International Journal on Software Tools for Technology (2006) 8(2): 113-127

DOI 10.1007/s10009-005-0213-x

SPECIAL SECTION ON

OF MODELS

WITH UML

Susanne Graf - Ileana Ober - Iulian Ober

A real-time profile for UML

Published online: 17 February 2006
© Springer-Verlag 2006

Abstract This paper describes an approach for real-time
modelling in UML, focusing on analysis and verification
of time and scheduling-related properties. To this aim, a
concrete UML profile, called the OMEGA-RT profile, is de-
fined, dedicated to real-time modelling by identifying a set
of relevant concepts for real-time modelling which can be
considered as a refinement of the standard SPT profile. The
profile is based on a rich concept of event representing an
instant of state change, and allows the expression of duration
constraints between occurrences of events. These constraints
can be provided in the form of OCL-like expressions an-
notating the specification or by means of state machines,
stereotyped as ‘observers’. A framework for modelling
scheduling issues is obtained by adding a notion of resource
and a notion of execution time. For proving the relevance
of these choices, the profile has been implemented in a
validation tool and applied to case studies. It has a formal
semantics and is sufficiently general and expressive to define
a semantic underpinning for other real-time profiles of UML
which in general define more restricted frameworks. In
particular, most existing profiles handling real-time issues
define a number of predefined attributes representing par-
ticular durations or constraints on them and their semantic
interpretation can be expressed in the OMEGA-RT profile.

Keywords Real-time systems - Modeling - Timing
properties - Timing analysis - Formal verification - UML -
Real-time profile - OMEGA

This work has been partially supported by the IST-2002-33522
OMEGA project.

VERIMAG is an academic research laboratory associated with CNRS,
Université Joseph Fourier and Institut Nationale Polytechnique de
Grenoble.

S. Graf () - 1. Ober - 1. Ober

VERIMAG, Centre Equation-2, avenue de Vignate,

38610 Gieres,

France

E-mail: {Susanne.Graf, Ileana.Ober, Iulian.Ober}@imag.fr
http://www-verimag.imag.fr/{"graf, iober, ober}

SPECIFICATION AND VALIDATION
OF REAL TIME AND EMBEDDED SYSTEMS

1 Introduction

Building models which faithfully represent complex systems
is a non-trivial problem and a prerequisite to the applica-
tion of formal analysis techniques. Usually, modelling tech-
niques are applied at early phases of system development
and at high abstraction level. Nevertheless, the need for a
unified view of the various development activities and of
their interdependencies motivated the so called model-based
development [52] which heavily relies on the use of mod-
elling methods and tools to provide support and guidance
for system design and validation.

UML has become by now a standard in the domain of
software development and starts to be adopted also in the
domain of real-time and embedded systems. UML aims at
providing an integrated modelling framework encompass-
ing software structure and architecture, as well as behaviour
descriptions. UML includes various behavioural notations,
such as communicating state machines and action language.
To cover real-time aspects, a profile for ‘Schedulability, per-
formance and time’ (SPT) [51] has been standardised. It de-
fines most useful concepts, at least in an abstract manner.
Nevertheless, it is incomplete, in the sense that it is biased
versus a use in sequence diagrams. Notice also that in most
existing frameworks based on or inspired by this profile, tim-
ing constraints are expressed without a well defined relation-
ship to a functional model (e.g. in the form of a task model
with periodicity constraints on tasks or by timed sequence
diagrams) with the consequence that only the internal con-
sistency of the task model can be analysed, not its confor-
mance with the functional model.

1.1 Modelling time and timed behaviours

Typical categories of real-time properties that need to be ex-
pressed are

— Time dependent behaviour, which in practise is often
modelled by means of timers or explicit read access to
a system clock.

114

S. Graf et al.

— Time-related assumptions on the external environment
of the system and the underlying execution platform,
such as response times to requests, inter-occurrence
times of events from the environment, execution times
of actions, etc.

— Time-related requirements, such as deadlines of actions
(tasks), constraints on end-to-end delays, and more gen-
erally, constraints on durations between any two events.

There exists a variety of semantic level modelling for-
malisms extended with time, such as timed Petri nets [60],
timed process algebras [46] and timed automata [4]. In pro-
cess algebras, timing is added by a ‘delay’ construct similar
to timeout or a wait construct, as they exist in real-time pro-
gramming languages. In Petri nets, minimal and maximal
waiting times are associated with states or transitions, and
in timed automata, variables called ‘clocks’ increase with
time progress and can be set (to 0) so that they always mea-
sure the time passed since they have been last set. All these
formalisms represent machines that can perform two kinds
of state changes, time progress steps and actions, where ac-
tions correspond to events, that is instantaneous changes of
the system state which may depend on time, whereas time
steps do not alter the system state, but only time and clock
values.

Contrary to real-time programming languages where
time progress is considered as external—it can only be mea-
sured and decisions may be taken depending on the cur-
rent time—modelling formalisms use a notion of simulation
time. Contrary to external time, time progress may depend
on system progress and may block, especially as a result of
inconsistency of timing constraints. A typical example of the
use of simulation time is the assumption of ‘maximal system
progress’, as used for example in the synchronous approach
[8], where time progresses only when no system step is en-
abled.

For the expression of global real-time properties, there
exist extensions of logic-based formalisms for expressing
real-time properties. Examples are TCTL [30] and TPTL
[5], where temporal logics are extended similar to timed au-
tomata with clocks and constraints on their values.

Finally, there exist timed versions of scenario descrip-
tion languages, such as message sequence charts (MSC)
[33], event occurrences can be syntactically identified and
their occurrence time or the duration between the occurrence
times of two event occurrences can be constrained.

1.2 Defining a framework for time in UML

The UML Real-Time profile SPT is a first step in answering
OMG’s request for a ‘UML-based paradigm for modelling
time-, schedulability-, and performance-related aspects
of real-time system that would be used to (I) enable
the construction of models appropriate for quantitative
analysis regarding these characteristics and (2) to enable
inter-operability between different analysis and design
tools.’[51]. It includes features for describing a variety of

aspects of real-time systems, such as timing, resources,
performance, etc.

The profile provides time-related data types (Time and
Duration), as well as features to express both local and
global time constraints. The SPT profile defines

— a notion of timed events that has been mainly intended
for defining constraints in timed scenarios,

— attributes of type duration, such as WCET (worst case
execution time), defining particular constraints

— local constraints that can be expressed using concepts
timer and clock.

SPT offers also some primitives for modelling re-
sources (Resource, ResourceUsage, ResourceManager, etc),
scheduling (Schedule, Scheduling Policy, Schedulable Re-
source, etc). However these concepts are abstract, and in or-
der to be used in real projects, they need to be specialised
into a concrete real-time framework.

UML 2.0 [53] includes, contrary to UML 1.4, some
time-related aspects, such as time-related types and oper-
ational time-related concepts (timer, clock). But currently,
there is no syntax for the expression of time constraints be-
yond time dependent conditions in actions (which include
transition guards of state machines).

The aim of the profile defined in this paper is to make
concrete and to generalise the ideas present in the SPT pro-
file. Our profile represents a specialisation of the SPT, in
that it fixes a precise semantics for a set of concepts defined
by the SPT, and it gives them a concrete syntax. As SPT, it
offers several means for expressing time constraints (opera-
tional and constraint based ones). Additionally, it introduces
expressive event-based time constraints and extends their
use from timed scenarios to other behavioural formalisms,
in particular timed state machines. Concretely, the profile
includes the following features:

— Operational concepts, as they exist in most modelling
languages for real-times systems: a notion of system
time, which can be explicitly accessed in actions by an
operator now, as well as timers, which can be armed
and provoke a timeout event after a specified time, and
clocks which can be set and then read to measure the
time passed since the clock has been set (as in timed au-
tomata).

— A rich notion of timed event defining patterns of state
changes occurring during execution, as well as a data
structure defining a notion of observable state associated
with the identified state change which includes its occur-
rence time. This set of events defines the observability
with respect to time progress, and thus the set of express-
ible properties. In our profile, we make accessible some
events which are implicit in many other approaches.

— A constraint-based formalism allowing to restrict the du-
ration between occurrences of events, expressive enough
to define all duration and constraint patterns as defined
in SPT (such as ResponseTime associated with calls,
WCET associated with actions, InterOccurrenceTime
associated with events, etc.).

A real-time profile for UML

115

— Distinction between assumption and requirements by ex-
plicit qualification of constraints. In addition, a notion of
observer is introduced. An observer is a state machine
synchronising on events with two kinds of acceptance
states, ‘invalid’ and ‘error’ states. An observer defines
a (deterministic) automaton accepting sequences of oc-
currences of timed events. A sequence of events with
an execution avoiding invalid states is valid. A valid
event sequence whose execution passes through an er-
ror state violates a required property and represents an
error trace.

