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Abstract. We define a new notion of satisfaction of a temporal logic formula
ϕ by a behavior w. This notion, denoted by (w, t, t′) |= ϕ, is characterized by
two time parameters: the position t from which satisfaction is considered, and the
end of the (finite) behavior t′ which indicates how much do we know about the
behavior. We define this notion in dense time where ϕ is a formula in the future
fragment of metric temporal logic (MTL) and w is a Boolean signal of bounded
variability. We show that the set of all pairs (t, t′) such that (w, t, t′) |= ϕ can be
expressed as a finite union of two-dimensional zones and give give an effective
procedure to compute it.

1 Introduction and Motivation

Within the traditional use of temporal logic (TL) in verification, formulas are inter-
preted over non-terminating1 behaviors, viewed mathematically as ω-words. These are
sequences which are infinite in one dimension with a time domain order-isomorphic
to N (to R+ or Q+, if we consider dense time). In this setting, the availability of a
generative model of the system dynamics is assumed in a form of a transition system
(automaton) where all those behaviors are represented by infinite runs that go through
cycles. Likewise, the TL specification can also be translated to an ω-automaton and
the verification problem reduces to a test of inclusion between two ω-regular languages
[31]. This problem can be solved by reasoning about cycles in finite-state automata.
Historical Remark: This was not always the point of view in the early works of lo-
gicians on tense logic, before the importation of TL to verification by Pnueli [24, 25].
Kamp [13] who added the until and since operators to the original tense logic of Prior
[26], and showed expressive equivalence to the first-order theory of sequences, con-
sidered arbitrary time structures satisfying order axioms, that could be infinite in both
directions. Regular languages over bi-infinite words, indexed by Z rather than N, were
considered by Nivat and Perrin in [23]. The current ω-view has been nailed down in
the anchored interpretation of Manna and Pnueli [21] which associated an initial state
with every computation and, moreover, considered satisfaction from this initial state as

1 In the context of reactive systems, finite behaviors are sometimes even considered anomalous,
representing deadlocks.



having a special status compared to satisfaction from an arbitrary point in time. Read-
ers interested in more historical and technical details are advised to consult [30] and the
references therein.

There are several contemporary motivations to consider finite, time bounded behav-
iors as the semantic model for TL. In many (if not most) real-life situations, especially
in the hybrid cyber-physical world, exhaustive verification is impossible and one resorts
to simulation-based (runtime, dynamic, lightweight) verification, where behaviors are
generated individually. Each of these behaviors is checked for property satisfaction, or
using a language-theoretic terminology, the inclusion test of model checking is replaced
by numerous membership tests. We use the term monitoring for this activity. An impor-
tant advantage of monitoring is that it can be applied to systems models not admitting a
clean description (programs, simulators, black boxes) and hence not amenable to formal
reasoning. For a behavior to be observed and checked by a mortal agent (or analyzed
by a terminating program), it should be finite and the semantics of the specifications
should be adapted to yield answers based on such finite behaviors.

This problem had to be (and has been) addressed by anyone developing such mon-
itoring tools [1]. One way to tackle this issue is to provide finitary interpretation of
TL. The truncated semantics for future TL is rigorously studied in [9], where weak,
strong and neutral interpretation of the temporal specifications are proposed. This work
is further developed in [8], providing the topological characterization of the weakness
and strength of temporal formulas. In [6], the authors study LTL interpreted over finite
behaviors and show the limited expressiveness of the logic in the finitary setting. They
propose linear dynamic logic over finite traces (LDLf ) that significantly increases the
expressiveness of the logic without additional computational cost. Another way to ad-
dress the interpretation of TL over finite behaviors is to employ a 3-valued semantics
ranging over {0, 1,⊥} where ⊥ is viewed as unknown to model the fact that the finite
behavior does not contain sufficient information needed to determine the satisfaction or
a violation of a temporal formula at a given instant in time [3, 27, 2]. We finally mention
[20], which discusses various options of handling temporal logic over finite behaviors.

