexte multi-critère : à chaque redémarrage, nous changeons la
combinaison linéaire des fonctions de coût pour laquelle nous optimisons. Cet algorithme
a été implémenté et appliqué à des problèmes de placement quadratique.

Après avoir discuter du rôle de l’optimisation multi-critère dans le déploiement de
logiciels sur des architectures multi-processeur, nous nous tournons vers l’application
des algorithmes développés à une famille de problèmes d’ordonnancement bi-critère
énergie/performance. Nous définissons les problèmes à différents niveaux de complexité,
en commençant par des graphes de tâches simples, puis en ajoutant des considérations de
communication inter-tâches et de periodicité. Dans tous ces problèmes, nous recherchons

1

INTRODUCTION (FRENCH)

de bons compromis entre la latence de l’ordonnancement et le coût énergétique de la
plate-forme qui est liée au nombre de processeurs utilisés et à leur vitesse.

Nous avons d’abord appliqué l’approche basée sur le solveur SMT à un problème
dans lequel la vitesse des processeurs peut être configurée, et où l’on minimise le coût
énergétique de la plateforme sachant qu’une contrainte est imposée sur la latence de
l’ordonnancement. Nous considérons ensuite le problème comme étant bi-objectif et
recherchons les compromis entre coût de la plateforme et latence de l’ordonnancement.
Enfin nous avons appliqué l’algorithme de recherche locale à une classe similaire de
problèmes. Les résultats expérimentaux sont prometteurs.

La thèse est organisé comme suit: le chapitre 1 présente l’optimisation multi-critère,
ses motivations, ses concepts et les techniques classiques de résolution. Le chapitre 2
décrit la procédure de recherche utilisant un solveur SMT comme oracle, tandis que le
chapitre 3 définit notre procédure de recherche stochastique locale. Le chapitre 4 passe
en revue différentes problématiques actuelles liées aux multi-processeur, et notamment
au déploiement d’applications parallèles sur ces systèmes. Enfin, le chapitre 5 présente
l’application des méthodes d’optimisation proposées dans les chapitres 2 et 3 au problème
d’ordonnancement sur architecture multi-processeur.

2 INTRODUCTION (FRENCH)

Introduction

In this thesis we develop new techniques for solving multi-criteria optimization prob-
lems. Such problems arise naturally in many (if not all) application domains where choices
are evaluated according to two or more conflicting criteria such as price vs. performance.
Unlike ordinary optimization, such problems typically do not admit a unique optimum
but a set of incomparable solutions, also known as the Pareto Front, which represent the
best possible trade-offs between the conflicting goals. The major contribution of the thesis
is the development of algorithms for finding or approximating these Pareto solutions for
hard combinatorial problems that arise naturally in the process of mapping and scheduling
application software on multi-core architectures such as P2012 which is currently being
developed by ST Microelectronics.

The first class of methods that we develop relies heavily on the existence of powerful
SMT (SAT modulo theories) solvers which can provide a yes/no answer to queries about
the existence of feasible solutions to systems of mixed logical and numerical constraints.
Although not designed to solve optimization problems explicitly, it is straightforward to
use such solvers as oracles inside a binary search procedure for finding optimal solutions.
The first major contribution of the thesis is the development of such a procedure for multi-
criteria optimization which can be seen as a multi-dimensional generalization of binary
search. As a result we obtain an algorithm which provides a good approximation of the
Pareto front, gives a guarantee on the quality of approximation and directs the queries
towards unexplored parts of the cost space. This algorithm has been implemented and
tested on synthetic surfaces.

The second class of methods that we consider is stochastic local search where the
optimization algorithms wanders quasi-randomly in the solution space, with a bias toward
local improvements of the cost function. Such algorithms occasionally make restarts to get
away from stagnation and it turns out that a specific restarting schedule optimizes their
expected performance. The second major contribution of the thesis is to adapt this idea to
the multi-criteria setting where at each restart we also change the linear combination of
cost functions for which we optimize. This algorithm has been implemented and applied
to multi-criteria quadratic assignment benchmarks.

After surveying the role of multi-criteria optimization in the deployment of software
on multi-processor architectures we turn to the application of the developed methodologies
and algorithms to a family of problems related to energy-aware scheduling of task graphs
on such platforms. We define problems at different levels of complexity starting with
simple task graphs and adding considerations of communication and pipelining. In all
these problems we seek good trade-offs between execution speed and the energy cost of
the platform which is related to the number of processors and their speeds.

We first apply the satisfiability-based approach starting with a formulation that keeps the
deadline as a fixed constraint and search for the cheapest configuration of the architecture

3

INTRODUCTION

on which the application can be scheduled to meet the deadline. After answering this
question on several models we turn to a multi-criteria formulation and apply the binary
search procedure to find speed/cost tradeoffs. Finally we apply the new stochastic local
search algorithm to this class of problems. The experimental results look promising.

The thesis is organized as follows: Chapter 1 is a survey of multi-criteria optimization,
its motivation, concepts and common solution techniques. Chapter 2 describes the search
procedure using an SMT solver as an oracle while Chapter 3 defines our stochastic
local search procedure. Chapter 4 gives a survey on multi-processor architectures and
the crucial role of optimization in the future development process of parallel software.
Chapter 5 presents the application of the developed techniques to problems of energy-aware
scheduling and reports experimental results, followed by some directions for future work.

4 INTRODUCTION

Chapter 1

Multi-Criteria Optimization

Résumé : Le premier chapitre de cette thèse est une introduction à l’optimisation multi-
critère. Nous commençons par donner un exemple simple : le placement de tâches sur
un système multi-processeur. Généralement, il est nécessaire d’exploiter le maximum de
parallelisme et d’avoir un bon équilibrage de la charge de calcul entre les processeurs.
D’un autre coté, il faut limiter les communications sur le réseau d’interconnections
car celles-ci sont coûteuses en temps et en énergie. Etant donné que ces deux objectifs
s’opposent l’un l’autre, le problème du placement des tâches est typiquement un problème
d’optimisation multi-critère. Nous nous appuyons sur cet exemple pour introduire le
concept fondamental d’optimalité de Pareto. Celui-ci caractérise les compromis optimaux,
c’est-à-dire les solutions pour lesquelles il est impossible d’améliorer un objectif sans en
détériorer un autre. Nous expliquons aussi pourquoi il est préférable d’utiliser l’approche
de résolution dite a posteriori, c’est à dire de rechercher les solutions de Pareto dans
un premier temps et de faire un choix parmi ces compromis dans un deuxième temps,
plutôt que l’approche a priori, qui consiste en une réduction prématurée du problème au
cas uni-critère (en combinant les différentes fonctions objectifs par exemple). Dans la
suite du chapitre nous introduisons formellement les concepts fondamentaux (dominance,
front de Pareto etc.) puis dédions une partie au problème d’estimation de performance
et de comparaison des algorithmes d’optimisation multi-critère. Enfin, nous détaillons et
comparons plusieurs types d’approches utilisées pour résoudre ces problèmes.

1.1 Introduction

1.1.1 Multi-Criteria Optimization through Examples

Many real-life optimization problems are multi-dimensional by nature. Indeed de-
cisions are more than often made according to multiple and conflicting criteria : time
goes against money, work against family care. Consider for instance a cellular phone that
we want to purchase. Each product can be evaluated according to its cost, size, power
autonomy and various performance measures, and a configuration which is better according
to one criterium, can be worse according to another. Consequently, there is no unique
optimal solution but rather a set of incomparable alternatives or trade-offs. The field of
multi-criteria optimization deals with all the methods which take into account more than

5

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

one objective/cost function in their problem modeling, and seek to find one particular or a
representative set of the trade-offs.

Our motivation to look at multi-criteria optimization comes from problems related to the
efficient deployment of applications to multi-core systems. Mapping a parallel streaming
application on a multi-processor architecture is an example of a problem which involves (at
least) two conflicting criteria: balancing processor loads and minimizing communication
overhead. A good load balancing limits the outbreak of troubles like overheating, energy
leaks and other system faults. On the performance side, it may increase the throughput by
maximizing the utilization of the processing capabilities. On the other hand inter-processor
communication may be a bottleneck, especially if application tasks have to transfer large
amounts of data. A congested link in the network can indeed have a drastic impact on
the execution latency. Furthermore these two objectives are conflicting: as we move from
a more centralized to a more parallel implementation the imbalance is reduced but the
amount of communication increases (Figure 1.1.1). This leads to a set of optimal trade-offs,
or Pareto-optimal 1 solutions, which are characterized by the fact that their cost cannot
be improved in one dimension without being worsened in others. Solutions for which
this is not true are said to be dominated (Figure 1.1.2) by the Pareto solutions. In the
multi-criteria optimization terminology the set of non-dominated solutions is the Pareto
front and, as we shall explain in the next section, being able to compute or approximate
that set is a very useful aid in decision making.

(a) (b)

Figure 1.1.1: (a) A dummy mapping solution with all tasks mapped to the same processor
(no parallelism is exploited). The solution is optimal under the objective of minimizing
communication, but the imbalance is maximal. (b) A solution where load balancing is
optimized which however creates a communication overhead.

1.1.2 On the Relevance of Modeling Several Criteria
When one hears about multi-criteria optimization for the first time, it may appear as an

attempt to postpone a decision which must eventually be made. Why search for a set of
trade-offs when only one single solution is going to be chosen and applied at the end? To
answer this question we must examine the process of decision making more closely, and
point out some limitations of the single-objective framework.

At an abstract level we can view any optimization phase in the decision making process
as follows. There is a problem admitting a set S of feasible solutions (which may or may

1. Named after V. Pareto who first defined them in the context of economic theory.

6 1.1. INTRODUCTION

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

processor loads

Pareto

Dominated

co
m

m
u
n
ic

at
io

n
s

Figure 1.1.2: An example of trade-offs in the cost space for the mapping problem.

not be explicit), and the goal is to find the best solution among that set, what implicitly
assumes the existence of a total order < on S. The fundamental difference between single
and multi-criteria approaches actually lies in the way the total order, which we further refer
to as the preference relation, is defined and integrated into the problem model.

A single criteria optimization 2 phase starts with the definition of a utility/cost function
C : S → R from which a preference relation is directly induced between any pair of
solutions: 3

a < b⇔ C(a) < C(b) (1.1A)

The problem is then reduced to finding the unique minimum of a function over an input set
S. Multi-criteria problems on the contrary seek to take d cost functions into account for
defining the preferences. Therefore we only dispose of a partial order ≺ among solutions:

a ≺ b⇔ C1(a) ≤ C1(b) ∧ . . . ∧ Cd(a) ≤ Cd(b) (1.1B)

Variants of multi-criteria optimization methodologies may be distinguished on the basis of
their approach for obtaining the ultimate total order on S which is derived from the partial
order ≺. The following classification was first introduced by Cohon and Marks [Coh85].

A priori methods Methods of this category work by reformulating the problem to make
it fit within the single criteria framework. The preference relation is therefore
defined a priori, without having knowledge on the possible trade-offs between the
different objectives. The most common a priori method is probably the weighted
sum approach, which works by combining the different costs into a unique scalar
function defined asC = λ1C1+. . .+λdCd, with (λ1 . . . λd) ∈ Rd. Another common
technique is the constraint method, which prescribes to keep a single objective to
optimize while moving the others to the constraint side. As a last example, the
lexicographic ordering method defines a preference order on the objectives and
optimizes each of them successively following the order. All these methods have a
common characteristic: they define a strict preference order on solutions before the
search, and then apply single objective optimization.

2. We assume minimization problems.
3. We assume here that no two solutions have exactly the same cost.

1.1. INTRODUCTION 7

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����

Pareto

Optimum reached

Constraint

cost 1

co
st

 2
β

α >> β
α

Pareto

Optimum reached

Level set

cost 1

co
st

 2

(a) (b)

Figure 1.1.3: (a) Because of the constraint imposed on cost 1 the optimum reached is not
the circled solution. However this solution would most probably have been preferred when
the ratio α/β is large. (b) A weighted sum approach where equal weight is given to each
objective. The cost coordinates of the solution returned are however not at all balanced,
but biased towards cost 1.

A posteriori methods The a posteriori approach is decomposed into two phases. In the
first phase, a specialized algorithm is used to search for a representative set of
trade-offs between a (generally small) number of objectives. In the second phase,
the decision maker picks a final solution from that set using higher order preferences
which were not expressed explicitly in the objective functions.

Interactive methods In this approach, preferences are progressively integrated in the
problem model. Unlike a posteriori techniques which work in batch mode, an inter-
active method presents information sparingly to the user and gets refined preferences
from him/her in return. Less effort has been invested in the development of methods
in this category and we do not discuss them further in this thesis.

The amount of research on a posteriori multi-criteria optimization has been growing
during the last decades, essentially because of the belief that it leads to better decision
than the a priori scheme which is based on an early reduction to single criteria. We try
to illustrate this idea by showing the limitations of two of the most common a priori
algorithms.

1. Constraint Method: One can eliminate an objective of a multi-objective problem by
stating a bound on its cost. For instance, the mapping problem can be handled by
fixing a limit on the amount of communication and adding this new constraint to the
model. The remaining objective (load balancing) is optimized through a standard
single criteria optimization algorithm. However choosing an appropriate bound for
the communication volume is tricky. The choice may be done based on system
constraints and/or a priori aspirations but, as one has no clue about the shape of the
cost space, it is possible to miss a good solution (see figure 1.1.3-(a)).

2. Weighted Sum: Another intuitive option is to optimize a weighted sum of the
objectives. If load balancing is judged as critical as communication traffic, the scaler
function to minimize is obtained by multiplying the cost vector by (1, 1). As shown
on Figure 1.1.3-(b), choosing weights a priori may lead to a solution which would
not have been preferred by the user over the alternatives.

8 1.1. INTRODUCTION

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

To conclude, a priori methods bear the risk of proposing a solution which would not
have been selected if more information on the available trade-offs was available. Besides,
humans are usually more comfortable with choosing among a set of alternatives rather
than obtaining a solution produced by a black box. The reason for this is quite simple:
individual preferences are more qualitative than quantitative. They cannot be captured
by a global utility function, a fact that was first identified by the 19th century sociologist
and economist Vilfredo Pareto in the context of consumer theory [Par12]. Before his
work, economists were supposing that the utility provided by several consumer goods to
an individual could be quantified under a global measure (the utility). If the utility brought
by a car was of 50 and the one of a cell phone was 10 then it would be 5 times better to
have a car than a cell phone. Pareto criticized this view as being unrealistic and proposed
a qualitative approach where goods are just ranked: a consumer can tell wether a car is
better than a cell phone, the opposite, or if it provides equal satisfaction, but no more
than that. This approach has been accepted by his peers and is now widely in used in
economics. Going back to our matter of decision making, and for the same reasons, we
(humans) are more or less able to order a set of cell phones when we see them in a shop
using quantitative information (price, size etc) and qualitative information (this one is nice
but the other looks more solid and I am clumsy). However it would be inconvenient to
blindly quantify our level of satisfaction of any cell-phone within a single mathematical
function.

1.2 Formalization
In its general form a multi-criteria optimization problem can be stated as

minimize
x

C(x)

subject to x ∈ S.
(1.2C)

together with the following definitions :
– X is the design/decision space
– x ∈ X is the decision variables vector
– S ⊂ X is the feasible design space (set of solutions)
– Y ⊂ Rd is the cost space
– C = (C1 . . . Cd) is the multi-dimensional objective function
– Ci : X → R is the ith objective
– Z = C(S) ⊂ Y is the feasible cost space

Like single-objective criteria problems multi-criteria can be classified as continuous vs.
discrete, constrained vs. unconstrained, linear vs. non-linear etc. The object to minimize
is a vector of Rd so we should provide an order on the elements of that set. Generally
the order is not given because the meaning is implicit: solutions are compared using the
concept of Pareto dominance already introduced, and which we more formally characterize
in the sequel. We also recall some basic vocabulary related to multi-objective optimization.
The reader is referred to [Ehr05, Deb01] for a more general introduction to the topic.

Definition 1.2.1 (Domination) Let c and c′ be points in the cost space Y . We say that

1. c dominates c′ (c ≺ c′) if for every i ∈ [1..d], ci ≤ c′i and c 6= c′

1.2. FORMALIZATION 9

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

Pareto

Dominated

Weak Pareto

Figure 1.2.1: Examples of dominated, weak Pareto and Pareto solutions.

2. c strictly dominates c′ (c� c′) if for every i ∈ [1..d], ci < c′i

When neither c ≺ c′ nor c′ ≺ c hold we say that c and c′ are incomparable which we
denote c||c′.

The notion of domination, illustrated in Figure 1.2.1, is central in multi-criteria decision
making. We will equally speak of domination among points in the cost space and domi-
nation among solutions (points in the design space) which is inherited from the relation
between their respective costs. A solution s′ to a problem which is dominated by s is
generally discarded, as s is by default assumed to be always preferred to s′. On the contrary,
a solution whose cost vector is not dominated by any point in Z is optimal in the Pareto
sense.

Definition 1.2.2 (Pareto Optimality) A point x in the design space X is said to be

1. Weakly Pareto optimal (or weakly efficient) if C(x) is not strictly dominated by any
other point: ∀x′ ∈ S C(x′) 6� C(x)

2. Pareto optimal (or efficient) if C(x) is non-dominated: ∀x′ ∈ S s.t C(x′) 6≺ C(x)

Definition 1.2.3 (Pareto Front) The Pareto front associated with a multi-objective op-
timization problem is the set P ∗ of all Pareto optimal points in the feasible cost space
Z .

The Pareto front represents the set of optimal trade-offs that we would like to compute.
There are several characteristics of the problem which complicate this task. First, many
combinatorial optimization problems (including those related to mapping and scheduling
which we study in this thesis) are NP-hard. Consequently they cannot be solved to
optimality by a computer in an efficient manner, already for a single objective. Secondly,
adding more objectives makes the resolution even more difficult, especially because
the number of Pareto solutions may grow exponentially with the number of objectives.
Hence, exact methods do not scale for these problems and the focus is more on designing
algorithms that can find an approximation of the front, which means a reasonably small set
of good representative solutions.

10 1.2. FORMALIZATION

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

1.3 Quality Assessment
A central question in evaluating the performance of multi-objective optimizers is how

to assess and compare the relative quality of their respective outputs. Recall that those
algorithms return sets of solutions, so that outputs of different algorithms are more often
than not mutually incomparable (Figure 1.3.1). Consequently it is not straightforward to
measure the quality of a given technique in generating good approximations of the Pareto
front, and finding appropriate quality indicators has been an active subject of work leading
to the emergence of a whole niche of research on this particular topic. In this section we
introduce some key concepts and problematics related to the performance assessment of
multi-objective algorithms. We recommend [ZKT08] for a fairly detailed study of the
subject.

Approximation A

Approximation A’

A ≺ A′A′ ≺ A

Figure 1.3.1: A and A′ are incomparable approximations. There is a part of the space
where each of them dominates the other.

1.3.1 Desirable Properties
There is quite a consensus on two informal properties that a good set of non-dominated

solutions should verify. On one hand it has to contain individual solutions which are not
far from being Pareto optimal. This way, the user does not lose a lot by making decisions
according to the approximate solutions rather than the exact ones. The second property
concerns the diversity of solutions in the set. As we pointed out before, it is crucial for
making the right decision to have a good understanding of the available tradeoffs, so the
approximation must ideally not overlook parts of the cost space where Pareto points can
be found.

Developing an algorithm which finds a good approximation is therefore a problem
involving two objectives that may be conflicting: closeness to the true Pareto points and
diversity. While the first objective is maximized when the algorithm focuses on an in
depth exploration of the cost space and local improvements of found solutions, the second
necessitates to widen the search in breadth.

1.3.2 Quality Indicators
The weakness of the Pareto dominance relation in comparing different approximations

is due to the fact that some of them remain incomparable. We would like indicators which,

1.3. QUALITY ASSESSMENT 11

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

while capturing the above considerations induce a total order over the set of approximations
of a given problem. In the sequel we characterize a Pareto front approximation as being a
non-dominated set of points in the cost space and give a definition of a quality indicator.

Definition 1.3.1 (Pareto Front Approximation) An approximation of a Pareto front in a
feasible cost space Z is a set A ∈ 2Z which contains only mutually non-dominated points
i.e. ∀c, c′ ∈ A c||c′. We denote the set of all such approximations as ΦZ .

Definition 1.3.2 (Quality Indicator) A quality indicator is a function I : ΦZ → R which
assigns a real value to each approximation, the bigger being the better.

A quality indicator is thus a function which associates a quantitative measure of goodness
to each approximating set, in the same way a cost function ranks each solution in single
criteria optimization. Many variants have been proposed and we present two of them which
are commonly used.

Definition 1.3.3 (Epsilon Approximation) Given c, c′ in cost space and ε ∈ R+

1. (Additive): c ε-approximates c′ (c ≈+
ε c
′) if ∀i ∈ [1..d] ci ≤ c′i + ε

2. (Multiplicative): c ε-approximates c′ (c ≈∗ε c′) if ∀i ∈ [1..d] ci ≤ ε.c′i

Intuitively the ε-approximation relation expresses the fact that a vector c is not worse
than c′ by more than ε in all objective (whether it be in terms of an additive increase or
a ratio). As an example a two dimensional vector (100.1, 40) is a 0.1-approximation of
(100, 100) in the additive sense. The value of ε therefore quantifies the quality with which
c approximates c′ (Figure 1.3.2-(a)).

Definition 1.3.4 (Epsilon Indicator) Let R ∈ 2Y be a predefined reference set and ε ∈
R+. For any A ∈ ΦZ the additive version of the ε-indicator is

I+ε (A) = inf
α∈R+
{∀r ∈ R ∃c ∈ A c ≈+

α r}

The multiplicative version is defined analogously.

The epsilon-indicator value is then the smallest α such that every point in the reference
setR is α-approximated by at least one solution of the approximation set (Figure 1.3.2-(b)).
Note that the true Pareto front would be an ideal reference set but in practice we need, of
course to provide another reference set. A solution we used in the course of this thesis
is to take as a reference the non-dominated union of the approximations returned by the
different methods we wish to compare.

Another popular indicator measures the volume of the portion of the cost space domi-
nated by an approximation (Figure 1.3.3).

Definition 1.3.5 (Hypervolume Indicator) Let r ∈ Rd be a reference point and A ∈ ΦZ
an approximating set. Let B+(A, r) = {z ∈ Rd, ∃c ∈ A c � z � r}, namely the set of
points dominated by A and which dominate r. The hypervolume indicator is the quantity

IH(A, r) = V (B+(A, r))

where V indicates volume.

12 1.3. QUALITY ASSESSMENT

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

Approximation

Not Approximated

ε

ε

ε-approximated

Approximation

Reference Set

ε translation

(a) (b)

Figure 1.3.2: (a) Illustration of the additive epsilon approximation. (b) The reference
set is ε-approximated because any of its points is approximated by at least one solution.
Futhermore ε is the smallest such value (the circled point is not approximated if ε is
decreased).

������

Approximation

Reference Point

Dominated Volume

Figure 1.3.3: Illustration of the hypervolume indicator. The value according to this
indicator is the volume of the shaded polygone.

1.3. QUALITY ASSESSMENT 13

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

This measure was first introduced in the context of multi-objective optimization by
Zitzler and Thiele [ZT98] who also stated its compliance with the dominance relation: an
approximation set A1 which is strictly better than A2 always covers a bigger hypervolume.
This also appears to have been formally proved for arbitrary dimension [Fle03].

Proposition 1.3.1 (Pareto Compliance of the Volume Indicator) Let A1, A2 ∈ ΦZ be
two approximations such that A1 dominates A2 i.e

– ∀c2 ∈ A2 ∃c1 ∈ A1 c1 � c2
– A1 6= A2

Then ∀r ∈ Rd, IH(A1) > IH(A2).

Proposition 1.3.1 particularly entails that the Pareto front of a multi-criteria optimization
problem is the only set to achieve the maximal value of the hypervolume indicator. This
observation gave birth to a big interest in studying the indicator both theoretically and
practically, all the more that other available measures do not share this property [ZTL+03].
Furthermore there is a growing trend in using the hypervolume indicator online to guide
the algorithm in its search. However, one can notice that calculating the indicator is not a
simple task because it involves computing the volume of a complex object (union of boxes)
in Rd. This is easily achieved if d = 2 since the complexity is linear with the size of the
approximation, a little bit more tricky if d = 3, but the best currently known algorithms
working with arbitrary dimensions have exponential complexity (regarding dimension).
Recent contributions [BF10, BF09] further state that the problem is #P -complete along
with some unapproximability results. Consequently, unless P = NP there is no hope
for a polynomial algorithm, although the best shown lower bound (derived from reducing
the problem to a special case of the Klee’s Measure Problem) is Ω(n log n) with n the
size of the approximation [BFLI+09]. The search for fast algorithms computing the
hypervolume is therefore currently oriented towards stochastic methods using monte-carlo
simulations [BF09, BZ11].

1.3.3 Comparing Non-deterministic Algorithms
The performance assessment measures we have presented so far neglect an important

aspect: many optimization heuristics are randomized, meaning that they may return
different outputs on different runs. If the variability is high it is more relevant to compare
the average performance of two algorithms in solving a particular problem on several runs.

For instance one can run the program multiple times on a given input, compute
the quality of each output with an indicator, and analyze the statistics (mean, variance,
hypothesis testing) for deciding which algorithm is better. This does not provide a mean
for comparing outputs graphically though, and plots showing several approximations are
usually hard to interpret.

Another approach allowing graphical analysis is based on the computation of a so
called attainment function [FF96]. Given a problem π and a program τ solving π, each
point z in cost space has a certain probability denoted ατ,π(z) of being dominated (or
attained) by the approximation returned on a particular run. A simple estimator of ατ,π(z)
is obtained by simply computing the percentage of runs on which z gets dominated by the
approximation (Figure 1.3.4).

The attainment function method is in particular used for building two or three dimen-
sional graphical representations, those of which allow to compare the performance of two
algorithms graphically. Let us first expose the concept of attainment surface.

14 1.3. QUALITY ASSESSMENT

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

Attainment surface 2

Approximation 1

Approximation 2

Attainment surface 21/2

0

1

Figure 1.3.4: Estimation of the attainment function using two approximations returned on
different runs. Points in the lower part are not attained by any of the approximations and
thus get a probability value of zero. On the contrary points in the upper parts are attained
by the two and are associated a probability of one. Points in the middle get one half.

Definition 1.3.6 (Attainment Surface) Given an approximation A its attainment surface
∆A is the set of weakly non-dominated elements of B+(A), where B+(A) is the subspace
of Z dominated by A.

The attainment surface is actually the boundary between the part dominated by the
approximation and the rest of the cost space (Figure 1.3.4). Running the stochastic
algorithm several times provides many different surfaces from which we can derive a kind
of average : the k% attainment surface. This is defined as the boundary between two
distinct parts of the cost space, the one where points were attained on more than k% of the
runs and its complementary. It can be approximated by techniques suggested in [KC00].
A set of diagonals emanating from the origin is defined and the intersection with every
surface is computed for each of them. Supposing that there is a total of N surfaces, an
approximation of the p/N attainment surface (0 ≤ p ≤ N) is obtained as the attainment
surface defined by the pth point on each line (starting from the origin). This is illustrated
on Figure 1.3.5. In three dimensions this method leads to a sorely vizualisable surface but
an alternative approach was proposed to cope with the problem [Kno05].

Another analysis consists in performing a statistical test on each line in order to decide
(with a certain confidence) that an algorithm τ did better than another τ ′, the opposite, or
that no conclusion can be made with the confidence level chosen. Results are presented in
the form of a pair (a, b) where a is the percentage of lines where τ is better than τ ′ and b
the percentage where τ ′ is better than τ . A big value of 1− (a+ b), which is the percentage
of lines where no decision could be made, means it is hard to conclude that one algorithm
was superior than the other. This approach may enable to identify parts of the cost space
where an algorithm performs particularly well or bad.

1.3. QUALITY ASSESSMENT 15

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

Diagonals

25% attainment surface

Approximations

Figure 1.3.5: Approximation of a 25% attainment surface. There are four approximations
so the third point is picked on each diagonal emanating from the origin.

1.4 Existing Solution Methods

1.4.1 Classical Methods
In this section we review several popular techniques that work according to the same

principle : they generate a set of different trade-offs by converting the multi-criteria
problem π into a parametrized single criteria version π′(λ). By solving the latter problem
for different values of λ many non-dominated solutions can be obtained. Most techniques
are categorized both as a priori and a posteriori methods depending on whether π′(λ) is
solved using one or more values of the parameter λ. However, for reasons discussed in
previous section we are more interested on the a posteriori usage of these techniques.
Hence we are interested in the ability of each method to generate a well distributed set of
non-dominated solutions when the parameter is varied.