The paper is organised as follows. Sect. 2 gives an
overview on related work on the introduction of time in
UML and related modelling formalisms. Section. 3 is the
main part and defines the real-time profile and its semantics.
In Sect. 4, a short overview on a tool implementing this pro-
file is given as well as some perspectives for the future.

2 Related work

UML offers a variety of notations for capturing different
aspects of software development. Real time issues have
been addressed more recently in UML. An early attempt of
adding time to UML is [19] which underlines the impor-
tance of time-related information in real-time systems and
distinguishes between six kinds of time (absolute, mission,
friendly, simulation, interval and duration), but does not de-
fine a concrete framework defining and using these distinc-
tions. Also some UML-based CASE tools integrate timing
aspects and several frameworks have been proposed defining
real-time versions of a relatively small subset of UML: most
of them consider state machines for describing behaviours,
but timed extensions of OCL and entity-relationships are
also considered. Some frameworks for scheduling and QoS
have been defined as well.

Notice that several UML-based frameworks deal with
temporal aspects, meaning by this that they address dy-
namic aspects and properties of (partial) orders of event
occurrences. There are also UML-based frameworks for
real-time systems which mainly address the need for partic-
ular communication and execution modes (e.g. [17] defines
a UML profile for system design based on the synchronous
approach) which is outside the scope of this paper.

2.1 Adding time in other modelling frameworks

The question of how to add real-time features to a modelling
framework has been addressed also in other contexts. For-
malisms for modelling of asynchronous systems, like ROOM
[58] and the ITU! standard SDL [32] include basic concepts
for time, time-related data types (time and duration), and
timers for the specification of time dependent behaviour.
An interesting case is the framework defined at ITU for
the joint use of SDL and MSC [33] which are related to

! International Telecommunication Union.

UML sequence diagrams. An operational model is specified
in SDL, which includes features for expressing the informa-
tion provided in class diagrams, architecture diagrams and
state machines, whereas MSC are used to express require-
ment in the form of scenarios which should exist or repre-
sent undesirable behaviours. MSC include since the 2000
version occurrence time and time distance constraints in the
standard (see for example [7, 20, 37, 39, 61, 66]). QSDL
[18, 45] defines an extension of SDL for performance anal-
ysis with probabilistic execution time constraints attached
with tasks and a notation for some minimal deployment in-
formation. The proposal for extending SDL with time de-
fined in [11, 23, 25] has strongly influenced the UML profile
presented in this paper.

2.2 Timing in commercial UML tools

Commercial UML-based CASE tools taking into account
real-time are, for example, Rhapsody from I-Logix [31],
ArTisan Real-Time Studio [6], Tau Generation-2 [63] and
Rose-RT [55].

Rhapsody from I-Logix includes a notion of timer
associated with state machines, measuring the time passed
since the current state has been entered, for time dependent
programming. A system consists of a set of activity groups
representing a thread, where within each activity group
concurrency is resolved deterministically. For individual ac-
tivity groups sequential code is generated, whereas different
activity groups are either distributed or scheduled assuming
periodic tasks. This profile has strongly influenced the UML
profile defined in the Omega project (see Sect. 2.4).

ArTisan Real-Time Studio extends UML to model the
system’s reaction to events, time constraints, concurrent
tasks and partitioning applications across multiple proces-
SOrs.

Rose-RT, an evolution of Room, and Tau Generation-2,
an evolution of an SDL-based tool, are based on state ma-
chines communicating via asynchronous events. A global
notion of time is defined which can be used to define time
dependent behaviours using timers, time stamps and time
guards. Notice that the last two tools have more features
of modelling tools (they allow for example, explicit non-
determinism).

2.3 Time extensions of subsets of UML

Several proposals of time extended versions of subsets of
UML have been made for providing validation support by
means of an existing validation method or tool.

State machine-based approaches Many approaches con-
sider systems where behaviours are defined by state ma-
chines. The approaches described in [16, 36, 41] use UML
state machines as a graphical representation of timed au-
tomata (and use class diagrams to provide the necessary
type information). In particular, like in timed automata, time

116

S. Graf et al.

passes in states, whereas transitions are interpreted as in-
stantaneous state changes (events) which can be constrained
by time dependent guards. As a consequence, any event on
which a time constraint is defined must correspond to an
explicit transition in some state machine. In [36], the tech-
nique offered by standard UML is used that allows to spec-
ify that a transition is fired after a certain amount of time has
passed since its source state has been entered. Communica-
tion may take time, but maximal communication time is a
parameter defined uniformly for the entire model. Sequence
diagrams are used to express properties. Both are translated
into timed automata and verified using the model check-
ing tool UPPAAL [40]. The approach in [41] uses the UML
after statement and an extension of conditions with time to
express general guarded timeouts to represent timed state
machines. This model is translated into first order temporal
logic with real time. A subset of specifications are translated
into timed automata and checked with the KRONOS model-
checker [65]. In [16], hierarchical state machines using the
action language of UPPAAL are translated first into hierar-
chical timed automata and then flattened to be verified with
the Uppaal model-checker.

Ref. [3] addresses the verification of real-time be-
havioural patterns of embedded controllers by modelling
with UML state machines both the controller and the system
to be controlled. These state machines are compiled to syn-
chronous active java objects. Using the execution times of
actions observed for this implementation on the target plat-
form, timed automata are constructed in which actions are
represented as pairs of transitions enforcing time progress
by the observed execution time. On these timed automata,
longest execution paths for reactions of the object to envi-
ronment requests are computed and fed back into to original
UML specification together with deadlines and other global
timing requirements, from which than a more abstract time
annotated global model is constructed and analysed. This is
similar to an approach applied successfully to Esterel mod-
els in [12]. Such an approach should be supported by a real-
time profile for UML.

In [59], events associated with communications (signal
transmissions and operation calls) can be referred to by pre-
defined names. Similar as in our profile, also implicit events,
such as ‘signal arrives in the destinator’s event queue’ can
be constrained, and not only events corresponding to some
state machine transition. A timed semantics of a system is
given in terms of a temporal logic with two independent next
operators, one for system and one for time progress. It is not
clear, in how far the use of such a polymodal logic leads to
more interesting results than the use of timed automata, es-
pecially, as for verification only one of the two modalities
can be used at a time.

OCL-based approaches Ref. [22] presents work on a UML
profile for real-time constraints specifications based on OCL
2.0 [50]. It consists in extending the OCL 2.0 meta-model
with concepts needed to express state chart configurations
and sequences of them, so as to allow the expression of
real-time temporal properties in OCL. The semantics of the

temporal expressions is given in terms of a mapping to a
real-time version of temporal logic [57].

Approaches addressing scheduling and QoS in UML Ref.
[44] specialises the SPT profile to better address RMA for
distributed, critical and embedded applications domains, but
it offers little opening to other real-time analysis techniques.

Metropolis [54] has been defined outside UML, but pro-
poses also a UML profile. It defines a tool supported frame-
work for scheduling of tasks that allows to express dead-
lines, execution times, scheduling policies, etc.

Ref. [34] addresses QoS prediction of systems defined
by UML state machines extended so as to model stochas-
tic decision processes. This is done by giving a stochastic
interpretation to the standard after operator.

2.4 Context of the OMEGA-RT profile

The UML real-time profile presented in this paper has been
developed in the context of the Omega project [13, 24]. In
Omega, we have defined a UML profile for real-time and
embedded systems and supported it by several validation
tools. This profile generalises the Rhapsody UML profile by
increasing the potential of non-determinism: set of objects
can be grouped into activity groups representing a mono-
threaded behaviour executing reactions to requests from the
environment in run-to-completion steps. A reference seman-
tics for the operational part of this profile is given in [15] and
implemented in several tools.

This article presents the real-time part of the Omega pro-
file, called in the sequel OMEGA-RT profile. Notice that it is
mostly independent of the choices made for the operational
semantics. Nevertheless, it relies on the existence of activ-
ity groups for defining the notion of concurrency needed for
scheduling.

In Omega, several specialisations of this profile have
been considered and tool support has been provided for
them:

— Ref. [64] defines a sub-profile in which behaviours of
objects are described by state machines extended with
clocks and time guards. Its semantics conforming to the
Omega operational and real-time reference semantics is
expressed in terms of the typed logic of the interactive
theorem prover PVS which is used for verification of
real-time properties expressed in temporal logic or OCL.
In this profile, with an operation call are associated two
events, the moment at which the call triggers a transition
in the callee and the end of the call, which are repre-
sented as synchronisations between caller and callee.

— Ref. [38] defines a sub-profile of the OMEGA-RT pro-
file for OCL. The extension of OCL with a notion of
event history can be used for defining arbitrary con-
straints on such histories. The subset of the events de-
fined in Sect. 3.2, associated with communications are
considered there and identified using OCL concepts.

