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Abstract

Characterizing the behavior and robustness of enzymatic networks with numerous variables and unknown parameter
values is a major challenge in biology, especially when some enzymes have counter-intuitive properties or switch-like
behavior between activation and inhibition. In this paper, we propose new methodological and tool-supported
contributions, based on the intuitive formalism of temporal logic, to express in a rigorous manner arbitrarily complex
dynamical properties. Our multi-step analysis allows efficient sampling of the parameter space in order to define feasible
regions in which the model exhibits imposed or experimentally observed behaviors. In a first step, an algorithmic
methodology involving sensitivity analysis is conducted to determine bifurcation thresholds for a limited number of model
parameters or initial conditions. In a second step, this boundary detection is supplemented by a global robustness analysis,
based on quasi-Monte Carlo approach that takes into account all model parameters. We apply this method to a well-
documented enzymatic reaction network describing collagen proteolysis by matrix metalloproteinase MMP2 and
membrane type 1 metalloproteinase (MT1-MMP) in the presence of tissue inhibitor of metalloproteinase TIMP2. For this
model, our method provides an extended analysis and quantification of network robustness toward paradoxical TIMP2
switching activity between activation or inhibition of MMP2 production. Further implication of our approach is illustrated by
demonstrating and analyzing the possible existence of oscillatory behaviors when considering an extended open
configuration of the enzymatic network. Notably, we construct bifurcation diagrams that specify key parameters values
controlling the co-existence of stable steady and non-steady oscillatory proteolytic dynamics.
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Introduction

Nonlinear temporal dynamics, ranging from simple bistable

behaviors to oscillatory or even chaotic regimes, play a

fundamental role in systems biology. As far as such behaviors

are associated with biological functions, a key issue of the

biological system analysis is then the ability of going from

qualitative to quantitative dynamical features. Accordingly, the

determination of the feasible regions in the parameter space

leading to such complex dynamics becomes an important

challenge, notably for designing appropriate model-driven exper-

imental strategies. Clearly, the mathematical theory of nonlinear

dynamical systems provides methods to identify bifurcations

topologies that organize typical asymptotic solutions such as

multiple steady-states, limit cycles etc. However, bifurcation theory

mostly deals with low dimensional systems controlled by a small

number of bifurcation parameters. When dealing with large

systems encompassing dozens of parameters, identifying the one or

two key bifurcation parameters (or combination of parameters)

that crucially affect the system dynamics is not an easy task in

general. In addition, the bifurcation theory says nothing about the

size and boundaries of the attraction basins associated with each,

possibly co-existing, stable asymptotic states. Therefore, such

approach does not really meet the requirement of the experimen-

talist, who needs to know -(i) which parameters or combinations of

parameters would affect the regulatory interactions and feedback

loops of the considered biological system, and -(ii) to which extent

the behaviors that have been identified are robust to exogenous or

endogenous perturbations. Indeed, such expectation is central

both for understanding how far the system may express a

physiological behavior before bifurcating toward a pathological

state and for assessing reliable predictions of the system behaviors

in different contexts.

Another crucial aspect in biological systems modelling is that the

considered parameter values are generally uncertain. Indeed, the

preliminary phase of model construction consists in selecting the

components, species and reactions to be included in the model,

and in the determination of the parameter values (initial

conditions, kinetic constants, etc). These values can be obtained

from the literature and/or from newly available experimental

data. Although the general feeling today is that huge amounts of

data are available in data bases, they are not of the type needed to

build kinetic models. Most of the time some of the needed

parameters have not yet been measured, and those that have been
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must be used with caution. It is for example recognized that values

of kinetic constants from in vitro measurements on purified

enzymes can be significantly different from the in vivo values, due

to interactions with other cell components or to sequestration.

Also, the values taken from the literature are often heterogeneous

(different cell types, different conditions). Measurements obtained

on identical cell types placed in supposedly identical conditions

can also be qualitatively different for multiple reasons (undetected

heterogeneity of cell populations, different batches of antibodies, to

name a few). The fact that the amount of available data and

information is generally too low with respect to the size of

dynamical cell models means that there is not enough constraining

information to identify a fully instantiated model. Thus, to

represent explicitly the state of knowledge it is best to consider

not a single parameter valuation but a set of those as discussed in

[1]. All the parameter valuations in this set share the property that

the associated instantiated models are compatible with available

data. This approach is to be preferred to the more common one

where uncertain parameters are set to a single numerical value.

The arbitrary choice of a representative valuation could

potentially lead to unreliable predictions.

Finally, even if we assume that the model is quantitative and

properly calibrated, and if the existence of a stable steady-state is

known, analyzing transient regimes still remains a challenging

issue since bifurcation theory provides no information about the

different transient regimes (trajectories) leading to this steady-state.

In this context, quantification of robustness is especially required.

Thus, practically, the values taken by different protein concentra-

tions at intermediate times may be more informative than their

asymptotic state. To perform a quantitative analysis of transient

behaviors, one has to resort to simulation and different post-

processing algorithms which are generally tailored specifically for

each model and situation and thus cannot be reused from one

modelling problem to another.

In this paper, we propose a combined approach that takes place

after the model construction. Then, we are left with two types of

questions for which we would want quantitative, i.e. more than yes

or no answers. The first one is : what are the effects of parameter

variations on the model behavior(s) ? This problem is addressed by

robustness analysis and has been dealt with in numerous works (e.g.

[2–7]). It is also strongly related to sensitivity analysis [8,9]. Since the

uncertainties around the parameters cannot always be considered

as small, one has to consider (or combine as in [10]) both local (i.e.

related to one trajectory) and global (set of trajectories) approaches

to this problem.

The second question, which we dub behavior discrimination, is less

frequently treated explicitly in the systems biology literature. It can

formulated as : when ‘‘exploring’’ the uncertain parameter space,

what type of behaviors does the model exhibit and how to identify

them ? Following recent trends to apply formal methods to systems

biology [11–13], we advocate here the use of temporal logics [14]

to specify the properties of interest. The advantage of using formal

specification languages is that they are simpler to use than plain

programming languages and more rigorous, i.e, less error-prone.

Moreover, they come with automatic methods to check that a

model satisfies a property [15]. In the best cases, the task of the

user can be simply reduced to specifying in a given formal

language the behavioral properties of interest. Initial approaches

to apply formal methods to systems biology attempted to leverage

the most advanced techniques in the domain that were developed

for discrete transition systems. Thus, they require that the model is

either already of this type (e.g. a boolean networks [16]) or that it is

abstracted into such a model. In this work, we avoid this additional

modelling and abstraction step (which can be intricate to execute

properly and may introduce serious scalability issues through the

well known state-explosion problem [15]) by proposing specifica-

tions and tools that apply directly to simulations of general models

of ordinary differential equations (ODEs). We propose a language

which can be used to discriminate qualitative properties such as

those studied by nonlinear dynamical systems theory (stability,

limit cycles, etc) as well as quantitative properties of transient

behaviors.

More specifically our methodological contribution is as follows:

1. We propose a language, based on the intuitive syntax of the

signal temporal logic (STL, [17]), to express in a rigorous manner

arbitrarily complex properties. The semantics is both logical

(yes/no) and quantitative, meaning that the algorithm for

deciding whether or not a trajectory satisfies a property also

provides a real number which quantifies the level of satisfaction

or violation [18]. This feature automatically captures a notion

of local robustness degree;

2. We propose a methodology extending that of [19] for exploring

the parameter-space of the system to find the boundaries

between the set of parameter values that lead to behaviors that

satisfy a given property and those that induce trajectories where

the property does not hold;

3. For large numbers of uncertain parameters and/or large

domains of uncertain values, we make use of Quasi Monte

Carlo methods [20] to estimate the global robustness of the

system. For that purpose we exploit on the one hand the

Boolean satisfaction of the formula to estimate the relative size

of the domain associated with behaviors that satisfy the

property, and on the other hand the quantitative satisfaction

to provide a global degree of robustness.

We apply our methods to the analysis of enzymatic processes

driven by Metalloproteinases (MMPs), a family of enzymes

crucially involved in cancer metastasis and angiogenesis [21].

