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Abstract: The model presented here differs
from the usual models of parallel processing by
two aspects: On one hand, it takes fully into ac-
count the metric notion of time, thus allowing the
descriptionn of hard real +ime systems. On the
other hand, it is a pure behavicural model, in the
sense that it does not use amny abstract machine
notion. From a formalization of the notion of
event, we show that the bohaviour of a logical
system ney be described, by means of few copera—
tors, in a precise and concise way. The algebraic
properties of the model are then studied, in order
to define some methods for analysing or transfor-
ming systems described in this formalism.

INTRODUCTION

Two different notions of time are used in
system modeling. In sequential systems, as far as
time performance is not considered, the time
concept may be reduced to the ordering of actions,
or more generally of events occurring during the
system life, that is a perfectly known total
ordering relaticonship. In parallel systems, the
ordering of events depends on the execution time
of the actions. So a precise descripticon of such a
system needs the usual metric notion of time.
However, since the executicn times are genexally
uncknown, the correctness of parallel systems is
comonly required to hold independently of any
assumption about the speeds of the involved pro-
cessors. So, meny authors were led to oonsider the
ordering of events in a parallel system as a
partial ordering, and to assimilate parallel
systems with undeterministic sequential ones. This
approach allows to get rid of any metric notion of
time, and has led to most of the parallel programs
proof techniques. However it does not apply as
soon as real time systems are considered. In such
systems, the metric notion of time is used not
only to compare the performances of several imple-—
rentations, but also to decide of the adequacy of
a system to its specifications.

Another characteristic of meny approaches to
parallel behaviour modeling {for instance [1],I7])
is the use of an abstract machine mxdel, more or
less derived from finite state automata. A beha—
vicur is defined as an equivalence class upon the
set of machines, and thus the proof of a system
reduces to the procof of the equivalence petween
the abstract machines representing the specifica-
tion and the inplementation of the system. The
drawbacks of such an operaticnal approach for the
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initial specification process have been pointed
out in f3]. In short, the specification language
is generally far from being natural, and may lead
to overspecification.

In this paper, we present a purely behaviou—
ral model for logical, parallel or real time
systems, which takes fully into acocount the real
time dependencies hetween internal and external
events of a system. Our notion of time my be
viewed as a simple ordering time, as far as purely
paralle]l systems are considered, or as a metric
tire, assured to be the global time of an external
cbserver to the system.

In section 1, the basic notions of time and
event are defined. An event is represented by an
increasing staircase function from time to non
negative integers, which oounts the number of
ccourrences of the event during the time. An
ordering relationship and a set of cperators are
provided in section 2, that structure the set of
events as an ordered semiring. To illustrate the
descriptive power of +this algebra, we show
(section 3) that finite state machines and Petri
net models may be specified by systems of linear
equations and inequalities owver ewents. In order
to define an effective calculus on such specifica-
tions, the algebra is extended in section 4 to
become a ring, the elements of which are called
pseudoevents. The use of this calculus to real
time systems design problems is illustrated in
secticn 5. Section 6 describes a systematic method
to get approximate results about descriptions in
our mxdel, Ty means of discrete transforms of
pseudoevents. Some nice properties of the algebra,
when the time may be considered as discrete, are
given in section 7. In conclusion, the extension
of the model towards numerical systems is discus-
sed, and open problems are set, the solution of
which would greatly increase the capabilities of
ouar calculus. Most proofs have been aritted, ut
mey be found in an extended version of this paper

[51.

1. TIME AND EVENRTS

1.1 Time

Oar notion of time refers to an absclute one,
such as perceived by an external cbserver to the
system. At the description level, the problem of
the relative times measured by several
subsystems'clocks in a distributed system, such as
studied in [6], does not arise. We shall generally
mdel the set T of times by the set R or Z of real
or integer numbers. Elements of T are called times
or instants when T is oonsidered as an affine




delays or durations
when the vectorial structure of T is considered.

space, and time intervals,

1.2 Eveots

We consider as events the transitions between
states that may appear either in a system or in
its envircnment, such as setting a switch, or
assigning a new value to a variable. Morecver, an
event may occur several times during the period of
observation of the system, but, as we deal with
discrete systems, the set of occurrences of an
event is agsumed to be enumerable. At a suitable
level of abstraction, we can decide that an occur—
rence of an event has no duration, and can be
viewed as a cut in the time line, that separates
the times before and after the event occurs. Thus
we define an event e to be a finite or infinite
increasing sequence of instants, vwhere e(n}
denctes the instant of the n-th occurrence of e.
We shall furthermore impose that, if the seguence
is infinite, it converges towards += in T with n.
This restriction is motivated by algebraic reasons
and may be intuitively Jjustified because, in
discrete systems, an event may not occur infinite-—
ly often in a finite amount of time.