Another motivation comes from the application of specification formalisms outside
the traditional design-time verification framework. After all, monitoring can be applied
to data measured from real physical systems, not only to models [16]. In monitoring
real systems during their execution we would like to detect some alarming patterns
of behavior as they occur, so as to do something about them. In not so safety-critical
situations, we would like to analyze a given behavior and distinguish, say, periods in
which some bounded-response property has been satisfied from periods when it was not.
All these application domains call for an approach where finite segments of a behavior,
not necessarily starting at time zero, and certainly not ending at the “end", are the major
objects of study. In this setting, monitoring has often to be performed online, with the
values of the monitored behavior being disclosed progressively as time goes by.

The major contribution of this work is in defining a two-dimensional notion of satis-
fiability, denoted by (w, t, t′) |= ϕ, where t indicates, as usual, the position from which
satisfaction is considered, and t′ indicates the endpoint of the signal, the limit of our
current knowledge about it. This work is partially inspired by [28] where the relation
(w, t, t′) |= ϕ means that the segment w[t, t′) of a Boolean signal w matches a timed



regular expression. In that paper, the match setM(ϕ,w) = {(t, t′) : (w, t, t′) |= ϕ}
was shown to be computable and to consist of a finite union of zones. While we bor-
row some of the two-dimensional techniques from [28], it turns out that for TL, which
is less symmetric than regular expressions with respect to the direction of time, these
notions are trickier and require a distinction between the temporal and epistemic com-
ponents. Note that unlike other works that combine knowledge and time [12, 29, 10],
where knowledge is relative to different agents in a distributed system who may ob-
serve different variables and events at different times, our notion is centralized and is
focused on the knowledge associated with the unfolding of time.

The rest of the paper is organized as follows. In Section 2 we present the algo-
rithm for MTL monitoring of Boolean signals as developed in [17, 22]. It is based on
two major operation, interval back-shifting to treat the timed eventually operator and
another operation on intervals to handle the untimed until. In Section 3 we define the
two-dimensional satisfaction relation for future MTL and its associated match-set com-
putation problem. We show that the latter can be solved by extending the above two
interval-based operations to deal with zones. In Section 4 we illustrate how our imple-
mentation of the algorithm works on MTL formulas of a practical interest. Section 5 is
devoted to conclusions and suggestions for future work. Needless to say, the results and
insights obtained for dense time and MTL hold, as a degenerate case, for the discrete
time setting of LTL and sequences.

2 Preliminaries

A Boolean signal w is a function from an interval dom(w) = [0, `) to Bn. The signal is
infinite when ` = ∞, and finite, otherwise. We restrict ourselves to signals that satisfy
the sanity condition of bounded variability, which for finite signals means that dom(w)
can be partitioned into finitely many intervals, and w is constant in each interval. Such
an interval is said to be maximal if it is not strictly contained in another interval where
the signal is constant.

The syntax of the future fragment of metric temporal logic (MTL) as defined in [15]
is given by

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2

where p ∈ {p1, . . . , pn} is a propositional variable and I is any non-empty interval
of the form [a, b], [a, b), (a, b] or (a, b) with a and b being integers. To avoid tedious
case analysis and focus on the new features introduced by the two-dimensional notion
of satisfaction, we treat only the case I = [a, b]. It has been shown in [19] that with
this restriction, if w decomposes into unions of maximal intervals which are left-closed
right-open, all the other signals generated during the monitoring procedure admit such
a decomposition without singular points, a fact that will simplify the presentation. For
the same reason, we do not explore all variants of the timed until operator and focus on
the non-strict version, whose semantics is given using the standard satisfaction relation
(w, t) |= ϕ indicating that w satisfies ϕ from position t:

(w, t) |= ϕ1U[a,b]ϕ2 iff ∃r ∈ [t+ a, t+ b](w, r) |= ϕ2 ∧ ∀r′ ∈ [t, r] (w, r′) |= ϕ1



The timed eventually operator F[a,b] is a degenerate case where ϕ1 is replaced by true,
F[a,b]ϕ = >U[a,b]ϕ. It only requires that t will occur sometime in [t + a, t + b]. Its
dual, the timed always, which require ϕ to hold throughout the interval, is defined as
G[a,b]ϕ = ¬(F[a,b]¬ϕ).