Indeed, MMPs are zinc-dependent endopeptidases that play

critical roles in the degradation and, more globally, in the

remodeling of extracellular matrices (ECM). This rather large

family of enzymes includes not only diffusible MMPs, but also

membrane-type matrix metalloproteinases (MT-MMPs) that have

emerged as key enzymes in cell biology [22].

The importance of one of those, MT1-MMP, has been

particularly highlighted. Indeed, its interaction with the tissue

inhibitor of metalloproteinase-2 (TIMP2) is required for the

production of another matrix metalloproteinase, the MMP2, which

is synergistically involved with MT1-MMP in ECM degradation.

More precisely, the latent or zymogen form of this enzyme, pro-

MMP2, is activated on the cell surface through the formation of a

ternary complex of active MT1-MMP and TIMP2 bound to pro-

MMP2. One hallmark of this biochemical network complexity is the

still unsolved TIMP2 paradox: this inhibitor of both MT1-MMP

and MMP2 activity is also required for pro-MMP2 activation

leading to MMP2 formation. Taken all together, this double

enzymatic cascade with feedback loops defines a complex

biochemical network (see Figure 1) in which membrane-bound

and diffusible MMPs are regulated by a common inhibitor.

This biochemical network is used as a case study for evaluating

the new methodological approaches developed in this paper.

Taking benefit of the recent and well documented model of type I

collagen proteolysis by MMP2 and MT1-MMP in the presence of

TIMP2 proposed by Karagiannis and Popel [23,24], we propose a

systemic analysis of the biochemical network properties in two

successive stages. The first one is restricted to the analysis of the

closed enzymatic network configuration, as in the original work of

Robust Behaviors in Enzymatic Reactions Networks
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[23]. The second part extends this analysis to an open enzymatic

network configuration, with production fluxes of some enzymes

coming into play. Finally, we discuss the contribution of our

approach as a powerful technique for a refined and systematic

analysis of the dynamical properties of complex enzymatic

networks.

Methods

Methodology overview
Our formal framework, implemented in the tool Breach [25],

consists of the following objects:

N A parameterized dynamical system, hereafter simply named the

system, which is given by a set of differential equations and

associated parameters;

N Uncertain parameter sets (or simply parameter sets), each of which

consisting in a nominal valuation of the system parameters and

a range of possible values centered around this nominal

valuation to account for imprecision or uncertainty;

N Trajectories are possible time courses of a fully instantiated

dynamical system (i.e., in which all the parameter values and

initial conditions are specified); An uncertain parameter set is

compatible with multiple trajectories depending on the

instantiation of its parameters; the nominal trajectory is the

trajectory obtained with the nominal parameters;

N Quantitative temporal properties characterizing temporal patterns

and interconnexions between behaviors of the system as

observed by trajectories. A trajectory can evidently satisfy

multiple properties. A parameter set is said to satisfy a property

if all of its associated trajectories satisfy it;

In this work, we assume that the system is given. A typical

analysis using our framework is then as follows. We begin with an

a priori uncertain parameter set, i.e., a nominal valuation of the

system parameters and initial conditions, together with ranges of

uncertainty around this nominal valuation. Then, we formalize an

hypothesis or an observation about the system and its variables: a

concentration is going to fall under a certain threshold before

another one, a reaction flux will reach a steady state after some

time, etc. Once such observation or hypothesis has been expressed

as a property expressed using our language, our software Breach

[25] (see also Text S1), can generate trajectories of the initial

parameter set and verify at the same time whether they satisfy the

property or not. Thus, two main situations are possible: If the

parameter set appears to satisfy the property, then we try to

characterize the robustness of this satisfaction. Otherwise, we split

the initial parameter set into a number of more precise subsets by

choosing other nominal values for the parameters. Then, we

reconduct the analysis over these refined parameter sets, using

either the same property or new ones. This approach is described

below in more details.

Figure 1. Enzymatic network. In the first part of the Results section, we set the production and degradation parameters to 0 to study the closed
system. The different species are described in Table 1. The two concurrent pathways for the degradation of Type I Collagen (C1) by MT1-MMP (MT1)
and MMP2 (M2) are highlighted. Notice the ambiguous role of TIMP2 (T2) in both of these pathways.
doi:10.1371/journal.pone.0024246.g001
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Parameterized dynamical system, trajectories and
uncertain parameter sets: formal definitions

In this work, the system under consideration represents a

biological network of n species (enzymes, proteins, complexes etc),

which interact in a well stirred environment so that the evolution

of their concentrations, noted x1, x2, � � � , xn, can be described by

a set of ordinary differential equations (ODEs) of the form:

_xx~f (x,p) ð1Þ

where x~(x1, � � � ,xn) is the state vector, p~(p1, � � � ,pnp ) the

parameter vector and the function f give the rates of the

concentrations variations.

We assume that f is continuously differentiable on Rn and as a

consequence, the system is deterministic: a value for the initial

concentrations and the parameters p gives rise to only one

evolution of the concentrations. Formally, given x0[Rn and p[Rnp ,

a unique solution jx0,p exists for (1) for all time t§0. This solution

is called a trajectory or a behavior of the system. For brevity, we will

omit x0 in the notation of trajectories: we write jp and sometimes

only j when p is also fixed in the context (In Breach, initial

conditions are actually treated as parameters).

As stated in the introduction, initial conditions and parameters

are often not known precisely for biological systems. For this

reason, we define the notion of uncertain parameter sets. An uncertain

parameter set P is a set of possible values for p and we are

interested in the properties of the trajectories jp when p is in P. In

our implementation, we restricted parameter sets to be hyperboxes

(products of intervals) centered on a nominal value. The reason is

that such sets are easily sampled or subdivided into subsets of the

same nature. Formally P is a pair (p,e) where p~(p1, � � � ,pnp
)[Rnp

is the nominal valuation of P and e~(E1, � � � ,Enp
)[R

np

§0 is the range

of uncertainty of P. The pair (p,e) defines P as the hyperbox:

P~fp0[Rnp such that Vi, 1ƒiƒnp,pi{Eiƒp’iƒpizEig ð2Þ

Every jp0 with p0[P is a trajectory compatible with the

uncertain parameter set P.

Quantitative temporal properties
A trajectory j defines a possible time evolution of the n

concentration values x1(t), x2(t), � � �, xn(t) for all time t§0. From

the quantitative information given by the real numbers xi(t),
qualitative information can be inferred. E.g., by plotting or

processing the data of j one can observe whether the values

converge toward a steady state, monotically increase, oscillate, etc.

Of interest can be also transient quantitative information such as

the relative values of xi(t) for t in some time interval and the values

of xj(t’) for t’ in some later time interval. To extract this type of

information, a cost function is usually defined and evaluated

through dedicated routines used on j [1], but their implementa-

tion can be tedious and error prone. Our framework allows to

automate this process by mean of an appropriate language that

can express timed and quantitative properties of j in a compact,

intuitive and flexible way. Using this language, we can go from an

hypothesis on the system behavior (based on a priori qualitative

knowledge from biologists or on observations of experimental data)

to a formula Q which can be checked rigorously and efficiently on

the trajectory j. Since the manner we define and use temporal

properties constitutes an important part of our contribution, we

devote the last part of the methods section to this aspect.

Local robustness and sensitivity analysis
Once an observation or an hypothesis has been properly

expressed by a formula Q, it is important to assert how robustly it

holds for a given trajectory j and if the change in parameter values

is likely to affect its truth value. Such analysis will be called local

robustness and sensitivity analysis since we consider only one

trajectory, by contrast with global robustness and sensitivity analysis

where we consider all trajectories compatible with a parameter set

P, to be discussed in the next section.

We define precisely the notion of local robustness of a property

Q by introducing a robust satisfaction function r. This function takes a

formula and a trajectory as inputs and returns a real number:

r : Q,j ? r (Q,j) [ R ð3Þ

The function has the following fundamental property : j satisfies

the property Q if and only if r(Q,j)§0. Intuitively, if r(Q,j)§0,

then r(Q,j) measures how far j is from violating the property Q.