The nurber of occurrences of an event e will
be noted $e. For convenience, we do not prevent an
event from having several simaltanecus occurren-
ces. The set of events will be noted E(M), or
simply E when the choice of T is irxelevant.

0Of coourse, this definition of events copes
with real time behavicuwr modeling. However, it is
also convenient to describe sequential or purely
parallel systems: For instance, if L is a language
ot a vocabulary V, we can associate with each
syrbol a in V and with each string ¢ in L, the
event & which is the increasing sequence of the
ranks of the symbol a in c.

This representation by means of sequences
allows us to equally handle the present, the past
and the future of the system. This is close to the
point of view adopted, for instance, in the appli-
cative langquage LUCID [27].

1.3 Counters

An altemative way for handling events
consists of using counters., Such counters have
appeared useful in describing or programuing
synchronization between processes [1071,[11]. With
each event e, we shall associate a oounter u ,
which is an application from T to B , defined &8s
follows:

Ve, u(t) =mx{nil<n<tesen)<t},

Thus {t) measures the mumber of ocourrences
of e that have happened strictly before t. p is
an increasing, left continuous staircase function
cn T Figure i pictures the counter of the event
e={1,3,4,6).

Let an event counter be an increasing, left
continuous total function fromT to W, which
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value is zero on sove interval ]-—w,xo], then

{usirgy the Church's lambda notation), p= he.p, is

cbviocusly a bijection between the set of events
and the set of event counters, since:

¥r=l..3e, e(n)= mx| tem ] u(E)< n}

~

2. THE ALGEERA OF EVENTS

A logical system hehavicur will be considered
as a vector of interrelated events, and a system
as a set of such behavicurs. In this section, we
shall see how to specify such a system by means of
few operators over events.

2.1 Primary Events

*

If Xe¢eIN, the primary event k is, by defini-
tion, the event which has exactly k ocowrrences,
simaltanecusly happening at the instant zero:

¥re=l..k, k(n)=0
pk(t)= if t<0 then 0 else k
Since the 1nstant zero will generally repre-

sent the initial instant in a system life, primary
events will be often used to model initial states.

2.2 Ordering over E

For every e, f in E, let

e < £ <= fe < 3f & ¥n=1..%e, e(n) » f(n)
<> Yte T, up_(t)( p,f(t)

So the {(partial} ordering over events coinci-
des with the pointwise ordering over oounters.
This ordering will be useful, in particular, to
represent causality relaticonships over events.

(E,<) is a lattice, and we can define the
inf and sup cperators as follows:

Ye,f E,

Minf(e,£)= M+ minlpglt) ue(t))

bsup(e,£)= Ate max(uy (), pe(t))

E has a wminimm element 0, which is the event
which has no occcurrences (#“0_=_0).

2.3 Sumr and Difference of events

The sum of two events e and £ is defined to
be the event which occurs each time e or £ cccurs.
More precisely, the sequence of occurrences of the
event e+f is built by interleaving the sequences




of e and £, according to their temporal ordering.
This notion can be easily formmlized by means of
counters, justifying the additive notation:

Vetf = M. pelt) + pelt)

The + operation, being cbvicusly commtative
and associative, may be generalized to an arbitra-
ry finite nmumber of operands:

— k
B fgey = g MeIfg be,

The product of an event e hy a natural integer

k is the k times iterated sum of e:

R
ke= Ei:le

()

The difference over events is only a partial
operation, the definition of which results from
the definition of the sum:

d= e-f <> e= g+f

Note that the difference e-f is defined only
if £ is a subsecuence of e.