A real-time profile for UML

117

— Ref. [29] adapts Live Sequence Charts (LSC [14])—
a sort of sequence diagrams extended with manda-
tory/optional behaviour—to the OMEGA-RT profile by
extending them with time guards and clocks progress-
ing on an explicit tick event. Also the extension from in-
stant level to type level is done, by quantifications on
live lines [28]. In this sub-profile, only communications
via signal exchange is considered, and a signal transmis-
sion defines a single event (all the events defined in the
OMEGA-RT profile define the same instant).

— Ref. [10, 47, 48] implements in the IF language and tool-
set [9] the operational part of the Omega profile and a
large part of the time extensions introduced here: in par-
ticular, timers and clocks, the event definition mecha-
nism introduced in Sect. 3.2, some of the duration ex-
pressions introduced in Sect. 3.3 and simple constraints,
as well as UML observers. This tool-set offers several
possibilities for exploring a time extended system spec-
ification and for formally verifying that the operational
part of the model, enforced by the assumptions implies
the requirements.”

3 Framework for the definition of timed models

This section gives an overview of the constructs and nota-
tions introduced in the OMEGA-RT profile. This profile in-
tends to make concrete the concepts defined in an abstract
manner in the SPT profile and to increase their expressive
power in order to address more general analysis techniques
and in order to define a framework for the definition of a no-
tion of consistency between different view points of a sys-
tem.

The profile is based on the existence of two basic types,
time representing time points or instants and duration repre-
senting distances between time points. Sets of instants and
durations are generally expressed by means of predicates on
attributes.

Operational concepts, as they exist also in UML 2.0 are
not discussed here in detail. There is a notion of clock which
can be set and then read to measure the time elapsed since
the clock has been set, and a notion of timer, which can be
armed and produce a timeout event after a specified duration.

A priori, we suppose the existence of a global reference
time. Local time as proposed in SPT, may be defined by
means of local clocks, for which a maximal drift and/or off-
set with respect to global time may be defined.

Section 3.2 introduces a mechanism for identifying
events, Sect. 3.3 introduces duration expressions and
Sect. 3.4 defines an OCL-based semantics for these
notations. Section 3.5 defines a set of constraints and
Sect. 3.6 introduces observers as a more general framework
for the definition of constraints and Sect. 3.7 proposes ad-
ditional notations for taking into account scheduling-related
constraints.

2 Formal verification is restricted to models with a finite state space.

Engine +owner
-rpm:Integer
+start() 1
+accelerate(in d : Integer) Displ
screen Isplay
1 +owner
. 1 +show()
1. +sensor +update()
TemperatureSensor
«signal» «signal»
Warning criticalTemperature

in type : Integer in temperature : Integer

Fig. 1 UML class diagram for the example
3.1 Running example

In order to illustrate both, missing features in the current
version of the SPT profile and the features of the OMEGA-
RT profile, we use a small example.

Consider an Engine displaying some information (tem-
perature, rotating speed, etc.) provided by sensors on a Dis-
play device. A part of the structure of a model for such a
system is shown in the class diagram in Fig. 1. The require-
ments include the following time constraints:

(1) Between two consecutive calls made by an Engine to the
operation update of its Display, less than 100 ms pass if
the Engine rotation speed (attribute rpm) exceeds 7000
at the moment the first call to update is made.

Between the moment the engine temperature becomes
critical (reception of signal criticalTemperature by the
Engine from the TemperatureSensor) and the moment
the engine reacts by decreasing its speed (invocation of
the operation accelerate with a negative parameter by
the Engine on itself) less than 50 ms pass. Moreover, the
Display shall receive an update from the Engine less than
20 ms after the call to accelerate.

2

These constraints cannot be captured by a standard UML
model. In current practice, constraint (2) is likely to be rep-
resented by a sequence diagram, such as the one in Fig. 2.
But there are two problems with the sequence diagram rep-
resentation of the constraint:

— In the sequence diagram, it is not clear whether the first
event involved in the constraint is the reception of the
criticalTemperature signal or the consumption of the sig-
nal by the Engine. Sequence diagrams offer no means to
distinguish between these two events.

— There is no means in a sequence diagram to distinguish
optional events and mandatory events: property (2) does
not require a criticalTemperature signal to be sent, but if
such a signal is received by the Engine, then a number of
reaction events must happen within some limited amount
of time.

118

S. Graf et al.

E

1
criticalTemp}rature

/

|
| | »
) 1 \/{<50ms}
: : :—, accelerate(d)
] I “
1 1 \ {<20ms} {d <0}
| | update() —
r {

Fig. 2 Sequence diagram with a time constraint

3.2 Timed events

A purpose of the OMEGA-RT profile is the definition of time
constraints not only at the instance level, as this is presently
the case for timed sequence diagrams, but also at type level.
A TimedEvent is an instant of state change. It is defined as
a type level concepts and the corresponding instance level
counter-part is an event instance defined as an attribute of a
class or component of the system.

Event kinds define a syntactic classification of events.
Each event kind is associated to a syntactic entity and it de-
fines the relevant parameters of an event. For instance, in
a signal exchange, three event kinds can be identified which
make reference to the sender, the receiver, the concerned sig-
nal and its parameters:

— the send event—defining the moment at which the signal
is sent by the sender,

— the receivesignal event—defining the moment at which
it is received in the input queue of its target,

— and the acceptsignal event—defining the moment at
which the signal is processed (this corresponds to the im-
plicit discarding of the signal or to the instant at which a
transition is triggered by the signal)

Only a send event and an acceptsignal event can be
syntactically identified on a state machine defining the be-
haviour of the sender and the receiver, and the second one
only under the condition that the signal effectively triggers
an explicit transition (and is not implicitly discarded). A re-
ceivesignal event, representing the instant at which the sig-
nal reaches the receiver’s input queue, cannot be syntacti-
cally captured in a state machine because the semantic level
state change to which it is attached is not visible in the state
machine.’

An operation call defines six events (three correspond-
ing to the invocation, and three corresponding to the return)
which have the same kinds of parameters as the events as-
sociated with signals. With state machine states, enter and
exit events are associated which can make reference to the
object to which the state machine belongs and the name of
the state as well as any visible attribute. The appendix pro-

3 This problem had also been identified in the context of SDL, and
long, finally non-conclusive discussions have taken place if and how to
make it accessible to the user.

vides an exhaustive list of the identified event kinds. They
define the granularity of the states and the occurrence times
of transitions between them that can be observed. When a
finer granularity is needed, this has to be modelled explic-
itly (e.g. a transition with several actions needs to be cut into
several transitions if an intermediate state needs to be ob-
served.

When a coarser grained observation is sufficient, some
events may be considered equivalent. In some contexts, it is
not useful to distinguish between the send and the receives-
ignal event.

An event type represents a pattern of event occur-
rences and is defined by a UML class stereotyped with
<TimedEvent>>. An event instance is either local to a class
or component, or global to the model. A Local event in-
stance of a class or component, can be defined as an at-
tribute. Global events are defined as attributes of a special
class, stereotyped «TimeAnnotations>> which is never in-
stantiated and is not part of the functional specification of
the model, it only collects global time constraints and their
events.

An event type can have its own local attributes stor-
ing event parameters and information on the system state
at event occurrence time (event memory). It is defined by an
expression which may include

— a mandatory matching clause describing the kind of
event and possibly names for some event parameters—
specific to its kind (e.g. for a send event the signal that is
sent, the sender, the target, etc.). The form of the match-
ing clause depends on the kind of the event (Example 1
below shows the matching condition for events associ-
ated with operation calls, and an exhaustive list can be
found in the Appendix).

— an optional filter condition of the form

when b-expr

where the boolean expression b-expr can depend on
the names introduced in the matching condition and on
any attribute visible in the context of the event. The filter
condition allows refining the specification of the event
type defined by the matching condition. This way, event
occurrences corresponding to the filtered event are a sub-
set of those of the original event type. Therefore, the
event filtering allows sub-typing.

— an optional action statement of the form

do action

where the only allowed actions are those assigning a
value to local event attributes with no other side effect.
Notice that the value of a local attribute corresponding to
a name used in the matching clause is implicitly defined
by this use.

Example 1 Now we can define event types corresponding to
the events referred to in the example of Sect. 3.1. Property
(1) refers to a single event, the moment an engine calls the
operation Update on its associated Display. Figure 3 shows
the definition of such an event type, called InvokeUpdate.
The matching clause

A real-time profile for UML

119

match invoke Display::update()
byeond
when e.screen = d
do rpm := e.rpm

«TimedEvent»
InvokeUpdate
-rpm : Integer

Fig. 3 Event types extracted from the constraints

match invoke Display::Update by e on d
expresses the fact that an event of this type matches any oc-
currence of an invocation of Update of any object e of type
Engine to an object d of type Display. The filter condition

when e.screen = d

restricts it however to those occurrences in which the call is
made to the display defined by the engine’s attribute screen.
The action statement
do rpm:=e.rpm

has the effect that at occurrence of a matching event, the
value of the attribute rpm of the event is defined as the value
of rpm of the engine at this point of time (in the state before
the occurrence of the event). This is needed as property (1)
restricts the time constraint to those consecutive occurrences
of events of this type in which at the time of the earlier occur-
rence the rotation speed exceeds 7000. Notice that the filter
clause when e.screen = d is not necessary if it is impossible
that an engine calls Update on an object different from ‘its
screen’.