Local sensitivity analysis refers to the study of the influence of a

small perturbation of p on the trajectory jp. It is measured by the

derivative of jp with respect to p:
djp

dp
, which is called the

sensitivity function. Efficient methods exist to compute this

derivative alongside with the computation of the trajectory by

solving the system (1) extended with additional equations

describing the time evolution of the sensitivity function (see [19]

for more details). For t§0, we get
djp

dp
(t) which is an n|np matrix

whose (i,j) component is
dxi

dpj
(t). To get an estimate of the relative

variation of some variable xi at time t with respect to the relative

variation of some parameter pj , we compute the quantity:

dxi

dpj

(t)
pj

xi(t)
: ð4Þ

Given a formula Q, we showed in [18] that if we know the

sensitivity function
djp

dp
, we can, under certain conditions, compute

the derivative of r(Q,jp) with respect to p (see Text S2 for

additional details). This allows us to define a notion of local

sensitivity of a formula Q with respect to a parameter pj as the

relative variation of r(Q,jp) with respect to the relative variation of

pj :

dr(Q,jp)

dpj

pj

r(Q,jp)
: ð5Þ

Global robustness and sensitivity analysis
Reachability analysis. As mentioned above, global

robustness refers to the robust satisfaction of a property not only

by a trajectory but by all trajectories of an uncertain parameter set

P. Ideally, one would like to be able to check a property for every

trajectories jp,p[P. For safety properties, e.g. of the form ‘‘the

system always avoids a forbidden region of the state space’’, this is

possible through the computation of an over-approximation of the

reachable set R(P)~fjp, p[Pg and its intersection with the

forbidden region. If this intersection is empty, then P satisfies the

formula. The computation of reachable sets has been the topic of

steady research efforts during the last two decades (see [26] for

recent progress and an illustrative application on biological

models). The main difficulty is the dimensionality of the system.

Robust Behaviors in Enzymatic Reactions Networks
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Indeed, most of the existing techniques suffer from the curse of

dimensionality and quickly become inapplicable as the number of

state variables n increases. In [19], we present a method,

implemented in the tool Breach, which does not suffer from this

problem. It approximates the reachable set using a finite number

of trajectories and sensitivity functions by hierarchically sampling

the uncertain parameter set P. The approach is applicable even

for large n however its precision is sensitive to the size of the

uncertain range e. When the number of parameters np is large and

their uncertain range e is not negligible, we switch to a Monte

Carlo approach.

Quasi-Monte Carlo analysis. The idea is to sample P
uniformly with N parameter vectors pj , 1ƒjƒN and estimate the

frequency of satisfaction of Q using:

1

N

XN

j~1

x(Q,jpj
) ð6Þ

Where x(Q,j)~1 if r(Q,j)w0 and 0 otherwise. If (6) remains

constant equal to 1 as N increases, then it is likely that P satisfies

Q. To sample P we use quasi-random numbers since they are known

to have better convergence properties than pseudo-random

numbers [20].

The quantity (6) measures a qualitative notion of global

robustness by considering for each pj the Boolean satisfaction of

Q, given by x(Q,jpj
). A quantitative estimate can be obtained by

averaging directly r instead:

1

N

XN

j~1

r(Q,jpj
) ð7Þ

Of course, the interpretation of (7) depends on the definition of the

property Q. It can be crucial to estimate whether a property that

appears to be satisfied for a whole range of values is indeed

satisfied with a significant margin of confidence. Finally, global

sensitivity analysis of the property Q with respect to a parameter pj

can be quantified by

1

N

XN

j~1

dr(Q,jpj
)

dpi

pj

r(Q,jpj
)

ð8Þ

This quantity can be very useful to compare the relative influence

of the different parameters on the satisfaction of Q for a whole

parameter set P.

To compute (6)–8) Breach provides a simple Quasi-Monte

Carlo implementation which has been used to produce the results

in this paper. It is worth mentioning that it can be improved

further with state-of-the-art Quasi-Monte Carlo techniques (see

e.g. [27,28]) in a straightforward way. Other techniques such as

the ANOVA decomposition and classical global sensitivity indices

reviewed in [8] can also be implemented. Furthermore, the

availability of derivatives with respect to parameters for the

satisfaction function r allow to consider the more recent derivative

based global sensitivity measures described and advocated in [6,9].

Property based refinement of uncertain parameter sets
In this section, we briefly describe how we identify subsets of P

which robustly satisfy a property Q. Since P is an hyperbox (see

Eq. (2)), it is straightforward to partition it into a regular grid of

subsets. For each of these subsets we check whether it robustly

satisfies Q. If this is not the case, we iteratively refine it until we find

subsets which satisfy or violate the property or which are of

insignificant size. The expected result of the overall procedure is a

partition of P into small subsets around the boundary between

satisfaction and violation of Q and larger regions where the

satisfaction or violation is robust. The method is detailed in [19]

for simple properties such as ‘‘a given quantity does not go beyond

a given threshold’’ using simulation with nominal parameters and

local sensitivity analysis to decide whether to refine a subset or not.

Applying the same algorithm using the satisfaction function and its

derivative with respect to parameters such as described above, the

method is straightforwardly extensible to general temporal

properties.

Since one refinement step produces a number of subsets

exponential in the number of parameters np, the method can only

be applied if we select beforehand a small number of parameters.

This selection can be based on a priori knowledge or constraints,

or on a sensitivity analysis by choosing parameters which

maximize the local sensitivity (4) or global sensitivity (5).

The temporal logic and its quantitative semantics
We present in this section the syntax and semantics of the logic

we use to specify properties.

Signal Temporal Logic (STL). Temporal logic is a special

modal logic suited for specifying properties of time-dependent

phenomena. Originally conceived for philosophical purposes by

Arthur Prior in the 1960s, it has been exported to the specification

and verification of computer systems [14] and ever since played a

major role in the verification of reactive systems [29], the computer

science term for systems that maintain an ongoing interaction with

their environment. In this context, the logic allows one to express

properties of sequences of states/events produced by a concurrent

program, for example ‘‘two programs will never write

simultaneously on the same memory location’’ or ‘‘a program

will stay in a given set of states until some event occurs’’ or ‘‘every

request of a resource will be eventually followed by granting it’’

that we view as a generic response property.

Once such desired properties have been expressed, they can be

automatically verified against individual behaviors generated by

the actual system or its simulation. There is an automatic

procedure which takes a pair consisting of a property and an

execution trace and says whether the behavior satisfies the

property. In certain settings it is even possible to prove satisfaction

of a property by all behaviors generated by a system even if there

are infinitely many of them (model-checking). Computer systems

are modeled over a discrete state space and discrete logical time.

The adaptation of temporal logic to express properties of

continuous trajectories requires several modifications, the first

being the passage from discrete to dense time as in the logics MTL

[30] and MITL [31] which allow one, for example, to refine the

response property into ‘‘every request is followed by a grant within

t time where t[½5,7� seconds’’. The logic that we use is based on

the logic STL signal temporal logic [17] which augments MITL by

predicates (constraints) on the real-valued variables and can

express response-like properties in the continuous domain: ‘‘if the

concentration of x1 goes above some threshold c1 then within

t[½a,b� time the concentration of x2 drops below c2’’. Needless to

say, the ability to express such properties enriches the vocabulary

for describing the behavior of biochemical reactions and complex

systems in general.

The monitoring procedure for STL [17] gives a yes/no answer

which does not quantify the ‘‘strength’’ of satisfaction/violation.

Inspired by several recent works [12,32–36] we defined a

quantitative semantics for STL [18] which for every trajectory-

property pair, gives numbers that indicate how far (in space and

Robust Behaviors in Enzymatic Reactions Networks
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time) we are from violation/satisfaction. For the response property

it might be the case that within ½a,b� time we reached c2ze (space

robustness) or that we have reached c2 within bze time (time

robustness). It is this semantics that we use in the present paper

and describe below.

STL syntax. A formula Q in our logic is constructed from

atomic predicates which characterize instantaneous properties of a

trajectory, combined via Boolean and temporal operators which

relate these properties with respect to one another across different

time periods. Formally, a formula is constructed using the

following grammar:

Q : ~mj:QjQ ^ QjQ U½a,b)Qjev½a,b) Qjalw½a,b) Q

E.g., m1, ev½1,2) m2, m1 U½1,3)(m2 ^ m3), etc, are valid formulas. The

terms m1, m2, etc, are predicates. A predicate describes a constraint

on the state of the system, such as ‘‘the concentration of one

species x is higher than h’’, where h is some given threshold.