2.4 Pelay Operatars

let A be a delay, then the delay cperator DA
performs a translation of every occurrence of its
operand according to A:

= it.p (t-a)
“Dle Ye
The exponential notation is justified by the
cpviocus properties that ° is the ldentity cpera-

tor on E, and that plipbz pbtd for every delay
A& . The operator D! will be noted D.

3. APPLICATICON TO BFHAVIOURAL: DESCRTPTION

Iet us show here that the preceding concepts
are well suited to the description of parallel and
real time systems, and lead to very ooncise
descriptions of such systems.

3.1 Periodic Events

let us express that an event e occurs at
times O, A 28,<-+s DAr... . Clearly, e satisfies
the following recursive definiticn:
A
e=De+ }

Similarly, the weaker assumption that e
occurs at positive instants, and that two succes-
sive occurrences of e are separated by a delay
smaller than A may be expressed as follows:

A
e<De+ ]

3.2 Pesponse Times

let e be an input event to a system, and s be
the output response to e, that is requested to
occcur within the time interval A following each
occurrence of e. This can be expressed by:

DAe‘:s(e

. These les int ocut. the usefulness of
linear equa?:% ango :Ezequa]_ities ‘over events.

Evidence for such a fact will also be provided by
the following application of our model teo the
behavioural description of finite state machines,
Petri nets, and timed Petri nets.

3.3 Finite State Machine

Let M= (V,Q.cr,qo) a finite state machine,
where:

« V is a finite vocabulary
- D is a finite set of states
o is a mapping from QxQ to V
- 9y Q is the initial state
A behaviour of M is a string = aj@a,.ce8,-+0
" 192+ 8
of V¥ such that there exists a
G TR NP of states, such that, for every n
smaller than the length of c, o(qn, Gnp) exists
and is equal to a ;. In our mdel, a behavicur of

sequence

=

will be a vector (4| a ¢V) of events, such that
4 is the sequence of the ranks of the symbol a in
a string like c.

First, we may describe, for every oocuple

(g,q') of OxQ, the event "the transition g>g' is

performed”. Let St be this event. For notational

convenience, let ¢° (resp.’q) be the set of states
q' such that olg,q') {resp. olg',q)) is defined.

Then, by cbserving that a state g is left at
"J:.nstant" n if and only if it was reached at
"instant" n-! and it has some successor state, we
get:

. For every state g, such that g #¥%,
queq.eq;_‘ = qu"E .qeq"q + u(q)
where u(g)= if g=q, then 1 else O

How, for every a in V, the event & happens
each "time" a transition g—q' is performed, where
aglg.q')=a. So:

. For every a in Vv, &=

za(q,q‘ }=a eqq:
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Example: Let us consider the state graph of
fiqure Z. We gek:

ey t ey, =Deg +1 . &y =Dy

ey5 = Doy v

and:

0

a=e12+el4 , b=em+351 '
from which it follows that:

i=rfc+1 and

b-F o+De-a+D

We shall see in section 7 a necessary and
sufficient condition for the difference in the
last egquation to be defined. With this additional
condition, the above equations exactly characteri-
ze the machine hehaviours. Of course, the charac-—
terization by means of regular expressions is much
simpler, tut the same process applies to more
Eaﬁp][.eﬁ machines, like cammunicating systems of
71,08].

Now, let us see how the model applies to a
parallel asynchronous language.

3.4. Petri Nets

Like state machines, Petri nets [9] wmly use
an ordering notion of time. So we shall cheose T =
7% and describe, for each transition of the net,
the event "the transition is f£ired".

Motations: Let P be the set of places, T be
the Set of transitions. For each place p and each
transition a, let us denote:

p" (resp. p), the set of output (resp. input)
transitions of p.

a' (resp.'a), the set of cutput (resp. input)
places of a.
Let m{p,0) ke the initial warking of p, and 4 be
the event which happens each time the transition a
is fired.

The transitions are fired one at a time, sO
the marking m{p,n) of the place p at the instant n
is:

mp,n) = mp,0} + 5 pp(n-1) = T, . ug(n)

Writting that this marking may not become
negative, we get:

¥p P, Ea€p' a < XbE'pr +m(E,Ol (1)

Now, we can write that at most one transition
may be fired at each instant:

Toep @ € Lepld ¥ 1 (2}
{1) and (2) constitute a system of linear

inequalities which characterize the set of correct
behavicurs of the net.