1.4.1.1 Weighted Sum

The weighted sum method is probably the most widespread approach due to its sim-
plicity. A scalar cost function is defined as an aggregation of costs using weights as defined
below.

Definition 1.4.1 (λ-Aggregation) Let C = (C1, . . . , Cd) be a d-dimensional function and
let λ = (λ1, . . . λd) be a vector such that

1. ∀j ∈ [1..d], λj > 0

2.
∑d

j=1 λj = 1.

The λ-aggregation of C is the function Cλ =
d∑
j=1

λjCj .

Intuitively, the components of λ represent the relative importance (weight) one asso-
ciates with each objective. The parametrized problem π′(λ) in this case is

minimize
x

Cλ(x)

subject to x ∈ S.
(1.4D)

16 1.4. EXISTING SOLUTION METHODS

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

A fundamental result about the weighted sum method is that the solution of π′(λ) is
properly Pareto efficient for any λ with strictly positive coordinates.

Definition 1.4.2 (Proper Pareto Optimality (Geoffrion, 1968)) A point x∗ ∈ X is called
properly Pareto optimal if it is Pareto optimal and there is a real number M > 0 such
that for all x ∈ X satisfying Ci(x) < Ci(x

∗) for some i, there exists an index j with
Cj(x

∗) < Cj(x) such that
Ci(x

∗)− Ci(x)

Cj(x)− Cj(x∗)
≤M

The properly Pareto property is stronger than Pareto optimality. It excludes the Pareto
solutions which achieve a small improvement in one objective at the expense of a drastic
deterioration of others.

Theorem 1A (Geoffrion (1968)) Let λ ∈ Rd such that ∀j ∈ [1..d], λj > 0. Then the
optimal solution x∗ ∈ X of 1.4D is properly efficient.

The theorem gives a guarantee that the solutions generated with the weighted sum
method are good. Actually the reason may intuitively be understood if we look at the
cost space of a linear problem. In this particular situation, linearity implies that the level
sets are parallel hyperplanes perpendicular to the weight vector. Finding the optimum is
equivalent to shifting the hyperplane in the direction of the weight vector, reaching the
optimum when no more feasible points are located under the hyperplane (Figure 1.4.1).
When the problem is not linear the level sets have a more complex shape but the property
still holds. A reciprocal theorem also exists but it necessitates an additional convexity
hypothesis.

Theorem 1B (Geoffrion (1968)) Let the decision space X ⊂ Rn be convex and Ci i ∈
[1..d] be convex functions. Then x∗ ∈ X is properly efficient iff there exists λ ∈ Rd with
strictly positive coordinates such that x∗ is the optimal solution of 1.4D.

This result is the basis for exact methods solving multi-criteria linear programs, in-
cluding extensions of the well known simplex algorithm to multiple objectives [Ehr05].
Solutions which can be found as solution to (1.4D) are termed supported. Theorem 1B can
thus be rephrased as: any Pareto solution of a convex problem is supported. Unfortunately
this does not hold anymore if the convexity hypothesis is relaxed. Indeed the weighted sum
method cannot reach points situated on locally concave parts of a Pareto front, a fact that
can also be understood graphically (figure 1.4.1). This is problematic since many concrete
problems have a non convex feasible set.

Furthermore, choosing the set of λ parameters appropriately is another non trivial issue.
In practice, a uniform sampling of the set Λ of weight vectors satisfying the conditions of
Definition 1.4.1, is typically used. For any multi-criteria problem π with m different Pareto
solutions, Λ can be partitioned into m subsets Λ1 . . .Λm, each consisting of weight vectors
that lead to the same point. The structure of this partition is a priori unknown and it may
vary a lot depending on the problem. Therefore it is not always the case that a uniform
sampling of Λ will generate a well distributed set of solutions. The work described in
Chapter 3 provides a solution to this problem.

1.4. EXISTING SOLUTION METHODS 17

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

Supported

cost 1

co
st

 2

Level sets

Non supported

Figure 1.4.1: The optimum of 1.4D is such that there are no solutions under the level set
line, which is why it is Pareto optimal. Only supported solutions are optimum under some
scalarization of the objectives using weights.

1.4.1.2 Epsilon-Constraint Method

The epsilon-constraint method [HLW71] consists in solving subproblems of the fol-
lowing form

minimize
x

Ck(x)

subject to x ∈ S,
∀i 6= k Ci(x) ≤ εi.

(1.4E)

for some fixed k and varying εi values. The idea is to minimize one of the objective
function while the others are put into constraints as outlined in 1.1.2. Unlike the weighted
sum method this technique is theoretically able to reach any Pareto point of a non-convex
problem. This can be observed on figure 1.1.3 where the optimum point lies on a concave
part of the front. Nonetheless the epsilon-constraint method features two drawbacks:

1. The optimum of 1.4E is only garanted to be weakly Pareto [Ehr05]

2. It is difficult to find interesting values of the parameter ε. In particular the problem
may become unfeasible due to the new constraints on objective functions.

1.4.1.3 Weighted Metric Method

Another series of techniques seeks to minimize the weighted distance to an ideal point
which is impossible to reach.

minimize
x

(
d∑
i=1

λi|Ci(x)− c∗|p
) 1

p

subject to x ∈ S.

(1.4F)

In Equation 1.4F point c∗ ∈ Y is the ideal solution defined as follows: for all i c∗i is the
value obtained when minimizing the function Ci individually i.e c∗i = minx∈S Ci(x). For
p = 1 this gives the weighted sum method, for p = 2 the distance is a weighted euclidian

18 1.4. EXISTING SOLUTION METHODS

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

distance in Rd. The formulation with p =∞, which is known as the weighted Tchebycheff
problem, is shown in Equation 1.4G.

minimize
x

max
i=1...d

λi|Ci(x)− c∗|

subject to x ∈ S.
(1.4G)

This method is theoretically interesting because it can find any Pareto point, even for
non-convex problems.

1.4.1.4 Normal Boundary Intersection Method

Normal Boundary Intersection (NBI) [DD98] is a methodology originally designed
to tackle non-linear continuous optimization problems. The method seeks to find evenly
distributed points on the Pareto frontier. It works by projecting elements of a specific
convex hull of points (the convex hull of individual minima defined below) towards the
boundary of the feasible cost space Z .

Definition 1.4.3 (Convex Hull of Individual Minima (CHIM)) For every i in [1..d] let
x∗i be the point in X which minimizes Ci. Let ci = C(x∗i) and c∗ = (C1(x

∗
1) . . . Cd(x

∗
d))

T

the ideal solution. The convex hull of the individual minima (CHIM) is the set

CHIM = {Mω : ω ∈ Rd,
d∑
i=1

ωi = 1}

where M is a d× d matrix whose ith column is ci − c∗.

Formally the NBI method consists in solving the following subproblems

maximize
x

t

subject to x ∈ S, t ∈ R,
Mω + tn = C(x)− c∗.

(1.4H)

where n = M(−1 . . .− 1)T is a quasi-normal vector pointing backwards towards the
origin, and ω is a vector in [0, 1]d which is going to be varied. In the equations above
Mω actually represent an arbitrary point in the CHIM whereas Mω + tn is a point on
the line whose direction is the quasi-normal and which goes through Mω. By imposing
Mω + tn = C(x)− c∗ in the model and maximizing the t, the solution to the subproblem
1.4H is the intersection of the line with the boundary ofZ . This is probably best understood
by looking at a figure (1.4.2).

On the contrary to previously described techniques we can expect that by choosing
a uniformly distributed set of ω in [0, 1]d we would obtain an evenly distributed set of
solutions on the Pareto front. This nice feature makes the method really appealing in
practice. Furthermore it has been proved that the method is independent of the relative
scales of the objectives, meaning that the solution to 1.4H does not change if objective
functions are multiplied by arbitrary constants.

One drawback of the Normal Boundary Intersection technique is that it may return
points which are dominated if the boundary is concave. Indeed the Pareto front only
matches the boundary if the latter is convex (figure 1.4.2). Moreover when d > 2 some
of the Pareto points are unreachable by program 1.4H, at least if we stick to parameters

1.4. EXISTING SOLUTION METHODS 19

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

verifying
∑d

i=1 ωi = 1. A simple example from which this can be seen was given
in [DD98]. Consider Z as being a sphere in R3 which touches every axes. There exists
Pareto points which cannot be obtained by projecting a point from the CHIM. Instead
they may be reached starting from a point on the affine hyperplan containing the CHIM,
denoted CHIM+. Another possible limitation is the need for the individual minima x∗i
i ∈ [1..d], as those points may be hard to compute.

cost 1

c
o

s
t

2

CHIM

Pareto

Not Pareto

Normal VectorY

F∗1F∗

F∗2

Figure 1.4.2: Illustration of the NBI method. Points are projected from the CHIM to the
boundary of Y . Some of the points obtained are not Pareto, because the boundary is not
convex.

1.4.2 Evolutionary Algorithms
An evolutionary optimization algorithm is a metaheuristic which mimics the biological

evolution of species in order to solve an optimization problem. Solutions are interpreted as
the genotypes of individuals in a population which may be recombined (crossover) and
mutated. Those algorithms also apply the principle of survival of the fittest, meaning that
they feature a selection mechanism in favor of the best individuals in the population.

Among the class of evolutionary algorithm, genetic algorithms are well-known meta-
heuristics particulary well suited for tackling combinatorial optimization problems. When
the search space is discrete, solutions are generally encoded as bit strings where each
bit represents a gene. Each individual in the population is also attributed a fitness value
using the objective functions, and this determines its chances of survival. A genetic algo-
rithm starts from an initial population (randomly generated) and successively applies three
genetic operators to give birth to an offspring.

Reproduction. The purpose of this phase is to build a mating pool containing the most
promising solutions. This is therefore a selection step in which some solutions are
selected based on their fitness value (note that a single solution may be added twice
to the mating pool). A common method for doing this is the tournament selection, in
which a tournament is repeatedly played between two members of a population, and
the winner (the one with better fitness value) is added to the pool.

Crossover. The elements of the pool are then recombined using a crossover operator.
Typically a crossover consists in creating one or two new individuals by mixing the
genes of two parents picked in the mating pool. As an example a one-point crossover

20 1.4. EXISTING SOLUTION METHODS

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

first cuts the genotypes of both parents at the same point, and uses these pieces to
build two children (Figure 1.4.3).

crossover point

Parent A

Parent B

Children A

Children B

Figure 1.4.3: Example of a one-point crossover.

Mutation. Additionally, each created individual is mutated with a certain probability
called the mutation rate. A mutation is just a random change in the string representing
the individual. For example, if the representation is a bit-vector, a possible mutation
flips one or more bits at random. Generally this phase brings better diversity in
the population than the crossover does, since the latter is just a (quite simple)
recombination of existing genes.

These three operators are used to give birth to a new generation of individuals. The
new population is constituted by either the offspring generated or a selection of the best
individuals of the offspring and the previous population (in the second case the algorithm
is said to be elitist). The whole process is repeated a predefined number of times, which
corresponds to the number of generations the algorithm will create. The working principle
of a genetic algorithm is illustrated on Figure 1.4.4 which is borrowed from [Deb01].

1.4. EXISTING SOLUTION METHODS 21

CHAPTER 1. MULTI-CRITERIA OPTIMIZATION

Init population

gen = 0

yes

No

Begin

Evaluation Fitness

Termination ?

Reproduction

Crossover

Mutation

Endgen = gen + 1

Figure 1.4.4: Genetic Algorithm flowchart.

22 1.4. EXISTING SOLUTION METHODS

Chapter 2

Satisfiability-Based Approximation
Algorithms

Résumé : Ce chapitre détaille la première contribution de la thèse. Il s’agit d’une
méthodologie permettant d’approximer le front de Pareto d’un problème d’optimisation
multi-critère, en utilisant un solveur SMT (Satisfiability Modulo Theories). Nous avons
développé un algorithme qui génère des appels successifs au solver avec différentes
contraintes sur les objectifs du problème, et maintient deux ensembles : celui des solutions
non-dominées obtenues jusque lors (qui constitue l’approximation du front de Pareto), et
celui des points “unsat”, qui définit une zone de l’espace des objectifs au delà de laquelle
aucune solution ne peut être trouvée. L’intérêt de garder cette zone unsat est double :
d’une part, la distance entre l’approximation du front de Pareto et la zone unsat définit
une borne sur la qualité de l’approximation, et d’autre part la recherche est orientée
uniquement vers les zones de l’espaces des objectifs ou il y a éventuellement des solutions.
Une des contributions majeures de cette partie est le développement d’un algorithme
de recherche dichotomique multi-dimensionnel que nous utilisons afin de minimiser la
distance entre l’approximation et la zone unsat. Cet algorithme de recherche, qui est basé
sur des structures géométriques particulières, est indépendant du fait que nous traitons
un problème d’optimisation multi-critère. Il s’agit seulement de minimiser la distance
entre les frontières de deux ensembles multi-dimensionnel (ayant toutefois une structure
particulière), en procédant par dichotomie. Il pourrait donc potentiellement servir dans
d’autres contextes.

2.1 Introduction
In this chapter we present our first contribution, a general methodology for approximat-

ing the Pareto front of multi-criteria optimization problems. Our search-based methodology
consists of submitting queries to a constraint solver. Hence, in addition to a set of solutions,
we can guarantee bounds on the distance to the actual Pareto front and use this distance to
guide the search.

Multiple-criteria or multi-objective optimization problems have been studied since the
dawn of modern optimization using diverse techniques, depending on the nature of the
underlying optimization problems (linear, nonlinear, combinatorial) [Ste86, EG00, FGE05,

23

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

0 xy

x∗

cost

Figure 2.1.1: Example of satisfiability-based one-dimensional optimization. The lower
part has been shown unsat and the higher part is dominated by x. An upper bound on the
distance of x to the optimum x∗ is given by the value x− y.

Ehr05]. One approach consists of defining an aggregate one-dimensional cost/utility
function by taking a weighted sum of the various costs. Each choice of a set of coefficients
for this sum will lead to an optimal solution for the one-dimensional problem which is
also a Pareto solution for the original problem (cf. Chapter 1). Another popular class
of techniques is based on heuristic search, most notably genetic/evolutionary algorithms
[Deb01, ZT98], which are used to solve problems related to design-space exploration
of embedded systems, the same problems that motivate our work. As we outlined in
Chapter 1, a major issue in these heuristic techniques is finding meaningful measures of
quality for the sets of solutions they provide [ZTL+03].

We explore an alternative approach to solve the problem based on satisfiability solvers
that can answer whether there is an assignment of values to the decision variables which
satisfies a set of constraints. It is well known, in the single-criterium case, that such solvers
can be used for optimization by searching the space of feasible costs and asking queries
of the form: is there a solution which satisfies the problem constraints and its cost is not
larger than some constant? Asking such questions with different constants we obtain
both positive (sat) and negative (unsat) answers. Taking the minimal cost x among the
sat points and the maximal cost y among the unsat points we obtain both an approximate
solution x and an upper bound x − y on its distance from the optimum, that is, on the
quality of the approximation (Figure 2.1.1).

We extend this idea to multi-criteria optimization problems. Our goal is to use the
sat points as an approximation of the Pareto front of the problem, use the unsat points to
guarantee computable bounds on the distance between these points and the actual Pareto
front and to direct the search toward parts of the cost space so as to reduce this distance
(Figure 2.1.2). To this end we define an appropriate metric on the cost space as well as
efficient ways to recompute it incrementally as more sat and unsat points accumulate. A
prototype implementation of our algorithm also demonstrates the quality and efficiency of
our approach on synthetic Pareto fronts.

The rest of the chapter is organized as follows. Section 2 defines the problem setting
including the notions of distance between the sat and unsat points which guides our search
algorithm. In Section 3 we describe some fundamental properties of certain points on
the boundary of the unsat set (knee points) which play a special role in computing the
distance to the sat points, and show how they admit a natural tree structure. In Section 4
we describe our exploration algorithm and the way it updates the distance after each query.
Section 5 reports our implementation and experimental results on some purely-synthetic

24 2.1. INTRODUCTION

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

Figure 2.1.2: Multi-dimensional search. The unsat part (down left) is a lower bound to the
approximation (black points) of the Pareto front (dashed points).

benchmarks of varying dimension and accuracy 1.

2.2 Preliminary Definitions
In the context of satisfiability-based optimization, a constrained problem (we use

minimization henceforth) may be stated as the following formulation of definition 1.2C:

minimize
x

C(x)

subject to ϕ(x).
(2.2A)

where x is a vector of decision variables, ϕ is a set of constraints on the variables that
define which solution is considered feasible and C is a cost function defined over the
decision variables. We reformulate the problem by moving costs to the constraint side, that
is, letting ϕ(x, c) denote the fact that x is a feasible solution whose cost is c. Hence the
optimum is

min{c : ∃x ϕ(x, c)}.

Moving to multi-criteria optimization, c becomes a d-dimensional vector (c1, . . . cd) that
we assume, without loss of generality, 2 to range over the bounded hypercube Y = [0, 1]d,
that we call the cost space. In the sequel we use notation r for (r, . . . , r).

We assume that the maximal cost 1 is feasible and that any cost with some ci = 0 is
infeasible. This is expressed as an initial set of unsat points {0i}i=1..d where 0i is a point
with ci = 0 and cj = 1 for every j 6= i. The set Y is a lattice with a partial-order relation
defined as:

s ≤ s′ ≡ ∀i si ≤ s′i (2.2B)

Pairs of points such that s 6≤ s′ and s′ 6≤ s are said to be incomparable, denoted by s||s′.
The strict version of ≤ is

s < s′ ≡ s ≤ s′ ∧ ∃j sj < s′j (2.2C)

1. The technique is later on used to solve scheduling problems where we show the trade-offs between
execution time and power consumption (Chapter 5).

2. One can normalize the cost functions accordingly.

2.2. PRELIMINARY DEFINITIONS 25

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

�
�
�

�
�
�

��
��
��
��

B+(s)
s

s′ < s

s < s′s||s′

s||s′
B−(s)

Figure 2.2.1: A point s and its backward and forward cones.

meaning that s strictly improves upon s′ in at least one dimension without being worse on
the others. In this case we say that s dominates s′. We will make an assumption that if cost
s is feasible so is any cost s′ > s (one can add a slack variable to the cost). The meet and
join on Y are defined as

s u s′ = (min{s1, s′1}, . . . ,min{sd, s′d})
s t s′ = (max{s1, s′1}, . . . ,max{sd, s′d})

We say that a point in the cost space s′ is an i-extension of a point s if s′i > si and s′j = sj
for every i 6= j.

A point s in a subset S ⊆ Y is minimal if it is not dominated by any other point in
S, and is maximal if it does not dominate any point in S. We denote the sets of minimal
and maximal elements of S by S and S, respectively. We say that a set S of points is
domination-free if all pairs of elements s, s′ ∈ S are incomparable, which is true by
definition for S and S. The domination relation associates with a point s two rectangular
cones B+(s) and B−(s) consisting of points dominated by (resp. dominating) s:

B−(s) = {s′ ∈ Y , s′ < s} and B+(s) = {s′ ∈ Y , s < s′}.

These notions are illustrated in Figure 2.2.1. Note that both B−(s)∪ {s} and B+(s)∪ {s}
are closed sets. If cost s is feasible it is of no use to look for solutions with costs in B+(s)
because they are worse than s. Likewise, if s is infeasible, we will not find solutions
in B−(s). 3 We let B−(S) and B+(S) denote the union of the respective cones of the
elements of S and observe that B+(S) = B+(S) and B−(S) = B−(S).

Suppose that we have performed several queries and the solver has provided us with
the sets S0, and S1 of unsat and sat points, respectively. Our state of knowledge is
summarized by the two sets K1 = B+(S1) and K0 = B−(S0). We know that K1 contains
no Pareto points and K0 contains no solutions. The domain for which S0 and S1 give
us no information is K̃ = (Y −K0) ∩ (Y −K1). We use bd(K0) and bd(K1) to denote
the boundaries between K̃ and K0 and K1, respectively. It is the “size" of K̃ or the
distance between the boundaries bd(K0) and bd(K1) which determines the quality of our
current approximation (Figure 2.2.2). Put another way, if S1 is our approximation of the
Pareto surface, the boundary of K0 defines the limits of potential improvement of the
approximation, because no solutions can be found beyond it. This can be formalized as an

3. Note that the query is formulated as c ≤ s and if the problem is discrete and there is no solution whose
cost is exactly s, the solver would provide a solution with c = s′ < s if such a solution exists.

26 2.2. PRELIMINARY DEFINITIONS

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

S0

S1

(a) (b)

K1 = B+(S1)

K̃

K0 = B−(S0)

Figure 2.2.2: (a) Sets S0 and S1 represented by their extremal points S0 and S1; (b) The
gaps in our knowledge at this point as captured by K0, K1 and K̃. The actual Pareto front
is contained in the closure of K̃.

appropriate (directed) distance between S1 and K0. Note that no point in S1 can dominate
a point in K0.

Definition 2.2.1 (Directed Distance between Points and Sets) The directed distance ρ(s, s′)
between two points is defined as

ρ(s, s′) = max{s′i
.− si : i = 1..d},

where x .− y = x− y when x > y and 0 otherwise. The distance between a point s and a
set S ′ is the distance between s to the closest point in S ′:

ρ(s, S ′) = min{ρ(s, s′) : s′ ∈ S ′}.

The Hausdorff directed distance between two sets S and S ′

ρ(S, S ′) = max{ρ(s, S ′) : s ∈ S}.

In all these definitions we assume s′ 6< s for any s ∈ S and s′ ∈ S ′.

In other words
ρ(S, S ′) = max

s∈S
min
s′∈S′

max
i=1..d

s′i
.− si.

Definition 2.2.2 (ε-Approximation) A set of points S is an ε-approximation of a Pareto
front P if ρ(P, S) ≤ ε.

It may be noted that the definition of ε-approximation is related to the notion of additive
ε-indicator presented in Chapter 1. A set is an ε-approximation if and only if the value of
the indicator with the Pareto set as reference is less than ε. Now, since the Pareto surface is
bounded from below by bd(K0) we have:

Observation 1 Consider an optimization problem such that S0 is included in the set of
infeasible solutions, with K0 = B−(S0). Then any set S1 of solutions which satisfies
ρ(bd(K0), S1) ≤ ε is an ε-approximation of the Pareto set P .

2.2. PRELIMINARY DEFINITIONS 27

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

approximation

Pareto points

unsat

ε

ε

Figure 2.2.3: ε-approximation with the grid.

Our goal is to obtain an ε-approximation of P by submitting as few queries as possible
to the solver. To this end we will study the structure of the involved sets and their distances.
We are not going to prove new complexity results because the upper and lower bounds on
the number of required queries are almost tight:

Observation 2 (Bounds)

1. One can find an ε-approximation of any Pareto front P ⊆ Y using (1/ε)d queries;

2. Some Pareto fronts cannot be approximated by less than (1/ε)d−1 points.

Proof 1 For (1), similarly to [PY00], define an ε-grid over Y , ask queries for each grid
point and put them in S0 and S1 according to the answer. Then take S1 as the approximation
whose distance from bd(S0) is at most 1/ε by construction (Figure 2.2.3). For (2), consider
a “diagonal" surface

P = {(s1, . . . , sd) :
d∑
i=1

si = 1}

which has dimension d− 1.

Remark: The lower bound holds for continuous Pareto surfaces. In discrete problems
where the solutions are sparse in the cost space one may hope to approximate P with less
than (1/ε)d points, maybe with a measure related to the actual number of Pareto solutions.
However since we do not work directly with P but rather with S0, it is not clear whether
this fact can be exploited. Of course, even for continuous surfaces the lower bound is
rarely obtained: as the orientation of the surface deviates from the diagonal, the number of
needed points decreases. A surface which is almost axes-parallel can be approximated by
few points.

Updating the distance ρ(bd(K0), S1) as more sat and unsat points accumulate is the
major activity of our algorithm hence we pay a special attention to its efficient implemen-
tation. It turns out that it is sufficient to compute the distance ρ(G,S1) where G is a finite
set of special points associated with any set of the form B−(S).

28 2.2. PRELIMINARY DEFINITIONS

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

(b)(a)

K1 = B+(S1)

K̃

K0 = B−(S0)

Figure 2.3.1: (a) Knee points, denoted by circles; (b) Knee points viewed as the minimal
points of Y −K0.

2.3 Knee Points
Definition 2.3.1 (Knee Points) A point s in bd(K0) is called a knee point if by subtracting
a positive number from any of its coordinates we obtain a point in the interior of K0. The
set of all such points is denoted by G.

In other words the knee points, illustrated in Figure 2.3.1-(a), represent the most
unexplored corners of the cost space where the maximal potential improvement resides.
This is perhaps best viewed if we consider an alternative definition of G as the minimal set
such that Y − int(K0) = cl(B+(G)) (Figure 2.3.1-(b)). Since ρ(s, s′) can only increase
as s moves down along the boundary we have:

Observation 3 (Distance and Knee Points) ρ(bd(K0), S1)) = ρ(G,S1).

Our algorithm keeps track of the evolution of the knee points as additional unsat points
accumulate. Before giving formal definitions, let us illustrate their evolution using an
example in dimension 2. Figure 2.3.2-(a) shows a knee point g generated by two unsat
points s1 and s2. The effect of a new unsat point s on g depends, of course, on the relative
position of s. Figure 2.3.2-(b) shows the case where s 6> g: here knee g is not affected at
all and the new knees generated are extensions of other knees. Figure 2.3.2-(c) shows two
unsat points dominated by g: point s5 induces two extensions of g and point s6 which does
not. The general rule is illustrated in Figure 2.3.2-(d): s will create an extension of g in
direction i iff si < hi where hi is the extent to which the hyperplane perpendicular to i can
be translated forward without eliminating the knee, that is, without taking the intersection
of the d hyperplanes outside K0.

Let S be a set of incomparable points and let {s1, . . . , sd} ⊆ S be a set of d points
such that for every i and every j 6= i sii < sji . The ordered meet of s1, . . . , sd is

[s1, . . . , sd] = (s11, s
2
2, . . . , s

d
d). (2.3D)

Note that this definition coincides with the usual meet operation on partially-ordered sets,
but our notation is ordered, insisting that si attains the minimum in dimension i. The knee
points of S are maximal elements of the set of points thus obtained (Figure 2.3.3). With
every knee g ∈ G we associate a vector h defined as h = 〈s1, s2, . . . , sd〉 = (h1, . . . , hd)
with hi = min

j 6=i
sji for every i, characterizing the extendability of s in direction i.

2.3. KNEE POINTS 29

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

�
�
�

�
�
�

��
��
��
��

�
�
�
�

s1

s2
g

h2

f1

f2

h1

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

g

s3

s4

(a) (b)

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

g

s5

s6

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

g

s8

s7

h2

h1

(c) (d)

Figure 2.3.2: (a) A knee g generated by s1 and s2. It is the intersection of the two
hyperplanes f1 and f2 (dashed lines); (b) new unsat points s3 and s4 which are not
dominated by g and have no influence on it; (c) new unsat points s5 and s6 which are
dominated by g and hence eliminate it as a knee point. Point s5 generates new knees as
“extensions" of g while the knees generated by s6 are not related to g; (d) point s7 generates
an extension of g in direction 2 and point s8 generates an extension in direction 1. These
are the directions i where the coordinates of the unsat points are strictly smaller than hi
(dotted lines).

30 2.3. KNEE POINTS

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

K0

s2

s1

g = [s1, s2]

s3[s1, s3]

s0

s4

Figure 2.3.3: Knee points are the maximal elements obtained by the meet of d unsat points.
The meet [s1, s2] is maximal and therefore defines a knee point g, whereas [s1, s3] does not.
Dimension two is a degenerate case, since knee points are easily computable by taking
the meet of any two unsat successors: in our example knee points correspond to [s0, s1],
[s1, s2], [s2, s3], and [s3, s4]. In arbitrary dimension generating knee points is not trivial.

Proposition 2.3.1 (Knee Generation) Let S be a set of unsat points with a set of kneesG,
let s be a new unsat point and let G′ be the new set of knees associated with S ∪ {s}. Then
the following holds for every g ∈ G such that g = [s1, . . . , sd] and h = 〈s1, s2, . . . , sd〉

1. Knee g is kept in G′ iff g 6< s

2. If g ∈ G − G′, then for every i such that si < hi, G′ contains a new knee g′, the
i-descendant of g, defined as g′ = [s1, . . . , s, . . . , sd], extending g in direction i.