Formally, m is a generic constraint applied to a trajectory j defined

as function of a time instant t. The canonical form of m is

m : (m(j,t)w0): ð9Þ

A simple instance corresponding to our example above is

m : x1(t){hw0ð Þ: ð10Þ

By an abuse of notations we identify the predicate m with the

function m(j,t) that appears in the left-hand-side of the canonical

form of the constraint by which the predicate is defined. Note that,

in Breach, the function m can be quite general and can include

nonlinear expressions in x1,x2, � � � ,xn, time derivatives (such as _xxi)

and parameter sensitivities (such as
dxi

dpj
).

Boolean and temporal operators. To build a formula Q,

predicates and sub-formulas can be combined using Boolean and

temporal operators. Boolean operators include negation :,

conjunction ^ and disjunction _ so that, e.g., if m1~(x1(t)wh1)
and m2~(x2(t)wh2) then

Q~m1 ^ m2~(x1(t)wh1) ^ (x2(t)wh2) ð11Þ

specifies that at time t, x1 must be above h1 and x2 above h2.

Using temporal operators, one can specify relations between

values of the variables at different time instants. The most

common temporal operators are eventually and always (that we

abbreviate respectively as ‘‘ev’’ and ‘‘alw’’). The formula ev½0,1) m
means that the constraint m has to be true at least once before one

second in the future while alw½0,1) m means that m must be satisfied

for all time during one second. The ev and alw operators are unary

operators. There exists also a binary operator named until. The

formula ‘‘Q1 until Q2’’ (Q1 U½0,1)Q2) is satisfied if Q1 holds

continuously until some time before one second when Q2 becomes

true.
Boolean semantics. Formally, we evaluate whether a

temporal formula Q is satisfied or not by a given trajectory jp at

a time instant tw0. If this is the case, we write

(j,t) � Q ð12Þ

If t is not specified, it is implicitly 0, i.e., j � Q means (j,0) � Q. If

Q is a predicate m, it is satisfied if the constraint associated with m is

satisfied by j exactly at time t, i.e.,

(j,t) � mum(j(t),t)w0: ð13Þ

Temporal operators are parameterized by an interval ½a,b) (which

is ½0,z?) when omitted) and their satisfaction at time t depends

on the satisfaction of the subformula during the interval

½tza,tzb):

(j,t) � ev½a,b) QuAt’[½tza,tzb) such that (j,t’) � Q ð14Þ

(j,t) � alw½a,b) QuVt’[½tza,tzb), (j,t’) � Q ð15Þ

(j,t) � Q1 U½a,b)Q2uAt’[½tza,tzb) such that

(j,t’) � Q2 and Vt’’[½t,t’),(j,t’’) � Q1

ð16Þ

Quantitative semantics. The Boolean semantics given by

(13–16) decides whether the trajectory j satisfies the formula Q at

time t by induction on the structure on the formula. This provides

a qualitative interpretation of Q. To get a quantitative

interpretation, we define a function r called satisfaction function

which takes as arguments j, Q and t and returns a real number

r(Q,j,t) quantifying the degree of satisfaction of Q by j at time t.

Again, and as we did in the previous Sections, we omit t when it is

0: r(Q,j,0)~r(Q,j).

According to (13), the qualitative semantics associated with a

predicate m : (m(j,t)w0) depends on the sign of m(jp(t),t). The

predicate is true if it is positive and false otherwise. From there, our

definition of the quantitative semantics associated with m is

immediate: it is given by the value m(jp(t),t):

r(m,j,t)~m(jp(t),t) ð17Þ

E.g., for the simple instance (10), it gives r(m,j,t)~x1(t){h.

The quantitative semantics for Boolean and temporal combi-

nations of formulas is defined in such a way that it preserves the

property that the sign of r determines the qualitative satisfaction of

Q. In other words, we define r such that it satisfies:

(j,t) � Qur(Q,j,t)w0 ð18Þ

For the negation, it reads:

r(:Q,j,t)~{r(Q,j,t) ð19Þ

For conjunction and disjunction, we make use of max and min
operators:

r(Q1 ^ Q2,j,t)~min(r(Q1,j,t),r(Q2,j,t)) ð20Þ

r(Q1 _ Q2,j,t)~max(r(Q1,j,t),r(Q2,j,t)) ð21Þ

For temporal operators, the quantitative semantics is also achieved

using maximum and minimum of the quantitative satisfaction of

sub-formulas, with the refinement that we use inf and sup
operators to comply with infinite or open finite intervals:
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r(ev½a,b) Q,j,t)~ sup
t’[½tza,tzb)

r(Q,j,t’) ð22Þ

r(alw½a,b) Q,j,t)~ inf
t’[½tza,tzb)

r(Q,j,t’) ð23Þ

r(w1 U½a,b)Q2,w,t)~ sup
t’[½tza,tzb)

(min(r(Q2,j,t’),

inf
t’’[½t,t’)

r(Q1,j,t’’))
ð24Þ

The proof that this definition of r satisfies the constraint (18) can

be found in various references, e.g. [35], and an algorithm to

compute r efficiently is described in [18]. We can give an intuitive

interpretation of the signification of r for the ‘‘eventually’’

operator. Recall that for evQ to be satisfied by j at t, we need a

time t’§t when Q is satisfied. Thus if the supremum of

r(Q,j,t’§t) is positive, then there is a time t’§t such that

r(Q,j,t’)w0, meaning that Q is satisfied for t’ and evQ is satisfied

for t. Moreover, r(evQ,j,t) represents the largest satisfaction

available for the formula evQ along trajectory j. On the other

hand, if the supremum of r(Q,j,t’§t) is negative, evQ is obviously

not satisfied and r(evQ,j,t) represents how far j is from satisfying

evQ. In both cases, r(evQ,j,t) is a fair estimation of the

‘‘robustness’’ of the satisfaction or non-satisfaction of the formula

evQ by j from time t. The interpretation for the ‘‘always’’ operator

is similar by a simple duality between maximum and minimum

operators. Interpreting the ‘‘until’’ operator is trickier because it

involves two formulas Q1 and Q2. To keep it as simple as possible,

r(Q1 UQ2,j,t) takes its value at a time when the formula Q1 U Q2

has the highest (sup) chance to be satisfied (or is satisfied with its

highest margin) and at this time picks the weakest (min) among the

satisfactions of the conditions related to Q1 and to Q2. A simple

formula illustrates the ev operator at the beginning of the Results

Section.

Results

We applied our methodology to a model of enzymatic network

adapted and extended from [23]. A graphical representation of the

network is shown on Figure 1 along with the names and

description of the different species on Table 1. On Table 2 we

provide the corresponding differential equations and on Table 3

the nominal values of the parameters.

Quantitative insights on transient behaviors based on a
simple predicate

As a first illustration of our approach, we provide a

quantitative analysis of a transient and damped oscillatory

behavior using a simple temporal formula involving the

‘‘eventually’’ operator introduced in the Methods Section (see

Figure 2). We simulated the evolution of the TIMP2 concentra-

tion, noted T2(t), for given parameter values of the system that

gives rise to damped oscillations around a 100 nM concentration

value. We define a predicate m : T2(t)w100 and the formula

Q~evm, then observing their qualitative and quantitative

satisfaction for different values of t. Because of the oscillations,

m alternates between satisfaction and non satisfaction of the

predicate until T2 stabilizes below 100 nM slightly before

5 hours. In other words, Q~evm remains true before 5 hours

and false afterwards. Because of the damped oscillations

however, the quantitative satisfaction of Q, i.e., the function

r(Q,j,t), is decreasing with a staircase shape, each step

corresponding to the value of the peak (maximum) ahead of t.

Discriminant analysis of the TIMP2 activation/inhibition
switch

As outlined in the introduction, one key feature of the regulatory

properties exhibited by the MT1-MMP, TIMP2, MMP2 bio-

chemical network is the switching capabilities of TIMP2 on the

pro-MMP2 activation. This switch between activation and

inhibition of MMP2 production depends on the concentrations

of MT1-MMP and of the intermediate trimer MT1-MMP/

TIMP2/pro-MMP2. Thus, this switching mechanism can be

quantitatively analyzed from numerical integration of the

differential system of Table 2 when considering as initial

conditions increasing concentrations of TIMP2 for a given pair

of MT1-MMP and pro-MMP2 initial values.