It has been shown in [7, 22] that the timed until operator can be rewritten as a com-
bination of F[a,b] and the untimed until U which does not put any restriction on the
future time point r:

ϕ1U[a,b]ϕ2 = G[0,a]ϕ1Uϕ2 ∧ F[a,b]ϕ2

Hence from now on we consider the syntax

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | F[a,b] | ϕ1Uϕ2

The monitoring procedure of [17, 22] is based on reformulating the time-dependent
satisfaction relation in terms of satisfaction signals. A satisfaction signal for a formula
ϕ relative to signal w is a one-dimensional Boolean signal2 ϕ(.) such that

ϕ(t) =

{
1 if (w, t) |= ϕ
0 if (w, t) 6|= ϕ

The standard semantics of MTL can be reformulated in terms of such signals. We use
wp to denote the projection of w on variable p.

Definition 1 (MTL Semantics with Satisfaction Signals). The semantics of MTL for-
mulas with respect to a Boolean signal w is defined inductively:

p(t) = wp(t)
(¬ϕ)(t) = ¬(ϕ(t))
(ϕ ∨ ψ)(t) = ϕ(t) ∨ ψ(t)
(F[a,b]ϕ)(t) =

∨
r∈[t+a,t+b]

ϕ(r)

(ϕ1Uϕ2)(t) =
∨
r≥t

(ϕ2(r) ∧
∧

r′∈[t,r]

ϕ1(r
′))

We say that w satisfies ϕ from t if ϕ(t) = 1. We use M(ϕ,w), or simply M(ϕ)
when w is clear from the context, to denote the time points from which ϕ is satisfied.
For every ϕ, M(ϕ) admits a canonical representation as a minimal set I of maximal
intervals. The above semantics can be viewed as specifying recursive calls that descend
the parse tree of ϕ down to the atomic propositions whose satisfaction signals are just
the appropriate projections of w. Then, while climbing up, it combines the lower-level
satisfaction signals until it gets to the top formula. The crucial procedures are those that
compute the satisfaction signals of F[a,b]ϕ and ϕ1Uϕ2 from those of their sub-formulas.

Let ϕ′ = F[a,b]ϕ. The back-shifting method of [17, 22] for computing ϕ′ from
ϕ is based on the following simple concepts that generalize time shifts to the non-
deterministic setting (more on these operations and their relation to determinism can be
found in [18]).

2 By a slight abuse of notation we use the same symbol for a formula and its satisfaction signal.



Definition 2 (Forward and Backward Cones, Back-Shift). Let t be a time point and
let I = [c, d] be an interval.

1. The [a, b]-forward cone of t is the interval [t+ a, t+ b];
2. The [a, b]-back cone of t is the interval [t− b, t− a];
3. The [a, b]-back shift of interval I is I ′ = σ[a,b](I) = [c− b, d− a].

The forward cone consists of all time points r such that ϕ(r) may influence ϕ′(t). The
back cone specifies the points r such that ϕ′(r) can be influenced by ϕ(t), those that t is
in their forward cone. The back-shift of I is the union of the back cones of its elements,
the set of all time points t such that ϕ′(t) is influenced by ϕ(r), r ∈ I . The following
observation underlies the monitoring procedure of [17, 22].

Observation 1 (Back Shifting) The back-shift of interval I consists of all points whose
forward cone intersects I: σ[a,b](I) = {t : [t+ a, t+ b] ∩ I 6= ∅}.

c d

c− b d− a

ϕ

ϕ′ = F[a,b]ϕ

I

I′

t1 t2 t3 t4

Fig. 1. A finite satisfaction signal ϕ which is true at interval I = [c, d]. (left): Back-shifting
I ′ = σ[a,b](I); (right): the forward cones of points t1, t2 ∈ I ′ do indeed intersect I hence
ϕ′ = F[a,b]ϕ holds there. On the other hand, ϕ = 0 throughout all the forward cone of t3 and
hence ϕ′(t3) = 0. The forward cone of t4 does not intersect I either but part of it goes outside
dom(ϕ). We use in this paper a semantics where ϕ′(t4) = 0.