Before describing the tree data structure we use to represent the knee points let us make
another observation concerning the potential contribution of a new sat point in improving
the minimal distance to a knee or a set of knees.

Observation 4 (Distance Relevance) Let g, g1 and g2 be knee points with ρ(g, S) = r,
ρ(g1, S) = r1 and ρ(g2, S) = r2 and let s be a new sat point. Then

1. The distance ρ(g, s) < r iff s ∈ B−(g + r)

2. Point s cannot improve the distance to any of {g1, g2} if it is outside the cone
B−((g1 + r1) t (g2 + r2)).

Note that for the second condition, being in that cone is necessary but not sufficient.
The sufficient condition for improving the distance of at least one of the knees is s ∈
B−(g1 + r1) ∪B−(g2 + r2) as illustrated in Figure 2.3.4.

We represent G as a tree whose nodes are either leaf nodes that stand for current knee
points, or other nodes which represent points which were knees in the past and currently
have descendant knees that extend them (Figure 2.3.5). A node is a tuple

N = (g, [s1, . . . , sk], h, (µ1, . . . , µk), r, b)

where g is the point, [s1, . . . , sk] are its unsat generators and h is the vector of its extension
bounds. For each dimension i, µi points to the i-descendant of N (if such exists) and the
set of all direct descendants of N is denoted by µ. For leaf nodes N.r = ρ(N.g, S1) is
just the distance from the knee to S1 while for a non-leaf node N.r = maxN ′∈N.µN

′.r,
the maximal distance to S1 over all its descendants. Likewise N.b for a leaf node is the

2.3. KNEE POINTS 31

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

��
��
��
��

��
��
��
�� (g1 + r1) t (g2 + r2)

g1 + r1

g2 + r2

s2

s1

g1

g2

Figure 2.3.4: Two knees g1 and g2 and their respective nearest points s1 and s2. Points
outside the upper dashed square will not improve the distance to g1 and those outside
the lower square will not improve the distance to g2. Points outside the enclosing dotted
rectangle can improve neither of the distances.

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

g1

g2g0

g0

g1 g2

u0

g3

g4

u1

g3 g4

g5

g6

u2

g5

g6

Figure 2.3.5: Example of a knee tree in two dimensions, after adding successively three
unsat points u0, u1 and u2. Transparent squares are past knee points that have descendants,
and black squares are current knees on bd(K0). Note that in the depicted situation, g2 and
g4 have become useless in the tree: they are not knee points anymore and they have a
single descendant. In practice our algorithm discard these points.

maximal point such that any sat point in the interior of its back cone improves the distance
to N.g. For a non leaf node N.b =

⊔
N ′∈N.µN

′.b, the join of the bounds associated with
its descendants.

2.4 The Algorithm

Algorithm 2.4.1 iteratively submits queries to the solver in order to decrease the
distance between S1 and G.

The initialization procedure lets S0 = {01, . . . ,0d}, S1 = {(1, . . . , 1)} and hence
initially G = {g0} with g0 = [01, . . . ,0d] = (0, . . . , 0) and h = 〈01, . . . ,0d〉 = (1, . . . , 1).
The initial distance is ρ(G,S1) = 1. The update-sat and update-unsat procedures recom-
pute distances according to the newly observed point by propagating s through the knee tree.
In the case of a sat point, the goal is to track the knee points g such that ρ(g, s) < ρ(g, S1),
namely points whose distance has decreased due to s. When s is an unsat point, we have

32 2.4. THE ALGORITHM

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

Algorithm 2.4.1 Approximate Pareto Surface
initialize
repeat

select(s)
query(s) % ask whether there is a solution with cost ≤ s
if sat then

update-sat(s)
else

update-unsat(s)
end if

until ρ(G,S1) < ε

to update G (removing dominated knees, adding new ones), compute the distance from
the new knees to S1 as well as the new maximal distance. The algorithm stops when
the distance is reduced beyond ε. Note that since ρ(G,S1) is maintained throughout the
algorithm, even an impatient user who aborts the program before termination will have an
approximation guarantee for the obtained solution.

The propagation of a new sat point s is done via a call to the recursive procedure
prop-sat(N0, s) where N0 is the root of the tree (Algorithm 2.4.2).

Algorithm 2.4.2 Prop-Sat
procedure prop-sat(N, s)
if s < N.b then {s may reduce the distance to N.g or its descendants}
r := 0 % temporary distance over all descendants
b := 0 % temporary bound on relevant sat points
if N.µ 6= ∅ then {a non-leaf node}

for every i s.t. N ′ = N.µi 6= ∅ do {for every descendant }
prop-sat(N ′, s)
r := max{r,N ′.r}
b := b tN ′.b

end for
else {leaf node }
r := min{N.r, ρ(N.g, s)} % improve if s is closer
b := N.g + r
N.r := r
N.b := b

end if
end if

The propagation of a new unsat point s, which is more involved, is done by invoking
the recursive procedure prop-unsat(N0, s) (Algorithm 2.4.3). The procedure returns a bit
ex indicating whether the node still exists after the update (is a knee or has descendants).

The prop-unsat procedure has to routinely solve the following sub problem: given a
knee point g and a set of non-dominating sat points S, find a point s ∈ S nearest to g
and hence compute ρ(g, S). The distance has to be non negative so there is at least one
dimension i such that gi ≤ si. Hence a lower bound on the distance is

ρ(g, S) ≥ min{si − gi : (i = 1..d) ∧ (s ∈ S) ∧ (si ≥ gi)},
2.4. THE ALGORITHM 33

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

Algorithm 2.4.3 Prop-Unsat
procedure prop-unsat(N, s)
ex := 1
if N.g < s then {knee is influenced}
ex := 0 % temporary existence bit
r := 0 % temporary distance over all descendants
b := 0 % temporary relevance bound
if N.µ 6= ∅ then {a non-leaf node}

for every i s.t. N ′ = N.µi 6= ∅ do {for every descendant}
ex′ :=prop-unsat(N ′, s)
if ex′ = 0 then
N.µi := ∅ % node N ′ is removed

else
ex := 1
r := max{r,N ′.r}
b := b tN ′.b

end if
end for

else {leaf node}
for i = 1..d do

if si < N.hi then {knee can extend in direction i }
ex := 1
create a new node N ′ = N.µi with
N ′.g = [N.s1, . . . , s, . . . , N.sk]
N ′.h = 〈N.s1, . . . , s, . . . , N.sk〉
N ′.r = ρ(N ′.g, S1)
N ′.b = N ′.g +N ′.r
N ′.µi = ∅ for every i
r := max{r,N ′.r}
b := b tN ′.b

end if
end for
N.r := r
N.b := b

end if
end if
return (ex)

34 2.4. THE ALGORITHM

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

v1
g2

g3

g1

v3v2

L2

L1

L3

ρ(g, S)

Figure 2.4.1: Finding the nearest neighbor of g: the first candidate for the minimal distance
is v1, the nearest projection which is on dimension 2 , but the point associated with it has a
larger distance on dimension 3; The next candidate is v2, the closest in dimension 3 but
the corresponding point also has larger coordinates. Finally, the point associated with v3,
the next value on L3, has all its distances in other dimensions smaller and hence it is the
closest point which defines the distance (dashed line).

and an upper bound is

ρ(g, S) ≤ max{si − gi : (i = 1..d) ∧ (s ∈ S)}.

We now present (informally) an algorithm and a supporting data structure for computing
this distance. Let (Li, <i) be the linearly-ordered set obtained by projecting S ∪ {g} on
dimension i. For every v ∈ Li let Θi(v) denote all the points in S whose ith coordinate is
v. Let σi(s) be the successor of si according to <i, that is, the smallest s′i such that si < s′i.
Our goal is to find the minimal value v in some Li such that there exists s ∈ Θi(v), si
defines the maximal distance to g, that is, si − gi > sj − gj for every j 6= i.

The algorithm keeps a frontier F = {f1, . . . , fd} of candidates for this role. Initially,
for every i, fi = σi(gi), the value next to gi and the candidate distances are kept in
∆ = {δ1, . . . , δd} with δi = fi − gi. The algorithm is simple: each time we pick the
minimal δi ∈ ∆. If for some s ∈ Θi(fi) and for every j 6= i we have sj − gj < si− gi then
we are done and found a nearest point s with distance δi. Otherwise, if every s ∈ Θ(fi)
admits some j such that sj − gj > si − gi we conclude that the distance should be greater
than δi. We then let fi = σi(fi), update δi accordingly, take the next minimal element of ∆
and so on. This procedure is illustrated in Figure 2.4.1. The projected order relations are
realized using an auxiliary structure consisting of d ordered lists.

2.4.1 The Selection Procedure
Selecting the next query to ask is an important ingredient in any heuristic search

algorithm, including ours. We employ the following simple rule. Let g and s be a knee
and a sat point whose distance ρ(g, s) is maximal and equal to r = si − gi for some i. The
next point for which we ask a query is s′ = s+ r/2. If s′ turns out to be a sat point, then
the distance from g to S1 is reduced by half. If s′ is an unsat point then g is eliminated and
is replaced by zero or more new knees, each of which is r-closer to S1 in one dimension.
For the moment we do not know to compute an upper bound on the worst-case number

2.4. THE ALGORITHM 35

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

of queries needed to reach distance ε except for some hand-waving arguments based on a
discretized version of the algorithm where queries are restricted to the ε-grid. Empirically,
as reported below, the number of queries was significantly smaller than the upper bound.

2.5 Experimentation
We have implemented Algorithm 1 and tested it on numerous Pareto fronts produced as

follows. We generated artificial Pareto surfaces by properly intersecting several convex and
concave halfspaces generated randomly. Then we sampled 10, 000 points in this surface,
defined the Pareto front as the boundary of the forward cone of these points and run our
algorithm for different values of ε. Figure 2.5.1 shows how the approximate solutions and
the set of queries vary with ε on a 2-dimensional example. One can see that indeed, our
algorithm concentrates its efforts on the neighborhood of the front. Table 2.1 shows some
results obtained as follows. For every dimension d we generate several fronts, run the
algorithm with several values of ε, compute the average number of queries and compare it
with the upper bound (1/ε)d. As one can see the number of queries is only a small fraction
of the upper bound. Note that in this class of experiments we do not use a constraint solver,
only an oracle for the feasibility of points in the cost space based on the generated surface.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pareto
sat

unsat

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pareto
sat

unsat

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pareto
sat

unsat

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pareto
sat

unsat

Figure 2.5.1: The results of our algorithm for the same front for ε =
0.05, 0.125, 0.001, 0.0005.

We also combined our algorithm with the SMT solver Z3 [DMB08], and have encoded
the following problem which triggered this research: given an application expressed as

36 2.5. EXPERIMENTATION

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

d no tests ε (1/ε)d min no queries avg no queries max no queries
2 40 0.050 400 5 11 27

0.025 1600 6 36 111
0.001 1000000 21 788 2494

3 40 0.050 8000 5 124 607
0.025 64000 6 813 3811

20 0.002 125000000 9 30554 208078
4 40 0.050 160000 5 1091 5970

0.025 2560000 10 11560 46906

Table 2.1: The average number of queries for surfaces of various dimensions and values of
ε.

a task-data graph (a partially-ordered set of tasks with task duration and inter-task com-
munication volume) and a heterogenous multi-processor architecture (a set of processors
with varying speeds and energy consumptions, and a communication topology), find a
mapping of tasks to processors and a schedule so as to optimize some performance criteria.
Chapter 5 which is dedicated to the study of this mapping/scheduling problem, reports the
results we obtained using Algorithm 2.4.1 and Z3 SMT solver.

2.6 Extensions and Future Work

This section contains some possible future extensions to the work achieved so far.
In the first part an extension of the algorithm to non-terminating calls is detailed. We
introduce queries with a limited time budget and discuss how the algorithm may escape
regions of the cost space where the call generally ends up in a timeout 4. In the second
part we propose an alternative to the binary search method, where instead of orienting the
search in a specific part of the cost space we formulate an additional weak constraint asking
for an improvement of the current approximation. The answer returned by the solver to
this extended query is unsat if the approximation is already ε-close to the Pareto front.
Otherwise, the query is satisfied and the provided solution brings a quantified improvement
over the current approximation.

2.6.1 Timeouts

A simple method to handle non-terminating calls is to abort the query after a given
amount of time (timeout) and to consider the answer as unsat, based on the fact that no
solution was found within the time limit. This is a straightforward way to alleviate the
problem but the quality of the approximation is no longer guaranteed. There is another
approach to this problem. Given a time budget per query after which we renounce to the
search, we can maintain a set S⊥ of the points where the call ended by a timeout. The
algorithm can further use this information to predict and avoid parts of the cost space
where answering queries is too difficult to be done within the time limit.

4. When the oracle is a SAT solver, which may take years to answer, it is necessary to cope with
non-terminating calls.

2.6. EXTENSIONS AND FUTURE WORK 37

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

In order to predict where the solver is likely to fail, its behavior must be axiomatized
in some way. In the sequel we suggest two reciprocal hypotheses for this purpose. Let s
and s′ be two points in the cost space such that s′ < s and, hence B−(s′) ⊂ B−(s). We
assume that:

1. It takes more time to find a solution in B−(s′) than in B−(s);

2. It takes more time to prove unsatisfiability in B−(s) than in B−(s′).

Intuitively, the first property follows the intuition that it is harder to find a solution when the
constraints are tighter and a solution in B−(s′) is also a solution in B−(s). Likewise, it is
easier to provide a proof of unsatisfiability for tighter queries. Despite the intuitive appeal
of these assumption, we should keep in mind that they are not always correct empirically
due to the complex working of SAT/SMT solvers. Such solvers make random choices and
may by chance be faster than expected. Another reason for violating these assumptions
is the technique known as learning which in a nutshell consists in adding clauses that
summarize previous deductions. This practice may lead to quick unsat answers once useful
information has accumulated. Despite these reservations, we stick in this section to these
reasonable assumptions that should hold on the average.

The two hypotheses entail a particular organization of the cost space between sat, unsat
and timeout parts. Let T be the (unknown) subspace of all timeout points, let T and T be
its minimal and maximal elements, respectively. Then T satisfies the property

T = B−(T) ∩B+(T) (2.6E)

This is due to the fact that each point in the intersection both dominates and is dominated by
at least one point of T and hence cannot be neither sat nor unsat. Given a finite set S⊥ ⊂ T
of already-discovered timeout points, any point in the intersection B−(S⊥) ∩B+(S⊥) is a
timeout point for the same reasons. Figure 2.6.1 depicts a partition between the sat, unsat
and timeout parts of the space, which is valid under the assumption. To reduce the number
of timeouts we should not ask queries with costs in B−(S⊥) ∩B+(S⊥).

��������

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��

����

��
��
��
��

�
�
�
�

SAT

UNSAT

T

T

T

Figure 2.6.1: A partition between the sat, unsat and timeout parts of the cost space
respecting property 2.6E.

Given this situation, two independent processes may be decoupled: the search for
solutions and the search for a lower bound, the latter becoming an option in this case. In
order to approximate the Pareto front, Algorithm 2.4.1 can be used to minimize the distance
between bd(B−(S0 ∪ S⊥)) and S1 (Figure 2.6.2 a). This is equivalent to considering that
timeout points are unsat, just like we suggested at the beginning of this section. This

38 2.6. EXTENSIONS AND FUTURE WORK

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

algorithm would produce an ε-approximation of the best approximation obtainable under a
given time budget per query. Reciprocally, Algorithm 2.4.1 can be used to refine the lower
bound by minimizing the distance between B−(S0) and S1 ∪ S⊥ (Figure 2.6.2-b).

SAT

UNSAT

T

UNSAT

SAT

TIMEOUT

SAT

UNSAT

T

UNSAT

SAT

TIMEOUT

(a) (b)

Figure 2.6.2: (a) The dashed line represents the boundary of B−(S0 ∪ S⊥). Under the as-
sumptions we have, this represents the limit of improvement for the current approximation
of the Pareto set. (b) The dashed line forms the boundary of B−(S1 ∪ S⊥). This is the
limit over which unsatisfiability cannot be proved anymore.

2.6.2 A Search by Successive Improvements
Another interesting variant of the querying methodology does not maintain the unsat

information, but instead directly asks the solver whether the current approximation S is an
ε-approximation of the Pareto set. This query that we denote as ψ(S) is encoded using the
following formula:

ψ(S) : @x (ϕ(x) ∧ ∀s ∈ S ρ(C(x), s) > ε)

If we develop the distance ρ and negate ψ(S) we obtain:

¬ψ(S) : ∃x ϕ(x) ∧s∈S ∨di=1(Ci(x) + ε < si)

This formula can be submitted to an SMT solver. If ¬ψ(S) is satisfied then the quality of
S is improved by adding the point C(x) whose distance to any point in S is larger than ε.
If it is unsatisfied, S is proved to be an ε-approximation of the Pareto front. This leads to a
new approximation algorithm (Algorithm 2.6.1).

Algorithm 2.6.1 Approximate Pareto Surface 2
S = (1 . . . 1)
while ¬ψ(S) do {call to SMT solver}
S = S ∪ {C(x)} % add C(x) to S where x is a model of ψ(S)

end while
return S % S is an ε-approximation of the Pareto front

The algorithm makes successive improvements of the current approximation until the
formula is unsat, meaning that the distance to the Pareto front is less than ε (Figure 2.6.3).

2.6. EXTENSIONS AND FUTURE WORK 39

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

Note that in this case there is a unique unsat call (the one showing the ε-optimality), and the
rest of the time is spent on finding solutions rather than proving unsatisfiability. Because
of this, this method could be an interesting alternative to the binary search approach.

(a) (b)

Figure 2.6.3: (a) The dashed line is the upper frontier of the part of the cost space where a
solution is searched. This is the boundary of B+(S) translated by ε. (b) After a solution is
found, S is updated and the search continues.

An additional advantage of this method is that each call is only weakly constrained,
because we do not specify where in the cost space to look for an improving solution.
Therefore the solver should quickly find solutions at the beginning of the search, and
slow down its pace when approaching the Pareto front. On the other hand there might
be a problem of convergence on problems admitting a dense space of solutions: with a
small ε, the rate of improvement of the approximation could be really slow. In this case,
the algorithm would benefit from an adaptive scheme where ε is decreased as the Pareto
frontier gets closer. Or, we could maintain an under and over-approximation of the frontier
and perform binary search by asking each query somehow in the middle between the two
approximations. Note however that from a technical viewpoint this technique may be hard
to implement efficiently because it requires asserting and de-asserting a lot of cost-related
constraints in the solver.

2.7 Conclusions
We have presented a novel approach for approximating the Pareto front. The difficulty

of the problem decomposes into two parts which can, at least to some extent, be decoupled.
The first is related to the hardness of the underlying constraint satisfaction problem, which
can be as easy as linear programming or as hard as combinatorial or nonlinear optimization.
The second part is less domain specific: approximate the boundary between two mutually-
exclusive subsets of the cost space which are not known a priori, based on adaptive
sampling of these sets, using the constraint solver as an oracle. We have proposed an
algorithm, based on a careful study of the geometry of the cost space, which unlike some
other approaches, provides objective guarantees for the quality of the solutions in terms
of a bound on the approximation error. Our algorithm has been shown to behave well on
numerous examples. The knee tree data structure represents effectively the state of the
algorithm and reduces significantly the number of distance calculations per query. We
speculate that this structure and further geometrical insights can be useful as well to other
approaches for solving this problem. We have investigated additional efficiency enhancing

40 2.7. CONCLUSIONS

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

tricks, most notably, lazy updates of the knee tree: if it can be deduced that a knee g does
not maximize the distance ρ(S0, S1), then the distance ρ(g, S1) need not be updated in
every step.

Finally we have presented extensions of the current work which have not been imple-
mented. Most urgently, the scalability of the method would be improved if we implement
a scheme to cope with calls that practically do not terminate. In the future we could
also investigate specializations and adaptations of our general methodology to different
classes of problems. For example, in convex linear problems the Pareto front resides on
the surface of the feasible set and its approximation may benefit from convexity and admit
some symbolic representation via inequalities. To conclude, we believe that the enormous
progress made during the last decade in SAT and SMT solvers will have a strong impact
on the optimization domain [NO06] and we hope that this work can be seen as a step in
this direction.

2.7. CONCLUSIONS 41

CHAPTER 2. SATISFIABILITY-BASED APPROXIMATION ALGORITHMS

42 2.7. CONCLUSIONS

Chapter 3

Universal Restarting Strategies in
Stochastic Local Search

Résumé : Ce chapitre présente un algorithme de recherche stochastique locale per-
mettant de résoudre des problèmes d’optimisation multi-critère. L’algorithme est basé
sur la méthode des sommes pondérées. Cette méthode consiste à définir comme nouvel
objectif une somme pondérée des fonctions objectif du problème multi-critère. En faisant
varier les poids de cette somme et en résolvant à chaque fois le problème d’optimisation
uni-dimensionnel associé, on obtient un ensemble de solutions non-dominées approxi-
mant le front de Pareto. Chaque vecteur de poids correspond en fait à une direction de
recherche particulière dans l’espace des objectifs. Toutefois, il n’est pas évident de choisir
ces vecteurs de manière à générer un ensemble de solutions bien diversifié (c’est à dire
bien réparti dans l’espace des coûts). Nous proposons une stratégie dont le but est de
multiplexer de manière équilibrée la recherche dans différentes directions, partant du
principe qu’aucune de ces directions ne doit être privilégiée a priori (c’est à dire que
l’on ne dispose pas d’informations particulières sur le problème traité). Cette stratégie
est inspirée de résultats concernant le redémarage optimal d’un algorithme stochastique.
Le redémarage est une technique simple qui permet d’éviter à l’algorithme de recherche
locale d’être piégé autour d’optima locaux. Il existe une stratégie de redémarage pré-
sentant des propriétés théoriques intéressantes qui s’applique à l’optimisation classique.
Nous avons combiné cette stratégie avec la méthode des sommes pondérées afin d’obtenir
un algorithme de résolution de problèmes multi-critère. L’algorithme a été testé sur le
problème de placement quadratique, ce qui a permis de valider l’efficacité de l’approche
proposée.

3.1 Introduction
In this chapter we present an adaptation of stochastic local search (SLS) algorithms

to the multi-objective setting. SLS algorithms perform a guided probabilistic exploration
of the decision space where at each time instance, a successor is selected among the
neighbors of a given point, with higher probability for locally-optimal points. They are
used extensively for solving hard combinatorial optimization problems for which exact
methods do not scale [HS04]. Among the well known techniques we find simulated

43

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

annealing [KGV83], tabu search [GM06] and ant colony optimization [AC91], each of
which has been applied to hard combinatorial optimization problems such as the traveling
salesman, scheduling or assignment problems. Also related to this work are population-
based genetic algorithms [Mit98, Deb01] which naturally handle several objectives as they
work on several individual solutions that are mutated and recombined. They are vastly
used due to their wide applicability and good performance and at the same time they also
benefit from combination with specialized local search algorithms, leading to the class of
so called memetic algorithms [KC05].

Many state-of-the-art local search algorithms have a multi-objective version [PS06a].
For instance, there exists extensions of simulated annealing [CJ98, BSMD08] and tabu
search [GMF97] to multiple objectives. As mentioned in Section 1.4.1.1, a popular
approach for handling multi-objective problems is based on scalarization: optimizing a
one-dimensional cost function defined as a weighted sum of the individual costs according
to a weight vector λ. Repeating the SLS process with different values of λ may lead to a
good approximation of the Pareto front. A possible option is to pick a representative set
of weight vectors a priori and run the algorithm for each scalarization successively. This
has been done in [UTFT99] using simulated annealing as a backbone. More sophisticated
methods have also emerged where the runs are made in parallel and the weight vector is
adjusted during the search [CJ98,Han97] in order to improve the diversity of the population.
Weight vectors are thus modified such that the different runs are guided towards distinct
unexplored parts of the cost space.

One of the main issues in using the weighted sum method is to appropriately share the
exploration time between different promising search directions induced by weight vectors.
Generally deterministic strategies are used: weight vectors are predetermined, and they
may be modified dynamically according to a deterministic heuristic. However, as pointed
out in Chapter 1.1.2, unless some knowledge about the cost space has been previously
acquired, one may only speculate about the directions which are worth exploring. For this
reason we study in this work a fully stochastic approach, based on the assumption that
all search directions are equally likely to improve the final result. The goal we seek is
therefore to come up with a scheme ensuring a fair time sharing between different weight
vectors.

To this end we borrow some ideas developed in the context of restarts for single-criteria
SLS. Restarting means abandoning the current location in the search space and starting
again from scratch. It is particularly efficient in avoiding stagnation of the algorithm and
escaping a region with local optima. Another aspect in which restarts may help is to
limit the influence of the random number generator. Random choices partly determine the
quality of the output and starting from scratch is a fast way to cancel bad random decisions
that were made earlier.

Most local search methods already feature a mechanism to combat stagnation, but
it can be insufficient. For example a tabu search process is sometimes trapped inside a
long cycle that it fails to detect. For this reason, restarts have been used extensively in
stochastic local search for combating problems associated with the cost landscape, and they
usually bring a significant improvement in the results. For instance greedy randomized
adaptive search procedures (GRASP) [FR95] or iterated local search [LMS03] are well-
known methods which run successive local search processes starting from different initial
solutions. In [HS04, Ch. 4] restarts in the context of single-criteria SLS are studied based
on an empirical evaluation of run-time distributions for some classes of problems.

44 3.1. INTRODUCTION

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

It has been observed (and proved [LSZ93]) that in the absence of a priori knowledge
about the cost landscape, scheduling such restarts according to a specific pattern boosts the
performance of such algorithms in terms of expected time to find a solution. This has led to
efficient algorithms for several problems, including SAT [PD07]. The major contribution
of this chapter is an algorithmic scheme for distributing the multi-objective optimization
effort among different values of λ according to the pattern suggested in [LSZ93]. The
algorithm thus obtained is very efficient in practice.

The rest of the chapter is organized as follows. In Section 3.2, we introduce an abstract
view of stochastic local search optimizers. Section 3.3 discusses the role of restarts in
randomized optimization. Section 3.4 presents our algorithm and proves its properties.
Section 3.5 provides experimental results and Section 3.6 concludes.

3.2 Stochastic Local Search

In the sequel we provide a general view of a stochastic local search algorithm which
we use for the rest of this chapter.

Definition 3.2.1 (Neighborhood) Let ρ : X 2 → N be a distance between vectors of the
decision space. The intended meaning of ρ(x, x′) is the minimal number of modifications
needed to transform x to x′ (and symmetrically x′ to x). The associated neighborhood on
X is then the symmetric binary relation defined as

N (x, x′) iff ρ(x, x′) = 1

The set V(x) = {x′ s.t. N (x, x′)} is called the neighborhood of x. The neighborhood
relation N can be viewed as a non-directed graph structure on X where two points x, x′

are connected when N (x, x′).
An SLS algorithm is a process which explores the decision space X through a run over

the neighborhood graph. The algorithm most of the time goes from one solution to a better
one in its local neighborhood (i.e it follows a path in the graph), but sometimes restarts
from another location. We represent a run as a word composed of the sequence of nodes
visited by the algorithm.

Definition 3.2.2 (Run) A run over the decision space X is a word ω ∈ X ∗. We denote by
ω and ω, respectively, the first and last symbol in ω.

An SLS algorithm generates a run by selecting at each step a a new node according
to a specific probability distribution over X . In the sequel we define an SLS strategy as a
function which, given the current run, returns a probability distribution over the next state.

Definition 3.2.3 (SLS strategy) An SLS strategy is a function S : X ∗ → (X → [0, 1])
which associates to each run a next-state probability distribution. For each ω ∈ X ∗ either
one of the two following holds

– ∀x /∈ V(ω), S(ω)(x) = 0 (local move)
– S(ω) = S(ε) (restart)

3.2. STOCHASTIC LOCAL SEARCH 45

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

The first condition ensures that except for restarts, all steps of the process are local. The
second condition characterizes restarts as drawing the next state from the initial probability
distribution S(ε) rather than the next-state probability. Typically S(ε) may be a uniform
distribution over X , or a deterministic choice meaning that restarts are always triggered
from pre-computed solution. In the following sections we study how to schedule such
restarts during a run of an SLS algorithm.