Associated predicates and formulas. In our framework,

such analysis can be conducted by defining a simple predicate that

defines the percentage of activated MMP2 at time t (M2(t)) with

regard to the initial pro-MMP2 concentration (MP
2 (0)):

mM2act:100
M2(t)

MP
2 (0)

whM2act

We defined an uncertain parameter set PT2
for which only T2(0)

varies in a given range and considered the quantitative satisfaction

of mM2act: r(mM2act,jp,t)~mM2act(jp,t) for p[PT2
for different

times t.

Using mM2act(jp,t) with hM2act~0, the result can be presented

as a plot with initial TIMP2 concentrations along the x-axis and

the percentage mM2act(jp,t) of active MMP2 formed at time t on

the y-axis. Assuming that a nearly steady-state was reached after

12h, such plot was obtained by Karagiannis and Popel (2004) for

TIMP2 concentrations in the range [0–200 nM]. A typical bell-

shaped curve provided in [23] is presented in Figure 3 for

simulations conducted with initial concentrations of 60 nM and

50 nM of MT1-MMP and pro-MMP2, respectively. A maximum

value mM2act(jp,12h) of almost 60% was obtained for initial

TIMP2 concentration of roughly 45 nM. For larger initial TIMP2

Table 1. The variables names in the model and
corresponding quantities.

Variable Associated protein

MT1 Membrane Type I Matrix MetalloProteinase (MT1-MMP)

T2 Type II Tissue Inhibitor of MetalloProteinases (TIMP2)

MT1 : T2 The MT1-MMP/TIMP2 complex

M2 Type II Matrix MetalloProteinase (MMP2)

M
p
2

The proenzyme of MMP2 (pro-MMP2)

MT1 : T2 : MP
2

The MT1-MMP/T2/M2P complex

M2 : T2 The MMP2/TIMP2 complex

M2 : T�2 A stable isoform of the MMP2/TIMP2 complex

C1 Type I collagen

M2 : C1 The MMP2/Collagen I complex

C1MT1

d
Collagen I degraded by MT1-MMP

C1M2

d
Collagen I degraded by MMP2

doi:10.1371/journal.pone.0024246.t001
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concentrations, a marked decrease of MMP2 production takes

place, down to a basal value mM2act(jp,12h) of around 10% for

initial TIMP2 concentration of 200 nM. This bell-shaped curve

evidences the activation/inhibition switch controlled by TIMP2

initial concentrations. However, such appreciation of the inhibi-

tory effect appears far less strong if the mM2act(jp,t) value is

computed for larger time scale. We plotted on Figure 3-A the

curves computed for mM2act(jp,36h), mM2act(jp,100h) and

mM2act(jp,1000h), i.e., for transient regimes that are considered

to be longer than the original 12h boundary. The activation range,

i.e. the ascending parts of the curves, reveals only a slight shift of

the TIMP2 concentrations corresponding to increasing maximal

production of MMP2. On the contrary, the curves exhibit rather

different profiles in the inhibition range, with the inhibitory effect

linked to increasing TIMP2 concentrations being slowed down.

Thus, a biased estimation of the duration of the transient mode

may lead to very imprecise estimation of the biochemical network

capabilities in terms of MMP2 enzyme production. For example,

verifying the predicate mM2act with hM2act~50 to estimate the

range of TIMP2 initial concentrations for which expected

percentage of active MMP2 is larger than 50% will give around

[28 nM–56 nM] for mM2act(jp,12h), but around [25 nM–175 nM]

according to mM2act(jp,100h) (see Figure 3 B). For biological

processes, like angiogenesis, that strongly depend on MMPs activity

on time scale corresponding to several days [37,38], such differences

are quite meaningful.

Evaluating uncertainty linked to transient dynamics. The

above results indicate that the MMPs enzymatic system is still in

transient mode after 12 hours. Unfortunately, there is no

straightforward method to predict the duration of the transient

modes. As briefly introduced above on a simple example, our

approach provides a way to precisely quantify the network transient

Table 2. The equations for the system.

dMT1

dt

~ Pmt1{keff
shed MT1|MT1{kmt1t2

on MT1|T2zkmt1t2
on kmt1t2

i MT1 : T2

dM2

dt

~ km2
acteff MT1|MT1 : T2 : M

p
2 {km2t2

on M2|T2zkm2t2
off M2 : T2{km2c1

on M2|C1zkm2c1
off M2 : C1zkm2c1

cat M2 : C1{Dm2M2

dT2

dt

~ Pt2{km2t2
on M2|T2zkm2t2

off M2 : T2{kmt1t2
on MT1|T2zkmt1t2

on kmt1t2
i MT1 : T2{Dt2T2

dMT1 : T2

dt

~ kmt1t2
on MT1|T2{kmt1t2

on kmt1t2
i MT1 : T2{kmt1t2m2p

on MT1 : T2|M
p
2 zk

mt1t2m2p
off MT1 : T2 : M

p
2

dMT1 : T2 : M
p
2

dt

~ kmt1t2m2p
on MT1 : T2|M

p
2 {k

mt1t2m2p
off MT1 : T2 : M

p
2 {km2

acteff MT1|MT1 : T2 : M
p
2

dMP
2

dt

~ Pm2p{kmt1t2m2p
on MT1 : T2|M

p
2 zk

mt1t2m2p
off MT1 : T2 : M

p
2

dM2 : T2

dt

~ km2t2
on M2|T2{km2t2

off M2 : T2{km2t2
iso M2 : T2zkm2t2

miso M2 : T�2

dM2 : T�2
dt

~ km2t2
iso M2 : T2{km2t2

miso M2 : T�2 {Dm2t2�M2 : T�2

dC1

dt

~ Pc1{km2c1
on M2|C1zkm2c1

off M2 : C1{
kmt1c1

cat

kmt1c1
m

MT1|C1

dM2 : C1

dt

~ km2c1
on M2|C1{km2c1

off M2 : C1{km2c1
cat M2 : C1

dC1MT1

d

dt

~ kmt1c1
cat

kmt1c1
m

MT1|C1

dC1M2

d

dt

~ km2c1
cat M2 : C1

doi:10.1371/journal.pone.0024246.t002

Table 3. Nominal values for the parameters.

Kinetic constants Production and degradation terms

keff
shed 2800 M{1 s{1 km2c1

off 2:1|10{3 s{1 Pmt1 1|10{10 Ms{1

kmt1t2
on 3:54|106 M{1s{1 km2c1

cat 4:5|10{3s{1 Pt2 1:6|10{9 M s{1

kmt1t2
i 4:9|10{9 M kmt1c1

cat 1:97|10{3 s{1 Pm2p 8|10{10 M s{1

kmt1t2m2p
on 0:14|106 M{1s{1 kmt1c1

m 2:9|10{6 M Pc1 5|10{10 M s{1

k
mt1t2m2p
off

4:7|10{3 s{1 km2t2
iso 33 s{1 Dm2t2� 10{2 s{1

km2
acteff 3:62|103 M{1s{1 km2t2

miso 2|10{8 s{1 Dm2 10{2 s{1

km2t2
on 5:9|106 M{1s{1 km2c1

on 2:6|103 M{1s{1 Dt2 10{2 s{1

km2t2
off 6:3 s{1

Setting production and degradation terms to 0 yields the (closed) system described in [23].
doi:10.1371/journal.pone.0024246.t003
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dynamics by monitoring the convergence rate using an appropriate

predicate. This later specifies that a steady-state is almost

asymptotically reached if the variation rate of the considered

concentration falls below some small imposed value. More precisely,

we define

msteady:
3600

MP
2 (0)

|
dM2

dt
(t)

����
����vesteady

If esteady~0:01 and r(msteady,j,t)w0, the rate of activation of MP
2 is

less than 1%=h of the initial quantity of MP
2 . Then, we define

Qsteady~alw(msteady)

The always operator ensures that when Qsteady is satisfied, the rate of

activation will then always remain below this threshold for larger

times. We plot in Figure 3-B such pseudo-asymptotic steady-states

for the parameter and variable values we already used in Figure 3-A.