Figure 4 shows the definition of the event types needed
for property (2). The event type RcvCritical corresponds to
the moment at which the temperature gets critical and is de-
fined here precisely as the moment in which the signal criti-
calTemperature is received by the engine and not as the mo-
ment at which the engine reacts to it, which is ambiguous in
the sequence diagram of Fig. 2.

All events store also the identifier of the engine e corre-
sponding to the sender or receiver identified by the matching
clause. Section 3.3 shows why this attribute is needed.

At any point of time of an execution, each event instance
has like any object a ‘current value’ corresponding the val-

«TimedEvent» ()
RevCritical match receivesignal criticalTemperature(void
- - / by e
-e : Engine
«TimedEvent») ;
InvDecelerate match invoke Engine::accelerate(delta)
-e : Engine parma s byeone

L -
-delta : Integer when delta <0

«TimedEvent»
RcvUpdate
-e : Engine

match receive Display::update()
by d from e
when d.owner = e

Fig. 4 Event types extracted from the constraints

ues defined by its most recent occurrence. In order to reason
explicitly about older occurrences, we define event expres-
sions which are either an event instance or of the form E.pre
for some is an event expression E. The interpretation is that
the ‘current occurrence’ of E.pre is the second last occur-
rence of event E.

3.3 Duration expressions

The main aim of the OMEGA-RT profile is the definition of
constraints on durations between occurrences of events. A
difficulty is to provide a suitable mechanism for identifying
appropriate pairs of event occurrences defining a duration to
be constrained.

A possible mechanism consists in indexing events oc-
currences and defining the durations between occurrences of
events with indexes in some relationship, e.g. the ‘duration
between the ith exit.state and the i + 1th enter.state’ (defining
the duration between two consecutive visits of state state).
While this is useful, it is clearly not sufficient in situations
where no relationship exists between the causal relationship
of events occurrences and their index.

Example 2 The duration between the moment at which a
signal is sent by a sender over an unreliable channel, and
the moment at which it is received by a receiver can not be
expressed by means of a constraint on indexes of events Snd-
Sig and RcvSig as there may be much more occurrences of
the first event than of the second one.

3.3.1 Basic durations

Our framework proposes several mechanisms for the iden-
tification of matching event occurrences. The simplest one
defines the duration between the most recent occurrences of
two event instances E/, E2:

Duration(E/, E2)

defines at any time, the time distance between the most re-
cent occurrence of E£2 and the just preceding occurrence of
El.

Example 3 In the case that the events exit.state and en-
ter.state concern a single object, one can express the
duration between two consecutive visits of state state by
Duration(exit.state, enter.state), and similarly, the duration
between the moment that a signal is sent and the moment
at which it is received, if not lost, by Duration(SndSig,
RcvSig).

It is useful to increase the expressiveness in two ways.
On one hand, one would like to consider a subset of such
durations, e.g. one may only be interested in the duration be-
tween exit.state and enter.state if the value of variable x has
increased at least by 100. Such restrictions will be defined
by constraints.

On the other hand, instead of the duration between the
most recent occurrences of two events, one is interested in

120

S. Graf et al.

the duration between the most recent occurrences satisfy-
ing some condition. For this purpose, we extend duration
expressions to

Duration (event -expr, event-expr) [b-expr].

The expression Duration(E/,E2)[match-cond] defines the
duration between the most recent pair of occurrences
(El, E2) of the event expressions EI,E2 satisfying match-
cond(E1,E2). Notice that Duration(E/,E2) is equivalent to
Duration(E/, E2)[true] and we also use an alternative syn-
tax:

Duration(E/,E2) match match-cond

In a pipelined computation, where each occurrence of E/
is followed by exactly one corresponding occurrence of E2
by preserving the order of the E/ occurrences,

DurationIndexed(E/, E2))

measuring the time spent between the ith occurrence of an
event E/ and the ith occurrence of E2, defines the useful
durations to be constrained.

Example 4 Let us explain the use of these duration expres-
sions on hand of the examples.

Property (1) of the example of Sect. 3.1 defines a constraint
which is local to the class Engine, and therefore the instances
of the events needed for its expression are defined as lo-
cal attributes of Engine (see Fig. 5). Such a local event in-
stance does only match occurrences concerning the object to
which it is attached, and it can only be used in local prop-
erties. The duration occurring in property (1) is then defined
by

Duration(ev!/.pre,evl)

where ev] is a local attribute of type InvokeUpdate of Engine
It represents the duration between two consecutive occur-
rences of event InvokeUpdate local to each object Engine.

Property (2) of the same example involves events of
several object, meaning that it needs to be expressed by
means of global events with instances attached with class
< TimeAnnotations>>. When there is more than one instance
of Engine in the system, it is necessary to restrict the dura-
tions between events to those associated with the same en-
gine. The duration between the starting point of the deceler-
ation of an engine and the update of the associated display
can be defined by

Duration(evDec,evUpd)
match evDec.e=evUpd.e

For evDec a global event instance of type InvDecelerate and
evUpd an attribute of type RcvUpdate. The match clause
says that we are not interested in the closest occurrences of
InvDecelerate and RcvUpdate, but in the closest ones con-
cerning the same engine e.

In this example, a notion of component containing a sin-
gle engine, its screen, and possibly other objects, and the
association of events and timed annotations with compo-
nents allows avoiding the use of the match clause. In a slid-
ing window protocol, however, an interesting duration is the

one between those events sendM and rcvAck carrying the
same sequence number. Using a duration of the form Du-
ration(E/,E2) requires the introduction of a different event
type for each sequence number, whereas the use of a match
clause allows to simply write

Duration(sendM rcvAck)
match sendM .sn=rcvAck.sn

3.3.2 Predefined durations

SPT associates durations and constraint of them by associ-
ating them to features such as operations, signals, objects,
etc. Often, additional features, in particular operations need
to be introduced for representing the relevant durations. We
propose the explicit definition of events for more expressive-
ness and flexibility for definition of durations. Nevertheless,
such duration patterns are useful shorthands. Examples are

— execution time, execution delay, client response time,
server response time, transmission delay which are as-
sociated with actions (a call action for the last two);

— reactivity and period which are associated with a trigger;

— transmission delay associated with a communication
channel;

— lifetime associated with an object, and many more.

Our profile does not yield completeness with respect to pre-
defined durations, which is hardly ever possible. The idea is
to define the useful ones in any particular context. What our
profile provides, is a means for a semantic underpinning of
any patterns of this kind. It might even be envisaged to allow
the user to define his own patterns for a given application or
application domain, and defining their semantics using our
profile.

Notice that a particular feature of the above mentioned
patterns is that they concern events attached to the same ob-
ject, which simplifies the definition.

Example 5 For instance, the client response time of an op-
eration warning of class Engine can be associated with pro-
vided interfaces or with a particular call to warning (for ex-
ample a transition triggered by a call to warning).

warning ResponseTime

defines the time elapsed between the reception of a call of
warning and the moment at which the return statement is
executed. This duration defines implicitly two event types:

Ev1: match Receive Engine::warning
from sender

Ev2: match InvokeReturn Engine::warning
to sender

When there is never a call to warning before the preceding
call has been completely treated, the expression
Duration(ev/,ev2)

on implicitly defined local attributes ev/:El and ev2:E2 of
Engine defines the required client response time.

A real-time profile for UML

121

In the general case, where there may be several calls
which have been received but not yet treated, the expres-
sion above is not correct as it defines the duration between
an EvI and a directly following Ev2 event. In the context of
Omega, where calls are always considered as blocking, it is
enough to store the sender of each event occurrence and to
define the response time by means of the expression

Duration(ev/,ev2) match evl.sender=ev2.sender O

3.4 Semantics

A large part of the profile is implemented by a mapping to
the extended timed automata of the IF formalism [9] which
has a formal semantics. But, in order to have the profile bet-
ter integrated with the UML and SPT definitions, we provide
a formalisation in UML itself by means of OCL. For increas-
ing the readability, however, we rather use an OCL-like nota-
tion which can be transformed into OCL in a straightforward
manner. Time constraints express constraints on occurrences
of events, whereas OCL allows the expression of properties
of configurations, which are interpreted as invariants, that is
as a property of all configurations traversed by any execu-
tion.

A purpose of the introduction of events is to make time
constraints dependent on the defined events, but not directly
on the entire state of the system. That means that events de-
fine the set of useful observations for reasoning about timing
constraints.