The satisfaction signal of ϕ′ = F[a,b]ϕ is thus computed by back-shifting all maxi-
mal intervals in M(ϕ) and their union characterizes ϕ′, see Figure 1. This procedure is
obviously correct for points t such that [t + a, t + b] ⊆ dom(ϕ). For other points like
t4 in the figure, the question is how to evaluate the disjunction (existential quantifica-
tion) over the values of ϕ in that cone. A common approach, the one used implicitly
in [22], is to consider ϕ′(t) = 0 if ϕ(r) = 0 for all r ∈ [t + a, t + b] ∩ dom(ϕ). We
will use this semantics but our results can be easily adapted to an alternative 3-valued
semantics where ϕ(t) = ⊥ (unknown) if some possible completion of the signal lead
to satisfaction and some others, to violation.

To illustrate the computation of ϕ = ϕ1Uϕ2 observe first that (ϕ1Uϕ2) holds at t
when ϕ1 holds continuously between t and some future point r where ϕ2 holds. This
motivates the following operation between intervals I1 = [c, d) and I2 = [c′, d′):



Ω(I1, I2) =


∅ if d ≤ c′
[c, d) if c′ < d ∧ d ≤ d′
[c, d′) if c′ < d ∧ d′ < d

The three cases are illustrated Figure 2. The following observation justifies the compu-
tation of the set M(ϕ) of positive intervals in the satisfaction signal of ϕ, by applying
this operation to all pairs of maximal intervals in M(ϕ1) and M(ϕ2).

c dc d

c′

I1

I2

c d

c′ d′ c′ d′

Ω(I1, I2)

c d′d c

Fig. 2. Computing ϕ1Uϕ2 by computing Ω(I1, I2) for two maximal intervals. (a) ϕ1 does not
hold until ϕ2; (b) it does but stops holding before ϕ2 stops; (c) it does but ϕ2 stops holding before
and hence some parts of I1 have no future where ϕ2 holds.

Observation 2 Let M(ϕ1) and M(ϕ2) be represented, respectively, by sets I1 and I2
of maximal intervals. Then

M(ϕ) =
⋃

I1∈I1

⋃
I2∈I2

Ω(I1, I2).

The fact that I1 consists of maximal intervals is crucial here. If an interval [c, d) satis-
fying d′ < d is split into non-maximal intervals [c, e) and [e, d) with e < c′, the points
in [c, e) will be wrongly considered as not satisfying ϕ1Uϕ2.

3 Satisfaction in Two Dimensions

The essence of our definition is to consider the end of the signal as an additional param-
eter t′. We would like to know what can be said about satisfaction at t after observing
a prefix w[0, t′). Although this characterization of the pair (t, t′) is different here from
the matching property used for regular expressions in [28], we will use a similar termi-
nology, partly because we have not yet found a simple name for this relation.

Let w be a Boolean signal defined over a bounded time domain dom(w) = [0, `).
Any sub-interval [t, t′) of dom(w) defines a sub-segment of w that we denote by w′ =
w[t, t′). The set of all non-empty sub-segments of w can be represented by the triangle
Tw = {(t, t′) : 0 ≤ t < t′ < `} (Figure 3-(a)).
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t

`

`0

Z1

c d c′ d′

c

d

c′

d′

t

t′

Z2

(t, t′)

Tw

Fig. 3. (a) The triangle Tw associated with a signal defined over [0, `). The length of the horizontal
or vertical line from a point (t, t′) to the diagonal is t′ − t, the length of the segment [t, t′) that
it represents; (b) A proposition which is true at the intervals [c, d] and [c′, d′]. Its match set is
Z1 ∪ Z2.

Definition 3 (Matching and Match Sets). A segment (t, t′) of signal w matches an
MTL formula ϕ, denoted as (w, t, t′) |= ϕ, if (w[0, t′), t) |= ϕ. The match-set of ϕ in w
is the set of all matching segments:

M(ϕ,w) = {(t, t′) : (w, t, t′) |= ϕ}.