Both figures are very similar for small initial concentrations of

TIMP2, but the determined proportion of activated MMP2 is

significantly higher in Figure 3-B than in Figure 3-A in the

decreasing part of the curves. For example, at 100 nM TIMP2,

assuming a quasi-steady-state after 12h gives a computed value for

MMP2 of close to 20%, while this value doubles to almost 40% if

considering that a quasi-steady-state is reached for variation rate

lower than 1%=h (Figure 3 B). Accordingly, the earliest time for

which the system has reached a steady state is given by:

t�~infftw0jr(Qst,j,t)w0g

and by construction, the quantity r(mM2act,j,t�) is the ratio of

activated MMP2 obtained at this moment. We plot on Figure 3 C t�

and r(mM2act,j,t�) for different values of esteady.

Analysis of the entire enzymatic network. The above

simulations were obtained by focusing on a subsystem of the model

that only considers the activation of MMP2. Considering now

ectodomain shedding of MMP-MT1 (the reaction by which the

membrane metalloproteinases MT1-MMP proteolytically cleave

themselves, secreting their catalytic domain, MTcat
1 ) and actual

collagen degradation (i.e. keff
shed and C1(0) non zero, see [23])

together with varying the initial conditions of the proenzyme pro-

MMP2 and by varying MT1-MMP with TIMP2, we can perform

numerical simulations that express quantitatively as a 3D diagram

the amount of initial pro-MMP2 that is transformed into the active

MMP2 enzyme. We performed experiments for fixed-time

(12 hours) and until a quasi-steady state is reached, as monitored

by a variation rate of less than :01% (see Figure 4). We observe

that for higher initial concentrations of MMP-MT1, the activation

is monotonic with the initial concentration of TIMP2 whereas for

a range of lower initial quantities of MMP-MT1, TIMP2 become

inhibitor at higher doses. The optimal relation for activation

Figure 2. Illustration of a simple formula involving the eventually operator. From the behavior on the upper panel we evaluate the
quantitative (r) and boolean (sign) satisfaction of the predicate m and the formula evm. Each plateau corresponds to the amplitude of the highest
peak in the future. The value of r(Q,j,ti) for i~1,2,3 is given by r(m,j,ti

0) which is equal to T2(ti){100. The formula is satisfied at times t1 and t2 but
the satisfaction is more robust for t1 while it is weakly falsified at time t3.
doi:10.1371/journal.pone.0024246.g002
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efficiency between initial MMP-MT1 and TIMP2 can be obtained

by following the ridge on the computed surfaces. As expected, we

obtain different results depending on whether the system is still in a

transient regime or not (Figure 4 A and B, respectively).

Assessing the predictive power of the model. In [39],

processing of pro-MMP2 was observed by gelatin zymography for

increasing concentrations of TIMP2. In this experiment, a reduced

amount of MT1-MMP was used down to a level for which pro-

MMP2 processing occurs only weakly, leading to an intermediate,

i.e. not fully activated, MMP2 form. The corresponding gelatinolytic

band of this intermediate form was used as a reference densitometry

measurement D0. The densitometry analysis then showed an

increase of the intermediate form density D with the addition of

TIMP2, indicating an enhancement of the processing of pro-MMP2

by TIMP2 up to a threshold concentration of TIMP2 above which

TIMP2 action becomes inhibitory. This inhibitory switch has been

clearly evidenced experimentally by plotting the ratio D=D0 against

the amount of TIMP2 in a range 0:034 ng–21 ng (Figure 3 B in

[39]). In order to evaluate qualitatively and quantitatively the

predictive power of the model, we performed a similar but virtual

‘‘experiment’’ by simulating pro-MMP2 processing for increasing

concentration of TIMP2.

As an indicator of TIMP2 activity, we computed the ratio of the

concentration of activated MMP2 after 1 hour over the concentration

Figure 3. Profile of second enzyme (MMP2) production. We focus here on the activation cascade of pro-MMP2 enzyme, i.e., we exclude
shedding and collagen degradation from the model. The initial concentrations of MMP-MT1 is 60 nM and initial pro-MMP2 is 50 nM, which explains
the qualitative switch in C for initial TIMP2 greater than 50 nm. A Activated pro-MMP2 in percentage of initial quantity after different fixed times - the
curve corresponding to 12 hours reproduces a result from [23]. The asymptotic behavior for times going to ? is, as suggested by the curve
corresponding to 1000 hours, a linear activation from 0 to 50 nM and a plateau at 100% activation for initial TIMP2§50 nM. B Activated MMP2 after
the variation of MMP2 has reached different low rates. For initial concentration of TIMP2§160 nM, the activation rate is never above 1%, hence the
percentage is 0. C Time after when the variation of MMP2 has reached the different low rates. The non-monotonic behavior for 0:01% per hour above
50 nM suggests there is an optimum value for which activation is eventually (asymptotically) complete while the speed of the process at its
beginning is maximized.
doi:10.1371/journal.pone.0024246.g003
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obtained when TIMP2 is absent for small amount of MT1-MMP of

41.7 nM processing 1.39 nM of pro-MMP2, these values corre-

sponding to the 20 ng of MT1-MMP and 1 ng of pro-MMP2 used in

Kinoshita et al experiments. A difference with the experimental

setting in [39] is that our model does not include MMP2 activation by

MT1-MMP alone. To account for this difference, we performed the

simulations with a small initial quantity of the complex MT1-MMP/

TIMP2 of 7 nM which ensures that the reference activation of pro-

MMP2 in the absence of TIMP2 is non null.

The so-simulated TIMP2 switch effect has been plotted in

Figure 5 A. We started from very low values of TIMP2

concentrations, from which the ratio value remains close to one

in a large range of TIMP2 concentrations, as in [39]. Then the

ratio increases, with an overall simulated plot that compares very

satisfactorily, both qualitatively and quantitatively, with the

experimental data reported in Figure 3 A of [39]. For the sake

of comparison, these data have been re-plotted here in Figure 5 B,

using as x-axis the corresponding molarity range of TIMP2.

Discriminant analysis of the relative contribution of MT1-
MMP and MMP2 to collagen degradation

As stated in the introduction, both MT1-MMP and MMP2

participate to collagen proteolysis. Thus, our quantitative analysis

of the enzymatic network can be proved useful in gaining insight

into the respective contribution of MMP2 and MT1-MMP on the

proteolysis of collagen in the presence of TIMP2. Studying such

enzymatic synergism should provide precise boundaries on the

initial values and concentration ratios of pro-MMP2, MT1-MMP

and TIMP2 under which the MMP2-dependent proteolysis is

larger (or lower) than the proteolysis controlled by MT1-MMP.

To answer these questions, Karagiannis and Popel [23]

compute a proteolysis diagram that gives the initial TIMP2/pro-

MMP2 and MT1-MMP/TIMP2 ratios under which the proteol-

ysis induced by MMP2 is maximal at different times (Figure 7-b of

[23]). After t~12h, they found that the collagen proteolysis is

mostly carried out by MT1-MM for low pro-MMP2 concentra-

tions, while a proteolytic balance or enzymatic synergism between

MT1-MMP and MMP2 comes into play at higher pro-MMP2

concentration levels.

In this study, we take benefit of the convenient predicate-based

framework we developed to get quantitative insights into the

relative contribution of MT1-MMP and MMP2 on collagen

proteolysis on a more general and more accurate basis. Indeed,

our approach allows to formulate a combination of constraints

imposed on -(i) the amount of collagen that has been degraded

after a given time and -(ii) the respective contribution of any of the

two enzymes onto collagen degradation. As a practical illustration,

we define two predicates:

N m1-the proportion of collagen degraded by both proteases at a

given time is greater than 90%: m1 : C1(t)=C1(0)v0:1

N m2-the amount of collagen degraded by MMP2 is at least equal

to the amount of collagen degraded by MT1-MMP :

m2 : C1M2

d (t)wC1MT1

d (t)

The results we obtained are summarized on Figure 6 for varying

initial concentrations of TIMP2 and MT1-MMP in the range [0

200 nM], with the percentage of degraded collagen being evaluated

after 12 h. The different regions of the diagram correspond to initial

values of TIMP2 and MT1-MMP such that: m1 only is satisfied

(region D), m2 only is satisfied (region B), m1 and m2 are both satisfied

(region C), m1 and m2 are not satisfied (region A).