When OCL is used for defining semantics, event in-
stances have to be interpreted as objects which have a value
in every semantic level state. Where only duration expres-
sions making reference exclusively to the most recent occur-
rence of an event expression, it is sufficient to consider any
attribute E of type event as an object changing its value (its
local attributes and its occurrence time, denoted E.f), at each
occurrence. The event expression E.pre represents an object
holding at any time the ‘previous value’ of E. In order to be
able to define the semantics of duration expressions contain-
ing a match clause as an invariant, this is not sufficient.

3.4.1 Events

We consider that every attribute E of type event, represents
at each instant of execution a list of event occurrences with
an accessor E.latest representing the most recent occurrence
and e.prev defining the predecessor of every given event
occurrence e in the list. Each list is empty at system start.
E .pre.latest is defined by E.latest.prev pointing to the prede-
cessor of E.latest.

We also introduce a derived expression E.preN(n) defin-
ing the n before last element of the list associated with an
event expression E; it is not accessible at the user level, but
needed for the definition of the semantics of duration ex-
pressions. It is expressible in OCL by means of the defined
primitives:

E preN(n) =if n=0 then E.latest else E.pre.preN(n-1)

This mapping is close to the extension of OCL with a
history variable, representing in every instant of execution
the current history of all event occurrences [38].

3.4.2 Duration expressions

Duration expressions are evaluated on a configuration of
events, that is the before mentioned lists of event occur-
rences defining the semantics of a set of events.

The semantics of an expression of the form Dura-
tion(E!, E2)[match-cond], is defined by:

Duration(E/ ,E2)[match-cond] =
if 3i € N: match-cond(El .preN(i),E2)

then let k = min{i € N | match-cond(E1 preN(i),E2.latest)}

in E2.latest.t — El.preN (k).t
else Duration(E/,E2 pre)[match-cond]

where the minus represents the distance operator on type
Time having as result a duration.

In order to define the semantics of the index-wise du-
ration, we need a function index that defines the index of
each element in the occurrence list associated with an event
expression E. Its definition needs an additional primitive
E first* defining the first element of the list associated with
an event.

E.index=1{i e N* | E.preN(i — 1) = E.first}
The index-wise duration can now be defined as:

DurationIndexed(E/,E2) =
Duration(E!,E2)[E].index = E2.index]

3.5 Time constraints

Time constraints are boolean expressions involving dura-
tions. In explicitly time dependent models with timers and
clocks, boolean expressions involving timers and clocks can
be used in the action language, in particular in guards or
in decisions. In principle, any boolean OCL expression can
be used in timed annotations. Ref. [47], the tool providing
the most complete tool support for this profile, handles only
a subset of simple constraints corresponding to conditional
constraints involving two events. They extend constraints as
they are used in SPT. Constraints involving more than two
events are expressed by observers® in Sect. 3.6. The consid-
ered expressions are of the form

duration-expr &~ duration-constant
when b-expr

where A is any comparison operator® and b-expr
may depend on the attributes of the events occurring

4 Which is the element E.preN(k) such that E.preN(k+1) is unde-
fined, but such a definition is not allowed in OCL. Notice that we could
have defined a semantics including a pointer to the initial state, but for
exploration-based validation it is important to show that this informa-
tion can be derived.

3 SPT proposes sequence diagrams for the same purpose.

6 mef<.<.=2.>)

122

S. Graf et al.

timedevents { ev1 : InvokeUpdate } -
timeconstraints { Engine

require -rpm:Integer
Duration(ev1.pre, ev1) <= 100 when ev1.rpm >= 7000 Fstart()

} [+accelerate(in d : Integer)

Fig. 5 Expression of property 1

. . B «TimeAnnotations»
t';:;;‘:gs“amts { Constraint2part
Duration(evDec,evUpd)[evDec.e=evUpd.e] <= 20 wmmt-=—fe€VDec : InvDecelerate
} (Pl pd-e] -evUpd : RevUpdate

Fig. 6 Second part of property 2

in duration-expr. It expresses the following invari-
ant: in any state, the value of duration-expr must
satisfy the constraint expressed by duration-expr =~
duration-constant under the condition that b-expr
holds for the attributes of the event occurrences identified by
the evaluation of duration-expr. As constraints depend
only on the implied events, it is enough to evaluate them at
occurrences of the second event in duration-expr.

Example 6 Property (1) of the example defined in Sect. 3.1
is shown in Fig. 5. It constrains the duration between the
two most recent occurrences of the event InvokeUpdate to
be smaller than 100, but only when attribute rpm of the
older occurrence is greater than 7000. Property (2) involves
three events. The constraint shown in Fig. 6 expresses the
second part of this property, but it is only required if be-
forehand a signal criticallemperature has been received
and deceleration has started within the required reaction
interval.

Constraints in time annotations define invariants of the
model and can play two different roles:
— they may represent assumptions on the environment or
the underlying execution platform,
— or requirements, that is properties which should be deriv-
able from the model
We distinguish these two kinds of constraints by means
of explicit keywords assume and require. The constraints
shown in the example are all requirements.

SPT offers tagged values that represent attributes of
the execution (deadline, WCET, etc.) to express time con-
straints. Our profile does not define such attributes, but it
provides the semantic basis allowing their formal definition.
For instance, referring to the example in Sect. 3.3.2, the
deadline attribute for an operation may in our setting define
a constraint of the form

warning ResponseTime < deadline

where deadline is an attribute of type duration of the class
engine. We allow more fine grained constraints.

3.6 Observers

In order to express assumptions and requirements involving
conditions which are more complex than the distance be-

tween two events, we define an operational formalism called
observers.

3.6.1 The observer concept

Observers represent dynamic properties by acceptors of lan-
guages representing event sequences. An observer is an ob-
ject which executes synchronously with a system and mon-
itors its state and the events that are occurring. It may have
a local memory (attributes) and its behaviour is described
by a state machine. Contrary to objects of a system, the ob-
server’s state machine does not react to local conditions or to
signals exchanged with other objects, but to events—as they
have been defined earlier—occurring in the system’s execu-
tion and change of conditions satisfied by the system’s state.

Observers have unlimited visibility over the objects com-
posing the system (they may observe state machine states,
attribute values, etc. of any object) and mechanisms for cap-
turing occurrences of events of the types defined in Sect. 3.2.

In order to express assumptions and requirements, some
of the states of the observer’s state machine be qualified as
invalid or error states:

— invalid states express the violation of assumptions on
system executions. A system execution which may drive
an observer through an invalid state is not considered as
a part of the semantics of the system, only complete ex-
ecutions avoiding invalid states are valid executions.

— error states express requirements (properties) that have
to be satisfied by the system, i.e. that have to be implied
by the functional semantics of the system under the spec-
ified assumptions. A valid execution which may drive an
observer through an error state represents a violation of
the requirement.

3.6.2 Syntax

Syntactically, observers are defined in a UML model
by stereotyping classes with <observer>>. The states of
the state machine are classified using two stereotypes:
Kinvalid>> and <error>>. Finally, reactions to events are
specified in transition triggers using the same syntax as de-
fined in Sect. 3.2. A trigger may be either just a matching
clause (as used in the definition of event types) or an event
expression where a corresponding instance must be declared
locally as an attribute of the observer class of some event

type).

Example 7 The observer in Fig. 7 specifies property (2)
from Sect. 3.1 in a system with a unique object of
type’ engine. It involves three events as defined in Fig. 4
and has a local attribute for matching each of them.

After the occurrence of an event of type RevCritical, it
expects to observe the occurrence of an event /nvokeDe-
celerate. If no observable event occurs before 50 ms have

7 In case of the restriction of observers to deterministic ones, the
notions may drive and must drive coincide.

A real-time profile for UML

123

«Observer»
Top Package:: Constraint2
-rc : RevCritical
-id : InvDecelerate
-ru : RevUpdate
-x : Clock

<<error>>
KO

ru / x.reset()

Fig. 7 Example of observer for a safety property

passed, the transition leading to the error state is executed.
The second part of the observer (the behaviour in state WRU)
represents the constraint of Fig. 6. The observer defines pre-
cisely the condition on previous observations under which
the constraint must hold. We show here the alternative of
using observers with attributes of type Clock as an alterna-
tive of the use of the occurrence time attribute of events:
to express the constraints on durations, this observer uses
a unique attribute x of type Clock. This is enough, as at
any time only the duration since the previous observation is
needed. Whenever an observable event occurs triggering no
transition—e.g. an event rc in state WID—it is simply ignored.

When several engines, possibly created and deleted dy-
namically during the lifetime of the system, should have the
same property, then the observer class needs an additional
attribute of type engine, and only events of ‘its engine’ will
trigger transition (by means of an additional guard on transi-
tions). An additional observer creates/deletes an instance of
such an observer, whenever it detects the creation/deletion
of an engine.