3.5 Timed Petri Nets

Of oourse, the preceding characterization of
Petri nets may be extended to synchroncus real
time models such as timed Petri nets [13]. In such
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nets, a delay Alp) is associated with each place
p. The two following rules differenciate timed
Petri nets from ordinary aies:

. If a token reaches a place p at the instant t,
it becomes unavailable until the instant t+alp). A
transition is enabled if and only if each of its
input places contains an available token.

. A transition may not remin enabled during a non
mill interval of time: It must be either fired or
disabled as soon as it is enabled.

The inequality {2) of ordinary Petri nets
does not hold for timed nets, since several tran-
sitions my be simltanecusly fired. Taking the
first rule into accownt, the system (1) becomes:

- alp)
Vpe R T, @€ D e

b + m(p,0)

The second rule forces every event to be as
large as possible, so the above system must
became:
Vae T,

s Alp) - ~
a= m‘fpe-a( P Bpep? + m{p,0) - Eoep--{a}®

This system of equations characterize the set
of correct behaviours of the net only if it does
not eontain so called "mo duration locp®, i-e. if
it is impossible for a tokea to participate in the
firing of a transition and to come back similtane—
cusly enabling this transition. Otherwise, the set
of correct behaviours is only a subset of the
solutions of the system of equations: For instan—
ce, if the delays assoclated with both places of
the net of figure 3 are zeros, the only eguation
we get is & = B, though the true behaviour is 4 =
B = 0, because of the null initial marking.

a

b

Figure 3

4. PSEUDO EVENTS

In the previcus section, we have jlivstrated
the descriptive power of the model. Let us now
lock for transformation and proof tedhniques for
such descriptions. Starting with an equaticn such
as

e=DAe+l

the approach taken here consists of giving a sense
to the expressions:

(1 -DA)e=}_
1 @ A

1--DA re=0)

and

e =

This is achieved by extending the set of
events so as to make the difference a total cpera-

g it



tor, and by defining an intermal product.

fram the definitions
the

Let us first note that,
of the sum and delay operators over events,
following identity holds for every event e:

#e De(n) 1
=1 =

Our extension of the set of events staight-
forwardly results from this identity.

e =7

4.1 Pefinition

A pseudo event is a formal series

x = g% g p<m)
=l n
where:
. (X;) is a sequence of non null relative inte-
gers;
(xn) is a strictly increasing sequence of
instants;

- both sequences have the same length #x, which
can be finite or infinite, Wt in the latter case,
the sequence (x,) converges towards infinity.

The pseudo event 0 is such that #0=0. With
each pseudo event x can ke associated in a one to
one way its counter By defined by:

B = At. if x=0 then O else Exn<t X,

The set R of pseudo events is provided with
the usual sum and product operators over formal
series. (R,+,x} is an integral, commatative ring
with neutral elements O and 1=D°,

A partial order is defined over pseudo events
as follows:
a <b = VteT p,lt) < ylt)
(R, <} is a lattice, and the sup and inf ope-
rators are the corresponding operators
counters.

An event is either 0 or a pseudo event with
positive coefficients X, . Thus its counter is an
inereasing function of L. One can see that these
definitions are consistent with the previeus ones
given in sections 1 and 2, with the following
loosened notations:

Since, for every pseudo event a and every k
in IN, ke=ka, we shall omit henceforth to subline
the primary pseudo events. Since 1 is the neutral
element of the product,it will be omitted in
products. 8o D% will dencte the event D®1. Notice
that, with these notationsA the expression D= may
be viewed either as the D° cperator applied to a,
or as the product of pt Iy a. More generally,
every pseudo event mey be viewed as an operator
R.

The product cperation, and the sbove nota-
tions justify the first step of the process of
formal resolution of the equation e=D%+l. The
second step will be Jjustified by the sfudy of
invertibility in R {a pseudc event a has an
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inverse if and only if there exists a' such that
aa'=l).

4.2 Euclidean Divisicn

4.2.1 Proposition: A necessary and sufficient
conditicn for a pseudo event X to have an inverse
is that El = +1 . Moreover,

I _ - n
x=%x P Lo Y v

vhere

y = Sign(—;:l) Eiiz anx(n) x(1) ,
and y" denctes the n times iterated product of y
by itself.