Global robustness analysis
In the previous sections, we analyzed the enzymatic network

dynamics by varying a small number of parameters, keeping a

fixed value for the others. In this section, we perform a more

global analysis of the system by considering a parameter set Pglob

of varying initial concentrations of the four variables C1 MP
2 , T2

and MT1 between 0 and 200 nM. We also varied the fifteen

kinetic constants within z={10% of their nominal values. The

high-dimensionality of the resulting search space (N~19) prevents

the construction of precise boundaries as performed in the

previous section so we used the quasi Monte Carlo approach.

We sampled the set of possible values of initial conditions and

parameters with N vectors evenly distributed in the parameter

space. For each of these vectors, we generated a trajectory and

observed a property of interest. For instance, we considered the

Figure 4. Activation/inhibition switch of MMP2 production.
Here, we consider the full model of [23] including collagen degradation
and ectodomain shedding of MMP-MT1. We computed the percentage
of activated MMP2 depending on TIMP2 and MMP-MT1 after 12 hours
A and after the system has reached a quasi-steady state B.
doi:10.1371/journal.pone.0024246.g004
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synergism between degradation of collagen by MMP-MT1 and

MMP2 as being characterized by the predicate:

Qsyn~ev½0,12h) (C1
M2
d (t)wC1

MT1
d (t) ^ (C1(t)=C1(0)v0:1)

� �

Among the N~1000 sampled trajectories, we found that 255
satisfy Qsyn. On Figure 7 the point associated with each simulated

trajectories has been marked by an open circle if the trajectory

satisfies Qsyn and a plain dot otherwise. Interestingly, the shape of

the region in which the property Qsyn is very similar to the shape of

region C in Figure 6. Thus our approach provides a strong support

for assessing the robustness of the enzymatic network with respect

to the Qsyn property since -(i) the volume vol(Qsyn) where Qsyn is

true is significant and -(ii) its shape is preserved even when varying

as many as 19 parameters and initial conditions.

Finally, we performed a global sensitivity analysis with respect to

the proportion of collagen degraded after 12 hours (reusing

predicate m1) and with explicit consideration of the respective

contributions of MT1-MMP and MMP2 in the degradation

process (using predicate m2) by averaging local sensitivity analysis

on the same sample of trajectories as above. We measured the

relative variations of m1(12h) and m2(12h) with respect to

variations in C1(0), MT1(0), M
p
2 (0) and T2(0) (using formula

Figure 5. Asserting the predictive power of the model. A: ratio of the concentration of activated MMP2 after 1 hour over the concentration
obtained when TIMP2 is absent as simulated by our model. Initial concentration of MT1-MMP proMMP2 was 41.7 nM and 1.39 nM respectively , these
values corresponding to the 20 ng of MT1-MMP and 1 ng of proMMP2 used in Kinoshita et al experiments [39]. The initial quantity of the complex
MT1-MMP/TIMP2 was set to 7 nM to ensure that the reference activation of proMMP2 in the absence of TIMP2 is non null. B: experimental
measurements of the activation replotted from [39].
doi:10.1371/journal.pone.0024246.g005

Figure 6. Values of initial pro-MMP2 and TIMP2 exhibiting
synergism. In region C, we have C1M2

d wC1MT1

d and 90 percent of
the collagen is degraded after 12 hours (i.e. ev½0,12h) (m1 ^ m2)). In D, we
have ev½0,12h) (m1) ^ :ev½0,12h) (m2), i.e., most of the collagen is de-
graded but mainly by the action of MMP-MT1. In B, we have
:ev½0,12h) (m1) ^ ev½0,12h) (m2) and in A :ev½0,12h) (m21) ^ :ev½0,12h) (m2). In
both cases A and B, the system does not manage to degrade 90% of the
collagen before 12 hours.
doi:10.1371/journal.pone.0024246.g006

Figure 7. Global robustness analysis of synergism. Each red
point corresponds to a trajectory for which Qsyn is not satisfied and each
green circle corresponds to a trajectory satisfying Qsyn. Note that the
N~1000 samples parameters represented on this figure are also
uniformly distributed in the other dimensions of the parameter space
corresponding to varying initial concentrations of collagen C1 and
varying values of the kinetic chemical constants with 10% of their
nominal values.
doi:10.1371/journal.pone.0024246.g007
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(8)). The results are represented on Figure 8. They are consistent

with the rest of the analysis: increasing the initial concentrations of

MT1-MMP enhances collagen proteolysis, whereas TIMP2 has

globally an inhibitory action on the degradation process. As

expected, increasing TIMP2 favors the activation of pro-MMP2

and thus the proteolysis by MMP2 against that controlled by

MMP-MT1.

Discriminant analysis with regard to the existence of
oscillatory proteolysis

The biochemical system we analyzed in the previous sections is

a closed system that admits only trivial asymptotic dynamics:

depending on the initial conditions, the concentrations of the

species eventually converge toward different stable steady-states.

Therefore, we extended our analysis by considering the dynamics

of MMP2 and MT1-MMP in the presence of TIMP2 in conditions

closer to in vivo situations, where secretion/degradation processes

come into play. Thus, this section deals with the analysis of an

open enzymatic system in which secretion of MT1-MMP, pro-

MMP2 and TIMP2 have been introduced, together with collagen

bio-synthesis. In addition to proteolysis, degradation of MMP2,

TIMP2 and of the binary complex MMP2:TIMP2* have been

considered. The non-linearity of the associated differential system

may generate oscillations of the model variables if the open system

steady-state becomes unstable due to coupling of MT1-MMP,

MMP2 and TIMP2 pathways. This corresponds to a bifurcation,

i.e. to a qualitative change in the system dynamics. The different

regions of the parameter space where different types of oscillatory

behaviors would exist have to be bounded. Additionally, the

sensitivity of such oscillatory behaviors to changes in parameter

values has to be assessed in order to gain significant and

quantitative information on the range of parameter values

producing such oscillations as well as on the variation of

oscillations shape (amplitude, period, etc) over this range. Let us

recall that exact detection of periodic trajectories generated by

deterministic nonlinear systems is not a trivial problem. Classical

techniques include Poincaré’s first return maps, bifurcation

analysis using continuation techniques, etc. Most of these

approaches are based on the study of the asymptotic behavior

and aim at proving the existence of a (stable) limit cycle beyond

some threshold of a considered bifurcation parameter. A simple

example of bifurcation in which oscillations arise is the so-called

Hopf bifurcation. Performing a standard bifurcation analysis of the

biochemical model based on system linearization in a neighbor-

hood of steady-states would be straightforward in principle but

would involve rather lengthy algebraic efforts. Following the

approach we propose here, the oscillatory behavior of the

enzymatic network was explored by defining temporal constraints

that are specified by the characteristics (amplitude, period, etc) of

the oscillatory behaviors we are looking for.

Approximate oscillations detection. Here, we keep the

formal framework of the preceding section and make use of

temporal constraints on the transient behavior that must be

satisfied in order to explore the model capability to exhibit

sustained oscillations. For instance, looking for oscillatory

behaviors in the concentration of TIMP2, we required first that

it remains under a certain threshold, i.e., that the formula

Q:div~alw(T2(t)vT2max) holds. Second, we specify that its value

eventually always alternates between periods when the

concentration increases at a rate above some strictly positive

value kh and periods when the concentration decreases at a rate

below some strictly negative value kl :

evalw½0,300h) ev½0,6h)

dT2

dt
(t)wkh ^ ev½0,6h)

dT2

dt
(t)vkl

� �� �� �
ð25Þ

Using this formula, as well as the one obtained by substituting

T2 for M
p
2 , we performed a systematic analysis to characterize the

domain of existence of the oscillatory regime for TIMP2 and pro-

MMP2 for different values of production fluxes. Starting from a

given set of initial conditions, four different types of dynamical

behaviors were characterized according to the chosen model

parameters:

1. A monotonic increase of TIMP2 and pro-MMP2;

2. An asymptotic convergence toward a stable steady-state;

3. An asymptotic convergence toward a stable limit cycle for all of

the model variables, except pro-MMP2 that increases;

4. An asymptotic convergence toward a stable limit cycle, with

self-sustained oscillations of all the model variables.