3.3 Restarting Single Criteria SLS Optimizers

This practice of restarting in SLS optimization has been in use at least since [SKC93].
At the same time, there is a theory of restarts formulated in [LSZ93] which applies to
Las Vegas algorithms which are defined for decision problems rather than optimization.
Such algorithms are characterized by the fact that their run-time until giving a correct
answer to the decision problem is a random variable. In the following we recall the results
of [LSZ93] and analyze their applicability to optimization using SLS. We begin by defining
properly what a strategy for restarting is.

Definition 3.3.1 (Restart Strategy) A restart strategy S is an infinite sequence of positive
integers t1, t2, t3, The t time prefix of a restart strategy S, denoted S[t] is the maximal
sequence t1, t2, . . . , tk such that Σk

i=1ti ≤ t.

Running a Las Vegas algorithm according to strategy S means running it for t1 units of
time, restarting it and running is for t2 units of time and so on.

3.3.1 The Luby Strategy

A strategy is called constantly repeating if it takes the form c, c, c, c, . . . for some
positive integer c. As shown in [LSZ93] every Las Vegas algorithm admits an optimal
restart strategy which is constantly repeating (the case of infinite c is interpreted as no
restarting). However, this fact is not of much use because typically one has no clue
for finding the right c. For these reasons, [LSZ93] introduced the idea of universal
strategies that “efficiently simulate” every constantly repeating strategy. To get the intuition
for this notion of simulation and its efficiency consider first the periodic strategy S =
c, c′, c, c′, c, c′, . . . with c < c′. Since resets are considered independent, following this
strategy for m(c+c′) steps amounts to spending mc time according to the constant strategy
c and mc′ time according to strategy c′. 1 Putting it the other way round, we can say that
in order to achieve (expected) performance as good as running strategy c′ for t time, it
is sufficient to run S for time t + c(t/c′). The function f(t) = t + c(t/c′) is the delay
associated with the simulation of c′ by S. 2 It is natural to assume that a strategy which
simulates numerous other strategies (i.e has sub-sequences that fit each of the simulated
strategies) admits some positive delay.

1. In fact, since running an SLS process for c′ is at least as good as running it for c time, running S for
m(c+ c′) is at least as good as running c for m(c+ c) time.

2. For simplicity here we consider the definition of the delay only at time instants t = kc′, k ∈ N. In
the case where t = kc′ + x, where x is an integer such that 0 < x < c′, the delay function would be
δ(t) = bt/c′cc+ t.

46 3.3. RESTARTING SINGLE CRITERIA SLS OPTIMIZERS

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

Definition 3.3.2 (Delay Function) A monotonic non-decreasing function δ : N → N,
satisfying δ(x) ≥ x is called a delay function. We say that S simulates S ′ with delay
bounded by δ if running S ′ for t time is not better than running S for δ(t) time.

It turns out that a fairly simple strategy, which has become known as the Luby strategy,
is universally efficient.

Definition 3.3.3 (The Luby Strategy) The Luby Strategy is the sequence

c1, c2, c3, . . .

where

ci
.
=

{
2k−1 if i = 2k − 1
ti−2k−1+1 if 2k−1 ≤ i < 2k − 1

which gives
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . (3.3A)

We denote this strategy by L.

A key property of this strategy is that it naturally multiplexes different constant strate-
gies. For instance the sequence 3.3A contains eight ones, four twos, two fours and one
eight, and the total time dedicated to each constantly repeating strategy 1, 2, 4 and 8 is the
same. More formally, let A denote a Las Vegas algorithm and A(c) denote the algorithm
which runs A for c time units. Then, the sum of the execution times spent on A(2i) is equal
for all 1 ≤ i < 2k−1 over a 2k − 1 length prefix of the series. As a result, every constant
restart strategy where the constant is a power of 2 is given an equal time budget. This can
also be phrased in terms of delay.

Proposition 3.3.1 (Delay of L) Strategy L simulates any power of two constant strategy
c with delay δ(t) ≤ t(blog tc+ 1).

Proof 2 (Sketch) Consider a constant strategy c = 2a and a time t = kc, k ∈ N. At the
moment where the kth value of c appears in L, the previous ones in the sequence are all
of the form 2i for some i ∈ {0..blog tc}. This is because the series is built such that time
is doubled before any new power of two is introduced. Furthermore after the execution
of the kth c, every 2i constant with i ≤ a has been run for exactly t time, and every 2i

constant with i > a (if it exists in the prefix) has been executed less than t time. This leads
to δ(t) ≤ t(blog tc+ 1).

This property implies that restarting according to L incurs a logarithmic delay over
using the unknown optimal constant restart strategy of a particular problem instance.
Additionally the strategy is optimal in the sense that it is not possible to have better than
logarithmic delay if we seek to design a strategy simulating all constant restart strategies.
The optimality of L is proved in [LSZ93], and we reformulate it here using the notion of
delay and give a sketch of proof.

Proposition 3.3.2 (L Optimality) Any time strategy which simulates every constant time
strategy does it with delay δ(t) ≥ t/2(blog tc/2 + 1).

3.3. RESTARTING SINGLE CRITERIA SLS OPTIMIZERS 47

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

Proof 3 (Sketch) let S be such a strategy and t a time. Consider the constant restart
strategies {Si = 2i, 2i . . .}blogtc0 . Each t-prefix of these strategies must be simulated by a
δ(t)-prefix of S. In particular the t-prefix of Sblogtc which is 2blogtc has to be simulated.
So the δ(t)-prefix of S needs an element bigger than or equal to 2blogtc. Also the t-prefix
of Sblogtc−1 which is 2blogtc−1, 2blogtc−1 must be simulated. One of the two values can be
mapped to the value greater than 2blogtc, but there should be another value greater than
2blogtc−1. From the previous observations we have that δ(t) ≥ 2blogtc + 2blogtc−1. If we
denote Ni the minimum number of 2i values that must be present in the δ(t)-prefix of
S we can formulate this as 1. Nblogtc = 1 and 2. ∀i ≤ blogtc − 1, Ni = 2blogtc−i −∑blogtc−1

j=i+1 Nj − 1 (i.e for each i values bigger than 2i can be used to simulate a 2i).
By recursion we can show that ∀i ≤ blogtc − 1, Ni = 2blogtc−i−1. We therefore get
δ(t) ≥ 2blogtc +

∑blogtc−1
i=0 2blogtc−1−i 2i. After simplifying the sum we obtain δ(t) ≥

t/2(blog tc/2 + 1).

The next section investigates how these fundamental results can be useful in the context
of optimization using stochastic local search.

3.3.2 SLS optimizers
An SLS optimizer is an algorithm whose run-time distribution for finding a particular

cost o is a random-variable.

Definition 3.3.4 (Expected Time) Given an SLS process and a cost o, the random vari-
able Θo indicates the time until the algorithm outputs a value at least as good as o.

There are some informal reasons suggesting that using strategy L in the context of
optimization would boost the performance. First a straightforward extension of results of
3.1 to SLS optimizers can be made.

Corollary 1 Restarting an SLS process according to strategy L gives minimum expected
run-time to reach any cost o for which Θo is unknown.

The corollary follows directly because the program that runs the SLS process and
stops when the cost is at least as good as o is a Las Vegas algorithm whose run-time
distribution is Θo. In particular using strategy L in that context gives a minimal expected
time to reach the optimum o∗. However, finding the optimum is too ambitious for many
problems and in general we would like to run the process for a fixed time t and obtain
the best approximation possible within that time. Unfortunately there is no reason for
which minimizing the expected time to reach the optimum would also maximize the
approximation quality at a particular time t.

On the contrary for each value of o we have more or less chances to find a cost at
least as good as o within time t depending on the probability P (Θo ≤ t). 3 Knowing the
distributions one could decide which o is more likely to be found before t and invest more
time for the associated optimal constant restart strategies. But without that knowledge
every constant restart strategy might be useful for converging to a good approximation
of o∗. Therefore whereas Las Vegas algorithms run different constant restart strategies

3. Note that these probabilities are nondecreasing with o since the best cost value encountered can only
improve over time.

48 3.3. RESTARTING SINGLE CRITERIA SLS OPTIMIZERS

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

because it is impossible to know the optimal c∗, an SLS process runs them because it does
not know which approximation o is reachable within a fixed time t, and every such o might
be associated to a different optimal constant restart strategy. This remark further motivates
the use of strategy L for restarting an SLS optimizer.

3.4 Multicriteria Strategies
In this section we extend strategy L to become a multi-criteria strategy, that is, a restart

strategy which specifies what combination of criteria to optimize and for how long. We
assume throughout a d-dimensional cost function f = (f 1, . . . , fd) convertible into a
one-dimensional function fλ associated with a weight vector λ ranging over a bounded set
Λ of a total volume V .

At this point it is also important to justify the choice of the weighted sum approach
despite its major drawback mentioned in Chapter 1: the impossibility to reach Pareto
points on concave parts of the front. 4 Actually, theorems 1A and 1B only state that
some Pareto solutions admit no weight vector for which they are optimal in the scalar
sense. This does not mean that these are unreachable if we optimize weighted sums of
the objectives, because we may encounter them while making steps in the decision space.
As our algorithm utilizes a Pareto filter and keeps track of the non dominated set of all
the points it came across, it can theoretically find any Pareto point if random choices are
allowed. Given the graph induced on X by the neighborhood relation, this amounts to
saying that any node in the graph has a non zero probability of being visited. This fact was
also confirmed experimentally (Section 3.5), as we found the whole Pareto front (including
non-supported solutions) for small instances where it is known.

Definition 3.4.1 (Multicriteria Strategy) A multi-criteria search strategy is an infinite
sequence of pairs

S = (t(1), λ(1)), (t(2), λ(2)), . . .

where for every i, t(i) is a positive integer and λ(i) ∈ Λ is a weight vector.

The intended meaning of such a strategy is to run an SLS process to optimize fλ(1) for t(1)
steps, then fλ(2) for t(2) and so on. Following such a strategy and maintaining the set of
non-dominated solutions encountered along the way yields an approximation of the Pareto
front of f .

Had Λ been a finite set, one could easily adapt the notion of simulation from the previ-
ous section and devise a strategy which simulates with a reasonable delay any constant
strategy (λ, c) for any λ ∈ Λ. However since Λ is infinite we need a notion of approxima-
tion. Looking at two optimization processes, one for fλ and one for fλ′ where λ and λ′ are
close to each other, we observe that the functions may not be very different and the effort
spent in optimizing fλ is almost in the same direction as optimizing fλ′ . This motivates
the following definition.

Definition 3.4.2 (ε-Approximation) A strategy S ε-approximates a strategy S ′ if for every
i, t(i) = t′(i) and |λ(i)− λ′(i)| < ε.

4. By concave we mean a part which does not belong to the Pareto front’s convex hull.

3.4. MULTICRITERIA STRATEGIES 49

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

From now on we are interested in finding a strategy which simulates with good delay
an ε-approximation of any constant strategy (λ, c). To build such a ε-universal strategy we
construct an ε-net Dε for Λ, that is, a minimal subset of Λ such that for every λ ∈ Λ there
is some µ ∈ Dε satisfying |λ− µ| < ε. In other words, Dε consists of ε-representatives
of all possible optimization directions. The cardinality of Dε depends on the metric used
and we take it to be 5 mε = V (1/ε)d. Given Dε we can create a strategy which is a cross
product of L with Dε, essentially interleaving mε instances of L. Clearly, every λ ∈ Λ will
have at least 1/mε of the elements in the sequence populated with ε-close values.

Definition 3.4.3 (Strategy LDε) Let D be a finite subset of Λ admitting m elements. Strat-
egy LD = ((t(1), λ(1)), . . . is defined for every i as

1. λ(i) = λ(i mod m)

2. t(i) = L(d i
m
e)

Proposition 3.4.1 (LDε delay) Let Dε be an ε-net for Λ. Then LDε simulates an ε-
approximation of any constant strategy (λ, c) with delay δ(t) ≤ tmε(blog tc+ 1).

Proof 4 (Sketch) For any constant (λ, c) there is an ε-close µ ∈ Dε which repeats every
mth
ε time in LDε . Hence the delay of LDε with respect to L is at most mεt and combined

with the delay t(blog tc+ 1) of L wrt any constant strategy we obtain the result.

For a given ε, LDε is optimal as the following result shows.

Proposition 3.4.2 (LDε Optimality) Any strategy that ε-simulates every constant strategy
has delay δ(t) ≥ mεt/2(blog tc/2 + 1) with respect to each of those.

Proof 5 Consider such a multicriteria strategy and t steps spent in that strategy. Let Si,j
denote the multicriteria constant strategy (λi, 2

j), (λi, 2
j) . . . for all λi ∈ Dε and j ∈

{0..blog tc}. The minimum delay when simulating all Si,j for a fixed i is t/2(blog tc/2 + 1)
(Proposition 3.3.2). Because any two λi, λ′i ∈ Dε do not approximate each other, the delays
for simulating constant strategies associated with different directions just accumulate.
Hence δ(t) ≥ mεt/2(blog tc/2 + 1).

Despite these results, the algorithm has several drawbacks. First computing and storing
elements of an ε-net in high dimension is not straightforward. Secondly, multi-dimensional
functions of different cost landscapes may require different values of ε in order to explore
their Pareto fronts effectively and such an ε cannot be known in advance. In contrast,
strategy LD needs a different Dε for each ε with Dε growing as ε decreases. In fact, the
only strategy that can be universal for every ε is a strategy where D is the set of all rational
elements of Λ. While such a strategy can be written, its delay is, of course, unbounded.

For this reason, we propose a stochastic restart strategy which, for any ε, ε-simulates all
constant multi-criteria strategies with a good expected delay. Our stochastic strategy Lr is
based on the fixed sequence of durations L and on random sequences of uniformly-drawn
elements of Λ.

Definition 3.4.4 (Strategy Lr)

5. Using other metrics the cardinality may be related to lower powers of 1/ε but the growth is at least
linear.

50 3.4. MULTICRITERIA STRATEGIES

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

– A stochastic multi-criteria strategy is a probability distribution over multi-criteria
strategies;

– Stochastic strategy Lr generates strategies of the form

(t(1), λ(1)), (t(2), λ(2)), . . .

where t(1), t(2), . . . is the sequence L and each λ(i) is drawn uniformly from Λ.

Note that for any ε and λ the probability of an element in the sequence to be ε-close to
λ is 1/mε. Let us give the intuition why for any ε > 0 and constant strategy (λ, c), Lr
probabilistically behaves as LDε in the limit. Because each λ(i) is drawn uniformly, for
any ε > 0 the expected number of times λ(i) is ε-close to λ is the same for any λ ∈ Λ.
So the time is equally shared for ε-simulating different directions. Moreover the same
time is spent on each constant c as we make use of the time sequence L. Consequently Lr
should ε-simulate fairly every strategy (λ, c). We did not compute the expected delay with
which a given multicriteria strategy is simulated by Lr. 6 Nonetheless a weaker reciprocal
result directly follows: on a prefix of Lr of length tmε(blog tc+ logmε + 1), the expected
amount of time ε-spent on any multi-criteria constant strategy (λ, c) is t.

Proposition 3.4.3 (Lr Expected Efficiency) For all ε > 0, after a time T = tmε(blog tc+
logmε + 1) in strategy Lr, the random variable wλ,c(T) of the time spent on ε-simulating
any constant strategy (λ, c) verifies E[wλ,c(T)] = t.

Proof 6 In time T , Lr executes tmε times any constant c (Proposition 1). On the other
hand the expected fraction of that time spent for a particular λ is 1/mε.

3.5 Experiments
In previous sections we provided a theoretical analysis of several restart strategies

for multicriteria optimization. We have also tested their performance experimentally by
embedding them inside a local search solver for the quadratic assignment problem. The
results obtained are presented in this section.

3.5.1 Quadratic Assignment
The quadratic assignment problem (QAP) introduced in [KB57] is a hard unconstrained

combinatorial optimization problem with many real-life applications related to the spatial
layout of hospitals, factories or electrical circuits. The traveling salesman problem itself
may be seen as a special case of this problem which is in fact one of the most challenging
problem in combinatorial optimization.

An instance consists of n facilities whose mutual interaction is represented by an n×n
matrix F with Fij characterizing the quantity of material flow from facility i to j. In
addition there are n locations with mutual distances represented by an n × n matrix D.
A solution is a bijection from facilities to locations whose cost corresponds to the total
amount of operational work, which for every pair of facilities is the product of their flow

6. It involves computing the expectation of the delay of L applied to a random variable with negative
binomial distribution.

3.5. EXPERIMENTS 51

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

F1−2

F3−4

F2−3F1−3

F1−4
F2−4

Figure 3.5.1: Illustration of a quadratic assignment problem: how to place a set of factories
in cities of France. The cost of exchanging goods between two facilities is the product of
the material flow with their distance.

by the distance between their respective locations. Viewing a solution as a permutation π
on [1..n] the cost is formalized as

C(π) =
n∑
i=1

n∑
j=1

Fij ·Dπ(i),π(j).

The problem is NP-complete, and even approximating the minimal cost within some
constant factor is NP-hard [SG76].

3.5.1.1 QAP SLS Design

We implemented an SLS-based solver for the QAP, as well as multi-criteria versions
described in the preceding section. The search space for the solver on a problem of size n
is the set of permutations of {1, .., n}. We take the neighborhood of a solution π to be the
set of solutions π′ that can be obtained by swapping two elements. This kind of move is
quite common when solving QAP problems using local search. Our implementation also
uses a standard incremental algorithm [Tai91] for maintaining the costs of all neighbors
of the current point, which we briefly recall here. Given an initial point, we compute
(in cubic time) and store the cost of all its neighbors. After swapping two elements
(i, j) of the permutation, we compute the effect of swapping i with j on all costs in the
neighborhood. Since we have stored the previous costs, adding the effect of a given swap
to the cost of another swap gives a new cost which is valid under the new permutation.
This incremental operation can be performed in amortized constant time for each swap,
and there are quadratically many possible swaps, resulting in a quadratic algorithm for
finding an optimal neighbor.

In the sequel we give a more detailed description of the algorithm for computing the
cost of solution π′ based on the cost of π from which it has been obtained by a single swap.

52 3.5. EXPERIMENTS

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

Since this computation occurs in every step of the algorithm, its efficiency strongly affects
the overall performance.

Consider a step π
i,j−→ π′ which swaps facilities i and j in permutation π, yielding

permutation π′. We assume having a matrix Cπ indicating for each pair (m,n) the change
in cost induced by the swap of facilities m and n in π. Therefore the cost C ′ of π′ after the
step is computed in constant time from the cost C of π as C ′ = C + Cπ

i,j .

The tricky part is to derive the new matrix Cπ′ from Cπ. Actually we need to compute
values of the form Cπ′

g,h which is the effect of swapping g with h on π′, assuming we know
Cπ
g,h, the effect of swapping g with h on π. Note that we need only these values when

i < j and g < h. We first consider the case that g 6= i, g 6= j, h 6= i, h 6= j. In this event,
C ′g,h = Cg,h −Oghij +Nghij where

Oghij =

Fgi(Dπ(h),π(i) −Dπ(g),π(i))
+ Fgj(Dπ(h),π(j) −Dπ(g),π(j))
+ Fhi(Dπ(g),π(i) −Dπ(h),π(i))
+ Fhj(Dπ(g),π(i) −Dπ(h),π(j))
+ Fig(Dπ(i),π(h) −Dπ(i),π(g))
+ Fjg(Dπ(j),π(h) −Dπ(j),π(g))
+ Fih(Dπ(i),π(g) −Dπ(i),π(h))
+ Fjh(Dπ(j),π(g) −Dπ(j),π(h))

and Nghij is defined likewise but under the permutation π′ instead of π. The expression
Oghij accounts for the cost of swapping g with h which comes from the cells of the
distance matrix which have some index amongst {g, h, i, j} before the swap. Likewise,
the expression Nghij accounts for the cost of swapping g with h which comes from these
cells after the swap. There are only O(n) other neighbor swaps, i.e when either of g, h is
equal to i or j. The costs of each of these other swaps can be recomputed from scratch in
O(n) time. At the end the global complexity of making a step is quadratic.

Concerning the search method, we use a simple greedy selection randomized by noise
(Algorithm 3.5.1). This algorithm is very simple but, as shown in the sequel, is quite
competitive in practice. The selection mechanism works as follows: with probability
1− p the algorithm makes an optimal step (ties between equivalent neighbors are broken
at random), otherwise it goes to a randomly selected neighbor. Probability p can be
set to adjust the noise during the search. Note that we have concentrated our effort on
the comparison of different adaptive strategies for the weight vector rather than on the
performance comparison of Algorithm 3.5.1 with the other classical local search methods
(simulated annealing, tabu search).

Algorithm 3.5.1 Greedy Randomized Local Search
if rnd() ≤ p then
rnd_swap()

else
optimal_swap()

end if

3.5. EXPERIMENTS 53

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

0 100 200 300 400 500

50

60

70

80

90

time (sec)

nu
m

.b
es

tf
ou

nd
c = 128
c = 256
c = 512
c = 1024
c = 10000
no restarts
strategy L

Figure 3.5.2: Results of different restart strategies on the 134 QAPLIB problems with
optimal or best known results available. Strategy L solves more instances than the constant
restart strategies, supporting the idea that it is efficient in the absence of inside knowledge.

3.5.1.2 Experimental Results on QAP library

The QAP library [BKR91] is a standard set of benchmarks for one dimensional
quadratic assignment problems. Each problem in the set comes with an optimal or best
known value. We ran Algorithm 3.5.1 (implemented in C) using various constant restart
strategies as well as strategy L on each of the 134 instances of the library. 7 Within a time
bound of 500 seconds per instance the algorithm finds the best known value for 93 out
of 134 instances. On the remaining problems the average deviation from the optimum
was 0.8%. Also the convergence is fast on small instances (n ≤ 20) as most of them
are brought to optimality in less than 1 second of computation. Complete results of the
simulations are reported in Table 3.1.

Figure 3.5.2 plots for each strategy the number of problems brought to optimal or
best-known values as a function of time. For a time budget of 500 seconds, strategy L was
better than any constant strategy we tried. This fact corroborates the idea that strategy L is
universal, in the sense that multiplexing several constant restart values makes it possible
to solve (slightly) more instances. This is however done with some delay as observed in
Figure 3.5.2 where strategy L is outperformed by big constant restarts (1024,10000,∞)
when the total time budget is small.

3.5.2 Multi-objective QAP
The multi-objective QAP (mQAP), introduced in [KC03] admits multiple flow matrices

F1, . . . , Fd. Each pair (Fi, D) defines a cost function as presented in Section 3.5.1, what
renders the problem multi-objective.

7. The machine used for the experiments has an Intel Xeon 3.2GHz processor.

54 3.5. EXPERIMENTS

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

name size best value mqap best steps time name size best value mqap best steps time
bur26a 26 5426670 5426670 87333 10.16 bur26b 26 3817852 3817852 25874 3.00
bur26c 26 5426795 5426795 52541 6.10 bur26d 26 3821225 3821225 4146 0.49
bur26e 26 5386879 5386879 26507 3.12 bur26f 26 3782044 3782044 9485 1.14
bur26g 26 10117172 10117172 26016 3.03 bur26h 26 7098658 7098658 9363 1.09
chr12a 12 9552 9552 10134 0.23 chr12b 12 9742 9742 1782 0.04
chr12c 12 11156 11156 19000 0.43 chr15a 15 9896 9896 5924 0.22
chr15b 15 7990 7990 91494 3.36 chr15c 15 9504 9504 88003 3.23
chr18a 18 11098 11098 196208 10.53 chr18b 18 1534 1534 5654 0.31
chr20a 20 2192 2192 3650116 245.31 chr20b 20 2298 2298 2154279 144.99
chr20c 20 14142 14142 205534 13.76 chr22a 22 6156 6156 2624486 212.39
chr22b 22 6194 6272 6182333 500.00 chr25a 25 3796 3822 4671871 500.00
esc128 128 64 64 937 3.44 esc16a 16 68 68 122 0.00
esc16b 16 292 292 40 0.00 esc16c 16 160 160 154 0.00
esc16d 16 16 16 43 0.00 esc16e 16 28 28 112 0.00
esc16f 16 0 0 1 0.00 esc16g 16 26 26 47 0.00
esc16h 16 996 996 42 0.00 esc16i 16 14 14 16 0.00
esc16j 16 8 8 16 0.00 esc32a 32 130 130 169182 30.31
esc32b 32 168 168 5063 0.95 esc32c 32 642 642 242 0.04
esc32d 32 200 200 1144 0.20 esc32e 32 2 2 11 0.00
esc32f 32 2 2 11 0.00 esc32g 32 6 6 14 0.00
esc32h 32 438 438 894 0.17 esc64a 64 116 116 110 0.10
had12 12 1652 1652 383 0.00 had14 14 2724 2724 1065 0.04
had16 16 3720 3720 702 0.03 had18 18 5358 5358 2975 0.16
had20 20 6922 6922 1477 0.10 kra30a 30 88900 88900 685946 106.45
kra30b 30 91420 91420 2981280 461.82 kra32 32 88900 26604 1 0.00
lipa20a 20 3683 3683 7321 0.50 lipa20b 20 27076 27076 1162 0.08
lipa30a 30 13178 13178 144126 22.49 lipa30b 30 151426 151426 11909 1.91
lipa40a 40 31538 31538 376838 108.15 lipa40b 40 476581 476581 15751 4.56
lipa50a 50 62093 62684 1087569 500.00 lipa50b 50 1210244 1210244 44406 20.99
lipa60a 60 107218 108152 738889 500.00 lipa60b 60 2520135 2520135 58474 39.91
lipa70a 70 169755 171057 524491 500.00 lipa70b 70 4603200 4603200 232953 218.46
lipa80a 80 253195 254942 398776 500.00 lipa80b 80 7763962 7763962 264266 325.77
lipa90a 90 360630 362964 314604 500.00 lipa90b 90 12490441 12490441 89043 144.09
nug12 12 578 578 126 0.00 nug14 14 1014 1014 14557 0.46
nug15 15 1150 1150 2120 0.08 nug16a 16 1610 1610 30191 1.29

nug16b 16 1240 1240 1984 0.08 nug17 17 1732 1732 16209 0.76
nug18 18 1930 1930 118373 6.39 nug20 20 2570 2570 8685 0.58
nug21 21 2438 2438 47793 3.59 nug22 22 3596 3596 1696 0.14
nug24 24 3488 3488 16016 1.58 nug25 25 3744 3744 81772 8.84
nug27 27 5234 5234 275874 34.38 nug28 28 5166 5166 26105 3.61
nug30 30 6124 6124 1093652 169.83 rou12 12 235528 235528 3259 0.07
rou15 15 354210 354210 4021 0.15 rou20 20 725522 725522 264911 17.90
scr12 12 31410 31410 2145 0.04 scr15 15 51140 51140 3511 0.13
scr20 20 110030 110030 14984 1.02 sko100a 100 152002 152696 250279 500.00

sko100b 100 153890 154890 253747 500.00 sko100c 100 147862 148614 253422 500.00
sko100d 100 149576 150634 253601 500.02 sko100e 100 149150 150004 253401 500.01
sko100f 100 149036 150032 254968 500.00 sko42 42 15812 15852 1552963 500.00
sko49 49 23386 23474 1146362 500.00 sko56 56 34458 34602 856498 500.00
sko64 64 48498 48648 631733 500.00 sko72 72 66256 66504 500701 500.00
sko81 81 90998 91286 391585 500.00 sko90 90 115534 116192 309691 500.02
ste36a 36 9526 9586 2163008 500.00 ste36b 36 15852 15852 494591 115.02
ste36c 36 8239110 8249952 2195600 500.00 tai100a 100 21125314 21591086 255199 500.00
tai100b 100 1185996137 1193503855 254527 500.00 tai12a 12 224416 224416 45 0.00
tai12b 12 39464925 39464925 2496 0.06 tai150b 150 498896643 507195710 101380 500.00
tai15a 15 388214 388214 1136 0.04 tai15b 15 51765268 51765268 438 0.02
tai17a 17 491812 491812 76666 3.68 tai20a 20 703482 703482 960799 63.94
tai20b 20 122455319 122455319 8079 0.56 tai256c 256 44759294 44866220 28941 500.00
tai25a 25 1167256 1171944 4729773 500.00 tai25b 25 344355646 344355646 285069 30.29
tai30a 30 1818146 1828398 3236381 500.00 tai30b 30 637117113 637117113 1722202 267.30
tai35a 35 2422002 2462770 2334384 500.00 tai35b 35 283315445 283315445 571374 125.05
tai40a 40 3139370 3190650 1763043 500.00 tai40b 40 637250948 637250948 56899 16.74
tai50a 50 4941410 5067502 1083719 500.00 tai50b 50 458821517 458966955 1048395 500.00
tai60a 60 7208572 7392986 739306 500.00 tai60b 60 608215054 608758153 742214 500.00
tai64c 64 1855928 1855928 3636 3.02 tai80a 80 13557864 13846852 407800 500.00
tai80b 80 818415043 825511580 404012 500.00 tho150 150 8133398 8215216 101551 500.04
tho30 30 149936 149936 2396680 371.55 tho40 40 240516 241598 1729732 500.00

wil100 100 273038 273854 253337 500.00 wil50 50 48816 48862 1071145 500.00

Table 3.1: Results of running Algorithm 3.5.1 on the QAP library instances. Each row
shows the best value obtained within a time limit of 500 seconds, compared to the best
known or optimal value.