4.2.2 Corollaries:. let a~l-e, vhere e is an
event such that e(1)>0, then the inverse of a is
an event, since 1/a = I, el,

- A necessary and sufficient condition for ﬂ;ﬁ
inverse of an event e to be an event ii that e=!

for some A. Obvicusly 1/D%= D78, so DYl aem is
the set of unity elements of the semiring (E,+,x).

4.2.3 Ring norm: Let us recall that an appli-
cation v fram a ring R to W is called a ring norm
if and enly if:

L vix) =0 <= x=0
- vixy) = vix)v(y)
- X has an inverse if and only if v(x)=1

Sc the application v, which associates with
each pseudo event az0 the integer Jilg, and such
that v(0)=0 is a ring norm on R.

4.2.4 Proposition: R is an Euclidean ring,
i.e. for every a,b in R, (b#0), there exist g,r in
R such that a=bg+r and v(r) < v{b).

let us give the division algorithm, which is
very close to the polynomials division according
to increasing variables powers:

« Step 0: Let r(°)= a and q(°)= 0;
. Step k+l: If;E{qu Elj then stop. Else ,let

{x)_ =(x)
=™ b .
let: 1 1

k
“b(1)
o0 00pE ) gy oo, oo

If x(k)% Z then go to step o, else

L) (XD p(klp

Step(ka): Lat dé)be the smallest integer greater
than x if x 0, the greatest integer smaller
than x otherwise. let:

. .
P xDr{lg- b(l)r a®ep, =8

4.3 Linear Tnequalities of Psendo Events

Our formal calculus is now powerful encugh to
solve any linear equation. However, behaviocural
specification in our model mekes a very general
use of linear inequalities, which are more diffi-




cult to handle because of the partial nature of
the ordering on R. So, let us examine some proper-
ties of this ordering in relaticn with algebraic
cperators.

4,3.1 Inequalities and sum: For every a,b,c
in K, a3BF = atc » B¢ . In other words, the
sum and difference operators are order preserving.

4.3.2 Inequalities and product: A great deal
of works concerming ordered algebraic structures
{see for instance L[14]) meke the hypothesis that
positive product is order preserving, that is to
say, that for every a,b,C:

arb & o0 => ac > be

This hypothesis is odovicusly false in R: For
instance 1-D is positive, but (1-D)%= 1-2D4D2 is
mot. So let us consider the set Mon(R) of arder
preserving pseudo events:

Mn(R)= { xeRlacR&a>0=>ax >0 }

I+ can be easily shown that Mon(R) = E.
Example: Let us consider the &wo inequalities :

{1)
(2)

x(l—DA) <1

X m—————

1 - p®

(1) means that x cannot have two occurrences

separated by a delay smaller than A {cf£.3.1).

Since 1/{1-D%) is an event, we may multiply &y it

the iwo members of (1), so (1} implies (2). But

the converse is false, because 1-D° is mnot an

event: Figure 4 pictures an event satisfying (2}
but not (1), with &4.

12

0 4 g

Figure 4

5. APPLICATION TO IESIGN PROBIFMS

In this sectieon, we shall illustrate the use
of the calculus on pseudo events wn two simple
problems.

5.1 First Example

A system receives two strictly pericdic
sequences of input requests. The former seguence
starts from the instant 0, with a 2 seconds
pericd, and the later one starts from the instant
1, with a 4 seconds pericd. The system is mde of
n identical processors, each of which takes 7
seconds for processing a regquest belonging to the
former sequence, and 5 seconds for processing a
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request from the later cue. This system may be
represented by the timed Petri net of Figure 5.

The question is: What is the minimm number
of processors needed sc as to take into accoutt
every request as soon as it happens.