A trajectory converging toward a limit cycle is plotted in

Figure 9. Figure 10 represents the 2D-bifurcation diagram that has

been constructed by taking as bifurcation parameters the

production rates of MT1-MMP and TIMP2, i.e., Pmt1 and Pt2,

respectively (see Table 3). Our analysis distinguishes four different

regions, corresponding to the cases defined above.

To assess the robustness of the oscillatory regime inside the

region found in the (Pmt1,Pt2) parameter plane in the previous

analysis, we defined a subset of this region enlarged by adding a

z={10% variation on the other parameters, then performing a

quasi-random sampling with 1000 trajectories in the resulting

parameter set. The results are given in Figure 11. Overall, the

oscillatory regime is preserved despite the variations in the

parameters, except for 25 values distributed on the border of the

region projected in the (Pmt1,Pt2) plane, which means that the

Figure 8. Global sensitivity analysis of proteolysis with respect
to initial concentrations after 12 h. These histograms were
obtained by applying the global sensitivity formula (8) for N = 1000
samples in the parameter set Pglob where pi is replaced by the initial
concentrations C1(0), MP

2 (0), MT1(0) and T2(0). The top histogram
indicate that TIMP2 has globally an activation role for proteolysis
controlled by M2-MMP, but a globally negative influence on the total
degradation of collagen (bottom histograms), while MT1 has a globally
positive influence on it.
doi:10.1371/journal.pone.0024246.g008
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oscillatory regime is globally robust for these ranges of production

fluxes Pmt1 and Pt2.

Discussion

In this paper, we proposed a temporal-logic based methodology

for the robustness analysis and behavior discrimination of

enzymatic reaction networks. Beginning from early 2000s,

different approaches aiming at bringing formal methods and

reasoning from pure computer science and model-based design of

engineered systems to biology have been proposed. The usual idea

is to leverage advanced abstraction techniques and tools that have

been developed in the original context of formal methods and

apply them to biological systems. To do this, the most important

step is to get an input model which is compatible with the

methodology to be used. Thus a strong emphasis is put either on

the development of modelling languages which are both adapted to

the description of biological processes and amenable to a formal

analysis with existing techniques (see, e.g., [40,41]), or on the

approximation of existing models into such adapted formalism

(e.g. in [12] and other works by these authors, genetic and

metabolic networks are approximated with piecewise affine

systems and Boolean networks). Our work takes a different

approach which is both simpler and more ambitious. It is simpler

in that we do not question the description language used for the

system and neither propose a new one. Instead, we consider the

modelling formalism of differential equations, which has known

limitations but is already familiar to biologists and to a certain

extent commonly used by them, and focus on the property language,

which is adapted to trajectories simulated from an ODE model. It

is more ambitious in that applying formal methods such as model-

checking to high-dimensional non-linear differential equations is

notoriously difficult, and existing methods targets mostly Boolean

or discrete models (a recent illustration is [42]). This is why we

restrict ourselves to a simulation-based approach which do not

always provide formal guarantees because it is subject to numerical

errors, but will provide answers as soon as a simulation can be

performed. This is also why quantifying robustness is an important

part of our approach. Closer to our work, [33] define a validation

degree for a trajectory and a formula which is similar to our robust

satisfaction function. However, these authors make use of a

discrete-time logic that cannot deal with continuous time intervals.

Moreover, the computational cost of their validation degree, in the

worst case, scales exponentially with the length of the trajectory

and the formula, while it remains polynomial in our approach

[18]. To the best of our knowledge, our approach is the only one

which is quantitative and based on signal temporal logics, i.e.

adapted to continuous time-varying trajectories.

We used our methodology to analyze the dynamics of an

enzymatic network describing the activity and regulation of the

metalloproteinases MMP2 and MT1-MMP by a common

inhibitor, TIMP2.

Our analysis provides a detailed and quantitative analysis of the

switch-like effect of TIMP2 concentration on the dynamics of

Figure 10. Two maps of different regimes. Region Cv: conver-
gence toward a steady state, Region Osc M2P: MP

2 and all other
variables oscillate, Region Osc (T2): oscillations of T2 and other variables
but increase of MP

2 for the tail-like part of the region, Region Osc (T2)),
Region Dv: increase of T2 and MP

2 .
doi:10.1371/journal.pone.0024246.g010

Figure 9. Limit cycle in the space (MP
2 ,T2,M2). One can observe

that the phases of T2 and M2 are in opposition: M2 is low when T2 is
high and vice-versa.
doi:10.1371/journal.pone.0024246.g009
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MMP2 production from the latent pro-MMP2 form of the

enzyme. With respect to the earlier analysis of [23], we showed

that an underestimation of the transient period may lead to

inaccurate interpretation of the TIMP2 switching activity.

Furthermore, we showed that our framework can be used to

detect automatically the approach of steady states, thus allowing a

more complete systematic analysis of proteolytic and remodelling

processes taking place over several days, as observed for example

during in vitro angiogenesis. Interestingly, we showed that our

framework is flexible enough to formalize experimental protocols

and associated results not considered during the phase of model

construction, thus allowing to analyze model predictions. This

point has been illustrated by simulating very satisfactorily the

experimental work of Kinoshita et al. [39] on TIMP2 activity,

which has not been considered in the model development

conducted in Karagiannis and Popel’s paper [23]. Additionally,

our approach provides a clear and systematic analysis of the

synergistic action of both MMP2 and MT1-MMP onto extracel-

lular collagen matrix proteolysis. This synergy is indeed a key

regulatory process that enhances the proteolytic activity of

migrating cells acting upon the extracellular environment barriers.

In a second part of this work, we extended the original model of

[23] by considering an open network system, in which enzyme

production by cells has been taken into account. Interestingly, we

identified an oscillatory regime that highlights the multi-functional

role of TIMP2. More precisely, the sequestration of TIMP2 into

complexes involving both MT1-MMP for MMP2 activation and

MMP2 itself for MMP2 inhibition generates the feedback loop that

destabilizes the enzymatic network steady-state. Since the network

can exhibit different dynamical regimes depending on the values of

the model parameters, we took benefit of our temporal logic

approach to characterize the subdomains of the parameter space

that are associated to each regime. By formalizing the characteristic

properties of a given regime as temporal logic constraints, we were

able to compute accurately the boundaries separating regions

corresponding to different dynamical regimes in a two dimensional

plane formed by the production fluxes of TIMP2 and MT1-MMP.

By sampling the parameter space with a Quasi Monte Carlo

algorithm, we showed that these boundaries remain valid even

when considering uncertainty on all other network parameters, and

that the oscillatory domain is rather large within the parameter

space. This suggests that oscillatory dynamics in the MMP2

activation cascade might be encountered in vivo, with the MT1-

MMP/MMP2/TIMP2 enzymatic network possibly acting then

both as a switch and as an oscillator under different environmental

conditions. However, such predictions have some limitations since

our analysis does not explicitly consider the confinement of active

MT1-MMP at the plasmic membrane. Nevertheless, our analysis of

this metalloproteinase network gives new insights regarding the

parameter domains that are crucial for the proteolytic activity of

these interacting enzymes, together with a quantitative character-

ization of the reaction network sensitivity to perturbations of

reaction rates or affinity constants. The temporal logic approach

developed here can clearly be applied to other biochemical

networks containing regulatory structures, especially in order to

identify the different dynamical regimes and to characterize the

feasible regions in parameter space where the robustness of a given

behavior has to be assessed.
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Figure 11. Assessing the robustness of oscillations. On A, we
extracted a subset of the region where the oscillatory regime is
observed and augmented it with uncertain parameters. B We sampled
the resulting parameter space with 1000 quasi-random samples. The
blue dots and the red stars correspond to parameter values generating
oscillatory and non oscillatory trajectories, respectively. Only 25 out of
the 1000 sample trajectories do not exhibit oscillations.
doi:10.1371/journal.pone.0024246.g011

Robust Behaviors in Enzymatic Reactions Networks

PLoS ONE | www.plosone.org 15 September 2011 | Volume 6 | Issue 9 | e24246



References
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