3.5. EXPERIMENTS 55

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

We have developed an extension of Algorithm 3.5.1 where multiple costs are agglom-
erated with weighted sums and the set of all non-dominated points encountered during the
search is stored in an appropriate structure.

To implement strategy Lr one also needs to generate d-dimensional random weight
vectors which are uniformly distributed. Actually, generating random weight vectors
is equivalent to sampling uniformly random points on a unit simplex, which is in turn
equivalent to sampling from a Dirichlet distribution where all parameters are equal to
one. The procedure for generating random weight vectors is therefore the following: first
generate d IID random samples (a1, . . . , ad) from a unit-exponential distribution, which is
done by sampling ai from (0,1] uniformly and returning −log(ai), and then normalize the
vector thus obtained by dividing each coordinate by the sum

∑d
i=0 ai.

Multi-criteria strategies Lr and LDε have been tested and compared on the benchmarks
of the mQAP library, which includes 2-dimensional problems of size n = 10 and n = 20,
and 3-dimensional problems of size n = 30 [KC03]. The library contains instances
generated uniformly at random as well as instances generated according to flow and
distance parameters which reflect the probability distributions found in real situations.
Pre-computed Pareto sets are provided for all 10-facility instances. Note that our algorithm
found over 99% of all Pareto points from all eight 10-facility problems within a total
computation time of under 1 second.

For the remaining problems where the actual Pareto set is unknown, we resort to
comparing performance against the non-dominated union of solutions found with any
configuration. As a quality metric we use the epsilon indicator (see Definition 1.3.4) which
is the largest increase in cost of a solution in the reference set, when compared to its
best approximation in the set to evaluate. The errors are normalized with respect to the
difference between the maximal and minimal costs in each dimension over all samples of
restart strategies leading to a number α ∈ [0, 1] indicating the error with respect to the set
of all found solutions.

Figures 3.5.3, 3.5.4 and 3.5.5 depict the results of the multi-criteria experiments.
We compared Lr against constant restarts combined with randomly chosen directions
and strategy LDε for different values of ε. Despite its theoretical properties LDε does
not perform so good for the ε values that we chose. This corroborates the fact that
it is hard to guess a good ε value beforehand. Constant restarting works well but the
appropriate constant has to be carefully chosen. At the end strategy Lr gives decidedly
better performance amongst all the strategies we tried. It is worth noting that we also tried
using the weighted infinity norm maxi λif

i as a measure of cost but, despite its theoretical
superiority (any Pareto point on a concave part of the front is optimal for some λ), the
method did perform worse than the weighted sum approach in our experiments.

3.6 Conclusion and Discussion
Through this work, we have demonstrated how efficient universal strategies can ac-

celerate SLS-based optimization, at least in the absence of knowledge of good restart
constants. In the multi-criteria case, our approximating universal strategy is efficient in
solving quadratic assignment problems and gives a thorough and balanced coverage of the
Pareto front. In chapter 5 we also apply this algorithm to solve mapping and scheduling
problems. As a future work, it would be interesting to combine our multi-criteria strategy
with tabu search or simulated annealing to confirm its effectiveness.

56 3.6. CONCLUSION AND DISCUSSION

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

0 1 2 3
0.98

0.98

0.99

0.99

1

1

1uni
2uni
3uni

0 0.5 1 1.5 2

0.94

0.96

0.98

1

1rl
2rl
3rl
4rl
5rl

2 2.2 2.4 2.6 2.8 3

·105

1.8

2

2.2

2.4

2.6

2.8
·105 3uni

Pareto
Approximation

1 2 3 4

·106

1.5

2

2.5

3

·106 4rl

Pareto
Approximation

Figure 3.5.3: Overview of performance on several 10-facility instances. The top row shows
plots of the evolution of quality (1 − α) as a function of time. The bottom plots give
examples of the approximations found along the way compared to the actual Pareto set.

3.6. CONCLUSION AND DISCUSSION 57

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

0 10 20 30 40 50 60

0.9

0.92

0.94

0.96

0.98

1

time (sec)

1rl, constant restarts

Lr
c = 10
c = 100
c = 1000

0 10 20 30 40 50 60

0.92

0.94

0.96

0.98

1

time (sec)

1rl, strategy LDε

Lr
ε = 0.1
ε = 0.01
ε = 0.001

0 10 20 30 40 50 60

0.96

0.97

0.98

0.99

time (sec)

1uni, constant restarts

Lr
c = 10
c = 100
c = 1000

0 10 20 30 40 50 60

0.97

0.98

0.99

time (sec)

1uni, strategy LDε

Lr
ε = 0.1
ε = 0.01
ε = 0.001

Figure 3.5.4: Performance of various multi-critieria strategies against Lr on the 1rl and
1uni 20-facility problems. Left : constant restarts, c = 10, 100, 1000 combined with
randomly generated directions. Right : strategy LDε for ε = 0.1, 0.01, 0.001

58 3.6. CONCLUSION AND DISCUSSION

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

1.85

1.9

1.95
2

·106

1.85
1.9

1.95
2

·106

1.9

2

2.1
·106

c1
c2

c3

KC30-3fl-2uni

2.5
3

3.5
4

·107

0.5
0.6

0.7
0.8

0.9
1

·107

1

2

·107

c1
c2

c3

KC30-3fl-2rl

Figure 3.5.5: Examples of approximations of the Pareto front for two 30-facility, 3-flow
QAP problems. KC30-3fl-2uni was generated uniformly at random while KC30-3fl-2rl
was generated at random with distribution parameters, such as variance, set to reflect real
instances. The approximations above are a result of 1 minute of computation using Lr.

3.6. CONCLUSION AND DISCUSSION 59

CHAPTER 3. UNIVERSAL RESTARTING STRATEGIES IN STOCHASTIC LOCAL SEARCH

More generally, because stochastic local search algorithms may be really effective
in solving combinatorial optimization problems, we believe that studying extensions
of these to multiple criteria is an exciting topic of research. From our experience one
major advantage of local search is that it is very fast: our program for solving quadratic
assignment problems was indeed able to perform a large number of steps in a very short
time (at least on medium-sized problems).

However, whether or not good performance can be achieved by local search is quite
problem-dependent. The core activity of an SLS algorithm is to look for an improving
solution in a local neighborhood. It is therefore crucial to design the algorithm such that
this operation can be performed quickly. In the case of the QAP, a standard 2-exchange
relation leads to an efficient incremental algorithm which performs a local optimization
step in a quadratic number of operations. This is however less easy to do with constrained
problems such as scheduling. Representing a solution, choosing a neighborhood relation
and performing a step in an incremental manner indeed involves tougher algorithmic issues,
as explained later on in Chapter 5.

More importantly, having multiple criteria makes it even more tricky to define an
appropriate neighborhood relation, because decision variables may have contradictory
effects on the different costs. For the purpose of illustration, let us consider a bi-criteria
scheduling problem. The decision variables come into two types: mapping variables which
encode task-to-processor assignments, and scheduling variables which define the start time
(or priority) of each task. In the simple energy model we use, the power dissipated by a
task depends on the processor on which it executes, but not on its start time. Therefore we
have two types of variables that do not affect the two costs in the same way. If we consider
changing the mapping and scheduling of a task in a single step, the neighborhood size
could be too large to allow for efficiently moving to a locally optimal solution. Another
option here would be to consider mapping and scheduling separately: either move a task
from its processor or alter its start time. Now imagine that we want to perform design space
exploration and add the possibility of changing the speed/voltage of each processor. We
get yet another type of variable and the design of the neighborhood relation is even more
complicated. We believe that this issue of combining variables which are differently related
to the cost functions is really important to the performance of multi-criteria optimization
using SLS, especially if we are to solve practical problems.

60 3.6. CONCLUSION AND DISCUSSION

Chapter 4

Optimization for the Parallel Execution
of Software

Résumé : Ces dernières années on assiste à un changement stratégique de la part
de l’industrie des semi-conducteurs, qui concentre désormais ses efforts à la réalisation
d’architectures multi-processeur. Bien que la “loi” de Moore soit toujours d’actualité, la
miniaturisation accrue ne permet plus d’augmenter la fréquence des processeurs d’avan-
tage, car plusieurs barrières physiques ont été atteintes (consommation d’énergie, latence
mémoire etc.). L’amélioration de la puissance passe donc par l’augmentation du nombre
de coeurs de calcul, plutôt que par l’augmentation de la fréquence comme ce fut le cas
auparavant. Cette ligne de développement est particulièrement indispensable pour les
systèmes embarqués. En effet, les applications cibles sont très gourmande en performance
(traitement vidéo ou applications de réalité augmentée par exemple), alors que la capacité
des batteries n’augmente pas. Il faut donc plus de puissance de calcul mais un niveau de
consommation énergétique raisonnable, ce que permettent les sytèmes multi-processeur.
Une tendance vise également à remplacer les accelérateurs matériels par des processeurs
multi-coeur, car ceux-ci sont en théorie capable d’offrir des performances comparables
mais avec une meilleure flexibilité aux changements du marché (le logiciel est plus faci-
lement modifiable). Toutefois, la performance des multi-processeur est conditionnée par
l’efficacité des décisions de déploiement des applications parallèles, tels le placement de
tâches et l’ordonnancement. Optimiser ces décisions pour différents critères (performance,
énergie etc.) est compliqué. Il est donc intéressant de traiter ces problèmes à un haut niveau
d’abstraction par des méthodes d’optimisation multi-critère, afin d’identifier un certain
nombre de solutions prometteuses qui seront ensuite analysées à un plus bas niveau.

4.1 The Comeback of Multi-Processors as a Standard

In the past few years, there has been a clear strategy shift of the chip industry which
strongly renewed its interest in building parallel machines targeting various market seg-
ments, from desktop computers to servers in data centers or embedded systems. Basically
designers were facing unbearable difficulties for keeping up with the pace of Moore’s law,
which predicts that the number of transistors integrated on a single chip doubles roughly

61

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

every two years 1. Because of physical limits in frequency and power, the ability to build
integrated circuits at deeper submicron levels does not easily translate anymore into a
proportional speedup in software execution.

Up to now, additional logic was used to boost the performance of single processors,
although this was achieved at the expense of a faster growth in power consumption and
design complexity. Today it is common that modern processors integrate several pipelines
and advanced mechanisms for handling instruction-level parallelism, making them able
to issue multiple out-of-order instructions during a single cycle. However, this model of
progress is seriously endangered by physical barriers, a.k.a walls, which prevent further
improvement of traditional processors under affordable costs.

First, power consumption is a major concern. From an end-user perspective, we require
always more computing power and battery lifetime for our daily-used embedded devices
(cell phones, netbooks etc.). Likewise, companies running large data centers (Google for
instance) realize that their power budget is responsible for a non negligible part of their
costs, making them also interested in energy savings [FWB07]. More generally, there
is a growing demand for energy-efficient systems offering high computing power and
programmability.

However, the yield in performance obtained by increasing the frequency of a general
purpose processor gets really poor beyond a certain point. This is because the required
voltage and hence the energy consumption and heat are growing faster than the clock speed,
a limitation commonly known as the power wall. A strong motivation for building multi-
processor platforms comes from the effective performance to power ratio they theoretically
provide. Running two processors at half the speed is less energy-consuming but potentially
equally powerful. Consequently, given that power saving is becoming no less important
than performance, augmenting the number of processing cores rather than their frequency
is the most sustainable development strategy for chip manufacturers.

Beside power, there are numerous other limitations to the increase of processor fre-
quency, starting with the well-known memory wall. Accessing off-chip memory entails
an incompressible delay due to the physical limits on the latency and bandwidth of con-
nections. If the speed of processors were to be raised further, it is expected that memory
would shortly become a performance bottelneck [WM95].

Exploiting parallelism at the instruction level, a practice which has significantly boosted
the speed of processors, also reaches a point of diminishing returns, hitting the ILP wall
[ABC+06]. Whether it is done by the hardware or a compiler, the amount of instruction-
level parallelism which can be automatically extracted from a single stream of instructions
is quite limited. Given that latest-generation processors already exploit all of the instruction-
level parallelism which can be detected in applications, the most promising lead for
performance enhancement is to look at higher-level sources of parallelism. This fact led to
the recent development of multi-core processors, which can manage thread and data level
parallelism.

The complexity of modern processors also brings a batch of troubles. Sophisticated
designs tend to be error-prone, hard to verify and less scalable. Consequently, it takes
longer for engineers to design the circuit and the productivity is reduced, a fact known
as the designer productivity gap. A complex processor also features more logic, and
hence occupies a larger silicon area. A well-known rule from the industry states that, by
experience, the performance of a single core is roughly proportional to the square root of

1. http://www.itrs.net

62 4.1. THE COMEBACK OF MULTI-PROCESSORS AS A STANDARD

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

its logical complexity (measured by the number of transistors) [Bor07]. In other words,
the return in performance on building faster processors is increasingly overwhelmed by
area considerations. Fortunately, as it is with power, the increase in complexity may be
overcome by multi-processor systems which achieve high-performance by multiplying
less-powerful but simpler units.

Figure 4.1.1: SoC Consumer Portable Design Complexity Trends (ITRS 2009 forecast).

For all these reasons, multi-core is becoming a de facto standard for the design of pro-
cessors and embedded systems, and the number of parallel units on a single chip is expected
to increase considerably over the next few years, as shown on Figure 4.1.1. Nonetheless, if
the shift to multi-processor systems is a reasonable roadmap, it still represents a challenge
for the software industry. Most existing code is sequential, and programmers will need
innovative parallel programming solutions for the efficient development of software on
future many-core processors.

The good news is that parallelism itself is not really a novel idea. It has a more than
25-years long history in the domain of scientific and high performance computing (HPC).
The field is mainly focused on building supercomputers [Meu08] which provide huge
processing power, and are able to attack computationally intensive scientific simulations
such as weather forecast, nuclear reactions, or the evolution of galaxies in the universe.
Although the knowledge and experience accumulated by the HPC community can certainly
be useful, the software solutions they developed are not directly applicable to other domains
like embedded systems, where goals and requirements are intrinsically divergent.

Moreover, considering that parallel programming is becoming the mainstream for
general purpose processing, any programmer should be able to quickly develop and
maintain parallel code. Unfortunately, writing programs is far more difficult in a parallel
than in a sequential setting, as it involves many tricky concepts such as locks, barriers
or data races. For parallel programming to become accessible to a larger public, future
software solutions should abstract these low-level details as much as possible. This is all
the more needed because developing handcrafted code is getting more and more tedious as
the number of cores increases. Consequently, there is a need for high-level programming
languages capable of capturing user-expressed parallelism, and associated compilers which
can produce efficient low-level and machine-dependent code. This is a necessary step for
sustaining software productivity in the long-term.

4.1. THE COMEBACK OF MULTI-PROCESSORS AS A STANDARD 63

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

Although both research and industry already worked on parallel programming models
in the past, no solution really emerged as a standard. Maybe the best explanation is that, as
long as sequential code performance was boosted by increasing processor speeds, software
developers did not see the necessity of parallelizing their applications. This results in the
fact that, whereas the hardware industry is more or less ready to make the shift, the burden
is pushed towards software developers who are responsible for bridging the gap between
the applications and multi-processor systems [ABD+09].

4.2 Design Trends for Embedded Multi-Processors
In the following section we first review some of the major constraints, requirements

and trends distinguishing the design of multi-processor systems-on-chip, and then present
an ongoing project targeting the development of a many-core MPSoC. The project, carried
out conjointly by a leading chip manufacturer (STMicroelectronics) and a research institute
(CEA), did actually provide some motivations for the topics addressed in this thesis.

4.2.1 Overview
The embedded systems industry is following the same path as most devices are hence-

forth based on multi-processor architectures, what we call Multi-Processor Systems on
Chip (MPSoC). Embedded systems are increasingly present in our daily lives through tech-
nological accessories such as mobile phones, PDAs or laptops. The demand for mobility
is very high: for many of us the cell phone has completely replaced the fixed phone, the
laptop the desktop computer. The industry has therefore good days ahead.

At the same time, consumers show a constant attraction to technology-advanced
functionalities. A trendy smart phone has to provide WLAN connection, as well as to offer
the possibility of playing 3D-games and to encode and decode video streams. Multimedia
applications based on augmented reality [A+97] are also very trendy, and they require high
performance (Figure 4.2.1). Now, given that embedded systems are operated on battery,
their computing power must be provided under a very low energy cost. As a result, the use
of massive parallelism is becoming mandatory in order to meet the conflicting goals of
high-performance and low-power.

Unlike general purpose multi-processors which are optimized for peak performance,
embedded systems are usually tailored to a specific class of applications (e.g multimedia,
signal), and under stringent power and timing constraints. They are specialized to given
requirements, and often combine both software and dedicated hardware: while the former
brings flexibility and reconfigurability, the latter allows to speed up specific types of com-
putations (e.g audio, video, bitstream operations) at a moderate energy cost. Therefore,
embedded multi-processors have traditionnally been designed from a selected mix of
heterogeneous processors, memories and interconnects, so as to trade-off between per-
formance, power consumption, and programmability. Examples of commercial MPSoCs
include the Philips Nexperia platform for digital video and television applications [DJR01],
the STMicroelectronics Nomadik targeting mobile multimedia systems [Art05], or the STI
CELL [KDH+05], which is the central processor of the PlayStation 3 games console.

Although heterogeneous HW/SW SoCs have achieved the best performance/flexibility
trade-off, newly developed systems should be even more programmable. Actually, the
potential of parallel architectures in offering cheap high-performance, clears a way for the

64 4.2. DESIGN TRENDS FOR EMBEDDED MULTI-PROCESSORS

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

Figure 4.2.1: Augmented reality refers to the insertion of virtual elements into a real video
scene. As an example, the figure shows a screenshot of a smartphone application by Nokia
Beta Labs called LineView, which was recently announced (July 2011). This augmented
reality browser, with the use of GPS and camera, displays real time information about the
points of interest around your location.

execution of commonly hardwired functions in software. In the domain of multimedia
applications, flexibility is of outmost importance because a single system often has to
handle multiple audio/video standards: a music player, for instance, need to play MP3,
Dolby Digital, Ogg Vorbis (etc.). Even though the decoding processes of the standards share
many similarities, it would require an important effort to design a single hardware block
handling every music format. Part of the decoding application is generally implemented in
software, which is more flexible [Wol07]. This entails that if a standard is changed during
the product’s lifetime, the software part can be updated quickly, whereas an hardware
component would have to undergo a new pass through the flow of design, verification and
production. In the signal processing domain, the research efforts put towards developing
embedded cognitive radio [Fet09] also witnesses the fact that, with the multiplication
of standards, flexibility is a key requirement for the next-generation of multi-processor
systems-on-chip.

In addition, the costs due to non-recurring engineering and mask sets are very expensive
as the technology of integrated circuits progresses. According to experts, the cost of a
22nm mask will exceed one million dollars. This represents more than ten times the cost
of a mask in the technology used ten years ago. To remain competitive, companies must
offset these costs by an increase of production volumes. This can be achieved by designing
a versatile chip to be used inside different systems. Platform based design [KNRSV00]
is a paradigm which was proposed to develop this concept. It advocates the creation
of a reconfigurable and programmable platform, for which applications are developed
using a high-level API which abstracts the architectural details. Thus, the same design
can be configured to meet the requirements of different applications, what increases the
production volume of the chip. In addition, the time-to-market is improved, because an
obsolete product is simply upgraded by mapping a new version of the application to a new
configuration of the same architecture.

As the number of components integrated on a single chip keeps rising, it is also manda-
tory to develop new systems to manage communication. System-on-chip interconnects are

4.2. DESIGN TRENDS FOR EMBEDDED MULTI-PROCESSORS 65

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

generally based on buses, point-to-point links, or a combination thereof, and these solutions
do not scale regarding both performance and energy. Quite recently, the network-on-chip
(NoC) paradigm [BDM02], in which a SoC is viewed as a micronetwork of components,
has been broadly accepted as a promising alternative to alleviate this bottelneck. A NoC is
composed of a set of links, routing nodes, and interfaces connecting the components to the
network, on top of which is implemented a light protocol stack. Basically, messages are
forwarded from source to destination like packets in a large-scale macronetwork.

Figure 4.2.2: Example of a NoC-based multi-core system-on-chip: MAGALI, a digi-
tal baseband circuit for software-defined and cognitive-radio developed at CEA LETI
[CBL+10]. Thanks to the asynchronous NoC and GALS interfaces, the system is parti-
tioned into 23 frequency islands which can be programmed dynamically to ensure the best
performance-versus-energy ratio.

The NoC paradigm addresses several of the recent MPSoC design issues, in particular
better flexibility and scalability. One important feature is the decoupling of communication
from computation which is provided by a high-level standardized communication protocol
implemented in the network interface. Any existing component which conforms to that
interface can be directly connected to the system. Consequently, components may be
reused and the system is more flexible. Moreover, a NoC may be designed to be scalable
if, like in a large scale distributed network, the building elements such as routers, links
or protocols are independent of the number of nodes and communication links. This is a
major improvement over bus-based systems in which the arbitration mechanisms rapidly
saturate the traffic as the number of masters grows.

NoCs are also suitable for Globally Asynchronous Locally Synchronous (GALS)
designs in which a set of autonomous processing units are working at their own speed,
and exchange messages through an asynchronous communication network (Figure 4.2.2).
This synchronization scheme is envisioned to be at the heart of future network-on-chips
for two reasons. First, it is difficult to properly distribute a unique clock over a large
multi-processor system. Secondly, autonomous components may be controled via DVFS
(Dynamic Voltage and Frequency Scaling), in order to adapt the speed of each processing
unit to the application demand. DVFS provides fine-grained power savings and temperature
control, as well as means for coping with the variabilities in software and hardware
[TBS+10].

66 4.2. DESIGN TRENDS FOR EMBEDDED MULTI-PROCESSORS

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

Unlike distributed systems, networks-on-chip are not constrained by standardization.
Their design may be customized to the traffic patterns generated by a specific type of
applications (e.g multimedia) and to specific requirements regarding performance, power
and predictability. In fact the interconnection network customization is taking more
importance in the design than it previously had. Indeed, the rise of streaming data-intensive
applications, together with the physical limits of wires in terms of power and delay,
often make this element the critical part of the system. For these reasons, there is a
trend to adopt a communication-centric design approach for the conception of MPSoCs.
This is witnessed by the growing amount of research on application-specific NoC design
methodologies [BJM+05, MOP+09].

4.2.2 The P2012 Platform

Today, an MPSoC is a highly heterogeneous system which embodies several hardwire
accelerators for domain-specific computations (eg. video decoding, gaming, augmented
reality). These dedicated subsytems achieve better power and area efficiency than general
purpose processors. Nonetheless, as argued before, the great potential of multi-core pro-
cessing is now providing a mean to replace these hardwire accelerators by programmable
and customizable multi-core processors, in order to improve the system flexibility.

The P2012 platform developed conjointly by STMicroelectronics and CEA is such
a programmable multi-core fabric targeted at domain-specific acceleration, which goal
is to fill the area and power efficiency gap between general-purpose processors and fully
hardwire accelerators. It is made of up to 32 clusters connected through a 2D-mesh
asynchronous NoC (Figure 4.2.3). A cluster features a multi-core processing engine
(Encore16) with up to 16 tightly-coupled processors STxP70-V4, and shared L1 memories
for instructions and data. The STxP70-V4 is a dual issue 32-RISC processor running at
600 MHz, with two possible extensions, one for SIMD and one for bit manipulations
needed for parsing video streams. The platform also integrate an array of specialized
hardware processing elements (HWPE) in order to implement functions for which the
software remains inefficient in terms of area and energy (eg. motion compensation in
video decoding). Intra-cluster communications are handled by an asynchronous local
interconnect.

The global system follows the GALS paradigm. Each cluster therefore has its own
voltage and frequency domain, in order to finely control the power, reliability and vari-
abilities of the platform. The clocking scheme is based on an innovative FLL (Frequency
Locked Loop) which provide frequencies between 500MHz and 1.5GHz and can be repro-
grammed quickly (within 200 ns). The clock generator is duplicated inside the cluster, and
the Encore16 engine and the hardware PEs are located inside different power/frequency
islands. DVFS may be performed at the cluster level in order to fine tune the frequency
of each block. This is achieved through the VDD hopping technique, which consists in
obtaining an average voltage/frequency point by alternating between a high and a low
voltage, which are distributed over the fabric. The power management of each frequency
island is controlled by a Clock Variability and Power module (CVP) which decides the
configuration of each domain based on voltage, temperature, and timing faults information
collected by sensors.

4.2. DESIGN TRENDS FOR EMBEDDED MULTI-PROCESSORS 67

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

Figure 4.2.3: The P2012 platform.

4.3 Parallelizing and Deploying Software
As we already mentioned in section 4.1, the computing power of multi-processors will

not bring real benefits in terms of software performance if the application parallelism is
not exploited effectively. In fact, there are two major phases that must be performed to
execute a program on a parallel architecture: the parallelization of the application, and
its deployment (ie mapping and scheduling). In the remainder of this section, we briefly
introduce these two phases and explain why they represent a challenge to the effectiveness
of the system, especially for performance and energy consumption.

4.3.1 Parallelization
Parallelization is the process of partitioning the work into parallel tasks related by

interdependencies which may be due to communication or synchronization. This phase
involves finding and extracting parts of an application which can be executed concurrently,
possibly engineering new algorithms to maximize the potential speedup of parallel execu-
tion. Basically, there are three sources of parallelism available in an application, and they
are commonly known as task, data and pipeline parallelisms.

Task parallelism applies to separate computations that neither have control or data
dependencies. As a simple analogy, making coffee and toasting bread are two task-
parallel actions in the process of preparing a breakfast. Regarding software, it is the
programmer’s duty to find parallelism of that type. Indeed, because task-parallelism
is inseparable from the algorithms used in the implementation, a machine cannot
detect it automatically from a sequential program.

68 4.3. PARALLELIZING AND DEPLOYING SOFTWARE

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

Data parallelism refers to the application of the same computation on different instances
of data. As an analogy, consider what happens in a supermarket when several
cashiers are serving different clients simultaneously. The function of a cashier,
scanning items and collecting money, is the same for each. However the "instances"
or customers they treat are different. In this simple example, the parallelization
is quite easy. Indeed there are no dependency relationships between customers,
and it is possible to serve them in any order. In the field of computer science, an
application with this property is called embarassingly parallel, because any extra
instance may be handled just by using an extra resource. In this case, the level of
parallelism, and therefore the speedup, is only limited by the number of resources
one is willing to invest. In other contexts such as video decoding, data parallelization
is more complicated as there are temporal and spatial dependencies on the data set.
Interestingly, data parallelism is surely a better candidate for automatic extraction
than task parallelism is. A widespread example is the parallelization of loops inside
compilers [DRV00].

Pipeline parallelism applies to a chain of actors working in parallel on different instances.
Its classical illustration is an assembly line in a firm, where a system is assembled
pieces after pieces, progressing through deeper stages of construction. At any instant,
each actor on the line is working on a different instance of the system. In the software
domain, multimedia and signal applications are naturally expressed as pipelines,
because they may functionally be viewed as a chain of actors altering an input stream
(a signal or a video).