Tn cur model, this problem may be stated as
follows: Let &, B be the events respectively asso-
ciated with input arrivals from each sequence. let
&, & respectively represent the event "an input
from the former {resp. later) sequence is taken
into account by some processor”, and &, f respec-
tively represent the event "a processor ends
processing an input from the former (resp.later)
sequence”. Then:

The specificatien of imput sequences my be
writtens
4= 1074 + 1 and B= O'B + D (1)

. Since a reguest camnct be taken into account
refore its arrival, we have:
&<daddc<b {2)

The processing times of requests are specified
as follows:

2 =D¢ and £ = D’

{3)

. As a request may only be taken into account when
there exists an idle processor, we get:
éd+dc<é+Ef+n

(4)

Finally, the immediate handling requirement

provides:
g=4dandd=8 (5)

Now, (1) reduces to

So getting rid of any. event variable, the problem




mey be restated as follows:

"Find the least integer n, such that

l-—D7 D--D6 "
- 4 S——z <D
1-D 1-b

or "what is the meximm value of the counter of
the pseudc event

=1+D+D2"D6“‘D7""D9u

X

1 - ot
Now, we can perform the division in x, until
getting:
x=1+p+D* +0f «p° -’ 120
l1-D

-D7(1—D)/ (1-0h) is a periodic pseudc event, the
counter of which can easily be shown to have the
maximm wvalue 0. Thus, the maximm value of the
counter of x is the one of 1+DHD2+D%+D° . which is
5 {see figure 6).S0 n=5 is the solution.

”x{t),
5]
] 1 Lt ]
51
2
1
12 3456786101 2t

Figure 6

5.2 Second Example

Iet us consider two processes p; and Py
sharing an exclusive resource. Fach process Py
cyclically asks for the rescurce, uses it during a
delay & , then releases the resource and works
during a delay 4¢, {83, 8i> 0) , after vwhat it
cames back asking for the resocurce. This system is
represented by the net of Figure 7.

Now assume that the rescurce is very expen—
sive and is required to ke permanently used. The
problem is: What condition muast satisfy the delays

§1+ b1s B. Iy, to achieve this requirement?
With the notations of the net, the problem
may be stated as follows: Find a necessary and

sufficient condition on the delays &;, 4 so that
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the following system S5 admits a solution
{ej,ep) in ExE:
ey (1 - DYty <1, i=1,2
s
er{l -’y + 01 - p®2) = 1

Now, since el(lﬂDél) + 32(1_D62) = 1 which

is an event, then Dalel + D62e2 mist be a subse-

On the other hand,
81

quence of ey + e. since
b1+
A1 >0 and ey {1-D ) <1, D

neous occurrences with e;, for one can easilty show

e; has no similta-

that for every integer n:
e1f{ntl} > (Dale.]_ )n) > ex({n)

S0 D61e1 (respectively 96292) mist be a sub-
sequence of e, {resp. e}.

el—Dazez and ez-—DBlel are events and their
sum equals 1, so one of them must be equal to 1
and the other to 0. Therefore:

5 = Sl2 or 521, where
e

1T T By 5
1po1tt2 3

1
—s55 &
5 ot TP e

. B ) .
pJ(1-p 1 1) 1=pd J
= 1_}_ <1l & _?]__;SE 4 l}

1-D 1-D

S0,
only if

a solution satisfying 5 exists if and

l:D61+A1
1-p L
which is equivalent to
S1Fhy < 81+ & and Sty < G386
The final necessary and sufficient condition is

<1 and 1-p27>2 <1
LD e

Ay < &y and &y < 8

6 APPROXIMBIE ANAIYSYS USING DISCRETE TRANSFORM

In secticn 5, we have given some examples of
the use of the forml calculus in proving proper-
ties about behavioural specifications. Of ocourse
the proofs performed there may have appeared
rather ad hoc, and are not susceptible of systema—
tization. On the other hand, it has been shown in
§4.3, that the non monotoaicity of the product
over pseudo events may give rise to difficult
problems in dealing with linear inequalities. In
this section, we shall propose a systematic method
providing approximate results, even when such
difficulties arise.

Our definition of pseudo events by means of
formal series of the delay operator D is very
close to discrete transform techniques widely used
in the field of finite difference equations.
Nevertheless, to ocur ¥nowledge, those techniques
never have been applied o inequalities.




6.1

a= 2y a0
from B to R, by:

For

Definiticn:

every pseudo event

let us define the function ¢

b, is generally a partial function, only defined
on an interval [0,r [, vhere r, is the convergence
radius of the series.