Notice also that the use of observers is not restricted to
timing properties. They represent also an interesting means
for the expression of more complex, data- and coordination-
oriented properties.

3.7 Scheduling-related concepts

Constraints on durations between events, as they have
been defined so far, do not allow to distinguish between
distributed and scheduled execution. Duration constraints
of causally independent parts are independent. Going
towards an implementation means to consider scheduling
constraints, that is, taking into account sequentialization of
executions of independent actions due to a restricted number
of processors executing them or the need to share other
resources. In order to add this information to the model,
a notion of resource is introduced, as well as primitives
for binding activities to resources. When the envisaged
scheduling policy of independent actions on a (set of)
processors is preemptive, the so far introduced notion of

‘duration’ of the execution of an action is no more suffi-
cient. It is necessary to distinguish for each basic action its
duration and its execution time When only non-preemptive
scheduling is considered, execution time and duration8 of
actions coincide, but it is necessary to define the granularity
of scheduled tasks or threads, that is the points of control at
which the scheduler takes decisions.

3.7.1 Task

We propose to use the notion of activity groups as they exist
in the Omega profile to define the set of concurrently ac-
tive thread to be scheduled. In the Omega profile, an activ-
ity group is a set of objects grouped around an instance of
an active class which represents a single threaded behaviour
in which the reaction to an external trigger is computed in
a run-to-completion step, without further acceptance of re-
quests from the environment. Activity groups do not share
variables, and therefore all tasks are executed on the same
processor can be scheduled with or without preemption. At
semantic level, an activity group is in an inactive state, when
all its objects are stable (have no enabled transition). The
presence of a signal or an operation call in the input queue
and/or the satisfaction of a time dependent condition may
activate one of its tasks and bring the activity group into an
active state.

When preemptive scheduling is used, activity groups are
sufficient to define the scheduling problem: at every point of
time, the scheduler decides which activity group(s) get their
resource(s).

In the context of non-preemptive scheduling, we may ei-
ther use the notion of run-to-completion step for implicitly
defining the granularity of atomic tasks or use an explicit
break-down of the control flow of a step into user defined
tasks using primitives starttask and endtask.

Notice that each run-to-completion step may itself con-
sist of concurrent sub tasks and must be scheduled, possibly
by a local scheduler? (see Sect. 3.7.4).

In the context of UML 2.0, architecture diagrams can be
used to define a hierarchical notion of activity group, active
state, task, . ..

3.7.2 Resource

Resources represent mutual exclusion constraints which are
not defined in the functional model, in particular shared re-
sources (like processors) related to the computation plat-
form which have no functional meaning but determine
timing properties. As in SPT, for such resources an ex-
plicit notion of resource is introduced as classes stereotyped
Kresource>>. Resources have attributes defining the kind
of scheduling that they allow (no scheduling, preemptive of

8 Duration refers here to the duration between the events start action
and end action not the duration of an entire transition, starting from the
reception of the trigger.

9 In current practise, each run-to completion step is scheduled off-
line, and sequential code is generated.

124

S. Graf et al.

non-preemptive). Instances of resources have no explicit be-
haviour associated.

Due to dynamic nature of UML specifications, we pro-
pose a dynamic means for specifying the resources that a
task needs to execute: as for timing we propose

— an operational way by means of the actions acquire(r)—
from that point on resource r is needed to execute—and
release(r).

— in the form of annotations associated with events. This
has the advantage of providing a better separation be-
tween functional and non-functional specification where
nevertheless the relationship is precisely defined by
means of events.

At semantic level, resources are only required in the ac-
tive state, which has two sub-states: in the state executing
state, it owns all required resources in mutual exclusion,
whereas in the suspended state, it is waiting to obtain some
resource.

All objects of the system which can be accessed concur-
rently by more than one object to execute requests represent
resources. In principle, accesses to such a resource are spec-
ified in the functional model, and it is not necessary to ex-
plicitly introduce a <resource>>> for them. But when several
actions need to be executed atomically, then it is important
to be able to specify this. For this kind of mutual exclusion,
the profile introduces a notion of atomic action, blocking the
access from other activity groups to any object in between
two accesses by the atomic action.

3.7.3 Execution time

The execution time of an action is defined relative to an ac-
tivity group as the cumulated time in the executing state be-
tween the start and the end event associated with the action.
Execution times can be specified by an expression of the
form

ExecTime(E!, E2)

where £/ and E2 concern the same object. Alternatively, the
execution time of a fask associated with an activity group
is associated with a trigger and is implicitly defined as the
time between the acceptance of the trigger and the moment
in which the activity group enters again an inactive state.

3.7.4 Scheduling policies

Scheduling is the sequential ordering of concurrently en-
abled activities, which share resources. A well defined the-
ory for solving the scheduling problem is defined only in re-
stricted settings [42, 43, 56, 62], but there exist recent results
on more general frameworks [1, 2,21, 35]. A general frame-
work for expressing all kinds of scheduling constraints as
well as some results on schedulability are given in [26, 27].

Any scheduling policy (including RMS, EDF, ELF, ...)
can be expressed by means of dynamic priority rules [27].
In order to provide expressiveness, our framework includes

dynamic priority rules, that we view as complement to
scheduling policies defined by keywords such as proposed
by the SPT. A priority rule is of the form

[cl::]p]l < [c2::]p2 if b-expr

where pl, p2 represent any object of class ¢/, ¢2 and b-expr
is a condition on the current state, where the typing informa-
tion is optional when b-expr can be evaluated on any object.

Example 8§ Dynamic priority rules are useful for both, the
specification of scheduling policies and of execution modes.
For example, the run-to-completion execution mode for ac-
tivity groups can be specified by the following rule:

pl < p2 if p2 = pl manager

This rule says that the manager object'? of an activity group
has less priority than other objects of the group. This is due
to the fact that the task of the manager object consists in
accepting new requests which is only allowed when the pre-
vious request has been handled.

As the non-determinism to be resolved by a scheduler
might appear at any level of the model hierarchy, also
priorities are organised in a hierarchical manner: rules for
eliminating non-determinism amongst concurrent entities
are attached with an entity at higher level of hierarchy. For
example,

— the priority rules between activity groups executing on
the same resource are associated with the resource;

— the priority rules defining the choice between the enabled
triggers within an activity group are associated with the
active object. This way, an active object is a kind of local
scheduler.

4 Conclusions

We described an approach for enriching UML models with
time and scheduling-related information. The defined frame-
work has a semantic underpinning and is compatible with
the UML Real-Time profile for Performance Scheduling and
Real-Time in the sense that it uses the concepts identified
there to define a concrete and expressive framework.

A key point is the introduction of a concrete UML syntax
for a set of events identifying the instants during the lifetime
of the system under some time constraint. Duration expres-
sions represent the time elapsed between certain occurrences
of events. Our profile goes much further than SPT concern-
ing the set of identifiable event occurrence pairs that can be
constrained.

In fact, the profile defined here can be used to provide
a precise semantics for durations and constraints defined in
SPT and some of its extensions in the form of attributes. SPT
does not fix an interpretation, but leaves this to the tools.

19 In the Omega profile each object has an attribute manager which

has value self for active objects and the identity of an active object for
instances of passive classes.

A real-time profile for UML

125

The semantics used by different tools can be expressed using
our profile. Our profile provides a means for defining such
a semantics by means of a set of events and modalities for
expressing durations.

The introduced notion of event is rich enough to define
an observation criterion for verifying timed properties of the
system: the semantics of timing properties depends only on
the set of defined events, meaning that any abstraction of the
system preserving the observations of events is sufficient to
verify the time-related properties.

In fact, events are the basis for the definition of the con-
sistency relation between different views of the system. In
[47], we use them to define the relationship between a global
view provided by observers and an operational view pro-
vided by state machines defining object behaviours, but in
the same way, they can also been used to relate Sequence
Diagrams to an operational view. This means also that pro-
file is not bound to a particular interpretation of operational
specifications. Time constraints and observers can be evalu-
ated on any set of behaviours defined by sequences of occur-
rences of observable events.

An important contribution of our profile, are the intro-
duction of UML observers. They are more powerful than
sequence diagrams for the expression of global properties
and have been used successfully in other contexts, for exam-
ple together with SDL. Here, we have shown their use for the
expression of timed properties, but observers—together with
events—can also be used for the expression of complex be-
havioural properties of a system. For example, an observer
may use the event InvokeUpdate not only to define a time
constraint between the occurrence time of two consecutive
events, but also to limit the difference of the rotation speed
between two occurences of this event.

An important difference with the SPT profile, in particu-
lar sequence diagrams, is that time extensions are defined at
class level and not at object level. This increases the expres-
siveness, but explains also some increase in complexity.