The relation between matching in one and two dimensions can be expressed as

M(ϕ,w) =
⋃

t′∈[0,`)

M(ϕ,w[0, t′))× {t′} (1)

We will use notation M(ϕ) when w is clear from the context. To compute M(ϕ)
we first define the two-dimensional analog of satisfaction signal, the satisfaction map,
where ϕ(t, t′) indicates the satisfaction status of ϕ by w[t, t′).

Definition 4 (MTL Matching Semantics with Satisfaction Maps). The matching se-
mantics of MTL formulas with respect to a Boolean signal w is defined inductively as
follows:

p(t, t′) = wp(t) ∧ t < t′ < `
(¬ϕ)(t, t′) = ¬(ϕ(t, t′))
(ϕ ∨ ψ)(t, t′) = ϕ(t, t′) ∨ ψ(t, t′)
(F[a,b]ϕ)(t, t

′) =
∨

r∈[t+a,t+b]

ϕ(r, t′)

(ϕ1Uϕ2)(t, t
′) =

∨
r≥t

(ϕ2(r, t
′) ∧

∧
r′∈[t,r]

ϕ1(r
′, t′))

In the sequel we will show that for a bounded-variability signal w,M(ϕ,w) can be
expressed as a finite union of zones.



Definition 5 (Two-dimensional Zones). A two-dimensional zone Z is a subset of R2
+

which is defined via a conjunction of orthogonal and difference inequalities of the fol-
lowing form

α ≺ t ≺ α
β ≺ t′ ≺ β

γ ≺ t′ − t ≺ γ
(2)

where≺ is either< or≤. The representation of a zone by the intervals [α, α], [β, β] and
[γ, γ] can be tightened and brought into a normal form where no inequality is implied
by any combination of the others, except possibly in a marginal way.3 We assume that
we always work with such normalized zones where the constants satisfy the following
constraints.

β − γ ≤ α ≤ α ≤ β − γ
α+ γ ≤ β ≤ β ≤ α+ γ

β − α ≤ γ ≤ γ ≤ β − α
As convex sets, zones are not closed under union and complementation and these oper-
ations yield the class of sets that we will call timed polyhedra. Non-convex timed poly-
hedra can be expressed as a finite union of zones but this representation is not unique,
and there is no canonical minimal representation as in the case of intervals. Moreover,
the choice of the zones in the representation may affect the correctness of the procedure
we propose in the sequel for the until operator. For this reason we define explicitly the
notion of a representation of a timed polyhedron.

Definition 6 (Timed Polyhedra, Representation). A timed polyhedron Z is a set ex-
pressible as a Boolean combination of orthogonal and difference constraints as in (2).
A set of zones Z = {Z1, . . . , Zk} is a representation of Z if

Z =
⋃
i

Zi

To characterize match sets we will first show that those of propositions are timed poly-
hedra and that the latter are closed under the operations in Definition 4. This is trivial
for disjunction and negation and we focus on F[a,b] and U for which we provide con-
structive proofs.

When a proposition p holds throughout an interval I = [c, d], M(p) contains
segments of w whose starting point t is in I . The role of t′ is just to ensure, in ad-
dition, that [t, t′) is a well-defined segment, a sub-interval of dom(w). This can be
written explicitly as (c ≤ t ≤ d) ∧ (t < t′ < `), or using a zone-like notation,
(c ≤ t ≤ d) ∧ (0 < t′ − t) ∧ (0 ≤ t′ < `). This will hold for any p-interval and
consequently M(p) is a timed polyhedron (see Figure 3-(b)). The concepts of cones
and back-shifting can be adapted to points and zones in R2

+. Recall that the satisfaction
of F[a,b]ϕ at t is a function of the satisfaction of ϕ throughout [t+ a, t+ b]. The role of
t′ is to determine whether parts of the forward cone go outside dom(ϕ) and should not
be considered. Figure 4 illustrates the effect of t and t′ on satisfaction.