The goal of parallelization is to express the application at the right level of granularity,
with the appropriate amount of task, data and pipeline parallelism. This may be viewed as
an algorithmic design phase in which the potential for parallelism is identified and exhibited.
In this thesis we did not look at the ambitious task of automating the parallelization. Instead,
we assume that the sequential application has been manually decomposed into a parallel
specification consisting of a set of tasks and their interdependencies. Actually, although
automatic parallelization is the holy grail of parallel computing, there are strong barriers
which make it unapplicable for general programs and architectures. On the other hand,
automatic or semi-automatic application deployment is a hot topic since mapping and
scheduling decisions, which heavily impact the performance and energy consumption, are
good candidates for analysis and optimization by tools.

Still, efficient parallelization is a crucial step for performance because the phase is
feeding deployment tools with parallelism, which is their primary resource for working
out an efficient implementation of the application on a multi-processor. Actually, as
shown by the Amdahl’s law [Amd67], the benefit of parallel execution can be severely
limited by sequential fractions in the program. Supposing that 10 % of an application is
not parallelized, its execution on ten processors brings a maximal speedup of five, not
ten. This can be shown by a quick calculation: let T denotes the time for sequential
execution, the parallel part takes at least 0.9

10
× T to execute (time is divided by the number

of processors), and the sequential part takes 0.1 × T . The overall speedup is therefore
1/(0.9

10
+ 0.1) ≈ 5.3. In other words, compared to the ideal case where everything is

“fluid” and parallel, the 10% of the work kept sequential has resulted in a theoretical
speedup cut by half. The value computed that way is actually an upper bound, because in
practice communication and synchronisation constraints may limit the acceleration of the
parallel part even more. More concretely, the example shows that no matter how good the

4.3. PARALLELIZING AND DEPLOYING SOFTWARE 69

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

Figure 4.3.1: Illustration of Amdahl’s law. The plots represent the speedup of parallel
processing for different values of the parallel portion of an application.

mapping and scheduling decisions performed by tools may be, parallel execution speedup
is pre-eminently conditioned to the amount of parallelism extracted from the application
(Figure 4.3.1).

4.3.2 Mapping and Scheduling

Once an application has been parallelized, it remains to deploy it on the multi-processor
architecture. This means choosing a processing unit for each task (mapping), and orches-
trating the execution over time (scheduling).

Throughout this thesis, we assume that the parallel application is modeled as a task-
graph, which is a DAG (Directed Acyclic Graph) with nodes representing computations,
edges representing communication dependencies, and which is augmented with additionnal
information relevant to deployment decisions, such as instruction count, communication
volume, memory footprint, energy consumption or deadline. This is a high-level model of
an application which makes parallelism explicit and supports different levels of granularity:
a task may as well represent an instruction, a thread instance or a communication on a
channel. In the same way, we suppose that computation resources are described by an
abstraction of their major characteristics, like frequency for a processor, capacity for a
memory or bandwidth for a communication channel. The choice of a model (granularity,
parameters) for both the application and the platform actually depends on the particular
problem to be handled, and on the trade-off between accuracy and tractability.

Constraints and goals widely differ from a system to another, and the optimization
problem to solve for the application deployment may take various forms. Obviously the
first question to ask is: what are the static decisions which can be made about the system?
Typically the mapping is not constrained, and can thus be statically decided by formulating
an optimization problem. On the other hand, it is not always possible to control task
scheduling. For instance, a common practice is to avoid altogether scheduling on the
processors by (manually) merging tasks, so that their number is exactly the number of

70 4.3. PARALLELIZING AND DEPLOYING SOFTWARE

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

available processors. Sometimes scheduling is dynamic, meaning that decisions concerning
the triggering-time of tasks are made on the fly, according to a given resource-sharing
policy. Tasks are in this case executed in a cooperative preemption style, that is, data-
triggered roundrobin. In the same way, fine-grained communications are generally not
scheduled off-line, because the infrastructure (bus, NoC) manages them directly. Still,
explicit data transfers such as those initiated by a DMA could well be subject to optimized
scheduling. In a nutshell, there are many variants of mapping and scheduling problems,
depending on constraints, degrees of freedom, and objectives. In the sequel we successively
discuss mapping and scheduling, and show for these two optimization problems a simple
formulation.

Mapping is the more liberal form of deployment. It prescribes which tasks are to be
executed on which processor and sometimes how data is to be routed among tasks. Hence
the decision variables for optimization are discrete variables indicating the placement
of tasks and data transfers. The quality of a mapping is evaluated according to various
criteria such as power, load balancing, communication traffic, number of resources used or
throughput (if the application is a streaming application). Power estimates are often part
of the cost funtions because the number and type of processors/links which are statically
allocated impact the energy consumption of the system. Most mapping problems are NP-
complete. For instance, the problem of minimizing the number of processors used, given
a limit on the workload supported by each, reduces to a bin-packing problem [CJGJ96].
Similarly, a one-to-one mapping of a set of n communicating processes to a set of n
processors, where the objective is to minimize the total communication cost, is a quadratic
assignment problem [Tai91].

The mapping optimization problem can be formulated as described in Equation 4.3A,
where a solution is represented as a 0-1 matrix A. Elements of the matrix define the
assignment of tasks to processors (and communications to links), where Aij equals one if
task i is mapped on processor j, otherwise zero. The vector wi represents the load of task i.
When only the workload is modeled, wi is a single integer representing a gross measure of
the duration of the task. Otherwise, wi may also have an additional coordinate representing
memory utilization, or any other resource usage which should be restricted. Vector Wj is
the corresponding capacity of processor j, and C(A) is the multi-dimensional vector of
objectives.

minimize
A

C(A)

subject to ∀i
∑
j

Aij = 1 (assigment)

∀j
∑
i

Aijwi ≤ Wj (capacity)

(4.3A)

Generally speaking, a scheduling problem occurs when different activities share a set
of scarce resources. In this situation, there are some points in time where two or more
activities are in conflict for the access to a resource. A schedule is a set of rules prescribing
how to resolve the conflicts, by telling which activity gets the resource first.

In particular, the execution of a parallel application entails a scheduling problem,
because there is a competition between tasks for the access to processors. In its most static
form the scheduling specifies the exact times when a processor executes each of the tasks
assigned to it, and in some cases (common in hard real time) it does the same with data
transfers on a bus. More relaxed forms of scheduling can be adaptive (event-triggered)

4.3. PARALLELIZING AND DEPLOYING SOFTWARE 71

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

to the actual execution. Scheduling is one of the most studied problem in combinatorial
optimization and it has many ramifications associated with different fields of applications
(project management, production planning, parallel software execution etc.). In this thesis
we only consider task-graph scheduling problems because it is the appropriate model
for the type of parallel application we are interested in. We also restrict ourselves to
problems involving identical, related or unrelated machines. In general, we do not assume
a task to be bound to a specific processor which means that the application scheduling
also encompasses its mapping. Except in special cases where the number of processors is
limited, task-graph scheduling is NP-complete. The computational hardness of the problem
comes from the multiple ways of solving the resource conflicts.

The scheduling optimization problem can be encoded using an assignment matrix A
(mapping), plus an additional vector of real variables s, where si is the start-time of task i.
In the simple formulation we give (Equation 4.3B), the duration of a task does not depend
on the processor where it is mapped, what amounts to say that processors are identical.
Constraints are those of mapping, augmented with mutual exclusion and precedences
induced by the task-graph.

minimize
A,s

C(A, s)

subject to ∀i
∑
j

Aij = 1 (assigment)

∀j
∑
i

Aijwi ≤ Wj (capacity)

∀i ≺ i′ si′ ≥ si + di (precedence)

∀j, i, i′ Aij = 0 ∨ Ai′j = 0

∨ si′ ≥ si + di ∨ si ≥ si′ + di′ (resource)

(4.3B)

4.4 Multi-Criteria Optimization for Deployment Decisions
As outlined in previous sections of this chapter, the multi-core revolution is underway.

However, unlike the case of sequential programs for which there are high-level languages
and compilers capable of optimizing the implementation, it remains difficult to generate
efficient parallel programs automatically. In general, low-level deployment decisions such
as mapping and scheduling which have a direct impact on the system performance are
optimized manually. Given the complexity of deployment problems and the trend towards
large multi-core systems, such ad hoc optimization is very likely to be ineffective.

In fact, optimizing deployment decisions often entails searching among a huge number
of possible combinations. For instance there are mn ways to map an application containing
n parallel tasks on a multi-processor platform of size m, a number growing exponentially
as n increases. Although it is generally possible to reduce the search space with simple
considerations (symmetry breaking, memory limitations etc.), it is clearly impossible to
evaluate every alternative by running the actual code on low-level instruction- or cycle-
accurate simulators. There is a need to develop methods and tools for system-level design
space exploration in order to identify few promising candidates which are kept for analysis
at lower levels of abstraction.

In order to reason efficiently about deployment decisions at a high level, it is required
to work with abstract models of the application and the multi-processor platform which are

72 4.4. MULTI-CRITERIA OPTIMIZATION FOR DEPLOYMENT DECISIONS

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

amenable to manipulation by analytical methods. Obviously, what is gained in tractability
from abstraction, is lost in faithfullness, and the potential of a solution may be wrongly
estimated using these coarse models. But the point is, if we put together the complexity of
applications, platforms and deployment problems, only methods based on abstract models
may explore a significant part of the huge design space of upcoming multi-processor
systems.

Given abstract application and platform descriptions, deployment decisions can be
formulated as optimization problems. This requires defining a number of constraints (eg
resources, precedence, memory) and objective functions. Most of the time it is necessary
to take into account several conflicting optimization criteria, such as load balancing versus
communication load (Section 1.1.1) or schedule latency versus energy consumption. As
argued in Section 1.1.2, an appropriate methodology for decision making under conflicting
goals is the multi-criteria approach: first optimize a few objectives simultaneously, with
the goal of finding a representative set of the corresponding trade-offs, and then let the user
analyse the information and choose among the solutions proposed.

However, it is important to clarify the scope of multi-criteria optimization methods. In
fact, since they require users to make the final choice, the decision making performed with
their help is only semi-automatic. The approach would consequently not be appropriate
for optimizing the deployment decisions made by a compiler, which should enable fast
testing and debugging of the application. Maybe a way to proceed in this case would be in
two stages: first, the program is compiled quickly (without programmer’s intervention)
but softly optimized, relying on fast heuristics to decide on deployment. Then, once the
development is completed, a more involved phase of aggressive program optimization is
performed in order to refine deployment decisions and to improve performance, energy
consumption, or other metrics which might be relevant for the final system. The multi-
criteria approach would be applicable for this second phase.

In the embedded system domain, multi-criteria optimization is used for design space
exploration. As mentioned in 4.2, embedded systems are generally specialized for a
specific type of applications and there are multiple ways to configure the platform and
the application. Design space exploration is the optimization phase during which diverse
options for architectural parameters like hardware/software partitioning, memory mapping,
processor frequency, or task mapping and scheduling are considered and evaluated.

In order to perform this exploration, the application specification must be clearly sepa-
rated from the architecture model. This allows to repeatedly test different solutions without
having to modify the application code. This design flow methodology is known under the
name of Y-chart [BWH+03] and differs from the traditional model of harware/software
codesign which has the drawback that performance-related decisions must be made much
earlier in the flow. The concept of system-level design [KNRSV00] embodies the Y-chart
principle of separating the application from the architecture specification, and additionally
proposes to raise the level of abstraction at which the system is modeled, analysed and
simulated. Performing design space exploration at a high level of abstraction enables
to explore as widely as possible a space of configurations which is most of the time ex-
ponential in size. By doing so, dominated solutions are pruned before moving down in
abstraction, and costly low-level simulations are only performed for the most promising
candidates. This is where high-level analytic methods and multi-criteria optimization have
their utility: they may help pruning the design space of embedded systems early in the
flow when the number of solutions is too large for relying on simulations [Erb06]. As an

4.4. MULTI-CRITERIA OPTIMIZATION FOR DEPLOYMENT DECISIONS 73

CHAPTER 4. OPTIMIZATION FOR THE PARALLEL EXECUTION OF SOFTWARE

example, Sesame [EPTP07, ECEP06] and DOL [TBHH07] are two recent system-level
design-space-exploration frameworks which feature a multi-objective optimization step
based on evolutionary algorithms.

APPLICATION

MODEL

PLATFORM

MODEL

MAPPING

multi−objective
optimization

SYSTEM

PERFORMANCE

RESULTS

EVALUATION

Figure 4.4.1: The Y-chart methodology separates the application and architecture descrip-
tions for design space exploration. Multi-criteria optimization can be used during the
mapping phase (application to architecture). After the mapping, the system is evaluated
through performance analysis or simulation. The results are used to progressively refine
the initial application and architecture models, and to improve the mapping.

74 4.4. MULTI-CRITERIA OPTIMIZATION FOR DEPLOYMENT DECISIONS

Chapter 5

Energy-Aware Scheduling

Résumé : Dans ce chapitre nous appliquons les méthodes d’optimisation proposées dans
les chapitres 2 et 3 au problème d’ordonnancement sur architecture multi-processeur. Nous
étudions différentes versions du problème en considérant deux objectifs : la latence de
l’ordonnancement et la consommation d’énergie. Nous considérons d’abord une plateforme
d’éxécution dans laquelle la fréquence des processeurs peut être configurée, et formulons
le problème suivant : quel est la configuration optimale en termes de consommation
d’énergie qui permet d’ordonnancer le graphe de tâches de l’application sans dépasser
une latence maximale prédéfinie? Ce problème a été traité en combinant un solveur SAT
et l’algorithme développé dans le chapitre 2. Nous avons ensuite formulé deux extensions
: l’ordonnancement des transferts de données sur les canaux de communications, et le cas
où différentes instances du même graphe arrivent périodiquement dans le système. Dans le
cas périodique, il est nécéssaire d’éxécuter plusieurs instances en parallèle (pipeline) afin
d’exploiter au mieux les capacités de la plateforme. La taille des problèmes qui peuvent être
résolus par cette méthode est relativement petite (entre 15 et 40 selon les variantes) mais
la qualité de la ou les solutions est garantie. L’algorithme de recherche locale présenté
au chapitre 3 a été testé sur un problème légèrement différent pour lequel la fréquence
des processeurs est considérée fixe, mais qui intègre un modèle de la consommation
énergétique plus réaliste. Cette méthode antagoniste à la première permet d’obtenir de
bonnes solutions de manière très rapide (quelques secondes) mais sans garantie sur la
qualité.

5.1 Introduction
In this chapter, we apply the optimization techniques presented in chapters 2 and 3 to

the problem of scheduling an application on a multi-processor system. We study different
versions of the scheduling problem while considering objectives related to performance
and energy consumption.

First, we define the abstract models used to represent the multi-processor architecture
and the parallel application (Section 5.2). We then consider an execution platform in which
the frequency of processing units can be configured, and formulate the problem of finding
the cheapest configuration which meets the application demands. More formally we ask the
following question: what is the least energy-demanding configuration of the architecture

75

CHAPTER 5. ENERGY-AWARE SCHEDULING

on which a task-graph can be scheduled while meeting a strict deadline constraint? For
this problem we use a coarse model of energy where we associate with each running
processor a static cost related to its operating frequency. We report different results of
applying the SMT-based optimization method presented in Chapter 2. Several single- and
multi-criteria variants of this problem are treated, including the case where a stream of
identical task-graphs arrives periodically.

In the second part we describe an implementation of the stochastic local search algo-
rithm presented in Chapter 3 to solve a bi-criteria energy/deadline scheduling problem. In
particular we detail how to represent a schedule and its neighborhood in order to efficiently
perform a locally-optimal step. The algorithm we developed only supports a fixed multi-
processor architecture where the speeds are pre-determined and are not part of the decision
variables. On the other hand, the energy model used is more refined: each task induces
a cost which depends on its duration and the speed of the processor where it executes.
Moreover, the implementation offers the possibility to account for the energy spent on
communications by associating a cost with each data transfer occuring on the network.
This cost is based on the size of the data item and the length of the routing path.

Finally, we conclude this chapter by evaluating the results obtained by the two alterna-
tive multi-criteria optimization methods we have developed during this thesis. We mainly
stress the advantages and drawbacks we could identify in both techniques, and discuss
their applicability for solving real instances of mapping and scheduling problems.

5.2 Problem Specification
This section is dedicated to the definition of abstract models for the (configurable)

multi-processor platform and the parallel application.

5.2.1 Execution Platforms
We assume a fixed set of speeds V = {v0, v1, . . . , vm} with v0 = 0 and vk < vk+1,

each representing an amount of work (for example, number of instructions) that can be
provided per unit of time. We propose the following model for a multi-processor system
where speeds can be configured according to V .

Definition 5.2.1 (Execution Platform) A configurable execution platform is a tuple E =
(M,R,N, b, ρ) where

– M ∈ N is a finite number of processors
– R ∈ V M is a vector assigning a speed to each machine called the platform con-

figuration. We interpret Ri = 0 as saying that processor i is shut down in the
configuration.

– N ⊆ {0 . . .M − 1}2 is a set of (physical) communication channels all with the same
bandwidth b (bits/second)

– ρ is a routing function ρ : {0 . . .M − 1}2 → N∗ which assigns to every pair
(m,m′) of processors an acyclic path (m,m1), (m1,m2), . . . (mk,m

′) in the net-
work. Clearly ρ(m,m) = ε.

By abuse of notation we also refer to the path as a set of channels and say that (m1,m2) ∈
ρ(m,m′) if (m1,m2) appears in the path. Below we define some useful measures on
platform configurations related to their work capacity.

76 5.2. PROBLEM SPECIFICATION

CHAPTER 5. ENERGY-AWARE SCHEDULING

– Number of active machines: N (R) = |i ∈ {0 . . .M − 1}, Ri 6= 0|;
– Speed of fastest machine: F(R) = maxiRi;
– Work capacity: S(R) =

∑M−1
i=1 Ri.

The last measure gives an upper bound on the quantity of work that the platform may
produce over time when it is fully utilized.

5.2.2 Work Specification
The work to be done on a platform is specified by a variant of a task graph, where the

size of a task is expressed in terms of work rather than duration.

Definition 5.2.2 (Task Graph) A task graph is a tuple G = (P,≺, w, v) where P =
{p1, . . . pn} is a set of tasks, ≺ is a partial order relation on P with a unique 1 minimal
element p1 and a unique maximal element pn. The function w : P → N assigns a quantity
of work to each task and v : P × P → N indicates the amount of data communicated
between each pair of tasks (p, p′) such that p ≺ p′. When a task p is executed on a machine
working in speed v, its execution time is w(p)/v.

The following measures give an approximate characterization of what is needed in
terms of time and work capacity in order to execute G.

– The widthW(G) which is the maximal number of ≺-incomparable tasks, indicates
the maximal parallelism that can potentially be useful;

– The length L(G) of the longest (critical) path in terms of work, which gives a lower
bound on execution time;

– The total amount of work T (G) =
∑

iw(pi) which together with number of ma-
chines gives another lower bound on execution time.

5.3 Satisfiability-Based Scheduling
In this section we solve the problem of finding platform configurations and associated

energy-efficient schedules of the task-graph using SMT solvers. We first discuss briefly
several approaches for handling mixed constraints in optimization (Section 5.3.1), and de-
scribe our encoding of the basic problem using a Boolean combination of linear constraints
(Section 5.3.2).

We have first treated the problem with the single objective of minimizing the platform
cost given a fixed deadline. We have developed a program which translates the problem
into the Yices solver input language [DdM06], and perform the optimization using a
one-dimensional version of Algorithm 2.4.1 which is enhanced by a simple strategy
for handling non-terminating calls. We then improve the implementation to solve two
orthogonal extensions of the problem. First we consider inter-task communications and
pose the same question where the network channels are considered as additional resources
occupied for durations proportional to the amount of transmitted data (Section 5.3.4). Then,
we formulate a periodic extension where task-graph instances arrive every ω time units
and must be finished within a relative deadline δ > ω (Section 5.3.5). Efficient resource
utilization for this problem involves pipelined execution, which may increase the number

1. This can always be achieved by adding fictitious minimal and maximal tasks with zero work.

5.3. SATISFIABILITY-BASED SCHEDULING 77

CHAPTER 5. ENERGY-AWARE SCHEDULING

of decision variables and complicate the constraints. We solve this infinite problem by
reducing it to finding a schedule for a sufficiently-long finite unfolding.

We then move on to bi-criteria optimization. Rather than keeping the deadline constant
and optimizing the cost, we use the Algorithm 2.4.1 presented in Chapter 2 to provide
a good approximation of the trade-off curve between cost and deadline. We formulate
the same problem including the scheduling of communications, but we also derive and
experiment a more tractable model which only accounts for the latency of data transfers.
For these developments we used the API of the SMT solver Z3 [DMB08] which can save
information between the various calls.

5.3.1 Background

The problem of optimizing a linear function subject to linear constraints, also known as
linear programming [Sch99], is one of the most studied optimization problems. When the
set of feasible solutions is convex, that is, it is defined as a conjunction of linear inequalities,
the problem is easy: there are polynomial algorithms and, even better, there is a simple
worst-case exponential algorithm (simplex) that works well in practice. However, all these
nice facts are not of much help in the case of scheduling under resource constraints. The
mutual exclusion constraint, an instance of which appears in the problem formulation for
every pair of unrelated tasks executing on the same machine, is of the form [x, x′]∩[y, y′] =
∅, that is, a disjunction (x′ ≤ y)∨ (y′ ≤ x) where each disjunct represents a distinct way to
solve the potential resource conflict between the two tasks. As a result, the set of feasible
solutions is decomposed into an exponential number of disjoint convex sets, a fact which
renders the nature of the problem more combinatorial than numerical. Consequently, large
scheduling problems cannot benefit from progress in relaxation-based methods for mixed
integer-linear programming (MILP).

Techniques that are typically applied to scheduling problems [BLPN01] are those
originating from the field known as constraint logic programming (CLP) [JM94]. These
techniques are based on heuristic search (guessing variable valuations), constraint propa-
gation (deducing the consequences of guessed assignments and reducing the domain of
the remaining variables) and backtracking (when a contradiction is found). A great leap
in performance has been achieved during the last decade for search-based methods for
the generic discrete constraint satisfaction problem, the satisfiability of Boolean formulae
given in CNF form (SAT). Modern SAT solvers [ZM02] based on improvements of the
DPLL procedures [DLL62] can now solve problems comprising of hundreds of thousands
of variables and clauses and are used extensively to solve design and verification problems
in hardware and software.

Recently, efforts have been made to leverage this success to solve satisfiability problems
for Boolean combinations of predicates, such as numerical inequalities, belonging to
various “theories” (in the logical sense), hence the name satisfiability modulo theories
(SMT) [GHN+04, BSST09]. SMT solvers combine techniques developed in the SAT
context (search mechanism, unit resolution, non-chronological backtracking, learning,
and more) with a theory-specific solver that checks the consistency of truth assignments
to theory predicates and infers additional assignments. The relevant theory for standard
scheduling problems is the theory of difference constraints, a sub theory of the theory of
linear inequalities, but in order to cover costs and speeds we use the latter theory.

78 5.3. SATISFIABILITY-BASED SCHEDULING

CHAPTER 5. ENERGY-AWARE SCHEDULING

5.3.2 Constrained Optimization Formulation
We first formulate the scheduling problem without considering the communications. In

this section we assume a task-graph G = (P,≺, w, v) where v = 0. This assumption im-
plies that processors are symmetric entities, and the execution platform is fully represented
by its configuration vector R which specifies the number of active processors and their
respective speeds. Hence, we will just represent the execution platform by its configuration
vector R for the remainder of this section.

We define a schedule for the pair (G,R) to be a function s : P → N × R+ where
s(p) = (j, t) indicates that task p starts executing at time t on machine j. We will sometime
decompose s into s1 and s2, the former indicating the machine and the latter, the start time.
The duration of task p under schedule s is ds(p) = w(p)/Rs1(p). Its execution interval (we
assume no preemption) is [s2(p), s2(p) + ds(p)]. A schedule is feasible if the execution
intervals of tasks satisfy their respective precedence constraints and if they do not violate
the resource constraints, which means that they are disjoint for all tasks that use the same
machine.

Definition 5.3.1 (Feasible Schedule) A schedule s is feasible for G on platform R if it
satisfies the following conditions:

1. Precedence: If p ≺ p′ then s2(p) + ds(p) ≤ s2(p
′);

2. Mutual exclusion: If s1(p) = s1(p
′) then [s2(p), s2(p) + ds(p)] ∩ [s2(p

′), s2(p
′) +

ds(p
′)] = ∅. The total duration of a schedule is the termination time of the last task

`(s) = s2(pn) + ds(pn).

To compare different platforms we use a static cost model that depends only on the
membership of machines of various speeds in the platform and not on their actual utilization
during execution.

Definition 5.3.2 (Platform Cost) The cost of a platform R is C(R) =
∑M−1

i=0 α(Ri)
where α : V → N associates a static cost to each speed.

The singular 2 deadline scheduling predicate SDS(G,R, δ) holds if there is a feasible
schedule s for G on R such that `(s) ≤ δ. The single-objective problem of finding the
cheapest architecture R where, for a given δ, the task-graph is schedulable in time is

minC(R) s.t .SDS(G,R, δ) (5.3A)

The harder part of the problem is to check whether, for a given execution platform R,
SDS(G,R, δ) is satisfied when δ is close to the duration of the optimal schedule for G on
R. Since we will be interested in approaching the cheapest platform we will often have to
practically solve the optimal scheduling problem which is NP-hard.

Let us mention some observations that reduce the space of platforms that need to
be considered. First, note that if SDS(G,R, δ) is solvable, then there is a solution on a
platform R satisfying N (R) ≤ W(G), because adding processors beyond the potential
parallelism in G does not help. Secondly, a feasible solution imposes two lower bounds on
the capacity of the platform:

2. To distinguish it from the periodic problem defined in Section 5.3.5

5.3. SATISFIABILITY-BASED SCHEDULING 79

CHAPTER 5. ENERGY-AWARE SCHEDULING

1. The speed of the fastest machine should satisfy F(R) ≥ L(G)/δ, otherwise there is
no way to execute the critical path before the deadline.

2. The total work capacity should satisfy S(R) ≥ T (G)/δ, otherwise even if we
manage to keep the machines busy all the time we cannot finish the work on time

Solutions to the problem are assignments to decision variables {uj}, {ei} and {xi}
where variable uj ranging over V , indicates the speed of machine j, integer variables ei
indicates the machine on which task pi executes and variable xi is its start time. Constants
{vk} indicates the possible speeds, {wi} stand for the work in tasks and {ck} is the cost
contributed by a machine running at speed vk. The above-mentioned lower bounds on the
speed of the fastest machine and on the platform capacity are b1 and b2, respectively. We
use auxiliary (derived) variables {di} for the durations of tasks based on the speed of the
machine on which they execute and Cj for the cost of machine j in a given configuration.
The following constraints define the problem.

– The speed of a machine determines its cost:∧
j

∧
k

(uj = vk ⇒ Cj = ck)

– Every task runs on a machine with a positive speed and this defines its duration:∧
i

∧
j

((ei = j)⇒ (uj > 0 ∧ di = wi/uj))

– Precedence:
∧
i

∧
i′:pi≺pi′

xi + di ≤ xi′

– Mutual exclusion:∧
i

∧
i′ 6=i

((ei = ei′)⇒ ((xi + di ≤ xi′) ∨ (xi′ + di′ ≤ xi))

– Deadline: xn + dn ≤ δ
– Total architecture cost: C =

∑
j Cj.

We use additional constraints that do not change the satisfiability of the problem but may
reduce the space of the feasible solutions. They include the above mentioned lower bounds
on architecture size and a “symmetry breaking" constraint which orders the machines
according to speeds, avoiding searching among equivalent solutions that can be transformed
into each other by permuting the indices of the machines.

– Machines are ordered:
∧
j

(uj ≥ uj+1)

– Lower bounds on fastest processor and capacity:

(u1 > b1) ∧
∑
j

uj > b2

5.3.3 Implementation and Experimental Results
We have implemented a prototype tool that takes a task graph as an input, performs

preliminary preprocessing to compute width, critical path and quantity of work and then
generates the constraint satisfaction problem in the Yices solver input language. Recall

80 5.3. SATISFIABILITY-BASED SCHEDULING

CHAPTER 5. ENERGY-AWARE SCHEDULING

$ cc $ c∗

Figure 5.3.1: Searching for the optimum. The dashed line indicate the interval toward
which the algorithm will converge, the best estimation of the optimum for time budget θ.

that the solver has no built-in optimization capabilities, and we can pose only queries of
the form SDS(G,R, δ) ∧ C(R) ≤ c for some cost vector c. We use ψ(c) as a shorthand
for this query.