As already mentioned in Sect. 2.4, parts of this profile
have been adapted and supported by verification tools. Tool
support for most of the profile is provided by the tool de-
scribed in [47]. This tool represents UML specifications re-
specting the restrictions of the Omega profile by means of
a dynamic set of communicating timed automata extended
with data and actions, as they are defined by the IF format
[9]. All events correspond to a set of control transitions in
the corresponding IF specification; taking such a transition
generates the corresponding event, but all the information at-
tached with an event is stored in the constraints (observers)
depending on this event, rather than in a event occurrence
list defined in Sect. 3.4. UML observers are represented by
IF observers. Timed annotations which are local to an ob-
ject are represented by additional local attributes and timed
annotations of the extended automaton representing the the
behaviour of the object. Global time constraints are repre-
sented by IF observers. The naive representation of con-
straints involving duration expressions with matching con-
ditions by timed automata is impractical for validation as it

results in the dynamic generation of a large number of in-
stances of timed observers. The main challenge consists in
finding criteria for the deletion of observers, when either the
expected event can not be observed anymore in the future,
or its observation beyond some point of time doesn’t change
the validation result. Such criteria can be found by means of
static analysis of the system.

Using this tool-set, we have successfully used our pro-
file for the case studies considered in the Omega project.
In particular, we have applied it successfully to a model of
the Ariane-5 flight program for the verification of time de-
pending properties and for schedulability analysis. A more
detailed description of this case study can be found in [48],
and the scheduling issues will be presented in a forthcoming

paper.

Appendix: List of event kinds

This appendix contains the list of identified event kinds. as well as the
corresponding matching statement, which defines its parameters and
implicit do statements.

Event kinds associated with a signal transmission:

— send—instant of signal emission:
match send <signal>(<ident-list>)
by <ident> to <ident>
where the optional by identifier represents the sender,
the to identifier the receiver, <signal>(<ident-list>)
designates a signal and its parameters.
— receivesignal—instant of signal reception:
match receivesignal <signal>(<ident-list>)
by <ident> from <ident>
where the by identifier represents the receiver,
the from identifier the sender
— acceptsignal—instant of start of signal processing by the
receiver:
match acceptsignal <signal>(<ident-list>)
by <ident> from <ident>
parameters as for receivesignal.

Event kinds associated with an operation call:

— invoke—instant of call by the caller:
match invoke <class>::<operation>(<ident-list>)
by <ident> on <ident>
where the optional by identifier represents the caller, the
on identifier the callee and <class> the optional callee class
and <operation>(<ident-list>) a method of the callee with
its parameters.
— receive—instant of call reception by the callee:
match receive <class>::<operation>(<ident-list>)
by <ident> from <ident>
where the optional by identifier represents the callee, and
the from identifier the caller
— accept—instant of start of operation execution:
match accept <class>::<operation>(<ident-list>)
by <ident> from <ident>
— invokereturn—instant of emission of ‘return’:
match invokereturn <class>::<operation>(<ident-list>)
by <ident> to <ident>
where the optional by identifier represents the callee, the
to identifier the caller of the operation.
— receivereturn—instant of reception of ‘return’ by the caller:
match receivereturn <class>::<operation>(<ident-list>)
by <ident> from <ident>
where the optional by identifier represents the caller, the
from identifier the callee

126

S. Graf et al.

— acceptreturn—instant of call termination:
match acceptreturn <class>::<operation>(<ident-list>)
by <ident> from <ident>

Event kinds associated with an action specification:

— start—the instant of start of action execution
— end—the instant of end of action execution
— startend—instant of execution, if instantaneous action:
match {start | end | startend} <class>@ <label>
where <class> designates the class of the action and
<label> its label.

Event kinds associated with a state machine transition:

— starttrans—the instant of start of transition execution
(trigger consumption)
— endtrans—the instant of end of transition execution
(enter target state)
— startendtrans—the instant of the execution of an
instantaneous transition
match {starttrans | endtrans | startendtrans}
<class>(@ <transitionname >
where <class> designates the class of the transition
and <transitionname> its name.

Event kinds associated with a state machine state:

— enter—the instant at which a state is entered
— exit—the instant at which a state is left
match {enter | exit} <class>@ <statename>
where <class> designates the class of the state
and <statename> its name

Event kinds associated with an object:

— create—the instant at which the object is created
— delete—the instant at which the object is deleted
match {create | delete} <class>
where <class> designates the class of the created
or deleted object.

Event kinds associated with a timer:

— occur—the instant of timer expiration
— timeout—the instant of timer consumption
match {occur | timeout} <class>::<timer>
where <class> designates the class and <timer> a timer
attribute of this class. Other important instants associated
with timers are those associated with the instantaneous
actions set and reset.

Event kinds associated with a resource:

— startresource—the instant at which an object starts to
use a resource in mutual exclusion—
— endresource—the end of such a resource usage phase
match {startresource | endresource}
of <ident> by <ident>
where the first identifier designates the object and the
second on the resource.

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: On optimal scheduling un-
der uncertainty. In: Proceedings of TACAS 2003. Warsaw, LNCS

2619 (2003)

. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed au-
tomata. In: Theor. Comp. Sci. (2004)

. Aghav, J., Petitpierre, C.: Validating real-time behavioral patterns
of embedded controllers. In: SVERTS (Specification and Valida-
tion of UML models for Real Time and Embedded Systems) work-
shop at UML 2003. CA, USA, October 2003, Proceedings (2003)

. Alur, R., Dill, D.: A theory of timed automata. Theor. Comp. Sci.
126, 183-235 (1994)

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41,
181-204 (1994) (a preliminary version appeared in the Proceed-
ings of 30th FOCS 1989)

Artisan Real Time Studio, http://www.artisansw.com/products/
products.asp (2001)

Ben-Abdalla, H., Leue, S.: Expressing and analysing timing con-
straints in message sequence chart specifications. Technical report,
U. Waterloo (1997)

Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le
Guernic, P., de Simone, R.: The synchronous languages 12 years
later. In: Proceedings of the IEEE, vol. 91 no. 1 (2003)

Bozga, M., Graf, S. Mounier, L.: IF-2.0: A validation environment
for component-based real-time systems. In: Proceedings of Con-
ference on Computer Aided Verification, CAV’02, Copenhagen,
number 2404 in LNCS. Springer Verlag (2002)

Bozga, M., Graf, S., Ober, 1., Ober, 1., Sifakis, J.: The IF toolset.
In: SFM-04:RT 4th Int. School on Formal Methods for the Design
of Computer, Communication and Software Systems: Real Time,
no. 3185 in LNCS (2004)

Bozga, M., Graf, L., Kerbrat, A., Mounier, L., Ober, 1., Vin-
cent, D.: Timed extensions for SDL. In: SDL Forum 2001. LNCS
(2001)

Closse, E., Poize, M., Pulou, J., Sifakis, J., Venier, P., Weil, D.,
Yovine, S.: Taxys: a tool for the developpment and verification
real-time embedded systems. In: Berry, G., Comon, H., Finkel, A.
(eds.), Proceedings of CAV’01, LNCS 2102. Springer (2001)
OMEGA Consortium. Webpage of the OMEGA IST project.
http://www-omega-imag.fr/

Damm, W., Harel, D.: LSCs: Breathing life into Message Se-
quence Charts. Journal on Formal Methods in System Design
19(1), 45-80 (2001)

Damm, W., Josko, B., Pnueli, A., Votintseva, A.: Understand-
ing UML: A formal semantics of concurrency and communica-
tion in real-time UML. In: de Boer, F., Bonsangue, M., Graf, S.,
de Roever, W.-P. (eds.), Proceedings of the Ist Symposium on
Formal Methods for Components and Objects (FMCO 2002), vol.
2852 of LNCS Tutorials, pp. 70-98 (2003)

. David, A., Moller, O., Yi, W.: Formal verification UML statecharts

with real time extensions. In: Proceedings of FASE 2002 (ETAPS
2002), vol. 2306 of LNCS. Springer-Verlag (April 2002)

de Simone, R., André, C.: Towards a “Synchronous Reactive”
UML profile. STTT, Int. J. Softw. Tools Technol. Transf.this
volume (2005)

Diefenbruch, M., Heck, E., Hintelmann, J., Miiller-Clostermann,
B.: Performance evaluation of SDL systems adjunct by queuing
models. In: Proceedings of SDL-Forum (1995)

Douglass, B.P.: Doing Hard Time, Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns. Object Technol-
ogy Series. Addison-Wesley, Reading, MA (1999)

Faltin, N., Lambert, L., Mitschele-Thiel, A., Slomka, F.: An anno-
tational extension of message sequence charts to support perfor-
mance engineering. In: 8th SDL Forum. North-Holland (1997)
Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability
anaysis using two clocks. In: ETAPS 2003 (2003)