6.2 Theorem: If a is a positive pseudo event,
then 5, 1s positive cn the interval }O,m'n(l,ra)].
The cofiverse is not true.

6.3 Example of application: Let us come back

to eXample 5.2. We want the system S to have a
solution, where

|

Eliminating e,, we get:
5= [ 5 +
pZ2(1-0%) 10"y (1-0"2"%2)
1--13‘5‘2 l-Dé.2
Now this system admits a solution e, only if

there exists a real functiocn ¢ {=¢el) such that,
for every x in [0,1[:

e; (1-DMTRL) <1, i=1,2

el(l-Dél) + ez{l—Daz} =1

e (1-0¥01) < 1

<el

‘ o(x) (1xM7) <1

x2(1-x2)

" (1-x"1) (1-x21%2)

< of

1-x 1-x

which is equivelent to:
WX ¢ fo,1f,

Flx)= xéz(l—xﬁz)(l—xﬂl+6l) <

(1-5"1) (1-x2742)

bpl8y+ey)
sy (6p7tp)

So a necessary conditien for the system S to have
a solution is:

In the neighbourhcod of »=1, F(x) ~

oy < 68
It is exactly the result provided by the
methed of [12] to find permanent behavicurs of
timed Petri nets. MNotice that it is only a neces-—
sary condition, since the n.s.c. fomnd in 5.2 was:

M < & and & < B

7 DISCEETE TIME

All the non real time, and most of the real
time digital systews meke use of a discrete notion
of time. This motivates the investigation of
particular properties of R(%) which is done in
this section.

7.1 Discrete Derivatives

7.1.% Definition: If a R(Z), let us call the
derivative of a the pseudo evernt a{l-D).

This dencminaticn is motivated by the follo-
wing - cbvious, but very useful - proposition,
which corresponds to the property of real
functions, that a function is increasing if and
only if its derivative is positive:

7.1.2 Proposition: A necessary ard sufficient
conditicn tor a pseudo event a in R(Z) to be an
event, is that its derivative is a positive pseudo
event.

Example: Let us come back to the example
given in 3.3. As announced there, we are now able
to express the condition en & for pda+DE-&+D
to be an event, which is:

p(1-p) » &{1-D-D3){1-D)

7.2 lLinear Inequalities and Fized Foints
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Notations: For eacdh a,b in R{E), let us
define:
. MR) = EXEM) ! a<x]
. (bl = ixeR{@) | x<b
. .l = [a) n (KB

7.,2.1 Proposition: For each a,b in R(z), [a)
{respectively (Dl la,bi) is a complete inf-closed
semilattice (resp. sup—closed semilattice,
lattice), i.e. every subset of [a) {resp.(nl,
[z, bl) has a greatest lower bound (resp. a least
upper bound, a least upper bound and a greatest
lower bound).

Motice that R(R} does not
property: For instance, the sequences

satisfy this

2n-2  2n-1 .
(xn=D2':FI__D"Zﬁ ne )
is included in [ 0,10 J, but has no least
upper bound in R(R)-

7.2.2 Proposition: Let us recall that a
function  f  from R to R is said to be
latticecontinuous, if and only if, for every
subset X of R admitting a least upper bound
x, (resp. a greatest lower bound x ) the
set {£{x)} x X} admits a  least  upper
round ¥ such that ¥= £(x) {resp. a greatest lower
bound y such that y= £(x) .

Then, for every A in T and every pair (f,q)
of Jlattice continmuous functions, the functions
wx.DBx, ax. £{x)4gi{x), Ax.inf{f{x},g(x)),
ax.sup{ £(x),g{x)} are lattice continuous.

7.2.3 Application:let us consider a system of
linear inequalities in R@), of the following
form:

s={ x(le,) < by, i=l..n }
where all the e; are avents such that ei(l)>0.