3 It means that if a constraint f(t, t′) ≤ c is implied by other constraints, the constraint
f(t, t′) ≤ c− ε is not implied by them for any ε > 0.
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ϕ

t′1
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Fig. 4. The effect of t and t′ on satisfaction of ϕ′ = F[a,b]ϕ with respect to a given satisfaction
signal ϕ whose match-set is the zone Z. The thick dashed lines indicate the forward cones of the
respective values of t. (a) segment (t1, t′1) does not satisfy ϕ′ because the forward cone of t1 does
not intersect Z; (b) segment (t2, t′1) which starts later does satisfy ϕ′ because the forward cone
of (t2, t′1) intersects Z. In other words [t2+a, t2+b] intersects ϕ1 before t′1; (c) segment (t2, t′2)
which ends earlier than (t2, t

′
1) does not satisfy ϕ′ because it ends before ϕ becomes true.

Definition 7 (Cones and Back-Shifting in the Plane). Let (t, t′) be a point in R2
+ and

let Z be a zone represented by the following (normalized) inequalities:

α ≤ t ≤ α
β ≤ t′ ≤ β

γ ≤ t′ − t ≤ γ

Then

1. The [a, b]-forward cone of (t, t′) is [t+ a, t+ b]× {t′};
2. The [a, b]-back cone of (t, t′) is [t− b, t− a]× {t′};
3. The [a, b]-back shift of zone Z is Z ′ = σ[a,b](I), a zone defined by

α− b ≤ t ≤ α− a
β ≤ t′ ≤ β

γ + a ≤ t′ − t ≤ γ + b
(3)

Claim (Zone Back Shifting). The back-shift of a zone consists of all points whose for-
ward cone intersects Z:

σ[a,b](Z) = {(t, t′) : [t+ a, t+ b]× {t′} ∩ Z 6= ∅}

Proof. Given that Z is normalized, (3) is what you get by applying quantifier elimina-
tion to the following formula

∃r


a ≤ r ≤ b
α ≤ t+ r ≤ α
β ≤ t′ ≤ β
γ ≤ t′ − (t+ r) ≤ γ





Figure 5 illustrates zone back-shifting. Perhaps the simplest way to view it is to back-
shift the vertices of Z along the horizontal t dimension. The left vertices are shifted by
b and the right ones by a.

γ1

γ2

α1 α2

Z

β2

β1

γ2 + b

γ1 + a

α1 − b

β1

β2

σ[a,b](Z)

α2 − a

Fig. 5. An illustration of zone back-shifting.

What remains to be shown is that if bothM(ϕ1) andM(ϕ2) are timed polyhedra,
so isM(ϕ1Uϕ2). Recalling the relation between one-dimensional matching by inter-
vals and two-dimensional matching as expressed in (1), we will associate with every
Z ⊆ Tw and every t′, a one-dimensional object, the t′-slice (projection) of Z, defined
as IZ,t′ = {t : (t, t′) ∈ Z}. For a convex zone Z, IZ,t′ is a single interval and for this
reason we first prove our result for the case where both match-sets are single zones.

Claim. LetM(ϕ1) = Z1 andM(ϕ2) = Z2 be zones, thenM(ϕ1Uϕ2) is also a zone.

Proof. Following the semantics of until we have

(t, t′) ∈M(ϕ1Uϕ2) iff ∃r ∈ [t, t′] (r, t′) ∈ Z2

and ∀r′ ∈ [t, r] (r′, t′) ∈ Z1

which translates to

∃r ∈ [t, t′]



α2 ≺ r ≺ α2

β
2
≺ t′ ≺ β2

γ
2
≺ t′ − r ≺ γ2

 and ∀r′ ∈ [t, r]


α1 ≺ r′ ≺ α1

β
1
≺ t′ ≺ β1

γ
1
≺ t′ − r′ ≺ γ1






First we eliminate the universal quantification by taking the dual and applying the
Fourier-Motzkin procedure and then eliminate the existential quantifier to finally ob-
tain

M(ϕ1Uϕ2) =



α1 ≺ t ≺ min{α1, α2}

max

{
β
1
, β

2
,

α2 + γ
1

}
≺ t′ ≺ min

{
β1, β2,
α1 + γ2

}
max{γ

1
, γ

2
} ≺ t′ − t ≺ γ1


(4)

Let us denote this operation on zones as Ω(Z1, Z2). It can be viewed as performing
in a symbolic manner an uncountable number of interval-based until computations:

Ω(Z1, Z2) =
⋃

t′∈[0,`)

Ω(IZ1,t′ , IZ2,t′)× {t′}.