The quest for a cheap architecture is realized as a sequence of calls to the solver with
various values of c, which basically is a one dimensional version of Algorithm 2.4.1.
Performing a search with an NP-hard problem in the inner loop is very tricky since, the
closer we get to the optimum, the computation time becomes huge, both for finding a
satisfying solution and for proving unsatisfiability (from our experience, the procedure
may sometimes get stuck for hours near the optimum while it takes few seconds for
slightly larger or smaller costs). We have implemented a simple mechanism to handle
such non-terminating calls, which is based on the ideas presented in Section 2.6.1 3. We
fix a time budget θ beyond which we do not wait for an answer (currently 5 minutes on a
modest laptop). The outcome of the query ψ(c) can be either

(1, c) : There is a solution with cost c ≤ c
0 : There is no solution
$: The computation is too costly

At every stage of the search we maintain 4 variables: c is the maximal value for
which the query is not satisfiable, $ is the minimal value for which the answer is $, $ is
the maximal value for which the answer is $, and c is the minimal solution found (see
Figure 5.3.1). Assuming that computation time grows monotonically as one approaches
the optimum from both sides, we are sure not to get answers if we ask ψ(c) with c ∈ [$, $].
So we ask further queries in the intervals [c, $] and [$, c] and each outcome reduces one of
these intervals by finding a larger value of c, a smaller value of $, a larger value of $ or a
smaller value of c. Whenever we stop we have a solution c whose distance from the real
optimum is bounded by c− c. This scheme allows us to benefit from the advantages of
binary search (logarithmic number of calls) with a bounded computation time.

We did experiments with this algorithm on a family of platforms with 3 available speeds
{1, 2, 3}. The costs associated with the speeds are, respectively, 1, 8 and 27, reflecting the
approximate cubic dependence of energy on speed. We have experimented with numerous
graphs generated by TGFF tool [DRW98] and could easily find solutions for problems
with 40-50 tasks. Figure 5.3.2 illustrates the influence of the deadline constraints on the
platform and the schedule for a 10-task problem of width 4. With deadline 100 the problem
can be scheduled on the platform R = (0, 0, 3), that is, 3 slow processors, while when
the deadline is reduced to 99, the more expensive platform R = (0, 1, 1) is needed. In the
next section we discuss how the model has been enriched to account for communications
between tasks.

3. However this mechanism only works for the single criteria case that we treat here.

5.3. SATISFIABILITY-BASED SCHEDULING 81

CHAPTER 5. ENERGY-AWARE SCHEDULING

-

-

-

processor 0
speed 1

processor 1
speed 1

processor 2
speed 1

p0

p1

p2p3 p4p5

p6

p7 p8

p9

p10

(a)

-

-

processor 0
speed 2

processor 1
speed 1

p0 p1 p2

p3

p4p5

p6

p7 p8p9 p10

(b)

Figure 5.3.2: The effect of deadline: (a) a cheap architecture with deadline 100; (b) a more
expensive architecture with deadline 99.

5.3.4 Adding Communications

The model described in the preceding section neglects communication costs. While
this may be appropriate for some traditional applications of program parallelization, it is
less so for modern streaming applications that have to pass large amounts of data among
tasks and there is a significant variation in communication time depending on the distance
between the processors on which two communicating tasks execute. From now on, we
consider a task-graph G with v 6= 0, and extend the constrained optimization formulation
to account for communications. We assume that a task waits for the arrival of all its data
before starting execution, and that it transmits them after termination.

We propose to schedule communications on network links in the same way that we
schedule tasks on processors. Hence when a task p and its successor p′ are mapped to m
and m′ respectively, the termination of p should be followed by the execution of additional
communication tasks that have to be scheduled successively on the channels on the path
from m to m′. Task p′ should not start executing before the last of those communication
tasks has finished (Figure 5.3.3). In order to model the problem in the SMT solver we
introduce new real variables for the start-time of each communication task. Each edge z
of the task-graph is associated with η real variables {oz−k}ηk=1, where η is the maximal
length of any path returned by the routing function, and oz−k is the start-time of the k-th
communication task corresponding to edge z. When the communication due to edge z is
forwarded through a path with n < η hops, all oz−k variables for k ≥ n are irrelevant. In
the sequel we informally explain the additionnal constraints induced by this model, but
spare the reader from the exact formulation which is quite involved.

The precedence constraints are obviously modified with the introduction of commu-
nications, and in particular they become dependent on the task-to-processor assignment.
Consider an edge z which links two tasks i ≺ i′. When i and i′ are respectively mapped on
processors j and j′ with |ρ(j, j′)| = n, the following constraint is implied

82 5.3. SATISFIABILITY-BASED SCHEDULING

CHAPTER 5. ENERGY-AWARE SCHEDULING

(a) (b)

p12

p1

p2
p2

m2

m1

m13

m12

m3

p12

p12

p1

m13

m12

m1

m3

(c)

Figure 5.3.3: (a) a part of a task-graph with data transmission from p1 to p2 denoted by p12;
(b) a part of an architecture where communication from m1 to m3 is routed via channels
m12 and m23; (c) a part of a schedule, including communication, where p1 executes on m1

and p2 on m3.

oz−0 ≥xi + di ∧ oz−1 ≥ oz−0 + v(i, i′)

∧ . . .

∧ oz−n ≥ oz−n−1 + v(i, i′) ∧ x′i ≥ oz−n + v(i, i′)

(5.3B)

The left part of Equation 5.3B forces the start-time of the first communication to occur
after the termination of the predecessor task. The right part reciprocally imposes the
start-time of the successor to be greater than the termination of the last communication
task, and the constraints in the middle prescribe that each router along the path should not
begin transmission before it receives the data. Additionally the conflicts on the network
are encoded by similar resource constraints as for tasks. When the k-th link on the path
used for the communication due to an edge z = (i1, i2) is the same than the k′-st link used
for communication due to edge z′ = (i3, i4), the implied constraint is

oz−k ≥ oz′−k′ + v(i1, i2) ∨ oz′−k′ ≥ oz−k + v(i3, i4) (5.3C)

We have coded this problem and ran experiments with TGFF-generated graphs to find
cheap and deadline-satisfying configurations of an architecture with up to 8 processors,
{0, 1, . . . , 7} equipped with a Spidergon network topology developed in STMicroelectron-
ics [CLM+04]. A spidergon network has links of the form (i, i+1mod 8), (i, i−1mod 8)
and (i, i+ 4 mod 8) for every i and there is a path of length at most 2 between any pair of
processors (Figure 5.3.4). In this setting we could solve easily problems with 15-20 tasks.
Figures 5.3.5 shows the effect of the deadline on the architecture for a task-graph with
16 tasks. For a deadline of 25 the task graph can be scheduled on an architecture with 3
machines while for deadline 24, 4 machines are needed. Note that the schedule for the first
case is very tight and is unlikely to be found by heuristics such as list scheduling.

5.3.5 Periodic Scheduling
In this section we extend the problem to deal with a stream of instances of G that arrive

periodically 4.

4. In order to keep the problem tractable, we add the periodic extension to the original problem where
we ignore communications.

5.3. SATISFIABILITY-BASED SCHEDULING 83

CHAPTER 5. ENERGY-AWARE SCHEDULING

Figure 5.3.4: The spidergon network.

Definition 5.3.3 (Periodic Scheduling Problem) Let ω (arrival period) and δ be positive
integers. The periodic deadline scheduling problem PDS(G,R, ω, δ) refers to scheduling
an infinite stream G[0], G[1], . . . of instances of G such that each G[h] becomes available
for execution at hω and has to be completed within a (relative) deadline of δ, that is, not
later than hω + δ.

Let us make some simple observations concerning the relation between SDS and PDS for
fixed G and R.

1. PDS(ω, δ)⇒ SDS(δ). This is trivial because if you cannot schedule one instance of
G in isolation you cannot schedule it when it may need to share resources with tasks
of other instances.

2. If δ ≤ ω then PDS(ω, δ) ⇔ SDS(δ) because in this case each instance should
terminate before the arrival of the next instance and hence in any interval [hω, (h+
1)ω] one has to solve one instance of SDS(δ). Thus we consider from now on that
ω < δ.

3. Problem PDS(ω, δ) is solvable only if W (G) ≤ ωS(R). The quantity of work
demanded by an instance should not exceed the amount of work that the platform
can supply within a period. Otherwise, backlog will be accumulated indefinitely and
no finite deadline can be met.

4. When SDS(ω) is not solvable, PDS(ω, δ) can only be solved via pipelined execution,
that is, executing tasks belonging to successive instances simultaneously.

We first encode the problem using infinitely many copies of the task related decision
variables where xi[h] and ei[h], denotes, respectively, the start time of instance h of task
pi and the machine on which it executes, which together with the speed of that machine
determines its duration di[h]. The major constraints that need to be added or modified are:

– The whole task graph has to be executed between its arrival and its relative deadline:∧
h∈N

x1[h] ≥ hω ∧ xn[h] + dn[h] ≤ h+ δ

– Precedence: ∧
h∈N

∧
i

∧
i′:pi≺pi′

xi[h] + di[h] ≤ xi′ [h]

84 5.3. SATISFIABILITY-BASED SCHEDULING

CHAPTER 5. ENERGY-AWARE SCHEDULING

-

-

-

-

processor 0
speed 1

processor 1
speed 1

processor 2
speed 1

processor 3
speed 1

-

-

-

-

-

link 1-0

link 0-1

link 1-2

link 4-3

link 0-4

p0 p1

p2

p3

p4

p5 p6

p7p8 p9

p10

p11

p12

p13

p14

p15

p16

C0−3

C0−3

C2−4

C2−7

C1−11

C11−12

C11−13

(a)

-

-

-

processor 0
speed 1

processor 1
speed 1

processor 2
speed 1

-

-

-

-

link 1-0

link 0-1

link 2-1

link 1-2

p0 p1

p2

p3 p4

p5

p6

p7

p8

p9

p10

p11

p12

p13p14

p15

p16

C0−3

C2−4 C2−5

C2−5

C2−7

C1−8

C1−8

C1−11

C11−12

C11−13

(b)

Figure 5.3.5: Scheduling with communication: (a) δ = 24; (b) δ = 25.

5.3. SATISFIABILITY-BASED SCHEDULING 85

CHAPTER 5. ENERGY-AWARE SCHEDULING

– Mutual exclusion: execution intervals of two distinct task instances that run on the
same machine do not intersect.∧

j

∧
i,i′

∧
h,h′

(i 6= i′ ∨ h 6= h′) ∧ ei[h] = ei′ [h
′]⇒

(xi[h] + di[h] < xi′ [h
′]) ∨ (xi′ [h

′] + di′ [h
′] < xi[h])

Note that the first two constraints treat every instance separately while the third is machine
centered and may involve several instances due to pipelining.

While any satisfying assignment to the infinitely-many decision variables is a solution
to the problem, we are of course interested in solutions that can be expressed with a finite
(and small) number of variables, solutions which are periodic in some sense or another,
that is, there is an integer constant β such that for every h, the solution for instance h+ β
is the solution for instance h shifted in time by βω.

Definition 5.3.4 (Periodic Schedules)
– A schedule is β-machine-periodic if for every h and i, ei[h+ β] = ei[h];
– A schedule is β-time-periodic if for every h and i, xi[h+ β] = xi[h] + βω;
– A schedule is (β1, β2)-periodic if it is β1-machine-periodic and β2-time-periodic.

We say that β-periodic solutions are dominant for a class of problems if the existence
of a solution implies the existence of a β-periodic solution. It is not hard to see that there
is some β for which β-periodic solutions are dominant: the deadlines are bounded, all
the constants are integers (or can be normalized into integers), hence we can focus on
solutions with integer start times. Combining with the fact that overtaking (executing an
instance of a task before an older instance of the same task) can be avoided, we end up
with a finite-state system where any infinite behavior admits a cycle which can be repeated
indefinitely. However, the upper bound on dominant periodicity derived via this argument
is too big to be useful.

It is straightforward to build counter-examples to dominance of β-machine-periodic
schedules for any β by admitting a task of duration d > βω and letting δ = d. Each
instance of this task has to be scheduled immediately upon arrival and since each of
the preceding β instances will occupy a machine, the new instance will need a different
machine. However, from a practical standpoint, for reasons such as code size which are not
captured in the current model, it might be preferable to execute all instances of the same
task on the same processor and restrict the solutions to be 1-machine-periodic. For time
periodicity there are no such constraints unless one wants to use a very primitive runtime
environment.

We encode the restriction to (β1, β2)-periodic schedules as an additional constraint.
– Schedule periodicity:∧

h∈N

∧
i

ei[h+ β1] = ei[h] ∧ xi[h+ β2] = xi[h] + β2ω

We denote the infinite formula combining feasibility and (β1, β2)-periodicity by Φ(β1, β2)
and show that it is equi-satisfiable with a finite formula Φ(β1, β2, γ) in which h ranges
over the finite set {0, 1, . . . γ − 1}. In other words, we show that it is sufficient to find a
feasible schedule to the finite problem involving the first γ instances of G.

Claim 1 (Finite Prefix)
Problems Φ(β1, β2) and Φ(β1, β2, γ) are equivalent when γ ≥ β +

⌈
δ
ω

⌉
− 1. where

β = lcm(β1, β2).

86 5.3. SATISFIABILITY-BASED SCHEDULING

CHAPTER 5. ENERGY-AWARE SCHEDULING

-

-

-

-

-

-

-

processor 0
speed 2

processor 1
speed 1

processor 2
speed 1

processor 3
speed 1

processor 4
speed 1

processor 5
speed 1

processor 6
speed 1

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

p0 p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12p13

p14

p15

p16

6 6 6 6 6

Figure 5.3.6: A (2, 1)-periodic schedule for a task graph with 16 tasks.

Proof : Intuitively, the prefix should be sufficiently long to demonstrate repeatability of a
segment where β instances are scheduled, and sufficiently late to demonstrate steady-state
behavior where resource constraints are satisfied by the maximal number of instances
whose tasks may co-exist simultaneously without violating the deadline.

Suppose we scheduled γ = β + d δ
ω
e − 1 instances successfully. Since γ ≥ β we can

extract a pattern that can be repeated to obtain an infinite schedule that clearly satisfies β-
periodicity and precedence constraints. We now prove that this periodic schedule satisfies
resource constraints. Suppose on the contrary that instance h of a task i is in conflict with
instance h′ of a task i′, h ≤ h′ and let h = (kβ + k′), k′ ∈ {0 . . . β − 1}. The deadline
constraint, together with the fact that task i and i′ overlap in time, limits the set of possible
values for h′ to be of the form

h′ = h+ ∆ = kβ + k′ + ∆

with ∆ ∈ {0 . . .
⌈
δ
ω

⌉
− 1}. Because of β-periodicity we can conclude that task i and i′

also experience a conflict in the respective instances k′ and k′ + ∆. Since k′ < β and
∆ ≤

⌈
δ
ω

⌉
− 1 we have

k′ + ∆ < β +

⌈
δ

ω

⌉
− 1

which contradicts our assumption.
Hence the problem can be reduced to Φ(β1, β2, γ) with γ copies of the task-related

decision variables. Note however that in fact there are only β “free” copies of these
variables and the values of the other variables are tightly implied by those. The unfolding is
required only to add additional resource constraints, not decision variables. Table 5.1 shows
performance results on several graphs with different values of δ/ω, β1 and β2. In general
we can treat problems where the number of unfolded tasks is around 100. Figure 5.3.6
shows a (2, 1)-periodic schedule for a task graph 1 of Table 5.1 with 17 tasks and δ/ω = 4
which requires 5 unfoldings. Although there are 85 tasks the problem is solved quickly in
3 minutes as there are only 34 decision variables. Figure 5.3.7 shows an example where
making β2 larger improves the solution. We consider a task-graph of 5 tasks, ω = 7 and
δ = 12 with machine periodicity β1 = 2. When we impose 1-time-periodicity we get a
solution with 5 machines and cost 45, while when we move to 2-time-periodicity we can
do with 3 machines and cost 43.

5.3. SATISFIABILITY-BASED SCHEDULING 87

CHAPTER 5. ENERGY-AWARE SCHEDULING

-

-

-

-

-

processor 0
speed 3

processor 1
speed 2

processor 2
speed 2

processor 3
speed 1

processor 4
speed 1

p0

p1

p2 p3

p4

p5 p6

p0

p1

p2 p3

p4

p5 p6

p0

p1

p2 p3

p4

p5 p6

6 6 6

(a)

-

-

-

processor 0
speed 3

processor 1
speed 2

processor 2
speed 2

p0

p1

p2 p3

p4

p5

p6p0 p1

p2

p3

p4

p5

p6p0

p1

p2 p3

p4

p5

p6

6 6 6

(b)

Figure 5.3.7: The effect of time periodicity: (a) A (2, 1)-periodic solution; (b) A cheaper
(2, 2)-periodic schedule. Tasks p1 and p3 are not executed 1-periodically.

5.3.6 Bi-Criteria Optimization
In this section we treat the bi-criteria problem of finding trade-offs between architecture

cost and deadline, which is formulated as:

min(C(E), δ) s.t .SDS(G,E, δ) (5.3D)

We encoded this problem using the C API of SMT solver Z3 5. Our program approx-
imates the Pareto front using Algorithm 2.4.1 and returns a set of trade-offs with the
associated platform-configurations and schedules. We also chose to implement a simpler
model of communications, which we describe in the sequel.

In this model, which is best relevant for architectures where communications are han-
dled directly by the network, we assume no control on the scheduling of communications,
but we extend the formulation to account for the latency of data transfers. Obviously, the
delay of a communication increases with the size of the data and the length 6 of the routing
path between the source and the destination processors. Hence we propose to modify the
precedence constraints to force a task p′ such that p ≺ p′ and v(p, p′) 6= 0, to wait for a
time proportional to the quantity v(p, p′)|ρ(ap, ap′)|. When two tasks are running on the
same machine we assume the communication time to be negligible. This model ignores
the resource conflicts which can occur between data transfers on the network, a fact which
simplifies the constraints and renders the problem more tractable. This abstraction would
be appropriate for systems where the network is dimensioned to prevent the communi-
cation traffic from becoming too much of a bottleneck. A possible way to improve the

5. An advantage we found in using Z3 rather than Yices is that the API of the former is more advanced.
In particular it provides a safe way to terminate a call.

6. In the execution platform model (Definition 5.2.1) we assume that all links are identical, which means
that only the length of the routing path matters for the latency of communications.

88 5.3. SATISFIABILITY-BASED SCHEDULING

CHAPTER 5. ENERGY-AWARE SCHEDULING

tasks work cp ω δ δ
ω β2 β1 platform/cost time

0 10 78 49 8 24 3 1 2 (1,2,5)/48 1’
2 2 (1,2,4)/47 2’
1 3 (1,2,4)/47 2’

32 4 1 2 (0,3,5)/29 1’
32 4 2 2 (0,3,4)/28 4’

1 17 77 48 10 30 3 1 2 (0,2,4)/20 4’
2 2 (0,2,4)/20 5’

40 4 1 2 (0,1,6)/14 3’
2 21 136 65 20 40 2 1 1 (0,2,3)/19 3’

60 3 (0,1,5)/13 5’
2 (0,1,5)/13 6’

3 29 199 89 25 50 2 1 1 (1,2,2)/45 4’
2 (1,2,2)/45 8’

4 35 187 63 40 80 2 1 1 (0,0,5)/5 6’
30 60 2 (0,1,5)/13 5’

2 ? ⊥
5 40 210 56 35 70 2 1 1 (0,4,4)/(34,36) 11’
6 45 230 45 70 140 2 1 1 (0,0,4)/4 18’

Table 5.1: Results for the periodic deadline scheduling problem. The columns stand
for: number of tasks in G, the quantity of work, the length of the critical path, the
graph input period, the deadline, the maximum pipelining degree, the time and machine
periodicities, the platform found and its cost and execution time. Platforms are written as
(R(1), R(2), . . .). A pair (c1, c2) stands for a solution with cost c2 whose optimality has
not been proved, but for which the strict lower bound c1 was found. The symbol ⊥ means
that no solution was ever found, i.e. a timeout occurred at the first call to the solver near
the upper bound.

accuracy would be to introduce a parameter representing the global communication load
(for instance the total amount of data which transists during the execution), and assume
that data transfers are increasingly delayed as the network is heavily loaded.

In our experiments we were capable of approximating the Pareto front of up to 25-
tasks graphs on the 8-spidergon architecture with reasonably small error (less than 2%
for each objective) in a total computational time of a few minutes. Interestingly there
was not a big overhead involved in moving to a bi-objective version of the problem. This
may be due to the learning capability of modern satisfiability solvers which allow them
to keep information about the problem through successive calls. Figure 5.3.8 shows
the approximation obtained for a 20-tasks TGFF-generated graph on the 8-spidergon
architecture. As one can see, the unsatisfiability information gives a good guarantee on the
quality of the approximation returned.

5.3. SATISFIABILITY-BASED SCHEDULING 89

CHAPTER 5. ENERGY-AWARE SCHEDULING

2,000 3,000 4,000 5,000 6,000

0

0.2

0.4

0.6

0.8

1

·104

schedule duration

pl
at

fo
rm

co
st

approximation
unsat frontier

Figure 5.3.8: A 2% approximation of the Pareto front for a 20-tasks TGFF-generated
task-graph (objectives functions have been rescaled to range in the same interval).

5.4 Scheduling with Stochastic Local Search

5.4.1 Introduction
We have used the stochastic local search algorithm presented in Chapter 3 to solve

bi-criteria energy and deadline scheduling problems and we report in this section the
implementation details and results of different experiments. We consider a multi-processor
platform similar to Definition 5.2.1 but we assume that the speed of each processor is
fixed. 7 In this context we employ a more refined measure of energy consumption which
is defined by the sum of the contributions of each task and data transfer. The energy cost
of a task p ∈ G is computed from the speed of the processor on which it executes and its
duration as:

C1(p) = α(s)
w(p)

s
(5.4E)

where s ∈ V is the speed of the processor where task p is mapped, α(s) is the unit cost
of execution on a processor of speed s and w(p) is the task workload. The cost of a data
transfer depends on the length of the routing path and on the size of the data. Given two
tasks p ≺ p′ the energy cost Cd(p, p′) of their communication is

C2(p, p
′) = n(b · v(p, p′) + l) (5.4F)

where n is the number of hops between the processors on which tasks p and p′ are mapped,
b and l are respectively the bandwith and latency of links, and v(p, p′) is the size of the
data. The bi-criteria optimization problem is then formulated as follows

min(C, δ) s.t. SDS(G,E, δ) (5.4G)

7. A model where the speed of each processor can vary necessitates additional algorithmic development
which could be done in future work.

90 5.4. SCHEDULING WITH STOCHASTIC LOCAL SEARCH

CHAPTER 5. ENERGY-AWARE SCHEDULING

with

C = ΣpC1(p) + Σp,p′C2(p, p
′) (5.4H)

Below we describe an SLS implementation for this problem.

5.4.2 Implementation
The critical part of the implementation of the local search method proposed in Sec-

tion 3.5.1 is the function which steps from a schedule to one of its neighbors. This function
must be optimized for the algorithm to perform more steps in a given amount of time.
We start by defining the neighborhood and go on with a description of an algorithm for
updating the schedule makespan incrementally.

As outlined in Definition 5.3.1, a schedule consists of two distinct parts: the mapping
of tasks to processors and the start-times for execution. It is not feasible to perform local
search directly on start-times which are real numbers. Hence, we move to an alternative
representation of the schedule based on a priority relation < defined on the tasks. The
relation, which must be consistent with the partial order of the original task-graph G,
specifies how to resolve resource conflicts happening on processors. A complete schedule
is derived from this representation by starting the execution of each task as soon as all its
predecessors (in terms of the original precedence) have terminated and not before its <
predecessor that execute on the same machine, as shown in Figure 5.4.1. Internally we
store the priority relation in the form of a permutation implemented by a particular variant
of a binary tree.

The local search algorithm proceeds by performing a topological sort of G to generate
an initial permutation. A step then consists in changing the place of a task in the permutation
while taking care that it remains consistent with the precedence relation of the graph. Let
p < p < p be three tasks such that p is the maximal element which precedes p in G and p
is the minimal element which succeeds p in G. Because of precedence constraints, task p
may only be moved somewhere between p and p. For this reason, although an optimal step

p2

p1

p3

p4

p1

p3

p2

p4

p1

p3

p4

p2

p1 < p2 < p3 < p4 p1 < p3 < p4 < p2

Figure 5.4.1: The picture shows two schedules of the same task-graph which are derived
from two priority relations. We assume that tasks p1 and p3 are mapped to the first
processor while p2 and p4 are mapped to the second. Because of the graph precedences, p1
is necessarily executed before p3. On the other hand there is a conflict between p2 and p4
for the second processor and this is resolved differently in both cases.

5.4. SCHEDULING WITH STOCHASTIC LOCAL SEARCH 91

CHAPTER 5. ENERGY-AWARE SCHEDULING

in this neighborhood is quadratic in the worst case, it generally requires less operations.
Moves in the permutation are combined with changes in processor assignments. There
are two options here: either take the union of the respective step types (in each step either
change the permutation or change an assignment) or the cross-product (allow steps that
change both simultaneously). We have chosen the latter option despite the fact that it
increases the neighborhood size because it allows to move faster in the solution space.

A stochastic local search algorithm basically spends its time on evaluating neighboring
solutions. Therefore, in order to achieve good performance, it is important that the cost
functions are recomputed incrementally after each move. While this is easy for the energy
cost (it is performed in constant time), we had to develop an incremental algorithm for
updating the schedule makespan. This algorithm makes use of a graph G′ equivalent to
the task-graph G, but augmented with edges which assert the order imposed by the global
task permutation on each processor. Each node in G′ maintains the critical path towards
the sink of the graph. In particular the source node holds the critical path of G′, whose
length is the schedule makespan. When a task p is moved in the permutation and/or in
processor assignment, the critical path attributes must be updated. Three nodes of G′ are
directly affected by the change: the node of task p, the predecessor of p on the processor
where it is currently mapped and the new predecessor, which may be on the same or
another processor. The algorithm starts by updating the critical path of these nodes and
then recursively propagates the changes through G′ in reverse topological order. If the
critical path of the current node has increased, the algorithm checks for each predecessor
whether the path through task p has become critical. If it has decreased, it only updates the
predecessors for which the critical path was going through p.

5.4.3 Experiments
We did experiments on a set of 8 TGFF-generated task-graphs of increasing sizes.

The multi-processor platform on which graphs are scheduled has 8 processors and a
communication network with a spidergon topology. The communication model is the same
as in Section 5.3.6, which means that it only accounts for the latency of data transfers. As
a measure of performance for our implementation, Table 5.2 reports the times needed by
the program to carry out a locally optimal step for each graph when running on a Xeon
3.2GHz processor.

task 10 15 20 25 30 35 40 45
step time (ms) 0.18 0.39 0.55 0.77 0.8 1.1 1.35 1.38

Table 5.2: Approximate processor time (in milliseconds) needed for the local search
program to execute one optimal step.

The optimization program was run on each input graph and the set of trade-offs
found saved at different points in time. The approximation quality is evaluated similar to
experiments of Section 3.5.2 where we measure the dominated volume and compare it to a
reference set of all the points obtained in any run. Results are found in Table 5.3 which
shows the percentage of volume achieved after different numbers of steps of local search.

The results show that the local search algorithm is good at producing a decent approxi-
mation in quite a short time. All volume indicators are over 90 percent after 50,000 steps,

92 5.4. SCHEDULING WITH STOCHASTIC LOCAL SEARCH

CHAPTER 5. ENERGY-AWARE SCHEDULING

steps
1000 10,000 50,000 100,000 200,000 500,000 1,000,000

#
ta

sk
s

10 0.93 0.98 1 1 1 1 1
15 0.82 0.94 0.98 0.98 0.98 0.99 1
20 0.88 0.95 0.97 0.97 0.98 0.99 1
25 0.74 0.91 0.94 0.96 0.97 0.99 0.99
30 0.67 0.79 0.93 0.94 0.97 0.98 0.99
35 0.59 0.75 0.93 0.95 0.96 0.97 0.98
40 0.7 0.87 0.9 0.92 0.93 0.95 0.97
45 0.55 0.58 0.93 0.94 0.95 0.96 0.97

Table 5.3: Percentage of dominated volume. The reference set used for computing these
values is the non-dominated set of points obtained by running the algorithm for 5,000,000
steps.

which takes only 1 minute of computation for the biggest graph of 45 tasks. Unlike the
optimization method using SMT, there is no guarantee of closeness to the actual Pareto
front. However we can say that the method rapidly approaches its best results: running the
algorithm for 5 millions steps only leads to little improvement, especially when compared
to the time invested for the search (Table 5.3).