Then the set P of solutions of S is the set




of pre—fixed points of the function £g~
Ax. .inf. (by+e;x) , which is lattice continmu-

Qus.

i=l..n

On the other hand, from 4.2.2 and 4.3.2, we

haves: ’
x(1-e,) &by =2 x < bi/(l-ei)

S50 P is included in @® , with
f= infi=; . .ptbi/{i-e4)) . Since(fll is a sup—closed
semilattice, if P is not empty, it admits a least
upper bound B . By Tarski's fixed point thecrem, -
B is the greatest flxedpomt of fg- Furthermore,
the sequence (fl(ﬂ) 1 iel) is :anluded in the
complete Lattlce [ B.fIl and by Kleene's fixed
point theorem, it converges towards § . Note that
P is generally only included in & B The point is
that by this process, we can add to § a new
inequality, which is implied by S and may e satu-
rated, since BeP.

Example:
T iet us consider the following system of

inequalities:

R
1-b l—D4

D
x(l—m

Neither of the two inequalities may be satu-—
rated by z without violating the other. But the
system reduces to:

x=2, x<£x
1-D
1 D4
with f= . inf(-=-z , 1 - ~— + X) .
1] 1+D
Using the above notations, we get:
EUN - U
--D3 1D 107 1D
Let us compute the greatest fixed point § of £,
smaller than . We get:

= inf(~

so =£(0) = § = 1/0D)
=t (p)
= mfu/(w ), 1 —04/(1+D>+D/(1—D3))

=1+ (DD )/(1-D )
fz(s)

mf(l/(1~D Y, 10 /(1+D) + D+ (D +D )/(1—9 N

{see Figure 8)

= Bl

So, 3.7

F=1+2 ""g

i-b

and the initial system implies:
3 7

X (148 '*’2

1-D 1-D

7.3 pplication: Imterruption Modeling

As a last illustration of the desecriptive

0 { 23 4 5% & 7 8 % W 1 iz %

3
¥ 1ep"/ (1401 4B/ (1-D )

"1701-0Y

Figure 8

power of cur caleulus, let us oonsider the des—
cription of a task that needs a delay A e I¥, but
may be interrupted on every integer instant. The
task is assumed to be non reentrent.

Figure 9

Modeling this task leads to a very complex
timed Petri net (Figure 9). In this net, the tran-—
sition a represents the beginning of the task.
When the token reaches a place J., the task may be
either immediately interrupted be the firing of
Q44 then entering the interrupted state Il until
réactivated by the flrlng of 4., else continuated
for one unit of time in W, before becoming again
interruptible. b (=b ) represents the end of the
task.

Proposition: Let &,B,&,4 be the four events
regpectively representing the beginning, the end,
the interruption and the reactivation of the task.
Then, given &,&,d, the event B is uniquely deter—
mined v the folowing relation:

ocatd-c-Db
1-D

The proof is rather tedicus [5], ut comple-
tely formal, and the result proved is not trivial
and may be used to deal with systems with inter—
ruptible tasks in a very simpler way than by means

- b < A

_of timed Petri nets.

OCLUSION

This paper has presented a model for real
time and paraliel systems, and a set of results
allowing, to some extend, the transformation and
analysis of the description of these systems in
the mxdel. This work must be extended particularly
in two directions:
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First, the power of the calculus must be
increased. We have shown that a great deal of
problems involve investigations on systems of
linear inequalities. For instance, let vus consider
two communucating asynchronous processes like in
¢cs [7]. hssume each process may be described by a
system of linear inequalities over its external
events. Then the resulting process will be descri-
ted by the conjunction of the two systems, where
the interprocesses camunication events have been
ecuialized and eliminated. So we must be able to
eliminate a variable from a system of linear ine-
qualities without loosing any informetion about
the remaining variables. Furthermore, — rmamny
problems, and particularly scheduling problems,
may be expressed by linear optimization problems
over (pseudo) events. But the partiel nature of
the ordering relationship gives raise to a lot of
difficult questions in applying linear programming
techniques.

Another future extension concerns mrerical
systems. One way is to combine the results obtai-
ned by our calculus with classical techmiques of
program analysis. Ancther possibility is to extend
the nodel to deal with variables. This was done in
[4] for specification purpcses, but the extension
of the caleulus to such a widened model is far to
be obvious.

In spite of these gquestions, the medel
presented here seems to us a powerful tool to des-
cribe and analyse the behavicur of parallel and
real time systems, and a unifying framework for a
lot of problems in this field. Of course this
approach is not considered as concurrent to the
classical state-transition cnes, but is expected
to lead to complementary results.
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