Consider now the more general case whereM(ϕ1) is a non-convex timed polyhe-
dron Z, represented as a set of zones Z . Trying to apply the procedure to every pair
of zones in the respective representations, we may face the following problem. There
might be a maximal interval I in IZ,t′ which is not fully included in a single zone
in Z but is spread over two or more zones. This is illustrated in Figure 6-(a) with
Z = {Z1, Z2}, such that IZ1,t′ = I1 and IZ2,t′ = I2, both strict sub-intervals of I .
On the other hand, adding to the representation the zone Z3, shown in Figure 6-(b) will
remedy this problem for I and for a bunch of other slices associate with a range of t′

values. This motivates the following definition.

Z1

Z2

I

I1

I2

Z3

I

Fig. 6. (a) A representation Z = {Z1, Z2} of a timed polyhedron such that neither zone contains
a maximal interval of a t′-slice. (b) Adding Z3 to the representation fixes the problem.

Definition 8 (Maximal Zones, Maximal Normal Form). Let Z be a timed polyhe-
dron. A zone Z ⊆ Z is maximal in Z if there is no other zone Z ′ such that Z ⊂ Z ′ ⊆ Z.
A representation Z of Z is maximal if contains all maximal zones. A representation is
reduced maximal if it consists of the set of all maximal zones.



The notion of maximal representation is an adaptation of the concept of a syllogistic
form of a Boolean function, a DNF representation that contains all maximal cubes. The
reduced maximal representation corresponds to what is known as Blake normal form.
Both were introduced in [4] and the reader can find more about it in [5]. In a maximal
representation Z of Z, every zone included in Z is included in some Z ∈ Z , a fact
which implies the following claim.

Claim (Pairwise Operation on Maximal Representation). LetM(ϕ1) = Z1

andM(ϕ2) = Z2 be timed polyhedra, represented by Z1 and Z2, respectively, with Z1

being maximal. ThenM(ϕ1Uϕ2) is also a timed polyhedron computed as⋃
Z1∈Z1

⋃
Z2∈Z2

Ω(Z1, Z2).

Proof. The inclusion
M(ϕ1Uϕ2) ⊇

⋃
Z1,Z2

Ω(Z1, Z2)

is trivial. Let us prove the opposite (⊆) inclusion. Consider any (t, t′) ∈ M(ϕ1Uϕ2).
By definition of the until satisfaction map, there exists r ≥ t, such that

(r, t′) ∈ Z2 ∧
∧

r′∈[t,r]

((r′, t′) ∈ Z1)

Applying the representation of Z2, we deduce from the first conjunct that (r, t′) ∈ Z2

for some zone Z2 ∈ Z2. We rewrite the second conjunct as I ⊆ Z1, where I is the
interval with extremities (t, t′) and (r, t′). Using maximality of Z1, we deduce that
I ⊆ Z1 for some Z1 ∈ Z1 or, in pointwise notation,∧

r′∈[t,r]

((r′, t′) ∈ Z1).

Gathering everything, we get that for some r ≥ t, Z1 ∈ Z1, Z2 ∈ Z2, it holds that

(r, t′) ∈ Z2 ∧
∧

r′∈[t,r]

((r′, t′) ∈ Z1),

in other words (t, t′) ∈ Ω(Z1, Z2).

This concludes the proof of our main result.

Theorem 1 (Match Sets for MTL). For any MTL formula ϕ and a bounded variability
Boolean signal w, M(ϕ,w) is a timed polyhedron represented as a finite union of
zones.

We sketch below how one can transform a representation of a timed polyhedron
into a maximal one. We apply the multiplication (intersection) technique [4, 5] to com-
plement a timed polyhedron Z represented by a set of zones. In essence it applies De
Moragn rule to obtain a CNF representation of Z, and then opens the parentheses to



collect the terms (zones). The representation of Z thus obtained is maximal by a direct
extension of the results proved by Blake [5]. Applying this operation twice we obtain a
maximal representation of Z.