Flake, S., Mueller, W.: A UML profile for real-time constraints
with the OCL. In: Cook, S., Jézéquel, J.M., Hussmann, H. (eds.),
UML’2002, Dresden, Germany, no. 2460 in LNCS. Springer Ver-
lag, Berlin (2002)

Graf, S.: Expression of time and duration constraints in SDL.
In: 3rd SAM Workshop on SDL and MSC, University of Wales
Aberystwyth, no. 2599 in LNCS (2002)

Graf, S., Hooman, J.: Correct development of embedded systems.
In: European Workshop on Software Architecture: Languages,
Styles, Models, Tools, and Applications (EWSA 2004), co-located
with ICSE 2004, St Andrews, Scotland, LNCS 3047, pp. 241-249.
Springer-Verlag, Berlin (2004)

Graf, S., Ober, L.: A real-time profile for UML and how to adapt
it to SDL. In: SDL Forum 2003, July 1-4, Stuttgart, vol. 2708 of
LNCS (2003)

A real-time profile for UML

127

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Gossler, G., Sifakis, J.: Component-based construction of
deadlock-free systems. In: Proceedings of FSTTCS 2003,
Mumbai, India, LNCS 2914, pp. 420—433 (2003). downloadable
through http://www-verimag.imag.fr/ sifakis/

Gossler, G., Sifakis, J.: Priority systems. In: Proceedings of
FMCO’03. LNCS 3188 (2004)

Harel, D., Kugler, H., Pnueli, A.: Smart Play-Out Extended: Time
and Forbidden Elements. In: International Conference on Quality
Software (QSIC04), pp. 2-10. IEEE Press (2004)

Harel, D., Marelly, R.: Playing with time: On the specification
and execution of time-enriched LSCs. In: Proceedings of 10th
IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MAS-
COTS 2002). Fort Worth, Texas (2002)

Harel, E., Lichtenstein, O., Pnueli, A.: Explicit clock temporal
logic. In: Proceedings, Sth IEEE Symposium on Logic in Com-
puter Science, LICS 90, Philadelphia, Pennsylvania, pp. 402—413.
IEEE Computer Society Press (1990)

Ilogix: Rhapsody development environment. http://www.ilogix.
com/sublevel.aspx?id=53

ITU-T.: Recommendation Z.100. Specification and Descrip-
tion Language (SDL). Technical Report Z-100, International
Telecommunication Union—Standardization Sector (November
2000)

ITU-T.: Recommendation Z.120. Message Sequence Charts.
Technical Report Z-120, International Telecommunication
Union— Standardization Sector. Geneve (2000)

Jansen, D.J., Hermanns, H., Katoen, J.-P.: A QoS-oriented exten-
sion of UML statecharts. In: Stevens, P., Whittle, J., Booch, G.
(eds.), UML 2003—The Unified Modeling Language. Model Lan-
guages and Applications. 6th International Conference, San Fran-
cisco, CA, USA, October 2003, Proceedings, vol. 2863 of LNCS,
pp. 76-91. Springer, Berlin (2003)

Kloukinas, C., Yovine, S.: Synthesis of safe, QoS extendible, ap-
plication specific schedulers for heterogeneous real-time systems.
In: Proceedings of the 15th Euromicro Conference on Real-Time
Systems (ECRTS’03). ISBN 0-7695-1936-9 (2003)

Knapp, A., Merz, S., Rauh, C.: Model checking—timed UML
state machines and collaborations. In: Formal Techniques in Real-
Time and Fault-Tolerant Systems, 7th International Symposium,
FTRTFT 2002, Oldenburg, Germany, September 9-12, 2002,
vol. 2469 of Lecture Notes in Computer Science, pp. 395-416.
Springer (2002)

Kosiuczenko, P.: Formalizing time aspects in message se-
quence charts. Technical report no. 9703, Ludwig-Maximilians-
Universitdt Miinchen Institut fiir Informatik (1997)

Kyas, M., de Boer, E.S.: On message specification in OCL. In: de
Boer, E.S., Bonsangue, M. (eds.), Compositional Verification in
UML, vol. 101 of ENTCS, pp. 73-93. Elsevier, Amsterdam (2004)
Lambert, J.-L.: PMSC for performance evaluation. In: 1st Work-
shop on Performance and Time in SDL and MSC, Technical Re-
port 1/98, IMMD VII. University of Erlangen-Nuremberg (1998)
Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT,
1(1-2), 134-152 (1997)

Lavazza, L., Quaroni, G., Venturelli, M.: Combining UML and
formal notions for modelling real-time systems. In: Joint 8th Eu-
ropean Software Engineering Conference, 9th ACM SIGSOFT.
ACM SIGSOFT (2001)

Layland, J.W., Liu, C.L.: Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM 20(1) (1973)
Lipari, G., Buttazzo, G.: Schedulability analysis of periodic and
aperiodic tasks with resource constraints. Journal of System Ar-
chitecture, Special Isssue on Real Time Systems (2000)

Meunier, J.-N., Lippert, F., Jadhav, R.: RT modelling with UML
for safety critical applications: the HIDOORS project example. In:
SVERTS (Specification and Validation of UML models for Real
Time and Embedded Systems) workshop at UML 2003. CA, USA,
October 2003, Proceedings (2003)

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.
55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.
66.

Mitschele-Thiehl, A., Miiller-Clostermann, B.: Performance engi-
neering of SDL/MSC systems. Comp. Netw. 31(17), 1801-1815
(1999)

Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed
Process Algebras. In: Proceedings of CAV’91, vol. 575 of LNCS.
Springer-Verlag, Berlin (1991)

Ober, 1., Graf, S., Ober, I.: Validation of UML models via a map-
ping to communicating extended timed automata. In: 11th Inter-
national SPIN Workshop on Model Checking of Software, 2004,
vol. LNCS 2989 (2004)

Ober, 1., Graf, S., Ober, I.: Validating timed UML models by simu-
lation and verification. STTT, Int. J. Softw. Tools Technol. Transf.
this volume (2005)

Ober, 1., Ober, 1., Lesens, D., Graf, S.: Un profil UML et un
outil pour la modélisation et la validation de systeémes temps-réel.
Génie Logiciel (ISSN 0295-6322), special issue for the Journée
NEPTUNE: Ingénierie des Modéles-vérification de modéles 73,
33-38 (May 2005)

OMG Unified Modeling Language Specification—Object Con-
straint Language Version 2.0 (2003)

OMG.: Response to the OMG RFP for Schedulability, Perfor-
mance and Time, v. 2.0. OMG document ad/2002-03-04 (March
2002)

OMG.: Model Driven Architecture. http://www.omg.org/mda
(2003)

OMG.: UML 2.0 superstructure proposal v. 2.0. Technical report,
OMG document ad/03-01-02 (January 2003)

Metropolis project: http://www.eecs.berkeley.edu/ polis/metro.
Rational/IBM: Rose real-time development environment. http://
www-306.ibm.com/software/awdtools/developer/roexde/
Rjakumar, R., Sha, L., Lehoczky, J., Ramamritham, K.: An op-
timal priority inheritance policy for synchronization in real-time
systems. In: Advances in Real Time Systems. Prentice-Hall, En-
glewood Cliffs, NJ (1995)

Ruf, J., Kropf, T.: Symbolic Model and Checking for a Dis-
crete Clocked Temporal Logic with Intervals. In: CHARME’97,
pp. 146-166 Montreal, Canada (1997)

Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented
Modeling. John Wiley & Sons (1994)

Shankar, S., Asa, S.: Formal semantics of UML with real-time
constructs. In: Stevens, P., Whittle J., Booch, G. (eds.), UML
2003—The Unified Modeling Language. Model Languages and
Applications. 6th International Conference. San Francisco, CA,
USA, October 2003, Proceedings, vol. 2863 of LNCS, pp. 60-75.
Springer, Berlin (2003)

Sifakis, J.: Use of Petri Nets for Performance Evaluation. In: Pro-
ceedings of 3rd International Symposium on Modeling and Eval-
uation, pp. 75-93. IFIP, North Holland (1977)

Slomka, F., Zant, J., Lambert, L.: MSC-based schedulability anal-
ysis. In: 1st Workshop on Performance and Time in SDL and
MSC, Technical Report 1/98, IMMD VII. University of Erlangen-
Nuremberg (1998)

Spuri, M., Buttazzo, G.: Scheduling aperiodic tasks in dynamic
priority systems. J. Real Time Syst. (1996)

Telelogic: TAU Generation 2 Reference Manual (2002)

van der Zwaag, M., Hooman, J.: A semantics of communicating
reactive objects with timing. STTT, Int. J. Softw. Tools Technol.
Transf. this volume (2005)

Yovine, S., KRONOS: A verification tool for real-time systems.
Springer Int. J. Softw. Tools Technol. Transf. 1(1-2) (1997)
Zheng, T., Khendek, F.: Time consistency of MSC-2000 specifi-
cations. Comp. Netw. 42(3), 303-322 (2003)