Additionally, it seems that the algorithmic scheme for balancing across weight vectors
we developed in Chapter 3 is efficient for the scheduling problem as well. This is illustrated
on Figure 5.4.2, which shows approximations obtained for the graphs of 20 and 45 tasks.
As one can see, the set of solutions obtained through these experiments are quite evenly
spread over the cost space.

5.5 Discussion
We have formulated several design questions, involving cost optimization, scheduling,

communication and pipelining, inspired by real problems in multi-core embedded systems.
The methods we used to tackle these problems are really different in nature: the SMT-
based optimization is exact but has limited scale, the stochastic local search algorithm is a
fast heuristic with no garantee on the quality of the output. In the sequel we expose our
conclusions on the use and applicability of these techniques.

Through our first experiments (Section 5.3), we demonstrated how modern solvers
for constraint satisfaction can handle decent-size instances of multi-objective problems.
However, the scalability appears quite poor for an industrial context, not to mention the
fact that we used quite simple energy and communication models. Still, we think that
our method could solve larger instances of the scheduling problem since there is much
room for improvement in the implementation. So far we have considered the solver as a
black-box and focused on the development of efficient search methods on top of it, but
we did not look at the inside. Actually, because of their ability to efficiently solve large
hardware and software verification problems, there is a growing interest in using SAT/SMT
solvers for optimization, including the mapping and scheduling of applications on multi-
processors [ZSJ10, RGH+10, LYH+08]. Because SAT solvers were initially designed
for tackling decision problems, there is some room for tuning their internal mechanisms

5.5. DISCUSSION 93

CHAPTER 5. ENERGY-AWARE SCHEDULING

0.5 1 1.5 2 2.5

·104

0

0.5

1

1.5

2

2.5

·105

schedule duration

en
er

gy
Approximations for the 20-tasks graph

1, 000
50, 000

5, 000, 000

1 1.5 2 2.5 3

·104

0

1

2

3

4

5

·105

schedule duration

en
er

gy

Approximations for the 45-tasks graph

1000
50, 000

5, 000, 000

Figure 5.4.2: Approximations of the Pareto front for the graphs with 20 tasks and 45 tasks.
The curves show the results of letting the algorithm run for 1,000, 50,000 and 5,000,000
steps.

94 5.5. DISCUSSION

CHAPTER 5. ENERGY-AWARE SCHEDULING

towards better efficiency in performing optimization. There has been some recent work
in this direction: Pseudo Boolean (PB) [ES06] or Max-SAT [HLO08] solvers natively
support specific optimization problems defined as extensions of SAT. As another example,
a recent work deals with the definition and implementation of a decision procedure for a
“theory of costs” [CFG+10]. It investigates how the SMT solver may specifically handle the
predicates encoding upper and lower bounds on boolean cost functions, rather than using
the theory of reals as we do. Combining such developments with our multi-dimensional
binary search algorithm could probably increase the size of scheduling problems we can
treat.

On the other hand, we experimented stochastic local search which is a method of a
really different flavor. We have designed and implemented an algorithm for tackling bi-
criteria scheduling problems. Our experiments demonstrate that it is efficient in producing
“good-looking” sets of non-dominated solutions in a really short time, but without a proven
bound in quality. Thanks to the restart strategy for varying the weight vector that we have
proposed in Chapter 3, we can provide an evenly-spread approximation in cost space. An
important advantage of local search over the SMT-based method is that it scales well: this
was confirmed experimentally on quadratic assignment and scheduling problems, since
we could solve instances of significant size. The difficulties associated with SLS are
essentially found in the design, implementation and tuning of an algorithm to step to a
new solution while recomputing the costs efficiently. Efficient algorithms exist for some
classical problems in combinatorial optimization such as traveling salesman, quadratic
assignment and scheduling, but as we argued in Section 3.6, things get more complicated
when the cost functions are multiple and when the decision variables are of different nature.

5.5. DISCUSSION 95

CHAPTER 5. ENERGY-AWARE SCHEDULING

96 5.5. DISCUSSION

Conclusions

In this thesis we have developed, implemented and tested new computational techniques
for solving hard multi-criteria optimization problems. The first class of techniques was
motivated by the significant progress made in recent years in SAT and SMT solvers which
provide powerful engines for solving hard mixed combinatorial-numerical constraint
satisfaction problems. Starting from the straightforward idea of using such solvers for
optimization by search, and being motivated by a practical energy cost vs. performance
problem, we have discovered the world of multi-criteria optimization which resulted in our
first major contribution, a search algorithm that directs the solver toward parts of the cost
space that can improve the (bound on the) distance between the set of solutions and the
actual Pareto front. We expect these techniques to improve in the future as solvers will be
tuned for the needs of optimization.

The concepts, algorithms and data-structure developed in this work can be used in
contexts other than multi-criteria optimization. Any bounded subset of Rn which is
monotonic (upward closed or downward closed in each of the dimensions) admits a
boundary between itself and its complement which verifies the properties of a Pareto front.
Our algorithm can be used to approximate such surfaces using membership queries that
need not be as hard as calls to an SMT solver. Such techniques can be useful, for example,
for parameter-space exploration for dynamical systems where the oracle for a point p in
the parameter space is a simulator that generates a trace that corresponds to p and checks
whether or not it satisfies a property.

While the first contribution used solver technology as a given black box, the second
contribution was more ambitious and produced a stand-alone solver based on stochastic
local search. The idea of using the restart sequence L of [LSZ93] to sample evenly the
space of scalarizations of a multi-dimensional cost function, first proposed to us by Scott
Cotton, turned out to work well in practice, at least on the numerous examples to which it
was applied. We believe this approach can find a respectable niche among the powerful
heuristic techniques for solving multi-criteria optimization problems. More experience is
needed in order to derive methodological guidelines for efficient encoding and exploration
of local neighborhoods so that it becomes a routine not requiring a PhD to be performed.

These two techniques have been applied to a family of problems inspired by energy-
aware scheduling. The experimental results give an idea on the size of such problems that
can be solved by current technologies. Although size matters in optimization, performance
is not sufficient (and not always necessary) for the usability of these techniques in the mo-
tivating domain, namely, deployment of parallel programs. Let us reflect in the remaining
paragraphs about the gaps to be bridged between the abstract models that we have used,
both for application programs and execution platforms, and the current practice.

Currently many applications are not described as clean task graphs but it looks like
developers will have no choice but to convert them, this way or another, to more com-

97

CONCLUSIONS

ponentized descriptions in data-flow style if they want to run them on parallel machines.
Profiling and past experience can be used to populate these models with the appropriate ex-
ecution time figures. Applications that do not fit into the acyclic task-graph framework will
need more effort to be modeled and be subject for optimization. On the architecture side,
execution platforms are much more complex than the simple distributed memory spidergon
architecture that we used in our experiments. They may involve a memory hierarchy,
DMA engines and other features that increase the number of ways an application can be
deployed on them. Moreover, the scheduling framework that we used for communication
channels may not be realizable in NoC environments and a different type of modeling
will be needed. In general, there is uncertainty in all aspects of the system performance
including execution time, task arrival patterns, or communication load, which is not well
handled by optimization methods. Other issues to think about are methodological: at what
phases of the design will optimization methods intervene? Should optimal deployment be
recomputed at every compilation step? Will it be postponed to the final phases or will it be
too late then? How will it integrate in design-space exploration, before the architecture is
fully realized. We leave some of these problems for future research.

98 CONCLUSIONS

Conclusions (French)

Dans cette thèse nous avons développé, implémenté et testé de nouvelles techniques
pour résoudre des problèmes difficiles d’optimisation multi-critère. La première classe
de techniques a été motivé par les progrès importants réalisés ces dernières années dans
le domaine du SAT, avec des solveurs SMT qui sont maintenant capables de résoudre les
problèmes de satisfaction de contraintes mixtes combinatoire-numérique. Partant de l’idée
simple d’utiliser ces solveurs pour l’optimisation, et étant motivé par un problème pratique
d’ordonnancement énergie/performance, nous avons découvert le monde de l’optimisation
multi-critère, ce qui a abouti à notre première contribution : un algorithme de recherche
qui dirige le solveur vers les parties de l’espace de coûts où l’on peut améliorer la distance
entre l’ensemble des solutions trouvées et le vrai front de Pareto. Nous pensons que
ces techniques fourniront des résultats encore meilleurs à l’avenir, car les solveurs SMT
pourraient être spécialisés pour le traitement de problèmes d’optimisation.

Les concepts, les algorithmes et structures de données développés dans ce travail
pourraient être utilisés dans d’autres contextes que l’optimisation multi-critère. Tout en-
semble borné de Rn qui est monotone admet une limite entre lui-même et son complément
qui vérifie les propriétés d’un front de Pareto. Notre algorithme peut être utilisé pour
approximer de telles surfaces en utilisant des requêtes d’appartenance à l’ensemble qui
ne sont pas obligées d’être aussi dures à résoudre que les appels à un solveur SMT. Ces
techniques peuvent être utiles, par exemple, pour l’exploration de l’espace des paramètres
d’un système dynamique, où l’oracle est un simulateur qui génère la trace obtenue avec
certains paramètres et vérifie si une propriété est vérifiée.

Alors que notre première contribution est une technique de résolution qui utilise un
solveur SMT comme boite noire, la deuxième contribution est plus ambitieuse et consiste
en un solveur à part entière basé sur la recherche stochastique locale. L’idée d’utiliser
la séquence de redémarrage L de [LSZ93] pour échantillonner de manière régulière
l’espace des scalarizations d’une fonction de coût multi-dimensionnelle (suggéré par Scott
Cotton), s’est montrée efficace en pratique, au moins sur les nombreux exemples que nous
avons testé. Nous pensons que cette technique peut trouver une niche raisonnable parmis
les nombreuses heuristiques d’optimisation multi-critère. Il y a toutefois un besoin de
développer des méthodes et directives permettant de facilement encoder un algorithme de
recherche locale, afin que cela ne soit pas réservé à une personne aguérie.

Les deux techniques proposées ont été appliquées à une famille de problèmes d’ordon-
nancement. Les résultats expérimentaux donnent une idée de la taille des problèmes qui
peuvent être résolus par les technologies actuelles. Bien que la taille des problèmes que
l’on peut traiter compte pour l’optimisation, ceci n’est pas suffisant pour l’utilisation de
ces techniques dans le domaine d’application visé, à savoir le déploiement de programmes
parallèles sur architecture multi-processeur. Nous mentionnons dans le paragraphe suivant
les lacunes à combler entre les modèles abstraits que nous avons utilisés, tant pour les

99

CONCLUSIONS (FRENCH)

applications que pour les plateformes d’exécution, et la pratique actuelle.
Actuellement de nombreuses applications ne sont pas décrites par des graphes de

tâches, mais il semble que les développeurs n’auront d’autre choix que de les convertir,
de cette façon ou d’une autre, en des descriptions plus modulaire si ils veulent les faire
fonctionner sur des machines parallèles. Le profiling de l’application et l’expérience du
programmeur peuvent servir pour alimenter ces modèles avec des temps d’exécution. En
ce qui concerne l’architecture, les plateformes d’exécution sont beaucoup plus complexes
que l’architecture simple à mémoire distribué Spidergon que nous avons utilisé dans nos
expériences. Elles peuvent contenir une hiérarchie mémoire, des composants DMA, et avoir
d’autres caractéristiques qui augmentent le nombre de façons de deployer une application.
Par ailleurs le modèle de communication que nous avons choisit (ordonnancement des
transferts de données sur les canaux) n’est pas forcément réaliste pour les systèmes basés
sur un NoC. En général il y a aussi de l’incertitude sur tous les aspects du système
(temps d’exécution et de communication, arrivée des tâches dans le système etc.), ce
qui n’est pas bien traité par des méthodes d’optimisation. Enfin il faut aussi réfléchir à
quelques problèmes de méthodologie : durant quelles phases de la conception les méthodes
d’optimisation peuvent-elles intervenir? Le déploiement optimal doit-il être recalculé à
chaque étape de compilation? Comment l’intégrer dans l’étape d’exploration du design de
l’architecture? Ces problèmes sont autant de pistes pour des recherches futures.

100 CONCLUSIONS (FRENCH)

Bibliography

[A+97] R.T. Azuma et al. A survey of augmented reality. Presence-Teleoperators
and Virtual Environments, 6(4):355–385, 1997.

[ABC+06] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer,
D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al. The landscape
of parallel computing research: A view from berkeley. Technical report,
Citeseer, 2006.

[ABD+09] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, et al. A view of the parallel
computing landscape. Communications of the ACM, 52(10):56–67, 2009.

[AC91] M. Dorigo et V. Maniezzo A. Colorni. Distributed optimization by ant
colonies. In First European Conference on Artificial Life, pages 134–142.
Elsevier, 1991.

[AGK+04] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit.
Local search heuristics for k-median and facility location problems. Siam
Journal of Computing, 33(3), 2004.

[Amd67] G.M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In spring joint computer conference, pages
483–485. ACM, 1967.

[Art05] A. Artieri. Nomadik: an MPSoC solution for advanced multimedia. In
Application-Specific Multi-Processor SoC, 2005.

[AVV08] J.E.C. Arroyo, P.S. Vieira, and D.S. Vianna. A GRASP algorithm for
the multi-criteria minimum spanning tree problem. Annals of Operations
Research, 159(1):125–133, 2008.

[BBTZ04] N.K. Bambha, S.S. Bhattacharyya, J. Teich, and E. Zitzler. Systematic inte-
gration of parameterized local search techniques in evolutionary algorithms.
In GECCO (2), pages 383–384, 2004.

[BDM02] L. Benini and G. De Micheli. Networks on chips: A new SoC paradigm.
IEEE Computer, 35(1):70–78, 2002.

[BDZ10] J. Bader, K. Deb, and E. Zitzler. Faster hypervolume-based search using
monte carlo sampling. Multiple Criteria Decision Making for Sustainable
Energy and Transportation Systems, pages 313–326, 2010.

[BF09] K. Bringmann and T. Friedrich. Approximating the least hypervolume
contributor: NP-Hard in general, but fast in practice. In EMO, pages 6–20,
2009.

101

BIBLIOGRAPHY

[BF10] K. Bringmann and T. Friedrich. Approximating the volume of unions and
intersections of high-dimensional geometric objects. Comput. Geom., 43(6-
7):601–610, 2010.

[BFLI+09] N. Beume, C.M. Fonseca, M. López-Ibáñez, L. Paquete, and J. Vahrenhold.
On the complexity of computing the hypervolume indicator. IEEE Trans.
Evolutionary Computation, 13(5):1075–1082, 2009.

[BJM+05] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. De Micheli. Noc synthesis flow for customized domain specific multipro-
cessor systems-on-chip. IEEE Trans. Parallel Distrib. Syst., 16(2):113–129,
2005.

[BKR91] R.E. Burkard, S. Karisch, and F. Rendl. QAPLIB-A quadratic assignment
problem library. European Journal of Operational Research, 55(1):115–119,
1991.

[BLPN01] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based scheduling:
Applying constraint programming to scheduling problems. Springer, 2001.

[Bor07] S. Borkar. Thousand core chips: A technology perspective. In DAC, pages
746–749, 2007.

[BSMD08] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb. A simulated annealing-
based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evolu-
tionary Computation, 12(3):269–283, 2008.

[BSST09] C.W. Barrett, R. Sebastiani, S.A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In Handbook of Satisfiability, pages 825–885. 2009.

[BWH+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An integrated electronic system
design environment. IEEE Computer, 36(4):45–52, 2003.

[BZ11] J. Bader and E. Zitzler. Hype: An algorithm for fast hypervolume-based
many-objective optimization. Evolutionary Computation, 19(1):45–76,
2011.

[CBL+10] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart,
P. Vivet, and N. Wehn. MAGALI: A network-on-chip based multi-core
system-on-chip for MIMO 4G SDR. In IEEE IC Design and Technology
(ICICDT), pages 74–77, 2010.

[CFG+10] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico. Satisfi-
ability modulo the theory of costs: Foundations and applications. TACAS,
pages 99–113, 2010.

[CJ98] P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing-a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of
Multi-Criteria Decision Analysis, 7(1):34–47, 1998.

[CJGJ96] E.G. Coffman Jr, M.R. Garey, and D.S. Johnson. Approximation algorithms
for bin packing: A survey. In Approximation algorithms for NP-hard
problems, pages 46–93. PWS Publishing Co., 1996.

[CL98] F. Y. Cheng and D. Li. Genetic algorithm development for multiobjective
optimization of structures. AIAA Journal, 36(6):1105–1112, 1998.

102 BIBLIOGRAPHY

BIBLIOGRAPHY

[CLM+04] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra.
Spidergon: A novel on-chip communication network. In IEEE Symposium
on System-on-Chip, 2004., page 15, 2004.

[Coh85] J.L. Cohon. Multicriteria programming: Brief review and application. New
York, NY, Academic Press, 1985.

[DD98] I. Das and J.E. Dennis. Normal-boundary intersection: A new method
for generating the pareto surface in nonlinear multicriteria optimization
problems. SIAM Journal on Optimization, 8:631, 1998.

[DdM06] B. Dutertre and L.M. de Moura. A fast linear-arithmetic solver for DPLL(T).
In CAV, pages 81–94, 2006.

[Deb01] K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley,
2001.

[DJR01] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SoC
for advanced set-top box and digital TV systems. IEEE Design & Test of
Computers, 18(5):21–31, 2001.

[DLL62] M. Davis, G. Logemann, and D.W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DMB08] L.M. De Moura and N. Bjorner. Z3: An efficient SMT solver. In TACAS,
pages 337–340, 2008.

[DRV00] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic parallelization.
Birkhäuser, 2000.

[DRW98] R.P. Dick, D.L. Rhodes, and W. Wolf. TGFF: Task graphs for free. In
CODES, pages 97–101, 1998.

[ECEP06] C. Erbas, S. Cerav-Erbas, and A.D. Pimentel. Multiobjective optimization
and evolutionary algorithms for the application mapping problem in multi-
processor system-on-chip design. IEEE Trans. Evolutionary Computation,
10(3):358–374, 2006.

[EG00] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of
multiobjective combinatorial optimization. OR Spectrum, 22(4):425–460,
2000.

[Ehr05] M. Ehrgott. Multicriteria optimization. Springer Verlag, 2005.

[EPTP07] C. Erbas, A.D. Pimentel, M. Thompson, and S. Polstra. A framework for
system-level modeling and simulation of embedded systems architectures.
EURASIP Journal on Embedded Systems, 2007(1):2–2, 2007.

[Erb06] C. Erbas. System-level modelling and design space exploration for multi-
processor embedded system-on-chip architectures. Amsterdam University
Press, 2006.

[ES06] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

[Fet09] B.A. Fette. Cognitive radio technology. Academic Press, 2009.

[FF96] C.M. Fonseca and P.J. Fleming. On the performance assessment and com-
parison of stochastic multiobjective optimizers. In PPSN, pages 584–593,
1996.

BIBLIOGRAPHY 103

BIBLIOGRAPHY

[FGE05] J. Figueira, S. Greco, and M. Ehrgott. Multiple criteria decision analysis:
state of the art surveys. Springer Verlag, 2005.

[Fle03] M. Fleischer. The measure of pareto optima. In EMO, pages 519–533, 2003.
[FR95] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search proce-

dures. Journal of Global Optimization, 6(2):109–133, 1995.
[FWB07] X. Fan, W.D. Weber, and L.A. Barroso. Power provisioning for a warehouse-

sized computer. In ISCA, pages 13–23, 2007.
[GHN+04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

DPLL(T): Fast decision procedures. In CAV, pages 293–295. Springer,
2004.

[GM06] F. Glover and R. Marti. Tabu search. Metaheuristic Procedures for Training
Neutral Networks, pages 53–69, 2006.

[GMF97] X. Gandibleux, N. Mezdaoui, and A. Fréville. A tabu search procedure to
solve multiobjective combinatorial optimization problem. Lecture notes in
economics and mathematical systems, pages 291–300, 1997.

[GMNR06] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem. Introduction to Intel
core duo processor architecture. Intel Technology Journal, 10(2):89–97,
2006.

[Han97] M.P. Hansen. Tabu search for multiobjective optimization: MOTS. In
MCDM, pages 574–586, 1997.

[Hel00] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research, 126(1):106–
130, 2000.

[HLO08] F. Heras, J. Larrosa, and A. Oliveras. Minimaxsat: An efficient weighted
max-sat solver. Journal of Artificial Intelligence Research, 31(1):1–32, 2008.

[HLW71] YY Haimes, LS Lasdon, and DA Wismer. On a bicriterion formulation of
the problems of integrated system identification and system optimization.
IEEE Transactions on Systems, Man, and Cybernetics, 1(3):296–297, 1971.

[Hoo99] H.H. Hoos. On the run-time behaviour of stochastic local search algorithms
for SAT. In AAAI/IAAI, pages 661–666, 1999.

[HS04] H. Hoos and T. Stützle. Stochastic Local Search Foundations and Applica-
tions. Morgan Kaufmann / Elsevier, 2004.

[JM94] J. Jaffar and M.J. Maher. Constraint logic programming: A survey. The
Journal of Logic Programming, 19:503–581, 1994.

[JTW05] A.A. Jerraya, H. Tenhunen, and W. Wolf. Guest editors’ introduction:
Multiprocessor systems-on-chips. IEEE Computer, 38(7):36–40, 2005.

[KB57] T.C. Koopmans and M. Beckman. Assignment problems and the location of
economic activities. Econometric, 25:53–76, 1957.

[KC00] J.D. Knowles and D. Corne. Approximating the nondominated front using
the pareto archived evolution strategy. Evolutionary Computation, 8(2):149–
172, 2000.

[KC03] J.D. Knowles and D. Corne. Instance generators and test suites for the
multiobjective quadratic assignment problem. In EMO, pages 295–310,
2003.

104 BIBLIOGRAPHY

BIBLIOGRAPHY

[KC05] J.D. Knowles and D. Corne. Memetic algorithms for multiobjective op-
timization: issues, methods and prospects. Recent advances in memetic
algorithms, pages 313–352, 2005.

[KDH+05] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM journal of Re-
search and Development, 49(4.5):589–604, 2005.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, New Series 220 (4598):671–680, 1983.

[Kno05] J.D. Knowles. A summary-attainment-surface plotting method for visualiz-
ing the performance of stochastic multiobjective optimizers. In ISDA, pages
552–557, 2005.

[KNRSV00] K. Keutzer, A.R. Newton, J.M. Rabaey, and A.L. Sangiovanni-Vincentelli.
System-level design: Orthogonalization of concerns and platform-based de-
sign. IEEE Trans. on CAD of Integrated Circuits and Systems, 19(12):1523–
1543, 2000.

[LLGCM10] J. Legriel, C. Le Guernic, S. Cotton, and O. Maler. Approximating the pareto
front of multi-criteria optimization problems. In TACAS, pages 69–83, 2010.

[LM10] J. Legriel and O. Maler. Meeting deadlines cheaply. Technical Report
2010-1, VERIMAG, January 2010.

[LMS03] H. Lourenco, O. Martin, and T. Stützle. Iterated local search. Handbook of
metaheuristics, pages 320–353, 2003.

[LSZ93] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas
algorithms. In ISTCS, pages 128–133, 1993.

[LYH+08] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu. Efficient SAT-based mapping
and scheduling of homogeneous synchronous dataflow graphs for throughput
optimization. In RTSS, pages 492–504, 2008.

[Mat65] J. Matyas. Random optimization. Automation and Remote Control,
2(26):246–253, 1965.

[Meu08] H.W. Meuer. The top500 project: Looking back over 15 years of supercom-
puting experience. Informatik-Spektrum, 31(3):203–222, 2008.

[Mit98] M. Mitchell. An introduction to genetic algorithms. The MIT press, 1998.

[MOP+09] R. Marculescu, U.Y. Ogras, L.S. Peh, N.E Jerger, and Y.V. Hoskote. Out-
standing research problems in noc design: System, microarchitecture, and
circuit perspectives. IEEE Trans. on CAD of Integrated Circuits and Systems,
28(1):3–21, 2009.

[NO06] R. Nieuwenhuis and A. Oliveras. On SAT modulo theories and optimization
problems. In SAT, pages 156–169, 2006.

[Par12] V. Pareto. Manuel d’économie politique. Bull. Amer. Math. Soc., 18:462–
474, 1912.

[PD07] K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching
Scheme for Satisfiability Solvers. In SAT-07, 2007.

[PS03] L. Paquete and T. Stützle. A two-phase local search for the biobjective
traveling salesman problem. In EMO, pages 479–493, 2003.

BIBLIOGRAPHY 105

BIBLIOGRAPHY

[PS06a] L. Paquete and T. Stützle. Stochastic local search algorithms for mul-
tiobjective combinatorial optimization: A review. Technical Report
TR/IRIDIA/2006-001, IRIDIA, 2006.

[PS06b] L. Paquete and T. Stützle. A study of stochastic local search algorithms for
the biobjective QAP with correlated flow matrices. European Journal of
Operational Research, 169(3):943 – 959, 2006.

[PY00] C.H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In FOCS, pages 86–92, 2000.

[RGH+10] F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich. Improving
platform-based system synthesis by satisfiability modulo theories solving.
In CODES+ISSS, pages 135–144, 2010.

[Sch99] Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1999.

[SG76] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of
the ACM, 23:555–565, 1976.

[SKC93] B. Selman, H. Kautz, and B. Cohen. Local Search Strategies for Satisfia-
bility Testing. In Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, 1993.

[SKC94] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local
search. In AAAI, pages 337–343, 1994.

[Ste86] R.E. Steuer. Multiple criteria optimization: Theory, computation, and
application. John Wiley & Sons, 1986.

[Tai91] E. Taillard. Robust taboo search for the quadratic assignment problem.
Parallel computing, 17(4-5):443–455, 1991.

[TBHH07] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping applications to
tiled multiprocessor embedded systems. In ACSD, pages 29–40, 2007.

[TBS+10] L. Torres, P. Benoit, G. Sassatelli, M. Robert, F. Clermidy, and D. Puschini.
An introduction to multi–core system on chip–trends and challenges. Multi-
processor System-on-Chip: Hardware Design and Tool Integration, page 1,
2010.

[TH04] D.D. Tompkins and H.H. Hoos. UBCSAT: An implementation and experi-
mentation environment for SLS algorithms for SAT & Max-SAT. In SAT,
2004.

[UTFT99] E.L. Ulungu, J. Teghem, P.H. Fortemps, and D. Tuyttens. MOSA method: a
tool for solving multiobjective combinatorial optimization problems. Journal
of Multi-Criteria Decision Analysis, 8(4):221–236, 1999.

[VA04] D.S. Vianna and J.E.C. Arroyo. A GRASP algorithm for the multi-objective
knapsack problem. In SCCC, pages 69–75, 2004.

[WJM08] W. Wolf, A.A. Jerraya, and G. Martin. Multiprocessor system-on-chip
(MPSoC) technology. IEEE Trans. on CAD of Integrated Circuits and
Systems, 27(10):1701–1713, 2008.

[WM95] W.A. Wulf and S.A. McKee. Hitting the memory wall: Implications of the
obvious. Computer Architecture News, 23:20–20, 1995.

106 BIBLIOGRAPHY

BIBLIOGRAPHY

[Wol07] W. Wolf. High-performance embedded computing: architectures, applica-
tions, and methodologies. Morgan Kaufmann, 2007.

[ZKT08] E. Zitzler, J.D. Knowles, and L. Thiele. Quality assessment of Pareto set
approximations. In Multiobjective Optimization, pages 373–404, 2008.

[ZM02] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers.
In CAV, pages 17–36, 2002.

[ZSJ10] J. Zhu, I. Sander, and A. Jantsch. Constrained global scheduling of streaming
applications on mpsocs. In ASP-DAC, pages 223–228, 2010.

[ZT98] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary
algorithms - a comparative case study. In PPSN, pages 292–304, 1998.

[ZTL+03] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. Da Fonseca.
Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Trans. Evolutionary Computation, 7(2):117–132, 2003.

BIBLIOGRAPHY 107

BIBLIOGRAPHY

108 BIBLIOGRAPHY

TITLE

Multi-Criteria Optimization and its Application to Multi-Processor Embedded
Systems

ISBN : t t t t t t t t t t t t t