While a maximal representation is sufficient for proving the results, in our imple-
mentation we keep the representation reduced by making incremental inclusion tests
and other optimization such as plane sweep techniques that may avoid intersections
between zones that are far apart.

4 Case Study

In this section, we illustrate the computation of match sets on an example of a bounded
recurrence property, taken from the catalog of commonly-used real-time properties [14]:

ϕ1 := (q ∧ ¬r ∧ Fr)→ (F[0,c](p ∨ r) U r)

Property ϕ1 requires proposition p to hold at least every c time units between q and r.
Such properties are commonly used to express periodic tasks to be performed between
two events. Figure 7-(top left) depicts some input signals for propositions p, q, and
r. The satisfaction maps for some sub-formulas are shown in Figure 7-(left) followed
by the satisfaction map for the top-level formula ϕ1 in Figure 7-(right). This figure
illustrates the evolution of the formulas satisfaction with time and knowledge. Recall
that a t′-section of the map gives us the satisfaction signal for the formula ϕ by w[0, t′).
We depict t′-sections for time points t1, t2 and t3 in Figure 7-(bottom-right). We can
observe that ϕ1 is satisfied at all times t ∈ [0, t1) based on the knowledge available
at t1. However, it turns out to be violated at some times t ∈ [0, t1) when additional
knowledge about the input signals is provided at times t2 and t3.

Our techniques also open the way for using MTL for specifying local timed prop-
erties (patterns) that only hold at some segments of the signal. We illustrate this using
three examples. First, consider a formula ϕ2 = q ∧ ϕ1 and its satisfaction map which
filters away segments that satisfy ϕ1 trivially due to ¬q. Second, we consider an MTL
formula ϕ3 = GF[0,c](p ∨ r) which describes time periods where p or r holds peri-
odically at least every c time units. Third, in order to express a pattern describing time
periods where p or r holds at least every c time units and starting with q, the formula ϕ3

is intersected with q such that ϕ4 = q∧GF[0,c](p∨ r). Figure 8 depicts the satisfaction
maps for ϕ2, ϕ3, and ϕ4 using the same signals appearing in Figure 7.

5 Conclusions and Future Work

The major contribution of this work is in exporting and adapting the two-dimensional
segment matching technology from timed regular expressions [28] to MTL. On the way
to prove the main result, namely that the match sets for MTL are unions of zones, we
had to cope with the alternating nature of the until operator, using the maximal represen-
tation for timed polyhedra. This concept, adapted from the syllogistic representation of
Boolean functions, may have some other applications in the analysis of timed systems.



Fig. 7. Input signals p, q, and r, respectively (top left). Satisfaction maps for some subformu-
las (left). The satisfaction map for ϕ (right). Cross-sections of the satisfaction map for ϕ that
corresponds to satisfaction signals at t1, t2, and t3 (bottom right).

Our matching algorithm has been implemented and demonstrated on some non-trivial
examples.

Regular expressions and temporal logic are inherently different due to various rea-
sons, including the different nature of the major sequential operator (concatenation
compared to until) and the positional and directed satisfaction relation of TL. Con-
sequently, the MTL interpretation of the satisfaction map consists of separate positional
and epistemological components. One way to go further in this direction is to consider
a 3-dimensional satisfaction map defined on tuples (s, t, t′) where [t, t′) stands for what
is known about the signal and s is the position from which satisfaction is considered,
not necessarily included in [t, t′). It looks a priori as if such an approach could handle
full MTL with both future and past operators.



Fig. 8. Satisfaction maps for the formula q ∧ ϕ1 (left), the formula GF[0,c](p ∨ r) (middle), and
the formula q ∧GF[0,c](p ∨ r) (right).

As mentioned, our technique can be adapted to a 3-values semantics with ⊥ stand-
ing for unknown. To this end, the representation of the satisfaction map should be aug-
mented with a second timed polyhedronM⊥, which should be shifted and manipulated
in coordination withM and its complement.

Finally, the satisfaction of formulas in interval temporal logics, such as those stud-
ied in [11] and [32], is associated naturally with intervals. It might be the case that
interval-based logics are more suited for defining patterns than point-based ones. We
are currently working on the application of our techniques to handle metric extensions
of such logics.
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